Паропроницаемость строительных материалов таблица: Таблица паропроницаемости различных строительных материалов

Содержание

Таблица паропроницаемости различных строительных материалов

В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2ч Па/мг) нормируется в главе 6 “Сопротивление паропроницанию ограждающих конструкций” СНиП II-3-79 (1998) “Строительная теплотехника”.

Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) – 2007 год.

Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 “Теплотехнические свойства строительных материалов и изделий – Определение паропроницаемости”.

Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO, котрые определяют паропроницаемость “сухих” строительных материалов при влажности менее 70% и “влажных” строительных материалов при влажности более 70%. Помните, что при оставлении “пирогов” паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет “замокание” внутренних слоев строительных материалов и значительно увеличится их теплопроводность.

Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8:Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои.

По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ.

– м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.

Механизм паропроницаемости строительных материалов:

При низкой относительной влажности влага из атмосферы транспортируется через поры строительных материаловв виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).

Пример пренебрежения паропроницаемостью строительных материалов в многослойных стенах: укрытие деревянных стен паронепроницаемым рубероидом привело к биологическому разрушению дерева в условиях постоянного увлажнения. При укрытии ячеистых бетонов паронепроницаемыми материалами(кирпичная кладка, ЭППС) происходит переувлажнение стен и их постепенное разрушение при периодическом промерзании.

Показатели паропроницаемости “сухих” строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости “влажных” строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.

ТАБЛИЦА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

Таблицаплотности, теплопроводности ипаропроницаемости различных строительныхматериалов.Основные эффективные теплоизоляционные,гидроизоляционные и пароизоляционныематериалы выделены.

Приведенысредние значения для материалов различныхпроизводителей. Более точные данные потеплоизоляционным материалам см. тут.

Материал Плотность, кг/м3 Теплопроводность, Вт/(м*С) Паропроницаемость,Мг/(м*ч*Па) Эквивалентная1(при сопротивлении теплопередаче = 4,2м2*С/Вт)   толщина, м Эквивалентная2(при сопротивление паропроницанию =1,6м2*ч*Па/мг) толщина, м Железобетон 2500 1.69 0.03 7.10 0.048 Бетон 2400 1.51 0.03 6.34 0.048 Керамзитобетон 1800 0.66 0.09 2.77 0.144 Керамзитобетон 500 0.14 0.30 0.59 0.48 Кирпич красный глиняный 1800 0.56 0.11 2.35 0.176 Кирпич, силикатный 1800 0.70 0.11 2.94 0.176 Кирпич керамический пустотелый (брутто1400) 1600 0.41 0.14 1.72 0.224 Кирпич керамический пустотелый (брутто1000) 1200 0.35 0.17 1.47 0.272 Пенобетон 1000 0.29 0.11 1.22 0.176 Пенобетон 300 0.08 0.26 0.34 0.416 Гранит 2800 3.49 0.008 14.6 0.013 Мрамор 2800 2.91 0.008 12.2 0.013 Сосна, ель поперек волокон 500 0.09 0.06 0.38 0.096 Дуб поперек волокон 700 0.10 0.05 0.42 0.08 Сосна, ель вдоль волокон 500 0.18 0.32 0.75 0.512 Дуб вдоль волокон 700 0.23 0.30 0.96 0.48 Фанера клееная 600 0.12 0.02 0.50 0.032 ДСП, ОСП 1000 0.15 0.12 0.63 0.192 ПАКЛЯ 150 0.05 0.49 0.21 0.784 Гипсокартон 800 0.15 0.075 0.63 0.12 Картон облицовочный 1000 0.18 0.06 0.75 0.096 Минвата2000.0700.490.300.784Минвата1000.0560.560.230.896Минвата500.0480.600.200.96ПЕНОПОЛИСТИРОЛЭКТРУДИРОВАННЫЙ330.0310.0130.130.021ПЕНОПОЛИСТИРОЛ ЭКТРУДИРОВАННЫЙ450.0360.0130.130.021Пенополистирол1500.050.050.210.08Пенополистирол1000.0410.050.170.08Пенополистирол400.0380.050.160.08Пенопласт ПВХ 125 0.052 0.23 0.22 0.368 ПЕНОПОЛИУРЕТАН800.0410.050.170.08ПЕНОПОЛИУРЕТАН600.0350.00.150.08ПЕНОПОЛИУРЕТАН400.0290.050.120.08ПЕНОПОЛИУРЕТАН300.0200.050.090.08Керамзит 800 0.18 0.21 0.75 0.336 Керамзит 200 0.10 0.26 0.42 0.416 Песок 1600 0.35 0.17 1.47 0.272 Пеностекло 400 0.11 0.02 0.46 0.032 Пеностекло 200 0.07 0.03 0.30 0.048 АЦП 1800 0.35 0.03 1.47 0.048 Битум 1400 0.27 0.008 1.13 0.013 ПОЛИУРЕТАНОВАЯ МАСТИКА14000.250.000231.050.00036ПОЛИМОЧЕВИНА11000.210.000230.880.00054Рубероид, пергамин 600 0.17 0.001 0.71 0.0016 Полиэтилен 1500 0.30 0.00002 1.26 0.000032 Асфальтобетон 2100 1.05 0.008 4.41 0.0128 Линолеум 1600 0.33 0.002 1.38 0.0032 Сталь 7850 58 0 243 0 Алюминий 2600 221 0 928 0 Медь 8500 407 0 1709 0 Стекло 2500 0.76 0 3.19 0

1- сопротивление теплопередаче ограждающихконструкций жилых зданий в Московскомрегионе, строительство которых начинаетсяс 1 января 2000 года.2 – сопротивлениепаропроницанию внутреннего слоя стеныдвухслойной стены помещения с сухимили нормальным режимом, свыше которогоне требуется определять сопротивлениепаропроницанию ограждающей конструкции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

    Дата: 31-03-2015Просмотров: 189Комментариев: Рейтинг: 22

Паропроницаемость материала выражена в его способности пропускать водяной пар. Данное свойство противостоять проникновению пара или позволять ему проходить сквозь материал определяется уровнем коэффициента паропроницаемости, который обозначается µ.Это значение, которое звучит как «мю», выступает в качестве относительной величины сопротивления переносу пара в сравнении с характеристиками сопротивления воздуха.

Диаграмма паропроницаемости наиболее распространенных строительных материалов.

Существует таблица, которая отражает способность материала к паропереносу, ее можно увидеть на рис. 1.

Таким образом, значение мю для минеральной ваты равно 1, это указывает на то, что она способна пропускать водяной пар так же хорошо, как и сам воздух. Тогда как это значение для газобетона равно 10, это означает, что он справляется с проведением пара в 10 раз хуже воздуха. Если показатель мю умножить на толщину слоя, выраженную в метрах, это позволит получить равную по уровню паропроницаемости толщину воздуха Sd (м).

Из таблицы видно, что для каждой позиции показатель паропроницаемости указан при разном состоянии. Если заглянуть в СНиП, то можно увидеть расчетные данные показателя мю при отношении влаги в теле материала, приравненном к нулю.

Рисунок 1. Таблица паропроницаемости стройматериаловПо этой причине при приобретении товаров, которые предполагается использовать в процессе дачного строительства, предпочтительнее брать в расчет международные стандарты ISO, так как они определяют показатель мю в сухом состоянии, при уровне влажности не более 70% и показателе влажности более 70%.При выборе строительных материалов, которые лягут в основу многослойной конструкции, показатель мю слоев, находящихся изнутри, должен быть ниже, в противном случае со временем внутри расположенные слои станут намокать, вследствие этого они потеряют свои теплоизоляционные качества.При создании ограждающих конструкций нужно позаботиться об их нормальном функционировании.

Для этого следует придерживаться принципа, который гласит, что уровень мю материала, который расположен в наружном слое, должен в 5 раз или больше превышать упомянутый показатель материала, находящегося во внутреннем слое.При условиях незначительной относительной влажности частички влаги, которые содержатся в атмосфере, проникают сквозь поры строительных материалов, оказываясь там в виде молекул пара. В момент увеличения уровня относительной влажности поры слоев накапливают воду, что становится причиной намокания и капиллярного подсоса.В момент повышения уровня влажности слоя его показатель мю увеличивается, таким образом, уровень сопротивления паропроницаемости снижается.Показатели паропроницаемости неувлажненных материалов применимы в условиях внутренних конструкций построек, которые имеют отопление. А вот уровни паропроницаемости увлажненных материалов применимы для любых конструкций построек, которые не отапливаются.Схема прибора для определения паропроницаемости.Уровни паропроницаемости, которые являются частью наших норм, не во всех случаях эквивалентны показателям, которые принадлежат к международным стандартам.

Так, в отечественных СНиП уровень мю керамзито- и шлакобетона почти не отличается, тогда как по международным стандартам данные отличаются между собой в 5 раз. Уровни паропроницаемости ГКЛ и шлакобетона в отечественных нормах практически одинаковы, а в международных стандартах данные отличаются в 3 раза.Существуют различные способы определения уровня паропроницаемости, что касается мембран, то можно выделить следующие способы:Американский тест с установленной вертикально чашей.Американский тест с перевернутой чашей.Японский тест с вертикальной чашей.Японский тест с перевернутой чашей и влагопоглотителем.Американский тест с вертикальной чашей.В японском тесте используется сухой влагопоглотитель, который расположен под тестируемым материалом. Во всех тестах используется уплотнительный элемент.Вернуться к оглавлениюНекоторые производители указывают на зависимость атмосферы легкости в доме от показателей паропроницаемости строительных материалов.

Однако если даже вы возьмете в расчет данные таблиц, в которых отражены уровни мю каждого материала, и выберете тот, который обладает наиболее высоким показателем, то через стены станет удаляться лишь 4% всего объема удаляемого из помещения пара, тогда как 96% станут устраняться посредством вытяжек и окон.А вот если помещение обклеено виниловыми или флизелиновыми обоями, то стены и вовсе не способны пропускать влагу.Если после строительства не был использован утеплительный материал, то в ветреную погоду или сильный мороз из комнат будет уходить тепло. Кроме того, долговечность стен, которые имеют высокую степень паропроницаемости и низкую плотность, гораздо ниже. Ведь при более высоком уровне паропроницаемости материал больше способен накапливать влагу, которая замерзает при морозах, уменьшая морозостойкость.Производители материалов по типу газобетона или пенобетона хитрят, когда указывают конечную теплопроводность, так как при расчетах используется материал в идеально сухом состоянии.

Если блок, выполненный из газобетона, наберет влагу, то его способности к теплоизоляции будут снижены в 5 раз, таким образом, стены в доме, которые выстроены из этого материала, будут отлично выпускать теплый воздух из помещений. Ситуация ухудшится, если температура снизится, это станет причиной смещения точки росы внутрь стены, конденсат, который образовался в стене, замерзнет.Жидкость, замерзая, увеличится в размерах и станет способствовать разрушению материала. Через некоторое количество циклов замерзания и оттаивания материал полностью придет в негодность.

Поэтому не во всех случаях стоит выбирать тот материал, который имеет высокую степень паропроницаемости.Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.

Что такое паропроницаемость

Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.

Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).

Сопротивляемость слоя материала будет зависеть от его толщины.Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.

Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.

Какая паропроницаемость у строительных материалов

Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).Битум 0,008Тяжелый бетон 0,03 Автоклавный газобетон 0,12Керамзитобетон 0,075 — 0,09Шлакобетон 0,075 — 0,14Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе) Известковый раствор 0,12 Гипсокартон, гипс 0,075Цементно-песчаная штукатурка 0,09 Известняк (в зависимости от плотности) 0,06 — 0,11Металлы 0ДСП 0,12 0,24Линолеум 0,002 Пенопласт 0,05-0,23Полиурентан твердый, полиуретановая пена0,05 Минеральная вата 0,3-0,6 Пеностекло 0,02 -0,03Вермикулит 0,23 — 0,3Керамзит 0,21-0,26Дерево поперек волокон 0,06 Дерево вдоль волокон 0,32

Кирпичная кладка из силикатного кирпича на цементном растворе 0,11

Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.

Как конструировать утепление — по пароизоляционным качествам

Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.

Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.

Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.

Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.

Разделение слоев пароизолятором

Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.

Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?

Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.

Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.

Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.

Международная классификация пароизоляционных качеств материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.

Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом.

Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т. е. пенополистирол в 150 раз пропускает пар хуже чем воздух.

Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.

Коэффициент сопротивляемости движению пара

Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).Воздух 1, 1 Битум 50 000, 50 000Пластики, резина, силикон — >5 000, >5 000Тяжелый бетон 130, 80Бетон средней плотности 100, 60Полистирол бетон 120, 60Автоклавный газобетон 10, 6Легкий бетон 15, 10 Искусственный камень 150, 120Керамзитобетон 6-8, 4Шлакобетон 30, 20Обожженная глина (кирпич) 16, 10Известковый раствор 20, 10Гипсокартон, гипс 10, 4Гипсовая штукатурка 10, 6Цементно-песчаная штукатурка 10, 6Глина, песок, гравий 50, 50Песчаник 40, 30Известняк (в зависимости от плотности) 30-250, 20-200Керамическая плитка ?, ?Металлы ?, ?OSB-2 (DIN 52612) 50, 30OSB-3 (DIN 52612) 107, 64OSB-4 (DIN 52612) 300, 135ДСП 50, 10-20Линолеум 1000, 800Подложка под ламинат пластик 10 000, 10 000Подложка под ламинат пробка 20, 10Пенопласт 60, 60ЭППС 150, 150Полиурентан твердый, полиуретановая пена 50, 50Минеральная вата 1, 1Пеностекло ?, ?Перлитовые панели 5, 5Перлит 2, 2Вермикулит 3, 2Эковата 2, 2Керамзит 2, 2

Дерево поперек волокон 50-200, 20-50

Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.

Откуда возникла легенда о дышащей стене

Очень много компаний выпускает минеральную вату.

Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.

Действительно, это «дышащий» утеплитель.

Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!

Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.

А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.

Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.

Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.

Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.

    Стены дома должны быть и теплосберегающими и не дорогими в … Технология утепления стен «Мокрый фасад» получила наибольшую популярность. Это самое …

Источники:

  • dom.dacha-dom.ru
  • studfiles.net
  • ostroymaterialah.ru
  • teplodom1.ru

Паропроницаемость материалов таблица

Чтобы создать благоприятный микроклимат в помещении, необходимо учитывать свойства строительных материалов. Сегодня мы разберем одно свойство – паропроницаемость материалов.

Паропроницаемостью называется способность материала пропускать пары, содержащиеся в воздухе. Пары воды проникают в материал за счет давления.

Помогут разобраться в вопросе таблицы, которые охватывают практически все материалы, использующиеся для строительства. Изучив данный материал, вы будете знать, как построить теплое и надежное жилище.

 

 

Оборудование

Если речь идет о проф. строительстве, то в нем используется специально оборудование для определения паропроницаемости. Таким образом и появилась таблица, которая находится в этой статье.

Сегодня используется следующее оборудование:

  • Весы с минимальной погрешностью – модель аналитического типа.
  • Сосуды или чаши для проведения опытов.
  • Инструменты с высоким уровнем точности для определения толщины слоев строительных материалов.

Разбираемся со свойством

Бытует мнение, что «дышащие стены» полезны для дома и его обитателей. Но все строители задумывают об этом понятии. «Дышащим» называется тот материал, который помимо воздуха пропускает и пар – это и есть водопроницаемость строительных материалов. Высоким показателем паропроницаемости обладают пенобетон, керамзит дерево. Стены из кирпича или бетона тоже обладают этим свойством, но показатель гораздо меньше, чем у керамзита или древесных материалов. На этом графике показано сопротивление проницаемости. Кирпичная стена практически не пропускает и не впускает влагу.

 

Во время принятия горячего душа или готовки выделяется пар. Из-за этого в доме создается повышенная влажность – исправить положение может вытяжка. Узнать, что пары никуда не уходят можно по конденсату на трубах, а иногда и на окнах. Некоторые строители считают, что если дом построен из кирпича или бетона, то в доме «тяжело» дышится.

На деле же ситуация обстоит лучше – в современном жилище около 95% пара уходит через форточку и вытяжку. И если стены сделаны из «дышащих» строительных материалов, то 5% пара уходят через них. Так что жители домов из бетона или кирпича не особо страдают от этого параметра. Также стены, независимо от материала, не будут пропускать влагу из-за виниловых обоев. Есть у «дышащих» стен и существенный недостаток – в ветреную погоду из жилища уходит тепло.

 

 

Таблица поможет вам сравнить материалы и узнать их показатель паропроницаемости:

Чем выше показатель паронипроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость. Если вы собираетесь построить стены из пенобетона или газоблока, то вам стоит знать, что производители часто хитрят в описании, где указана паропроницаемость. Свойство указано для сухого материала – в таком состоянии он действительно имеет высокую теплопроводность, но если газоблок намокнет, то показатель увеличится в 5 раз. Но нас интересует другой параметр: жидкость имеет свойство расширяться при замерзании, как результат – стены разрушаются.

Паропроницаемость в многослойной конструкции

Последовательность слоев и тип утеплителя – вот что в первую очередь влияет на паропроницаемость. На схеме ниже вы можете увидеть, что если материал-утеплитель расположен с фасадной стороны, то показатель давление на насыщенность влаги ниже. Рисунок подробно демонстрирует действие давления и проникновение пара в материал.

 

 

Если утеплитель будет находиться с внутренней стороны дома, то между несущей конструкцией и этим строительным будет появляться конденсат. Он отрицательно влияет на весь микроклимат в доме, при этом разрушение строительных материалов происходит заметно быстрее.

Разбираемся с коэффициентом

Таблица становится понятна, если разобраться с коэффициентом.

 

 

Коэффициент в этом показатели определяет количество паров, измеряемых в граммах, которые проходят через материалы толщиной 1 метр и слоем в 1м² в течение одного часа. Способность пропускать или задерживать влагу характеризирует сопротивление паропроницаемости, которое в таблице обозначается симвломом «µ».

Простыми словами, коэффициент – это сопротивление строительных материалов, сравнимое с папопроницаемостью воздуха. Разберем простой пример, минеральная вата имеет следующий коэффициент паропроницаемости: µ=1. Это означает, что материал пропускает влагу не хуже воздуха. А если взять газобетон, то у него µ будет равняться 10, то есть его паропроводимость в десять раз хуже, чем у воздуха.

Особенности

С одной стороны паропроницаемость хорошо влияет на микроклимат, а с другой – разрушает материалы, из которых построен дома. К примеру, «вата» отлично пропускает влагу, но в итоге из-за избытка пара на окнах и трубах с холодной водой может образоваться конденсат, о чем говорит и таблица. Из-за этого теряет свои качества утеплитель. Профессионалы рекомендуют устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар. Сопротивления паропроницанию

 

Если материал имеет низкий показатель паропроницаемости, то это только плюс, ведь хозяевам не приходится тратиться на изоляционные слои. А избавиться от пара, образовывающегося от готовки и горячей воды, помогут вытяжка и форточка – этого хватит, чтобы поддерживать нормальный микроклимат в доме. В случае, когда дом строится из дерева, не получается обойтись без дополнительной изоляции, при этом для древесных материалов необходим специальный лак.

Таблица, график и схема помогут вам понять принцип действия этого свойства, после чего вы уже сможете определиться с выбором подходящего материала. Также не стоит забывать и про климатические условия за окном, ведь если вы живете в зоне с повышенной влажностью, то про материалы с высоким показателем паропроницаемости стоит вообще забыть.

Таблица паропроницаемости строительных материалов

В процессе стройки любой материал в первую очередь должен оцениваться по его эксплуатационно-техническим характеристикам. Решая задачу построить “дышащий” дом, что наиболее свойственно строениям из кирпича или дерева, или наоборот добиться максимальной сопротивляемости паропроницанию, необходимо знать и уметь оперировать табличными константами для получения расчетных показателей паропроницаемости строительных материалов.

Что такое паропроницаемость материалов

Паропроницаемость материалов – способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара на обеих сторонах материала при одинаковом атмосферном давлении. Паропроницаемость характеризуется коэффициентом паропроницаемости или сопротивлением паропроницаемости и нормируется СНиПом II-3-79 (1998) «Строительная теплотехника», а именно главой 6 «Сопротивление паропроницанию ограждающих конструкций»

Таблица паропроницаемости строительных материалов

Таблица паропроницаемости представлена в СНиПе II-3-79 (1998) «Строительная теплотехника», приложении 3 «Теплотехнические показатели строительных материалов конструкций». Показатели паропроницаемости и теплопроводности наиболее распространенных материалов, используемых для строительства и утепления зданий представлены далее в таблице.

Материал

Плотность, кг/м3

Теплопроводность, Вт/(м*С)

Паропроницаемость, Мг/(м*ч*Па)

Алюминий

2600

221

0

Асфальтобетон

2100

1.05

0.008

АЦП

1800

0.35

0.03

Бетон

2400

1.51

0.03

Битум

1400

0.27

0.008

Гипсокартон

800

0.15

0.075

Гранит

2800

3.49

0.008

ДСП, ОСП

1000

0.15

0.12

Дуб вдоль волокон

700

0.23

0.30

Дуб поперек волокон

700

0.10

0.05

Железобетон

2500

1.69

0.03

Картон облицовочный

1000

0.18

0.06

Керамзит

800

0.18

0.21

Керамзит

200

0.10

0.26

Керамзитобетон

1800

0.66

0.09

Керамзитобетон

500

0.14

0.30

Кирпич керамический пустотелый (брутто1000)

1200

0.35

0.17

Кирпич керамический пустотелый (брутто1400)

1600

0.41

0.14

Кирпич красный глиняный

1800

0.56

0.11

Кирпич, силикатный

1800

0.70

0.11

Линолеум

1600

0.33

0.002

Медь

8500

407

0

Минвата

200

0.070

0.49

Минвата

100

0.056

0.56

Минвата

50

0.048

0.60

Мрамор

2800

2.91

0.008

ПАКЛЯ

150

0.05

0.49

Пенобетон

1000

0.29

0.11

Пенобетон

300

0.08

0.26

Пенопласт ПВХ

125

0.052

0.23

Пенополистирол

150

0.05

0.05

Пенополистирол

100

0.041

0.05

Пенополистирол

40

0.038

0.05

ПЕНОПОЛИСТИРОЛ ЭКТРУДИРОВАННЫЙ

33

0.031

0.013

ПЕНОПОЛИУРЕТАН

80

0.041

0.05

ПЕНОПОЛИУРЕТАН

60

0.035

0.05

ПЕНОПОЛИУРЕТАН

40

0.029

0.05

ПЕНОПОЛИУРЕТАН

32

0.023

0.05

Пеностекло

400

0.11

0.02

Пеностекло

200

0.07

0.03

Песок

1600

0.35

0.17

ПОЛИМОЧЕВИНА

1100

0.21

0.00023

ПОЛИУРЕТАНОВАЯ МАСТИКА

1400

0.25

0.00023

Полиэтилен

1500

0.30

0.00002

Рубероид, пергамин

600

0.17

0.001

Сосна, ель вдоль волокон

500

0.18

0.32

Сосна, ель поперек волокон

500

0.09

0.06

Сталь

7850

58

0

Стекло

2500

0.76

0

Фанера клееная

600

0.12

0.02

 Таблица паропроницаемости строительных материалов

Таблица паропроницаемости строительных материалов

Таблица паропроницаемости материалов

Понятие «дышащих стен» считается положительной характеристикой материалов, из которых они выполнены. Но мало кто задумывается о причинах, допускающих это дыхание. Материалы, способные пропускать как воздух, так и пар, являются паропроницающими.

Наглядный пример строительных материалов, обладающих высокой проницаемостью пара:

  • древесина;
  • керамзитовые плиты;
  • пенобетон.

Бетонные или кирпичные стены менее проницаемы для пара, чем деревянные или керамзитовые.

Источники пара внутри помещения


Дыхание человека, приготовление пищи, водяной пар из ванной комнаты и многие другие источники пара при отсутствии вытяжного устройства создают высокий уровень влажности внутри помещения. Часто можно наблюдать образование испарины на оконных стеклах в зимнее время, или на холодных водопроводных трубах. Это примеры образования водяного пара внутри дома.

Что такое паропроницаемость


Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов – это способность пропускать насквозь капельки влаги, содержащиеся в воздухе, вследствие различных величин парциальных давлений пара с противоположных сторон при одинаковых значениях давления воздуха. Еще ее определяют, как плотность парового потока, проходящего сквозь определенную толщину материала.

Таблица, имеющая коэффициент паропроницаемости, составленная для строительных материалов, носит условный характер, т. к. заданные расчетные величины влажности и атмосферных условий не всегда соответствуют реальным условиям. Точка росы может быть рассчитана, на основании приблизительных данных.

Конструкция стен с учетом паропроницаемости


Даже если стены возведены из материала, имеющего высокую паропроницаемость, это не может являться гарантией, что он не превратится в воду в толще стены. Чтобы этого не произошло, нужно защитить материал от разности парциального давления паров изнутри и снаружи. Защита от образования парового конденсата производится при помощи плит ОСБ, утепляющих материалов типа пеноплекса и паронепроницаемых пленок или мембран, недопускающих проникновения пара в утеплитель.

Стены утепляют с тем расчетом, чтобы ближе к наружному краю располагался слой утеплителя, неспособный образовать конденсацию влаги, отодвигающий точку росы (образование воды). Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.

Разрушительные действия пара


Если стеновой пирог имеет слабую способность поглощения пара, ему не грозит разрушение вследствие расширения влаги от мороза. Главное условие – не допустить накапливания влаги в толще стены, а обеспечить свободное ее прохождение и выветривание. Не менее важно устроить принудительную вытяжку лишней влаги и пара из помещения, подключить мощную вентиляционную систему. Соблюдая перечисленные условия, можно уберечь стены от растрескивания, и увеличить срок службы всего дома. Постоянное прохождение влаги сквозь строительные материалы ускоряет их разрушение.

Использование проводящих качеств


Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: снаружи располагаются наиболее паропроводящие утепляющие материалы. Благодаря такому расположению слоев уменьшается вероятность накапливания воды при снижении температуры на улице. Чтобы стены не намокали изнутри, внутренний слой утепляют материалом, имеющим низкую паропроницаемость, например, толстый слой экструдированного пенополистирола.

С успехом применяется противоположный метод использования паропроводящих эффектов строительных материалов. Он состоит в том, что кирпичную стену покрывают пароизолирующим слоем пеностекла, который прерывает движущийся поток пара из дома на улицу в период низких температур. Кирпич начинает аккумулировать влажность комнат, создавая приятный климат внутри помещения благодаря надежному паровому барьеру.

Соблюдение основного принципа при возведении стен


Стены должны отличаться минимальной способностью проводить пар и тепло, но одновременно быть теплоемкими и теплоустойчивыми. При использовании материала одного вида требуемых эффектов достичь невозможно. Внешняя стеновая часть обязана задерживать холодные массы и не допускать их воздействия на внутренние теплоемкие материалы, которые сохраняют комфортный тепловой режим внутри помещения.

Для внутреннего слоя идеально подходит армированный бетон, его теплоемкость, плотность и прочность имеют максимальные показатели. Бетон успешно сглаживает разность ночных и дневных температурных перепадов.

При проведении строительных работ составляют стеновые пироги с учетом основного принципа: паропроницаемость каждого слоя должна повышаться в направлении от внутренних слоев к наружным.

Правила расположения пароизолирующих слоев


Чтобы обеспечить лучшие эксплуатационные характеристики многослойных конструкций сооружений, применяется правило: со стороны, имеющей более высокую температуру, располагают материалы с увеличенной устойчивостью к проникновению пара с повышенной теплопроводностью. Слои, расположенные снаружи, должны иметь высокую паропроводимость. Для нормального функционирования ограждающей конструкции необходимо, чтобы коэффициент наружного слоя в пять раз превышал показатель слоя, расположенного внутри.

При выполнении этого правила водяным парам, попавшим в теплый слой стены, не составит труда с ускорением выйти наружу через более пористые материалы.

При несоблюдении этого условия внутренние слои строительных материалов замокают и становятся более теплопроводными.

Знакомство с таблицей паропроницаемости материалов


При проектировании дома, учитываются характеристики строительного сырья. В Своде правил содержится таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы при условиях нормального атмосферного давления и среднего значения температуры воздуха.

Материал

Коэффициент паропроницаемости
мг/(м·ч·Па)

экструдированный пенополистирол

0,013

пенополиуретан

0,05

минеральная вата

0,3 – 0,55

фанера

0,02

железобетон, бетон

0,03

сосна или ель

0,06

керамзит

0,21

пенобетон, газобетон

0,26

кирпич

0,11

гранит, мрамор

0,008

гипсокартон

0,075

дсп, осп, двп

0,12

песок

0,17

пеностекло

0,02

рубероид

0,001

полиэтилен

0,00002

линолеум

0,002

Таблица опровергает ошибочные представления о дышащих стенах. Количество пара, выходящего через стены, ничтожно мало. Основной пар выносится с потоками воздуха при проветривании или с помощью вентиляции.

Важное значение таблицы паропроницаемости материалов


Коэффициент паропроницаемости является важным параметром, который используется для расчета толщины слоя утеплительных материалов. От правильности полученных результатов зависит качество утепления всей конструкции.

Что еще почитать по теме?

Паропроницаемость материалов — таблица и показатели паропроницаемости строительных материалов

Паропроницаемость материалов таблица – это строительная норма отечественных и, конечно же, международных стандартов. Вообще, паропроницаемость – это определенная способность матерчатых слоев активно пропускать водяные пары за счет разных результатов давления при однородном атмосферном показателе с двух сторон элемента.

Рассматриваемая способность пропускать, а также задерживать водяные пары характеризуется специальными величинами, носящими название коэффициент сопротивляемости и паропроницаемости.

В момент подбора строительных материалов лучше акцентировать собственное внимание на международные установленные стандарты ISO. Именно они определяют качественную паропроницаемость сухих и влажных элементов.

Большое количество людей являются приверженцами того, что дышащие настенные поверхности – это хороший признак. Однако это не так. Дышащие элементы – это те сооружения, которые пропускают как воздух, так и пары. Повышенной паропроницаемостью обладают керамзиты, пенобетоны и деревья. В некоторых случаях кирпичи тоже имеют данные показатели.

Если стена наделена высокой паропроницаемостью, то это не значит, что дышать становится легко. В помещении набирается большое количество влаги, соответственно, появляется низкая стойкость к морозам. Выходя через стены, пары превращаются в обычную воду.

Большинство производителей при расчетах рассматриваемого показателя не учитывают важные факторы, то есть хитрят. По их словам, каждый материал тщательно просушен. Отсыревшие пеноблоки увеличивают тепловую проводимость в пять раз, следовательно, в квартире или ином помещении будет достаточно холодно.

Наиболее страшным моментом является падение ночных температурных режимов, ведущих к смещению точки росы в настенных проемах и дальнейшему замерзанию конденсата. Впоследствии образовавшиеся замерзшие воды начинают активно разрушать поверхности.

Показатели

Паропроницаемость материалов таблица указывает на существующие показатели:

  1. Тепловая проводимость, являющаяся энергетическим видом переноса теплоты от сильно нагретых частиц к менее нагретым. Таким образом, осуществляется и появляется равновесие в температурных режимах. При высокой квартирной тепловой проводимости жить можно максимально комфортабельно;
  2. Тепловая емкость рассчитывает количество подаваемого и содержащегося тепла. Его в обязательном порядке необходимо подводить к вещественному объему. Именно так рассматривается температурное изменение;
  3. Тепловое усвоение является ограждающим конструкционным выравниванием в температурных колебаниях, то есть степень поглощения настенными поверхностями влаги;
  4. Тепловая устойчивость — это свойство, ограждающее конструкции от резких тепловых колебательных потоков. Абсолютно вся полноценная комфортабельность в помещении зависит от общих тепловых условий. Тепловая устойчивость и емкость может быть активной в тех случаях, когда слои выполняются из материалов с повышенным тепловым усвоением. Устойчивость обеспечивает нормализованное состояние конструкциям.

Механизмы паропроницаемости

Влага, располагаемая в атмосфере, при пониженном уровне относительной влажности активно транспортируется через имеющиеся поры в строительных компонентах. Они приобретают внешний вид, подобный отдельным молекулам водяного пара.

В тех случаях, когда влажность начинает повышаться, поры в материалах заполняются жидкостями, направляя механизмы работы для скачивания в капиллярные подсосы. Паропроницаемость начинает увеличиваться, понижая коэффициенты сопротивляемости, при повышении в строительном материале влажности.

Для внутренних сооружений в уже оттапливаемых зданиях применяются показатели паропроницаемости сухого типа. В местах, где отопление переменное или же временное используются влажные виды строительных материалов, предназначенные для наружного варианта конструкций.

Паропроницаемость материалов, таблица помогает эффективно сравнить разнообразные типы паропроницаемости.

Оборудование

Для того чтобы корректно определить показатели паропроницаемости, специалисты используют специализированное исследовательское оборудование:

  1. Стеклянные чашки или сосуды для исследований;
  2. Уникальные средства, необходимые для измерительных толщинных процессов с высоким уровнем точности;
  3. Весы аналитического типа с погрешностью взвешивания.

Таблица паропроницаемости.

Таблица паропроницаемости – это полная сводная таблица с данными по паропроницаемости всех возможных материалов, используемых в строительстве. Само слово «паропроницаемость» означает способность слоев строительного материала либо пропускать, либо задерживать водяные пары из-за разных значений давления на обе стороны материала при одинаковом показателе атмосферного давления. Эта способность так же называется коэффициентом сопротивляемости и определяется специальными величинами.

Чем выше показатель паропроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость.

Таблица паропроницаемости указывается на следующие показатели:

  1. Тепловая проводимость – это, своего рода, показатель энергетического переноса тепла от более нагретых частиц к менее нагретым частицам. Следовательно, устанавливается равновесие в температурных режимах. Если в квартире установлена высокая теплопроводность, то это является максимально комфортными условиями.
  2. Тепловая емкость. С помощью нее можно рассчитать количество подаваемого тепла и содержащегося тепла в помещении. Обязательно необходимо подводить его к вещественному объему. Благодаря этому можно зафиксировать температурное изменение.
  3. Тепловое усвоение – это ограждающее конструкционное выравнивание при температурных колебаниях. Иными словами, тепловое усвоение – это степень поглощения поверхностями стен влаги.
  4. Тепловая устойчивость – это способность оградить конструкции от резких колебаний тепловых потоков.

Полностью весь комфорт в помещении будет зависеть от этих тепловых условий, именно поэтому при строительстве так необходима таблица паропроницаемости, так как она помогает эффективно сравнить разнообразные типы паропроницаемости.

С одной стороны, паропроницаемость хорошо влияет на микроклимат, а с другой – разрушает материалы, из которых построен дома. В таких случаях рекомендуется устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.

Пароизоляция – это материалы, которые применяют от негативного воздействия воздушных паров с целью защиты утеплителя.

Существует три класса пароизоляции. Они различаются по механической прочности и сопротивлению паропроницаемости. Первый класс пароизоляции – это жесткие материалы, в основе которых фольга. Ко второму классу относятся материалы на основе полипропилена или полиэтилена. И третий класс составляют мягкие материалы.

Таблица паропроницаемости материалов.

Таблица паропроницаемости материалов — это строительные нормативы международных и отечественных стандартов паропроницаемости строительных материалов.

Паропроницаемость материалов

Чтобы создать благоприятный микроклимат в помещении, необходимо учитывать свойства строительных материалов. Сегодня мы разберем одно свойство – паропроницаемость материалов.

Паропроницаемостью называется способность материала пропускать пары, содержащиеся в воздухе. Пары воды проникают в материал за счет давления.

Помогут разобраться в вопросе таблицы, которые охватывают практически все материалы, использующиеся для строительства. Изучив данный материал, вы будете знать, как построить теплое и надежное жилище.

Если речь идет о проф. строительстве, то в нем используется специально оборудование для определения паропроницаемости. Таким образом и появилась таблица, которая находится в этой статье.

Сегодня используется следующее оборудование:

  • Весы с минимальной погрешностью – модель аналитического типа.
  • Сосуды или чаши для проведения опытов.
  • Инструменты с высоким уровнем точности для определения толщины слоев строительных материалов.

Разбираемся со свойством

Бытует мнение, что «дышащие стены» полезны для дома и его обитателей. Но все строители задумывают об этом понятии. «Дышащим» называется тот материал, который помимо воздуха пропускает и пар – это и есть водопроницаемость строительных материалов. Высоким показателем паропроницаемости обладают пенобетон, керамзит дерево. Стены из кирпича или бетона тоже обладают этим свойством, но показатель гораздо меньше, чем у керамзита или древесных материалов.На этом графике показано сопротивление проницаемости. Кирпичная стена практически не пропускает и не впускает влагу.

Во время принятия горячего душа или готовки выделяется пар. Из-за этого в доме создается повышенная влажность – исправить положение может вытяжка. Узнать, что пары никуда не уходят можно по конденсату на трубах, а иногда и на окнах. Некоторые строители считают, что если дом построен из кирпича или бетона, то в доме «тяжело» дышится.

На деле же ситуация обстоит лучше – в современном жилище около 95% пара уходит через форточку и вытяжку. И если стены сделаны из «дышащих» строительных материалов, то 5% пара уходят через них. Так что жители домов из бетона или кирпича не особо страдают от этого параметра. Также стены, независимо от материала, не будут пропускать влагу из-за виниловых обоев. Есть у «дышащих» стен и существенный недостаток – в ветреную погоду из жилища уходит тепло.

Таблица поможет вам сравнить материалы и узнать их показатель паропроницаемости:

Чем выше показатель паронипроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость. Если вы собираетесь построить стены из пенобетона или газоблока, то вам стоит знать, что производители часто хитрят в описании, где указана паропроницаемость. Свойство указано для сухого материала – в таком состоянии он действительно имеет высокую теплопроводность, но если газоблок намокнет, то показатель увеличится в 5 раз. Но нас интересует другой параметр: жидкость имеет свойство расширяться при замерзании, как результат – стены разрушаются.

Паропроницаемость в многослойной конструкции

Последовательность слоев и тип утеплителя – вот что в первую очередь влияет на паропроницаемость. На схеме ниже вы можете увидеть, что если материал-утеплитель расположен с фасадной стороны, то показатель давление на насыщенность влаги ниже.Рисунок подробно демонстрирует действие давления и проникновение пара в материал.

Если утеплитель будет находиться с внутренней стороны дома, то между несущей конструкцией и этим строительным будет появляться конденсат. Он отрицательно влияет на весь микроклимат в доме, при этом разрушение строительных материалов происходит заметно быстрее.

Разбираемся с коэффициентом

Таблица становится понятна, если разобраться с коэффициентом.

Коэффициент в этом показатели определяет количество паров, измеряемых в граммах, которые проходят через материалы толщиной 1 метр и слоем в 1м² в течение одного часа. Способность пропускать или задерживать влагу характеризирует сопротивление паропроницаемости, которое в таблице обозначается симвломом «µ».

Простыми словами, коэффициент – это сопротивление строительных материалов, сравнимое с папопроницаемостью воздуха. Разберем простой пример, минеральная вата имеет следующий коэффициент паропроницаемости: µ=1. Это означает, что материал пропускает влагу не хуже воздуха. А если взять газобетон, то у него µ будет равняться 10, то есть его паропроводимость в десять раз хуже, чем у воздуха.

Особенности

С одной стороны паропроницаемость хорошо влияет на микроклимат, а с другой – разрушает материалы, из которых построен дома. К примеру, «вата» отлично пропускает влагу, но в итоге из-за избытка пара на окнах и трубах с холодной водой может образоваться конденсат, о чем говорит и таблица. Из-за этого теряет свои качества утеплитель. Профессионалы рекомендуют устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.Сопротивления паропроницанию

Если материал имеет низкий показатель паропроницаемости, то это только плюс, ведь хозяевам не приходится тратиться на изоляционные слои. А избавиться от пара, образовывающегося от готовки и горячей воды, помогут вытяжка и форточка – этого хватит, чтобы поддерживать нормальный микроклимат в доме. В случае, когда дом строится из дерева, не получается обойтись без дополнительной изоляции, при этом для древесных материалов необходим специальный лак.

Таблица, график и схема помогут вам понять принцип действия этого свойства, после чего вы уже сможете определиться с выбором подходящего материала. Также не стоит забывать и про климатические условия за окном, ведь если вы живете в зоне с повышенной влажностью, то про материалы с высоким показателем паропроницаемости стоит вообще забыть.

Таблица паропроницаемости основных материалов

Сам термин «паропроницаемость» указывает на свойство материалов пропускать или задерживать в своей толще водяной пар. Таблица паропроницаемости материалов носит условный характер, поскольку приведенные расчетные значения уровня влажности и атмосферного воздействия не всегда соответствуют действительности. Точку росы возможно рассчитать согласно среднему значению.

У каждого материала свой процент паропроницаемости

Определение уровня проницаемости пара

В арсенале профессиональных строителей имеются специальные технические средства, которые позволяют с высокой точностью диагностировать проницаемость пара конкретного строительного материала. Чтобы вычислить параметр, применяются следующие средства:

  • приспособления, делающие возможным безошибочно установить толщину слоя строительного материала;
  • лабораторная посуда для выполнения исследований;
  • весы с максимально точными показаниями.

В этом видео вы узнаете о паропроницаемости:

С помощью такого инструментария можно корректно определить искомую характеристику. Так как данные экспериментов заносятся в таблицы паропроницаемости строительных материалов, во время составления плана жилища нет необходимости устанавливать паропроницаемость строительных материалов.

Создание комфортных условий

Для создания в жилище благоприятного микроклимата требуется принимать во внимание особенности используемого строительного сырья. Особый акцент следует сделать на паропроницаемости. Обладая знаниями об этой способности материала, можно корректно подобрать необходимое для строительства жилья сырье. Данные берутся из строительных норм и правил, например:

Образование пара в жилом доме может быть вызвано дыханием человека и животных, приготовлением еды, перепадом температур в ванной комнате и прочими факторами. Отсутствие вытяжной вентиляции также создаёт высокую степень влажности в помещении. В зимний период нередко можно замечать возникновение конденсата на окнах и на холодном трубопроводе. Это наглядный пример появления пара в жилых домах.

Защита материалов при строительстве стен

Стройматериалы с высокой проницаемостью пара не могут в полной мере гарантировать отсутствие образования конденсата внутри стен. Чтобы не допустить скопления воды в глубине стен, следует избегать разности давления одной из составных частей смеси газообразных элементов водяного пара с обеих сторон стройматериала.

Обеспечить защиту от появления жидкости реально, используя ориентированно-стружечные плиты (ОСП), утепляющие материалы, такие как пеноплекс и пароизоляционная плёнка или мембрана, препятствующая просачиванию пара в теплоизоляцию. Одновременно с защитным слоем требуется организовать корректный воздушный зазор для вентиляции.

Если у стенового пирога нет достаточной способности поглощать пар, он не рискует быть разрушенным в результате расширения конденсата от низких температур. Основное требование — это предотвратить скопление влаги внутри стен и предоставить её беспрепятственное передвижение и выветривание.

Немаловажным условием является установка вентиляционной системы с принудительной вытяжкой, которая не даст скапливаться лишней жидкости и пару в помещении. Выполняя требования, можно защитить стены от образования трещин и повысить износоустойчивость жилища в целом.

Расположение термоизолирующих слоев

Для обеспечения лучших эксплуатационных характеристик многослойной конструкции сооружения пользуются следующим правилом: сторона с более высокой температурой обеспечивается материалами с повышенной сопротивляемостью к просачиванию пара с высоким коэффициентом теплопроводности.

Наружный слой должен обладать высокой паропроводимостью. Для нормальной эксплуатации ограждающего сооружения нужно, чтобы индекс внешнего слоя пятикратно превосходил значения внутреннего слоя. При соблюдении этого правила водяные пары, попавшие в теплый пласт стены, без особых усилий покинут его через более ячеистые стройматериалы. Пренебрегая этими условиями, внутренний слой стройматериалов сыреет, и его коэффициент теплопроводности становится выше.
Подбор отделки также играет важную роль на финальных этапах строительных работ. Правильно подобранный состав материала гарантирует ему результативное выведение жидкости во внешнюю среду, поэтому даже при минусовой температуре материал не разрушится.

Индекс проницаемости пара является ключевым показателем при расчете величины поперечного сечения утеплительного слоя. От достоверности произведенных вычислений будет зависеть, насколько качественным получиться утепление всего здания.

Паропроницаемость строительных материалов (таблица и понятие)

Теплоизоляционные материалы
1 Плиты из пенополистиролаДо 100,05
2 То же 10 — 120,05
3 « 12 — 140,05
4 «14-150,05
5 «15-170,05
6 «17-200,05
7 «20-250,05
8 «25-300,05
9 «30-350,05
10 «35-380,05
11 Плиты из пенополистирола с графитовыми добавками15-200,05
12 То же20-250,05
13 Экструдированный пенополистирол25-330,005
14 То же35-450,005
15 Пенополиуретан800,05
16 То же600,05
17 «400,05
18 Плиты из резольно-фенолформальдегидного пенопласта800,23
19 То же500,23
20 Перлитопластбетон2000,008
21 То же1000,008
22 Перлитофосфогелевые изделия3000,2
23 То же2000,23
24 Теплоизоляционные изделия из вспененного синтетического каучука60-950,003
25 Плиты минераловатные из каменного волокна1800,3
26 То же40-1750,31
27 «80-1250,32
28 «40-600,35
29 «25-500,37
30 Плиты из стеклянного штапельного волокна850,5
31 То же750,5
32 «600,51
33 «450,51
34 «350,52
35 «300,52
36 «200,53
37 «170,54
38 «150,55
39 Плиты древесно-волокнистые и древесно-стружечные10000,12
40 То же8000,12
41 «6000,13
42 «4000,19
43 Плиты древесно-волокнистые и древесно-стружечные2000,24
44 Плиты фибролитовые и арболит на портландцементе5000,11
45 То же4500,11
46 «4000,26
47 Плиты камышитовые3000,45
48 То же2000,49
49 Плиты торфяные теплоизоляционные3000,19
50 То же2000,49
51 Пакля1500,49
52 Плиты из гипса13500,098
53 То же11000,11
54 Листы гипсовые обшивочные (сухая штукатурка)10500,075
55 То же8000,075
56 Изделия из вспученного перлита на битумном связующем3000,04
57 То же2500,04
58 «2250,04
59 «2000,04
Засыпки
60 Гравий керамзитовый6000,23
61 То же5000,23
62 «4500,235
63 Гравий керамзитовый4000,24
64 То же3500,245
65 «3000,25
66 «2500,26
67 «2000,27
68 Гравий шунгизитовый (ГОСТ 32496)7000,21
69 То же6000,22
70 «5000,22
71 «4500,22
72 «4000,23
73 Щебень шлакопемзовый и аглопоритовый (ГОСТ 32496)8000,22
74 То же7000,23
75 «6000,24
76 «5000,25
77 «4500,255
78 «4000,26
79 Пористый гравий с остеклованной оболочкой из доменного и ферросплавного шлаков (ГОСТ 25820)7000,22
80 То же6000,235
81 «5000,24
82 «4000,245
83 Щебень и песок из перлита вспученного (ГОСТ 10832)5000,26
84 То же4000,3
85 «3500,3
86 «3000,34
87 Вермикулит вспученный (ГОСТ 12865)2000,23
88 То же1500,26
89 «1000,3
90 Песок для строительных работ (ГОСТ 8736)16000,17
Конструкционные и конструкционно-теплоизоляционные материалы
Бетоны на заполнителях из пористых горных пород
91 Туфобетон18000,09
92 То же16000,11
93 «14000,11
94 «12000,12
95 Бетон на литоидной пемзе16000,075
96 То же14000,083
97 «12000,098
98 «10000,11
99 «8000,12
100 Бетон на вулканическом шлаке16000,075
101 То же14000,083
102 «12000,09
103 «10000,098
104 «8000,11
Бетоны на искусственных пористых заполнителях
105 Керамзитобетон на керамзитовом песке18000,09
106 То же16000,09
107 «14000,098
108 «12000,11
109 «10000,14
110 «8000,19
111 «6000,26
112 «5000,3
113 Керамзитобетон на кварцевом песке с умеренной (до Vв=12%) поризацией)12000,075
114 То же10000,075
115 «8000,075
116 Керамзитобетон на перлитовом песке10000,15
117 То же8000,17
118 Керамзитобетон беспесчаный7000,145
119 То же6000,155
120 «5000,165
121 «4000,175
122 «3000,195
123 Шунгизитобетон14000,098
124 То же12000,11
125 «10000,14
126 Перлитобетон12000,15
127 То же10000,19
128 «8000,26
129 Перлитобетон6000,3
130 Бетон на шлакопемзовом щебне18000,075
131 То же16000,09
132 «14000,098
133 «12000,11
134 «10000,11
135 Бетон на остеклованном шлаковом гравии18000,08
136 То же16000,085
137 «14000,09
138 «12000,10
139 «10000,11
140 Мелкозернистые бетоны на гранулированных доменных и ферросплавных (силикомарганца и ферромарганца) шлаках18000,083
141 То же16000,09
142 «14000,098
143 «12000,11
144 Аглопоритобетон и бетоны на заполнителях из топливных шлаков18000,075
145 То же16000,083
146 «14000,09
147 «12000,11
148 «10000,14
149 Бетон на зольном обжиговом и безобжиговом гравии14000,09
150 То же12000,11
151 «10000,12
152 Вермикулитобетон800
153 То же6000,15
154 «4000,19
155 «3000,23
Бетоны особо легкие на пористых заполнителях и ячеистые
156 Полистиролбетон на портландцементе (ГОСТ 32929)6000,068
157 То же5000,075
158 «4000,085
159 «3500,09
160 «3000,10
161 «2500,11
162 «2000,12
163 «1500,135
164 Полистиролбетон модифицированный на шлакопортландцементе5000,075
165 То же4000,08
166 «3000,10
167 «2500,11
168 «2000,12
169 Газо- и пенобетон на цементном вяжущем10000,11
170 То же8000,14
171 «6000,17
172 «4000,23
173 Газо- и пенобетон на известняковом вяжущем10000,13
174 То же8000,16
175 «6000,18
176 «5000,235
177 Газо- и пенозолобетон на цементном вяжущем12000,085
178 То же10000,098
179 «8000,12
Кирпичная кладка из сплошного кирпича
180 Глиняного обыкновенного на цементно-песчаном растворе18000,11
181 Глиняного обыкновенного на цементно-шлаковом растворе17000,12
182 Глиняного обыкновенного на цементно-перлитовом растворе16000,15
183 Силикатного на цементно-песчаном растворе18000,11
184 Трепельного на цементно-песчаном растворе12000,19
185 То же10000,23
186 Шлакового на цементно-песчаном растворе15000,11
Кирпичная кладка из пустотного кирпича
187 Керамического пустотного плотностью 1400 кг/м3 (брутто) на цементно-песчаном растворе16000,14
188 Керамического пустотного плотностью 1300 кг/м3 (брутто) на цементно-песчаном растворе14000,16
189 Керамического пустотного плотностью 1000 кг/м3  (брутто) на цементно-песчаном растворе12000,17
190 Силикатного одиннадцатипустотного на цементно-песчаном растворе15000,13
191 Силикатного четырнадцатипустотного на цементно-песчаном растворе14000,14
Дерево и изделия из него
192 Сосна и ель поперек волокон5000,06
193 Сосна и ель вдоль волокон5000,32
194 Дуб поперек волокон7000,05
195 Дуб вдоль волокон7000,3
196 Фанера клееная6000,02
197 Картон облицовочный10000,06
198 Картон строительный многослойный6500,083
Конструкционные материалы
Бетоны
199 Железобетон25000,03
200 Бетон на гравии или щебне из природного камня24000,03
201 Раствор цементно-песчаный18000,09
202 Раствор сложный (песок, известь, цемент)17000,098
203 Раствор известково-песчаный16000,12
Облицовка природным камнем
204 Гранит, гнейс и базальт28000,008
205 Мрамор28000,008
206 Известняк20000,06
207 То же18000,075
208 «16000,09
209 «14000,11
210 Туф20000,075
211 То же18000,083
212 «16000,09
213 «14000,098
214 «12000,11
215 «10000,11
Материалы кровельные, гидроизоляционные, облицовочные и рулонные покрытия для полов
216 Листы асбестоцементные плоские18000,03
217 То же16000,03
218 Битумы нефтяные строительные и кровельные14000,008
219 То же12000,008
220 «10000,008
221 Асфальтобетон21000,008
222 Рубероид, пергамин, толь600
223 Пенополиэтилен260,001
224 То же300,001
225 Линолеум поливинилхлоридный на теплоизолирующей подоснове18000,002
226 То же16000,002
227 Линолеум поливинилхлоридный на тканевой основе18000,002
228 То же16000,002
229 «14000,002
Металлы и стекло
230 Сталь стержневая арматурная78500
231 Чугун72000
232 Алюминий26000
233 Медь85000
234 Стекло оконное25000
235 Плиты из пеностекла80-1000,006
236 То же101-1200,006
237 То же121- 1400,005
238 То же141- 1600,004
239 То же161- 2000,004

Паропроницаемость стен и материалов

Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.

Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.

Что такое паропроницаемость

Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.

Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).

Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.

Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.

Какая паропроницаемость у строительных материалов

Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11

Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.

Как конструировать утепление — по пароизоляционным качествам

Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.

Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.

Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.

Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.

Разделение слоев пароизолятором

Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.

Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?

Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.

Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.

Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.

Международная классификация пароизоляционных качеств материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.

Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.

Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.

Коэффициент сопротивляемости движению пара

Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка ?, ?
Металлы ?, ?
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло ?, ?
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50

Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.

Откуда возникла легенда о дышащей стене

Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.

Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!

Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.

А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.

Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.

Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.

Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.

Паропроницаемость строительных материалов, таблица

Чтобы создать в доме благоприятный для проживания климат, нужно учитывать свойства используемых материалов.Особое внимание стоит уделить паропроницаемости. Этим термином называется способность материалов пропускать пары. Благодаря знаниям о паропроницаемости можно правильно подобрать материалы для создания дома.

Оборудование для определения степени проницаемости

Профессиональные строители имеют специализированное оборудование, которое позволяет точно определить паропроницаемость определенного строительного материала. Для вычисления описываемого параметра применяется следующее оборудование:

  • весы, погрешность которых является минимальной;
  • сосуды и чаши, необходимые для проведения опытов;
  • инструменты, позволяющие точно определить толщину слоев строительных материалов.

Благодаря таким инструментам точно определяется описываемая характеристика. Но данные о результатах опытов занесены в таблицы, поэтому во время создания проекта дома не обязательно определять паропроницаемость материалов.

Что нужно знать

Многие знакомы с мнением, что «дышащие» стены полезны для проживающих в доме. Высокими показателями паропроницаемости обладают следующие материалы:

  • дерево;
  • керамзит;
  • ячеистый бетон.

Стоит отметить, что стены, сделанные из кирпича или бетона, также обладают паропроницаемостью, но этот показатель является более низким. Во время скопления в доме пара он выводится не только через вытяжку и окна, но еще и через стены. Именно поэтому многие считают, что в строениях из бетона и кирпича дышится «тяжело».

Но стоит отметить, что в современных домах большая часть пара уходит через окна и вытяжку. При этом через стены уходит всего лишь около 5 процентов пара. Важно знать о том, что в ветреную погоду из строения, выполненного из дышащих стройматериалов, быстрее уходит тепло. Именно поэтому во время строительства дома следует учитывать и другие факторы, влияющие на сохранение микроклимата в помещении.

Стоит помнить, что чем выше коэффициент паропроницаемости, тем больше стены вмещают в себя влаги. Морозостойкость стройматериала с высокой степенью проницаемости является низкой. При намокании разных стройматериалов показатель паропроницаемости может увеличиваться до 5 раз. Именно поэтому необходимо грамотно производить закрепление пароизоляционных материалов.

Влияние паропроницаемости на другие характеристики

Стоит отметить, что, если во время строительства не был установлен утеплитель, при сильном морозе в ветреную погоду тепло из комнат будет уходить достаточно быстро. Именно поэтому необходимо грамотно производить утепление стен.

При этом долговечность стен с высокой проницаемостью является более низкой. Это связано с тем, что при попадании пара в стройматериал влага начинает застывать под воздействием низкой температуры. Это приводит к постепенному разрушению стен. Именно поэтому при выборе стройматериала с высокой степенью проницаемости необходимо грамотно установить пароизоляционный и теплоизоляционный слой. Чтобы узнать паропроницаемость материалов стоит использовать таблицу, в которой указаны все значения.

Паропроницаемость и утепление стен

Во время утепления дома необходимо соблюдать правило, согласно которому паропрозрачность слоев должна увеличиваться по направлению наружу. Благодаря этому зимой не будет происходить накопление воды в слоях, если конденсат станет накапливаться в точке росы.

Утеплять стоит изнутри, хотя многие строители рекомендуют закреплять тепло- и пароизоляцию снаружи. Это объясняется тем, что пар проникает из помещения и при утеплении стен изнутри влага не будет попадать в стройматериал. Часто для внутреннего утепления дома применяется экструдированный пенополистирол. Коэффициент паропроницаемости такого строительного материала является низким.

Еще одним способом утепления является разделение слоев при помощи пароизолятора. Также можно применить материал, который не пропускает пар. В пример можно привести утепление стен пеностеклом. Несмотря на то, что кирпич способен впитывать влагу, пеностекло препятствует проникновению пара. В таком случае кирпичная стена будет служить аккумулятором влаги и во время скачков уровня влажности станет регулятором внутреннего климата помещений.

Стоит помнить, что если утеплить стены неправильно, стройматериалы могут потерять свои свойства уже через небольшой отрезок времени. Именно поэтому важно знать не только о качествах используемых компонентов, но еще и о технологии их закрепления на стенах дома.

От чего зависит выбор утеплителя

Часто владельцы домов для утепления используют минеральную вату. Данный материал отличается высокой степенью проницаемости. По международным стандартам сопротивления паропроницаемости равен 1. Это означает, что минеральная вата в этом отношении практически не отличается от воздуха.

Именно об этом многие производители минеральной ваты упоминают достаточно часто. Часто можно встретить упоминание о том, что при утеплении кирпичной стены минеральной ватой ее проницаемость не снизится. Это действительно так. Но стоит отметить, что ни один материал, из которого изготавливаются стены, не способен выводить такое количество пара, чтобы в помещениях сохранялся нормальный уровень влажности. Также важно учитывать, что многие отделочные материалы, которые используются при оформлении стен в комнатах, могут полностью изолировать пространство, не пропуская пар наружу. Из-за этого паропроницаемость стены значительно уменьшается. Именно поэтому минеральная вата незначительно влияет на обмен паром.

Во время принятия решения о выборе утеплителя и различных отделочных материалов стоит помнить о том, что наружный слой должен быть более паропроницаемым. Если же этому правилу следовать невозможно, стоит разделить слои при помощи пароизолятора. Это позволит прекратить движение пара в конструкции и восстановить равновесие слоев со средой, в которой они находятся. Во время отделки дома стоит учитывать паропроницаемость используемых строительных материалов.

Info-500: Таблица свойств строительных материалов

9007

R-Value

Внешний вид


Среди наиболее паропроницаемых
наружных обшивок


43

Поверхность Polypro включает вентилятор Polypro но
может быть удален, а
сильно влияет на паропроницаемость

000 Кирпич

9006

4 краска в зависимости от паропроницаемости обычно


Парозависимая краска
в
диапазон 2-3 перми
; с эластомерной краской

сильно варьируется.

Материал

Типичный соответствующий размер

Паропроницаемость
(доп. Дюйм) 1

Водопоглощение

5

Другие соответствующие свойства

Комментарии

Веб-ссылка для получения дополнительной информации

Dry Cup

Wet Cup

Фанера (CDX)

3/8 «

0.75

3,5

na

0,5

FS = 76-200
SD = 130

При насыщении коэффициент
10
увеличение проницаемости
— 14
— 20,5 перм.5

FS = 148
SD = 137

При насыщении, предельное увеличение

проницаемости
— 2,8
— 3,4 перм.

7/16 «

14,5

15

2,3 — 7%

1,2

FS> 75
AP = 0,82

Дополнительная информация
Дополнительная информация

Структурная обшивка тонких профилей

.078 «- .137»

0,5 — 0,6

0,5 — 0,6

na

0,2 — 3,4

R-value
в зависимости от воздушного пространства
; эта оболочка
представляет собой
, по сути, внешнюю пароизоляцию

Дополнительная информация

ПИР-изоляция с фольгированной облицовкой

1 «

0.01

0,03

0%

7

FS = 5
SD = 165

Комбинированный
термический, паропроницаемость
и
горение
должны использоваться
соответственно

Дополнительная информация

Жесткая изоляция XPS

1 «

1

1

0.10%

5

FS = 5
SD = 165
AP = 0

Сравнить / сравнить
влажность
свойств с
EPS,
ВНИМАТЕЛЬНО

Дополнительная информация

XPS (без кожи)

3/8 «

0?

0?

1,5

Жесткая изоляция EPS (Тип II — 1.5 шт. / Фут)

1 «

3,5

3%

3,7

FS = 20
CD = 150-300

лотов
различных марок
и плотности —
и, следовательно, вязкости

EPS. Убедитесь, что
вы указали как
Type (они варьируются от
от типа I — 1
pcf до типа IX — 2
pcf)

Дополнительная информация

Гипсокартон, облицованный стекломат (DensGlass ® )

1/2 «

23

5%

.56

FS = 0
SD = 0

Среди наиболее паропроницаемых

наружных оболочек

Дополнительная информация

Облицовка стен

31/2 «

1,7 — 13,7

0,1

Свойства как
переменные, как материал
, но всегда
емкость хранения воды
очень
высокий

Дополнительная информация

Традиционная штукатурка

7/8 «

3.8

5,8

0,1

Свойства такие же, как
, как материал
, но
почти всегда
имеет относительно высокую паропроницаемость

Модифицированная полимером штукатурка

Деревянный сайдинг (необработанный)

3/8 «

» 35 perms «

0,5

46

9007 = 98

35 perms — эквивалент
паропроницаемости
значение
. На основе
обоих эмпирических испытаний
(лабораторные условия
и испытательная хижина
) значение
получается
при
следующих условиях
: a 1 Па
давление воздуха
разность
между оболочкой
и средой
;
ширина трещины
между рядами
3/1000 дюйма
и длина трещины
18
дюймов.Обратите внимание, что
это значение составляет
независимо от отделки
или покрытий
на древесине
, если только обработка
не закрывает
ширины или
не уменьшает длину
пространства
между
рядами.

Фиброцементный сайдинг (загрунтованные все поверхности)

5/16 «

1,5

000 9007
CD = 5

Сайдинг бывает
различных отделок,
включая текстуру
и покрытия
(заводская грунтовка).
Изделие должно быть
установлено поверх
погодного барьера
— BSC также
рекомендует
поверх полос обрешетки.

Дополнительная информация

Виниловый сайдинг внахлест

н / д

«70 перм.
эквивалент пара
проницаемость
значение. На основе результатов обоих эмпирических испытаний
(лабораторные условия
и испытательная хижина
) значение
получено
при
следующих условиях
: перепад
давления воздуха
1 Па между оболочкой
и средой
;
ширина трещины
между рядами
из 2 листов бумаги
; и трещина
длиной 18
дюймов.

Дополнительная информация

Внутренние стеновые панели

Стандартная бумажная облицовка

1/2 «

40

000

000

000

FS = 15
SD = 0

Обе грани и сердцевина
очень водопроницаемы
паропроницаемы;
бумажные грани
очень восприимчивы к
плесени и плесени
.

DensArmor Plus ™

1/2 «

12

23

050005000

= 10
SD = 0

000 9007 9007 9007

Hardie Tilebacker
Hardie Backerboard 500

900 43

13/32 «

0007 900S 9007

Бумажная облицовка
заменена стекловолокном
облицовка
для
повышена устойчивость
к влаге
, плесени
и плесени.

Дополнительная информация

Fiberock ®

1/2 «

2.8

FS = 0
SD — 5

Дополнительная информация

1/2 «

Плиточная подложка
плита с верхним водобарьером
лицевой акриловой
14, действующей в качестве водонепроницаемого покрытия
.

Дополнительная информация

Durock ®

1/2 «

Гипсокартон без бумажной облицовки: Fiberock Aqua-TOUGH ™

1/2 «

9000

0

Заливка


9007 9004

SD <50

FS <20
SD <400
AP = 0,008

3

0007 9007

000 IC ковер

9007

9000007 9006

9006 60-минутная рубероидная бумага: Fortifiber Two-Ply Super Jumbo Tex

9006

0007 Дополнительная информация

900

00 9006

6 — 3

0003 Elasto

11 Некоторые строительные материалы

Хороший дизайн и практика включают контроль смачивания строительных конструкций как снаружи, так и изнутри, а различные климатические условия требуют разных подходов.

Характеристики паропроницаемости

Характеристика паропроницаемости узла оболочка / оболочка определяется эффективной проницаемостью смачиваемой чашки как оболочки, так и оболочки вместе взятых. Установлены четыре категории:

  • Паронепроницаемость: 0,1 перм или меньше
  • Полупроницаемость для пара: 1,0 перм или меньше, но больше 0,1 перм
  • Полупроницаемость для пара: 10 или меньше, но больше 1,0
  • Пар проницаемость: более 10 перм

Например, сборка, в которой используется жесткая изоляция из изоцианурата с фольгированным покрытием, классифицируется как паронепроницаемая независимо от типа оболочки, установленной снаружи по отношению к изоциануратной оболочке с фольгой.

Обшивка OSB и фанера, покрытая строительной бумагой или оберткой, и виниловый сайдинг классифицируются как паропроницаемые .

Однако, когда виниловый сайдинг заменяется традиционной трехслойной штукатуркой с твердым покрытием, общая проницаемость мокрой чашки как штукатурки, так и строительной бумаги и обшивки OSB (или фанеры) составляет менее 1,0 перм, и, следовательно, эта сборка классифицируется как пар полупроницаемый . Нанесение штукатурки таким образом явно влияет на характеристики высыхания стены; штукатурка относительно «воздухонепроницаема», тогда как виниловый сайдинг «пропускает воздух».»

Если вместо установки непосредственно на строительную бумагу или обертку, традиционная трехслойная штукатурка с твердым покрытием» вентилируется назад «(то есть устанавливается над воздушным пространством), сборка снова классифицируется как паропроницаемая .

Проницаемость смачиваемой чашки используется, потому что нас интересуют характеристики сборки в «влажных условиях».


Ссылка

Эта информация была впервые опубликована в Руководстве строителя Building Science Corporation для Холодный климат.

Понимание паропроницаемости: ответы на ваши вопросы

Слышали ли вы термин «паропроницаемость» и задавались вопросом, что он означает? Нужно знать, что такое химическая завивка? При чем здесь строительные материалы или мой дом?

Что такое паропроницаемость?

Часто называемая воздухопроницаемостью, паропроницаемость описывает способность материала пропускать водяной пар через него.

Если вы вспомните урок естествознания, вы вспомните, что вода может принимать разные формы: твердую, жидкую или газообразную.Паропроницаемость касается воды в газообразной форме. Материалы, которые пропускают водяной пар, называются проницаемыми.

Почему это важно?

Строители возводят жилые стены из нескольких слоев материала. Один из этих слоев часто является погодным барьером. Эффективный погодный барьер выполняет четыре важные функции:

  • Сопротивление воздуха (препятствует прохождению воздуха сквозь стены)
  • Водонепроницаемость (предотвращает попадание дождя в здание)
  • Прочность при строительстве
  • Правильный уровень паропроницаемости

Ни одна стена или материал не являются идеальными, поэтому строители знают, что они должны быть готовы к попаданию жидкой воды в стены, несмотря на все их усилия.

Кроме того, вода всегда пытается найти более сухие места, даже в виде пара. Поскольку водяной пар может диффундировать через твердые материалы, он может находить более сухой воздух. Это означает, что вода попадает внутрь стен, когда она перемещается из более влажных мест в более сухие.

Вот где начинается проблема. Когда вода попадает в стены, ей нужен выход. Если выхода нет, она повреждает стену и вызывает рост плесени. Что еще более усложняет ситуацию, лучшие стратегии по предотвращению проникновения водяного пара могут также улавливать водяной пар, если не используются должным образом.

Проницаемый атмосферный барьер не пропускает жидкую воду (дождь) в ваши стены, позволяя водяному пару проходить сквозь них.

Как измеряется паропроницаемость?

Проницаемость материала измеряется в единицах, называемых химической проницаемостью. Стандартные промышленные тесты определяют, сколько влаги может пройти через барьер за 24 часа. Эти испытания дают материалам относительную оценку, которая показывает, насколько каждый из них устойчив к пропусканию паров влаги.

Материалы можно разделить на четыре основных класса в зависимости от их проницаемости:

  • Паронепроницаемость: 0.1 завивка или меньше
  • Полупроницаемый для пара: 1,0 или менее, но более 0,1 доп.
  • Полупроницаемый для пара: 10 или менее, но более 1,0 проницаемости
  • Паропроницаемость: более 10 перм

Материалы с более низким рейтингом проницаемости лучше задерживают движение водяного пара. Если рейтинг проницаемости достаточно низкий, материал является замедлителем парообразования. Если он действительно низкий, то это пароизоляция.

Если рейтинг проницаемости больше 10, он не считается замедлителем образования пара.Это проницаемый материал.

Как климат влияет на проницаемость?

Обычно водяной пар перемещается от теплой стороны стены к холодной стороне стены. Это означает, что он имеет тенденцию идти изнутри наружу в северном климате и снаружи на юге. В середине страны часть года идет изнутри наружу, а часть года — извне внутрь.

Это означает, что строителям нужны разные стратегии для разных климатических условий. Также необходимо учитывать разницу между летом и зимой.

Какова паропроницаемость домашних оберток Barricade®?

Мы предлагаем полную линейку домашних пленок для удовлетворения самых разных потребностей. Каждая из наших оберток для дома имеет различный рейтинг проницаемости.

.5

FS = 5
SD = 0

Дренажный узор
тиснен на
задней поверхности оболочки

Дополнительная информация

Стекловолокно / минеральная вата (необработанная вата)

31/2 «

120

168

11

11

Тепловые характеристики
теплоизоляции
полностью из войлока
зависят от
независимого воздушного
уплотнения
компонентов и
деталей.

Дополнительная информация

Целлюлоза

31/2 «

75

<15%

Хотя воздухонепроницаемость
изоляции из целлюлозы

значительно на
лучше, чем у некоторых других распространенных
изоляционных материалов, заполняющих полости
,
теплоизоляция
по-прежнему
зависит от
независимого воздуха
уплотнения
компонентов и
деталей.

Дополнительная информация

Ицинен — ​​модифицированный аэрозольный уретан

31/2 «

16

0%

9000

В то время как все пены
отлично подходят для герметизации воздуха
, они
различаются, часто в широких пределах, по плотности
, значению R, пенообразователю
,
водонепроницаемость,
паропроницаемость
.
Эти последние два
могут иметь наибольшее влияние на
на то, как вы используете распыляемую пену
в
различных сборках здания
.

Дополнительная информация

Напольные покрытия

Твердая древесина

3/4 «

Хвойная древесина

3/4 «

000

Глазурованная плитка

3/8 «

0007 9007

3 Органическое волокно 9007 9007

Линолеум

000

000

000

Виниловая плитка

по существу паронепроницаем
— не рекомендуется

с бетонными полами
, особенно
с высокими соотношениями в / с

Виниловый лист

000 1/32 «- 1/16»

паронепроницаемость
— не рекомендуется

с бетонными полами
, особенно с высокими соотношениями w / c

Vapor


Dry Cup

Permeance (

9000)

Воздухопроницаемость
(л / с * м2 при 75 Па)

90 005

Sheet Good Building Products

No.15 войлок, пропитанный асфальтом

6

31

0,4

паропроницаемость

при любом содержании паров

при любом содержании паров


ASTM D226

Асфальтонасыщенный войлок № 30

0.19

должно соответствовать

ASTM D226

Tyvek ®

0,0045 (при давлении ветра 30 миль в час)

HPR = 210 см
FS = 5
SD = 20

Дополнительная информация

65 Typar

0.013 «

14

0,0023

HPR = 165 см
FS = 0
SD = 15

двухслойная

11

Полиэтилен

.004-.006 (4-6 мил)

0,06

0,06

0?

FS = 5-35
SD = 15-80

пароизоляция
подходит только для очень холодного климата

MemBrain ™

2 мил

1

12+

FS = 75
SD = 450

хорошо подходит в качестве границы давления паров


и смешанный климат

Дополнительная информация

Покрытия

Грунтовка с замедлителем схватывания паров

0.25 мм

0,5

3,5-6,1

~ 17

хотя опубликовано

лабораторные данные
(Кумаран 2002)
обычно дает
гипсокартон
нанесите краску со значением
~ 3 проницаемости (сухой стакан
), BSC имеет
измеренных образцов
с сухим стаканом
измерений
измерений
примерно 8-10
проницаемости (см. Ueno
et al.2007)

Дополнительная информация

Акриловая краска для экстерьера

5,5

000

Полуглянцевая винил-акриловая эмаль

6,6

6.6

Масляная краска для наружных работ (3 слоя)

Масляная краска
(1 слой + грунтовка)

различные грунтовки
плюс 1 слой масляной краски
краска по штукатурке

9007

существенная
изменчивость паров воды

проницаемость

Обертка для дома Пермский рейтинг (ASTM E-96A)
Баррикадная пленка 11 Пермь США
Баррикадная пленка Plus 16 Пермь США
R-Wrap® 50 Пермь США
Остались вопросы?

У вас остались вопросы по паропроницаемости? Хотите знать, какой продукт для домашнего обертывания подходит для вашей работы? Свяжитесь с нами — мы будем рады ответить на ваши вопросы.

Замедлители парообразования и управление влажностью

Сохранение полостей в стенах сухими предотвращает проблемы с плесенью и гнилью древесины

Когда дело доходит до влажности климата, американский Запад представляет собой регион крайних противоположностей, начиная от Калифорнийской Долины Смерти — самого жаркого и засушливого места в Западном полушарии — до морского климата Тихоокеанского Северо-Запада, где обычно больше всего годовых осадков. В Соединенных Штатах. На Западе также наблюдается холодный горный климат в Скалистых горах, Сьерра-Неваде, Каскаде и других небольших горных хребтах.

Хотя многие люди, живущие за пределами Запада, считают его жарким и сухим, по всему региону есть много мест, где осадки или влажность являются обычным явлением. И в этих областях существует вероятность повреждения стеновых полостей зданий влагой.

Водяной пар естественным образом диффундирует через проницаемые строительные материалы из областей с высоким давлением в области с низким давлением. Например, в периоды холодной погоды теплый внутренний водяной пар перемещается через конструкцию стен здания к более холодным и сухим снаружи.В жаркую погоду бывает наоборот. Во время этой диффузии пар часто конденсируется, задерживая влагу в полости стены и создавая потенциал для ухудшения структурной целостности здания, теплового КПД и качества воздуха в помещении.

Длительное воздействие влаги может снизить термический КПД ограждающей конструкции здания из-за снижения R-Value изоляции. Влага также может в конечном итоге привести к разрушению деревянных строительных элементов и коррозии стальных конструктивных элементов.Что еще хуже, он может способствовать появлению быстроразвивающейся плесени, которая использует материалы на основе целлюлозы, такие как дерево и стандартный гипсокартон с бумажной облицовкой, в качестве источника пищи. Споры плесени могут исходить из полостей стен и вызывать респираторные заболевания у жителей зданий. Однако специалисты по строительству и проектированию могут предотвратить эти разрушительные результаты, включив эффективную стратегию управления влажностью в свои конструкции здания. Одним из важнейших компонентов таких стратегий является замедлитель образования пара.

ПАРООБРАЗИТЕЛЬ

Замедлитель образования пара обычно представляет собой тонкий лист, сделанный из одного из множества материалов, который в первую очередь предназначен для предотвращения проникновения влаги через стеновую конструкцию и защиты оболочки здания от повреждений, вызванных конденсацией.Правильно установленный замедлитель пара может также действовать как внутренний воздушный барьер, сводя к минимуму поток влажного воздуха в изолированные полости в холодную погоду.

Пароизоляционные материалы классифицируются по их проницаемости для водяного пара, с использованием «химической вязкости» в качестве единицы измерения. Метод испытания для определения проницаемости для водяного пара любого строительного материала — это ASTM E96, Стандартные методы испытаний материалов на проницаемость водяного пара, который измеряет диффузию с использованием двух возможных способов — метод сухой чашки, также известный как метод A или метод осушителя, и метод смачиваемой чашки, также называемый методом B или методом воды.

Оценка проницаемости эквивалентна количеству зерен водяного пара (7000 зерен = 1 фунт), которые пройдут через 1 квадратный фут материала за один час, когда перепад давления пара между двумя сторонами материала составляет 1 дюйм ртуть (0,49 фунта на кв. дюйм). Чем ниже рейтинг химической завивки, тем лучше он препятствует проникновению влаги.

В строительном сообществе термин «замедлитель образования пара» часто используется взаимозаменяемо с термином «пароизоляция», который относится к любому материалу, препятствующему проникновению водяного пара через стены, потолки и полы.Однако большинство материалов, называемых пароизоляционными материалами, пропускают пар, что делает этикетку неточной. Даже полиэтилен толщиной 6 мил, один из наиболее распространенных пароизоляционных материалов, имеет коэффициент проницаемости 0,06 и, следовательно, может считаться замедлителем образования пара, несмотря на его чрезвычайно низкую проницаемость.

В самом последнем издании Международного жилищного кодекса (IRC) замедлители образования пара подразделяются на следующие категории в зависимости от их проницаемости:

Класс I
Класс I охватывает материалы, наиболее часто называемые пароизоляционными материалами.Эти замедлители образования пара имеют уровень проницаемости 0,1 перм или меньше и считаются непроницаемыми. Примеры включают полиэтиленовую пленку, стекло, листовой металл, изоляционную оболочку с фольгой и неперфорированную алюминиевую фольгу.

Класс II
Замедлители парообразования класса II имеют уровень проницаемости от 0,1 до 1 доп. Примеры включают необработанный пенополистирол, облицованный волокном полиизоцианурат и крафт-бумагу с асфальтовым покрытием, облицованную изоляцией из стекловолокна.

Класс III
Замедлители парообразования класса III имеют рейтинг проницаемости от 1 до 10 проницаемостей и считаются полупроницаемыми. К этому классу относятся большинство латексных красок по гипсокартону, строительной бумаге №30 и фанере. В Международном кодексе энергосбережения (IECC) 2006 г. указаны особые условия, в которых разрешено использование замедлителей парообразования класса III — когда существуют проектные условия, которые способствуют высыханию за счет использования вентилируемой облицовки или уменьшают возможность конденсации в закрытых полостях за счет использования внешних материалов. изоляционные оболочки.См. Рис. 1, карту климатических зон США, которые определяют выбор и размещение пароизолятора. В таблице на Рисунке 2 приведены сочетания вентилируемой облицовки, материалов внешней оболочки и изолированной оболочки для конкретных климатических зон, которые позволяют использовать замедлители образования паров класса III.

Проницаемым считается любой материал с проницаемостью более 10 проницаемостей. На рис. 3 показаны популярные материалы-замедлители образования пара и их оценка по шкале проницаемости.

Эти классификации позволяют специалистам в области строительства и проектирования выбрать лучший замедлитель образования пара для своего проекта.Однако после выбора замедлителя образования пара важно сосредоточиться на правильном расположении замедлителя образования пара в стеновой конструкции, что определяется климатом региона, в котором расположен проект.

ВЛИЯНИЕ КЛИМАТА
Климат является важным фактором как при выборе, так и при размещении пароизоляционных материалов при сборке наружных стен. В более холодном климате антипары следует размещать внутри ограждающей конструкции здания.Лучше не использовать замедлители образования пара Класса I, такие как полиэтиленовая пленка или алюминиевая фольга, в следующих обстоятельствах: климат с высокими летними влажностными нагрузками; ограждающие конструкции с облицовкой, аккумулирующей влагу, например из бетона или кирпича; и в ограждающих конструкциях зданий с наружной обшивкой с низкой проницаемостью, такой как экструдированный полистирол.

В морском климате или климате со смешанным влажным климатом первым делом необходимо определить, преобладает ли климат — нагревание или охлаждение. Если объект расположен в климате с преобладанием нагрева, замедлитель парообразования следует разместить внутри.Но если проект находится в климате с преобладанием охлаждения, замедлитель парообразования следует разместить снаружи ограждающей конструкции или полностью исключить из него. В этих климатических условиях одним из лучших вариантов является полупроницаемый замедлитель парообразования, такой как крафт-бумага с асфальтовым покрытием, которую обычно прикрепляют к теплоизоляции из стекловолокна. Специалисты также могут выбрать пароизоляционную краску. Однако важно помнить, что в условиях смешанного влажного климата нельзя использовать полиэтиленовую пленку с низкой проницаемостью или алюминиевую фольгу.

В условиях смешанного и сухого климата большую часть времени замедлитель образования пара не требуется, потому что количество осадков слабое, а влажность обычно невысока. По-прежнему рекомендуется ознакомиться с местными строительными нормами, поскольку они могут потребовать установки замедлителя парообразования внутри. В жарком и влажном климате рекомендуется размещать замедлитель парообразования снаружи, за пределами изоляции полости. Завершая список, в жарком сухом климате замедлитель парообразования не требуется.

Хотя замедлители образования пара с низкой проницаемостью обеспечивают высокую стойкость к водяному пару круглый год, они также снижают вероятность высыхания влажных строительных материалов в летнее время.Стратегия управления влажностью в морском или смешанном влажном климате в идеале решила бы эту проблему с помощью воздухопроницаемой полости стены с воздухонепроницаемой конструкцией из гипсокартона с немного более проницаемым замедлителем пара, который допускает некоторую диффузию влаги. Сушка может происходить за счет диффузии пара в любом направлении, и замедлитель образования пара фактически адаптируется к изменяющимся условиям влажности. Учитывая это решение, некоторые производители строительной продукции разработали новые «умные» замедлители образования пара, которые реагируют на изменения относительной влажности, изменяя свою физическую структуру, чтобы обеспечить лучшую защиту от потока влаги в любое время года.

УМНЫЕ ПАРОЗАМЕДИТЕЛИ
Полевые испытания показали, что интеллектуальные замедлители образования пара эффективно снижают риск повреждения влагой в оболочке здания за счет повышения устойчивости конструкции к воздействию влаги. Первоначально разработанные, испытанные и введенные в продажу в Европе, они сделаны из полиамида, материала на основе нейлона. Содержание нейлона придает ему высокую прочность на разрыв. Полиамидная пленка задерживает попадание влаги в сухих условиях, обычно с классом проницаемости II.Однако, когда относительная влажность повышается выше 60 процентов, пленка резко расширяется до гораздо более высокой проницаемости, что позволяет высыхать внутрь. В условиях низкой относительной влажности молекулы пластика пленки образуют плотную непроницаемую сеть. Как только пленка вступает в контакт с относительной влажностью 60%, она набухает и становится мягкой, поскольку полярные молекулы воды проникают между молекулами нейлона. В результате нейлон образует поры, через которые могут проникать другие молекулы воды, и проницаемость увеличивается до более чем 10 перм. При испытании в соответствии с ASTM E96, методом смачивания.

Умный замедлитель парообразования в сочетании со стекловолоконной ватой или рулонной изоляцией является выигрышным решением для управления влажностью. Производители делают изоляцию из стекловолокна все более экологичной, чтобы соответствовать требованиям LEED® и другим экологическим стандартам строительства. Некоторые производят изоляцию с органическими связующими, состоящими из быстро возобновляемых материалов на биологической основе, без добавления фенолформальдегида, жестких акриловых красок или красок. Эти новые связующие служат толчком к созданию экологически чистого изоляционного материала, поскольку изоляция из стекловолокна всегда производилась с использованием легко доступных возобновляемых ресурсов, таких как песок и высокое содержание переработанного стекла.

Чтобы сделать лучший выбор, рекомендуется измерить эффективность управления влажностью пароизоляции, изоляции и других компонентов стеновой конструкции в целом.

ЗАКЛЮЧЕНИЕ
Здание с эффективной стратегией управления влажностью является более сухим и, следовательно, более устойчивым зданием с более здоровыми и счастливыми жильцами. Внедрение твердой стратегии управления влажностью с изоляцией из стекловолокна и надлежащим замедлителем паров является шагом в правильном направлении к этой цели.


Полезные ресурсы

Скачать пример использования PDF

Продукты MemBrain теперь доступны на HomeDepot.com

Заблуждения о проницаемости стеновых воздушных барьеров

В регионах с умеренным климатом, особенно в южных штатах, специалистам по спецификациям часто приходится выбирать паропроницаемый воздушный барьер. Во многих случаях представители производителей продуктов советуют им, что продукты с более высоким рейтингом химической стойкости будут иметь лучшие характеристики.Различные производители использовали эту тактику, чтобы стимулировать продажи своей продукции и ограничить конкуренцию.

Чтобы противостоять этой вводящей в заблуждение маркетинговой методике, необходимо понимать проницаемость, как она связана с классификацией ингибиторов парообразования и что все это означает с точки зрения эксплуатационных характеристик здания.

Проницаемость указывает на скорость прохождения водяного пара через материал и зависит от толщины материала, как и значение R при теплопередаче.Проницаемость часто сокращается до «пермь», что является единицей измерения, используемой для классификации замедлителей парообразования. Степень проницаемости материала также необходима при сравнении паропроницаемости различных строительных материалов.

В таблице ниже показана классификация замедлителей парообразования в соответствии с Международными строительными нормами и правилами (IBC). Важно отметить, что чем менее проницаемый материал, тем выше его сопротивление пропусканию водяного пара.

Классификация

Определение

проницаемость

я

Паронепроницаемость

Больше или равно 0.1 пермь

II

Полупроницаемый для пара

Более 0,1 доп.

III

Полупроницаемый для пара

Больше 1.0 допусков, но меньше или равно 10 допускам

Паропроницаемый

Более 10 перм.

Как показано в приведенной выше таблице, любой материал с рейтингом проницаемости выше 10 классифицируется как ДОПУСТИМЫЙ. Выбор продукта исключительно потому, что он имеет более высокий рейтинг проницаемости, чем определение проницаемости, не добавляет каких-либо значимых преимуществ к производительности системы.

Самое важное, что нужно учитывать при сравнении оценок химической завивки различных продуктов, — это тест, в котором она была определена. ASTM E96 — это стандартный метод испытаний материалов на проницаемость водяного пара.

ASTM E96 содержит два метода испытаний для определения проницаемости материалов: метод A (метод осушителя) и метод B (метод воды). Результаты этих двух методов испытаний значительно различаются, и их нельзя никаким образом сравнивать.Поэтому при сравнении и выборе паропроницаемого или паронепроницаемого воздушного барьера чрезвычайно важно, чтобы результаты были получены с помощью одного и того же метода испытаний ASTM E96. Метод B чаще всего используется для классификации материалов из-за более высоких результатов, которые он дает, что представляет собой наихудший случай с избыточным присутствием влаги.

С вопросами обращайтесь к Крису Канну по [электронной почте].

Паропроницаемость | Pro Remodeler

Такие термины, как «пароизоляция» или «замедлитель парообразования» знакомы большинству из нас, даже если мы не совсем понимаем их различия.Они описывают паропроницаемость материала — его способность предотвращать или позволять водяному пару проходить через него. Материалы с высокой паропроницаемостью пропускают большое количество водяного пара; материалы с низкой паропроницаемостью блокируют прохождение через них некоторого или всего водяного пара и называются «пароизоляторами» или «паронепроницаемыми барьерами».

Сколько водяного пара проходит через материал, зависит не только от паропроницаемости этого материала, но также от количества водяного пара (также называемого давлением пара) на каждой стороне материала.Проще говоря, паропроницаемость может быть определена в лаборатории с помощью тестов, в которых известная площадь и толщина материала подвергаются воздействию известного градиента температуры и давления пара или RH (относительной влажности) с обеих сторон. Влага переходит из влажного состояния в сухое, а градиент давления пара описывает, насколько «тянущее» одна сторона стены по сравнению с другой стороной. Чем больше разница в градиенте давления между сторонами, тем сильнее притяжение пара.

Тестирование проницаемости

ASTM E96 («Стандартные методы испытаний материалов на проницаемость водяного пара») описывает два испытания, обычно называемых испытаниями «смачиваемая чашка» и «сухая чашка».В испытании смачиваемой чашкой воздух на одной стороне материала в значительной степени является обычным воздухом (относительная влажность 50% при 25 ° C / 77 ° F), в то время как воздух на другой стороне является насыщенным (относительная влажность 100%). При испытании в сухом тигле с одной стороны также используется обычный воздух (относительная влажность 50% при 25 ° C / 77 ° F), а на другой стороне находится либо осушитель, либо воздух с относительной влажностью 0%.

Результаты этих испытаний в конечном итоге используются в нормах и стандартах. Выбор теста зависит от того, будет ли тестируемый материал использоваться внутри или снаружи здания.Например, во многих климатических условиях материал снаружи здания будет подвергаться более высокой относительной влажности, как и следовало ожидать во время дождя и более тропических климатических условий. В этих случаях испытание смачиваемой чашкой, вероятно, является более подходящим испытанием для строительных материалов, предназначенных для использования на внешней стороне корпуса. Внутри, где воздух более сухой, тест в сухой чашке лучше покажет ожидаемую производительность.

Распространение путаницы

Размышляя о проницаемости, важно помнить, что существует разница между паром, который переносится воздушными потоками посредством инфильтрации или эксфильтрации, и диффузией пара, которая не зависит от движения воздуха.Диффузия пара, описываемая законом идеального газа, в основном представляет собой активность молекул воды в воздухе, сталкивающихся друг с другом и с поверхностями. Степень, в которой диффузия приводит к тому, что молекулы воды проникают внутрь и через поверхности, на которые они воздействуют, зависит от того, насколько проницаемы эти поверхности.

Но распространение обычно является медленным процессом. Более быстрый способ проникновения молекулы воды в стену — это направить воздушный поток в отверстие в стене, например, в пространство вокруг электрической розетки или оконного косяка.Проникновение или эксфильтрация может перемещать на порядки больше водяного пара, чем только диффузия пара. Отсюда недавнее снижение акцента на пароизоляции в зданиях с высокими эксплуатационными характеристиками в пользу воздушных барьеров и . Пароизоляция предназначена для остановки диффузии пара, тогда как воздушные барьеры предназначены для предотвращения инфильтрации или эксфильтрации воздуха, как сухого, так и влажного.

Использование паропроницаемости

(Примечание к таблице: в приведенной ниже таблице рейтингов допустимости для обычных строительных материалов более низкие значения указывают на более низкую проницаемость, чем более высокие значения.При оценке конкретных сборок обратите внимание, что относительная влажность и толщина материала могут повлиять на рейтинг стойкости.)

Важно знать паропроницаемость материалов, используемых в сборке стен, чтобы водяной пар случайно не попал внутрь стены.

Не обращая внимания на то, является ли пароизоляция хорошей идеей, общее практическое правило — размещать пароизоляцию на теплой стороне корпуса. Итак, не говоря уже о том, что он вам нужен, если указана пароизоляция, она должна быть на внутренней стороне стены в условиях отопления и на внешней стороне стены в условиях прохладного климата.

В жарком климате влажный внутренний воздух, попадающий в стены или стропильные ниши, может конденсироваться, когда встречается с более холодной поверхностью обшивки. Если эта влага не высыхает относительно легко, это может привести к появлению плесени и гниению деревянных деталей.

Аналогичным образом, в прохладном климате водяной пар во влажном наружном воздухе, который проникает в стену и встречает пароизоляцию, например, виниловые обои, наклеенные на холодную кондиционируемую поверхность гипсокартона, почти наверняка вызовет конденсацию и задержит влагу. между обоями и гипсокартоном, что может привести к образованию черной плесени за обоями.Это общая проблема для жаркого влажного климата, такого как юго-восток США, но мы провели исследование, которое показывает конденсацию на внутренней пароизоляции из полиэтилена даже в климатической зоне 5 с облицовкой, аккумулирующей влагу, такой как непосредственно приклеенный камень.

Корпуса

должны быть спроектированы таким образом, чтобы сохнуть по крайней мере в одном направлении — внутрь или снаружи, в зависимости от того, в какой климатической зоне вы находитесь, и от свойств материалов корпуса. Это подчеркивает важность рассмотрения всей конструкции при проектировании высококачественной стены или крыши.Распространение пара через камеру контролируется наименее паропроницаемым материалом. Таким образом, если вы спроектируете паронепроницаемую оболочку, но включите в нее один слой, непроницаемый для пара — пароизоляцию, — это предотвратит попадание всего пара в оболочку или из нее на этом слое. Некоторые ученые называют такой анализ «паровым профилем» сборки, потому что он описывает, каким образом стена может высохнуть из любого данного слоя. Если он не может высохнуть или высохнуть, это проблема.

Проницаемость варьируется от материалов с высокой проницаемостью (таких как некоторые домашние обертки, латексная краска, изоляция из минерального или стекловолокна и гипсокартон) до пароизоляционных материалов (таких как крафт-бумага на изоляционном войлоке) до пароизоляционных материалов (таких как полиэтилен толщиной 6 мил и многое другое). отшелушивающие мембраны), которые эффективно блокируют прохождение водяного пара.

Пена для распыления раньше считалась непроницаемой, но сейчас есть много разных формул. Пена с открытыми порами весом в полфунта достаточно паропроницаема и не контролирует движение пара. Даже пена с закрытыми порами в некоторой степени проницаема до толщины около 2 дюймов, в этом случае она считается пароизоляцией.

Умная пароизоляция

Существуют также материалы, называемые «интеллектуальными пароизоляциями», у которых проницаемость варьируется в зависимости от относительной влажности окружающей среды.В более сухой среде с низкой относительной влажностью они будут действовать как пароизоляция. Но если относительная влажность увеличивается из-за, например, утечки воды в корпус, тогда паропроницаемость интеллектуальной пароизоляции увеличится и позволит больше сушить.

Самым распространенным интеллектуальным замедлителем образования пара является крафт-бумага на изоляционном войлоке. Бумага закрывается паром, если полость стены не становится влажной, после чего бумага становится паропроницаемой, что позволяет высохнуть. Существуют также пластиковые пленки, которые ведут себя точно так же, часто с более широким диапазоном паропроницаемости.MemBrain от CertainTeed является одним из примеров в Северной Америке, но есть и другие, многие из которых до сих пор используются только в Европе.

Узнайте больше о строительной науке здесь

Паропроницаемость строительных материалов. Сопротивление паропроницаемости материалов и тонких слоев пароизоляции Паропроницаемость строительных материалов Срезной стол

Паропроницаемость материала выражается в его способности пропускать водяной пар. Это свойство сопротивляться проникновению пара или позволять ему проходить сквозь материал определяется уровнем коэффициента паропроницаемости, который обозначается µ.Это значение, которое звучит как «мю», действует как относительное значение сопротивления паропереносу по сравнению с характеристиками сопротивления воздуха.

Существует таблица, отражающая способность материала переносить пар, это можно увидеть на рис. 1. Таким образом, значение mu для минеральной ваты равно 1, что указывает на то, что она способна пропускать водяной пар так же, как и воздух. сам. Хотя это значение для газобетона составляет 10, это означает, что он может обрабатывать пар в 10 раз хуже, чем воздух. Если показатель mu умножить на толщину слоя, выраженную в метрах, это позволит получить толщину воздуха, равную уровню паропроницаемости Sd (м).

Из таблицы видно, что для каждого положения индикатор паропроницаемости указывается для разного состояния. Если посмотреть СНиП, то можно увидеть расчетные данные показателя мю при относительной влажности в теле материала равной нулю.

Рисунок 1. Таблица паропроницаемости строительных материалов

По этой причине при закупке товаров, которые предполагается использовать в процессе строительства дачи, предпочтительнее учитывать международные стандарты ISO, так как они определяют показатель мю в сухом состоянии, при влажности не более 70% и показатель влажности более 70%.

При выборе строительных материалов, которые лягут в основу многослойной конструкции, коэффициент mu слоев, расположенных изнутри, должен быть ниже, иначе со временем слои внутри намокнут, в результате чего они потеряют свою теплоизоляционные качества.

При создании ограждающих конструкций необходимо позаботиться об их нормальном функционировании. Для этого следует придерживаться принципа, что уровень мю материала, находящегося во внешнем слое, должен быть в 5 и более раз выше указанного показателя материала во внутреннем слое.

Механизм паропроницаемости

В условиях низкой относительной влажности частицы влаги, содержащиеся в атмосфере, проникают через поры строительных материалов и попадают туда в виде молекул пара. По мере повышения уровня относительной влажности в порах слоев накапливается вода, что вызывает смачивание и капиллярное всасывание.

В момент увеличения влажности слоя увеличивается его mu-индекс, а значит, снижается уровень сопротивления паропроницаемости.

Показатели паропроницаемости несмачиваемых материалов применимы в условиях внутренних конструкций зданий, имеющих отопление. Но уровни паропроницаемости увлажненных материалов применимы для любых строительных конструкций, которые не отапливаются.

Уровни паропроницаемости, которые являются частью наших стандартов, не во всех случаях эквивалентны тем, которые соответствуют международным стандартам. Так, в отечественных СНиП уровень мю керамзитобетона и шлакобетона практически одинаков, а по международным стандартам данные отличаются друг от друга в 5 раз.Уровни паропроницаемости гипсокартона и шлакобетона в отечественных стандартах практически совпадают, а в международных данные отличаются в 3 раза.

Существуют различные способы определения уровня паропроницаемости, для мембран можно выделить следующие методы:

  1. Американский тест с вертикальной чашей.
  2. Американский тест перевернутой чаши.
  3. Японский тест с вертикальной чашей.
  4. Испытание на японскую перевернутую чашу с осушителем.
  5. Американский тест с вертикальной чашей.

В японском тесте используется сухой осушитель, расположенный под испытуемым материалом. Во всех тестах используется уплотнительный элемент.

Всем известно, что комфортный температурный режим и, соответственно, благоприятный микроклимат в доме обеспечивается во многом за счет качественной теплоизоляции. В последнее время много споров идет о том, какой должна быть идеальная теплоизоляция и какими характеристиками она должна обладать.

Существует ряд свойств теплоизоляции, важность которых не вызывает сомнений: теплопроводность, прочность и экологичность.Совершенно очевидно, что эффективная теплоизоляция должна иметь низкий коэффициент теплопроводности, быть прочной и долговечной, не содержать вредных для человека и окружающей среды веществ.

Однако есть одно свойство теплоизоляции, вызывающее массу вопросов, — это паропроницаемость. Должна ли изоляция быть паропроницаемой? Низкая паропроницаемость — достоинство или недостаток?

Очки за и против

Сторонники ватного утеплителя уверяют, что высокая паропроницаемость — несомненный плюс, паропроницаемый утеплитель позволит стенам вашего дома «дышать», что создаст благоприятный микроклимат в помещении даже при отсутствии какой-либо дополнительной системы вентиляции.

Приверженцы Пеноплекса и его аналогов заявляют: утеплитель должен работать как термос, а не как протекающий «ватник». В свою защиту они приводят следующие аргументы:

1. Стены — это вовсе не «органы дыхания» дома. Они выполняют совершенно иную функцию — защищают дом от воздействий окружающей среды. Дыхательной системой для дома является система вентиляции, а также частично оконные и дверные проемы.

Во многих странах Европы приточно-вытяжная вентиляция является обязательной в любом жилом помещении и воспринимается в нашей стране как такая же норма, как и централизованная система отопления.

2. Проникновение водяного пара через стены — естественный физический процесс. Но при этом количество этого проникающего пара в жилом помещении при нормальной работе настолько мало, что им можно пренебречь (от 0,2 до 3% * в зависимости от наличия / отсутствия системы вентиляции и ее эффективности).

* Погозельский Ю.А., Касперкевич К. Тепловая защита многоквартирных домов и энергосбережение, тема планирования NF-34/00, (машинописный текст), библиотека ITB.

Таким образом, мы видим, что высокая паропроницаемость не может выступать в качестве культивируемого преимущества при выборе теплоизоляционного материала.Теперь попробуем разобраться, можно ли считать это свойство недостатком?

Чем опасна высокая паропроницаемость изоляции?

Зимой при минусовых температурах вне дома точка росы (условия, при которых водяной пар достигает насыщения и конденсируется) должна быть в утеплителе (в качестве примера взят экструдированный пенополистирол).

Рис.1 Точка росы в плитах пенополистирола в домах с изоляционной облицовкой

Фиг.2 Точка росы в плитах пенополистирола в каркасных домах

Получается, что если теплоизоляция имеет высокую паропроницаемость, то в ней может скапливаться конденсат. Теперь давайте выясним, чем опасен конденсат в утеплителе?

Сначала , когда в изоляции образуется конденсат, она становится влажной. Соответственно снижаются его теплоизоляционные характеристики и, наоборот, увеличивается теплопроводность. Таким образом, утеплитель начинает выполнять обратную функцию — отводить тепло из помещения.

Известный специалист в области теплофизики, доктор технических наук, профессор К.Ф. Фокин заключает: «Воздухопроницаемость заборов гигиенисты рассматривают как положительное качество, обеспечивающее естественную вентиляцию помещений. Но с теплотехнической точки зрения воздухопроницаемость заборов — скорее отрицательное качество, так как в зимнее время инфильтрация (движение воздуха изнутри наружу) вызывает дополнительные теплопотери забором и охлаждение помещения, и эксфильтрация (движение воздуха снаружи внутрь) может отрицательно сказаться на влажностном режиме внешних ограждений.способствуя конденсации влаги ».

Кроме того, в разделе № 8 СП 23-02-2003 «Тепловая защита зданий» указано, что воздухопроницаемость ограждающих конструкций жилых домов не должна превышать 0,5 кг / (м² ∙ ч).

Во-вторых , из-за намокания утяжеляется теплоизолятор. Если мы имеем дело с ватным утеплителем, то он проседает, и образуются мостики холода. К тому же увеличивается нагрузка на несущие конструкции.После нескольких циклов: мороз — оттепель, такой утеплитель начинает разрушаться. Для защиты влагопроницаемого утеплителя от намокания его покрывают специальными пленками. Возникает парадокс: утеплитель дышит, но ему нужна защита полиэтиленом или специальной мембраной, сводящей на нет все его «дыхание».

Ни полиэтилен, ни мембрана не пропускают молекулы воды в изоляцию. Из школьного курса физики известно, что молекулы воздуха (азот, кислород, углекислый газ) больше молекулы воды.Соответственно, воздух также не может проходить через такие защитные пленки. В результате мы получаем помещение с воздухопроницаемым утеплителем, но покрытое воздухонепроницаемой пленкой — этакая полиэтиленовая теплица.

Понятие «дышащие стены» считается положительной характеристикой материалов, из которых они сделаны. Но мало кто задумывается о причинах такого дыхания. Материалы, которые могут пропускать как воздух, так и пар, паропроницаемы.

Наглядный пример строительных материалов с высокой паропроницаемостью:

  • дерево;
  • плиты керамзитовые;
  • пенобетон.

Бетонные или кирпичные стены менее паропроницаемы, чем деревянные или керамзитовые.

Источники пара в помещении


Дыхание человека, приготовление пищи, водяной пар из ванной и многие другие источники пара в отсутствие вытяжного шкафа создают высокий уровень влажности в помещении. Зимой часто наблюдается потливость оконных стекол или труб с холодной водой. Это примеры образования водяного пара внутри дома.

Что такое паропроницаемость


Правила проектирования и строительства дают следующее определение термина: паропроницаемость материалов — это способность проходить сквозь капли влаги, содержащиеся в воздухе, за счет различных значений парциальной проницаемости. давление пара с противоположных сторон при одинаковом давлении воздуха.Он также определяется как плотность потока пара, проходящего через материал определенной толщины.

Таблица с коэффициентом паропроницаемости, составленная для строительных материалов, является условной, так как приведенные расчетные значения влажности и атмосферных условий не всегда соответствуют реальным условиям. Точку росы можно рассчитать на основе приблизительных данных.

Конструкция стен с учетом паропроницаемости


Даже если стены возводятся из материала с высокой паропроницаемостью, это не может быть гарантией того, что он не превратится в воду в толще стены.Чтобы этого не произошло, нужно защитить материал от перепада парциального давления паров изнутри и снаружи. Защита от образования конденсата пара осуществляется с помощью плит OSB, изоляционных материалов, таких как пенопласт и паронепроницаемых пленок или мембран, препятствующих проникновению пара в утеплитель.

Стены изолированы так, что слой изоляции расположен ближе к внешнему краю, не способный образовывать конденсацию влаги, повышающую точку росы (образование воды).Параллельно с защитными слоями в кровельном пироге необходимо обеспечить правильный вентиляционный зазор.

Деструктивное воздействие пара


Если стеновой пирог имеет слабую паропоглощающую способность, он не подвергается опасности разрушения из-за расширения влаги из-за мороза. Главное условие — не допустить скопления влаги в толще стены, но обеспечить ее свободный проход и выветривание. Не менее важно устроить принудительный отвод лишней влаги и пара из помещения, подключить мощную систему вентиляции.Соблюдая перечисленные условия, можно защитить стены от растрескивания, а также увеличить срок службы всего дома. Постоянное прохождение влаги через строительные материалы ускоряет их разрушение.

Использование токопроводящих качеств


Учитывая особенности эксплуатации зданий, применяется следующий принцип утепления: наиболее паропроводящие изоляционные материалы располагаются снаружи. Благодаря такому расположению слоев вероятность скопления воды снижается при понижении температуры наружного воздуха.Чтобы стены не намокали изнутри, внутренний слой утепляют материалом с низкой паропроницаемостью, например толстым слоем экструдированного пенополистирола.

Успешно применен противоположный метод использования паропроводящих эффектов строительных материалов. Он заключается в том, что кирпичная стена покрывается пароизоляционным слоем из пеностекла, который при низких температурах прерывает движущийся поток пара от дома на улицу.Кирпич начинает накапливать влажность помещений, создавая приятный микроклимат в помещении благодаря надежной пароизоляции.

Соблюдение основного принципа при возведении стен


Стены должны иметь минимальную способность проводить пар и тепло, но в то же время быть теплопотребляющими и термостойкими. При использовании одного типа материала невозможно добиться требуемых эффектов. Наружная часть стены обязана удерживать холодные массы и предотвращать их воздействие на внутренние теплопотребляющие материалы, поддерживающие комфортный тепловой режим внутри помещения.

Железобетон идеально подходит для внутреннего слоя, его теплоемкость, плотность и прочность находятся на максимальных значениях. Бетон успешно сглаживает разницу между дневными и ночными перепадами температур.

При проведении строительных работ пироги стен изготавливаются с учетом основного принципа: паропроницаемость каждого слоя должна увеличиваться в направлении от внутренних слоев к внешним.

Правила расположения пароизоляционных слоев


Для обеспечения наилучших эксплуатационных характеристик многослойных конструкций конструкций применяется правило: на стороне с более высокой температурой размещаются материалы с повышенной стойкостью к проникновению пара с повышенной теплопроводностью. .Расположенные снаружи слои должны обладать высокой паропроницаемостью. Для нормального функционирования ограждающей конструкции необходимо, чтобы коэффициент внешнего слоя был в пять раз выше, чем у слоя, расположенного внутри.

При соблюдении этого правила водяной пар, захваченный теплым слоем стены, не составит труда ускориться через более пористые материалы.

Если это условие не выполняется, внутренние слои строительных материалов блокируются и становятся более теплопроводными.

Ознакомление с таблицей паропроницаемости материалов


При проектировании дома учитываются характеристики строительных материалов. В Своде правил есть таблица с информацией о том, какой коэффициент паропроницаемости имеют строительные материалы в условиях нормального атмосферного давления и средней температуры воздуха.

Материал

Коэффициент паропроницаемости
мг / (м · ч Па)

экструдированный пенополистирол

пенополиуретан

минеральная вата

железобетон, бетон

сосна или ель

керамзит

пенобетон, газобетон

гранит, мрамор

гипсокартон

ДСП, оспа, ДВП

пеностекло

рубероид

полиэтилен

линолеум

Таблица опровергает заблуждения о дыхательных стенах.Количество пара, выходящего через стены, незначительно. Основной пар осуществляется токами воздуха при вентиляции или с помощью вентиляции.

Важность таблицы паропроницаемости материалов


Коэффициент паропроницаемости — важный параметр, который используется для расчета толщины слоя изоляционных материалов. От правильности полученных результатов зависит качество утепления всей конструкции.

Сергей Новожилов — специалист по кровельным материалам с 9-летним практическим опытом в области инженерных решений в строительстве.

Часто в строительных изделиях встречается выражение — паропроницаемость бетонных стен. Означает способность материала пропускать водяной пар, в народном смысле — «дышать». Этот параметр имеет большое значение, так как в гостиной постоянно образуются продукты жизнедеятельности, которые необходимо постоянно вывозить наружу.

Общая информация

Если в помещении не создать нормальную вентиляцию, в нем будет создаваться сырость, что приведет к появлению плесени и грибка.Их выделения могут нанести вред нашему здоровью.

С другой стороны, паропроницаемость влияет на способность материала накапливать влагу в себе. Это тоже плохой показатель, так как чем больше он сможет удержать его в себе, тем выше вероятность появления грибка, гнилостных проявлений, разрушения при замораживании.

Паропроницаемость для водяного пара обозначается латинской буквой μ и измеряется в мг / (м * ч * Па). Значение показывает количество водяного пара, которое может пройти через материал стены на площади 1 м 2 и толщиной 1 м за 1 час, а также разницу между внешним и внутренним давлением в 1 Па.

Высокая способность проводить водяной пар в:

  • пенобетон ;
  • газобетон ;
  • бетон перлитный ;
  • керамзитобетон .

Стол закрывается тяжелым бетоном.

Совет: если вам нужно сделать технологический канал в фундаменте, вам поможет алмазное сверление отверстий в бетоне.

Газобетон

  1. Использование материала в качестве ограждающей конструкции позволяет избежать накопления ненужной влаги внутри стен и сохранить ее теплосберегающие свойства, что предотвратит возможное разрушение.
  2. Любой газобетон и пенобетонный блок содержит ≈ 60% воздуха, благодаря чему паропроницаемость газобетона признана на хорошем уровне, стены в этом случае могут «дышать».
  3. Водяной пар свободно просачивается сквозь материал, но не конденсируется в нем.

Паропроницаемость газобетона, как и пенобетона, значительно превосходит тяжелый бетон — для первого 0,18-0,23, для второго — (0,11-0,26), для третьего — 0,03 мг / м * ч * Па.

Особо хочу подчеркнуть, что структура материала обеспечивает эффективный отвод влаги в окружающую среду, так что даже при замерзании материал не разрушается — он вытесняется через открытые поры. Поэтому при подготовке следует учитывать эту особенность и подбирать подходящие штукатурки, шпатлевки и краски.

Инструкция строго регламентирует, что их параметры паропроницаемости не ниже, чем у газобетонных блоков, используемых для строительства.

Совет: не забывайте, что параметры паропроницаемости зависят от плотности газобетона и могут отличаться вдвое.

Например, если вы используете D400, их коэффициент составляет 0,23 мг / мч Па, тогда как для D500 он уже ниже — 0,20 мг / мч Па. В первом случае цифры указывают на то, что стены будут иметь более высокий » дыхательная «емкость». Поэтому при выборе отделочных материалов для стен из газобетона D400 убедитесь, что у них коэффициент паропроницаемости такой же или выше.

В противном случае это приведет к ухудшению отвода влаги со стен, что скажется на снижении уровня комфортности проживания в доме. Также следует учитывать, что если вы использовали паропроницаемую краску для газобетона для экстерьера, а непроницаемые материалы для интерьера, пар просто будет скапливаться внутри помещения, делая его влажным.

Керамзитобетон

Паропроницаемость керамзитобетонных блоков зависит от количества в его составе наполнителя, а именно керамзита — вспененной обожженной глины.В Европе такие изделия называют эко- или биоблоками.

Совет: если не можете разрезать керамзитовый блок обычным кругом и болгаркой, используйте алмазный.
Например, резка железобетона алмазными кругами позволяет быстро решить проблему.

полистиролбетон

Материал — еще один представитель ячеистого бетона. Паропроницаемость полистиролбетона обычно приравнивают к дереву.Вы можете сделать это сами.

Сегодня все больше внимания уделяется не только тепловым свойствам стеновых конструкций, но и комфорту проживания в здании. По термической инертности и паропроницаемости полистиролбетон напоминает деревянные материалы, а сопротивления теплопередаче можно добиться, изменив его толщину. Поэтому обычно используют монолитный монолитный полистиролбетон, который дешевле готовых плит.

Выход

Из статьи вы узнали, что у строительных материалов есть такой параметр, как паропроницаемость.Дает возможность выводить влагу за пределы стен здания, улучшая их прочность и характеристики. Паропроницаемость пенобетона и газобетона, а также тяжелого бетона отличается своими показателями, которые необходимо учитывать при выборе отделочных материалов. Видео в этой статье поможет вам найти дополнительную информацию по этой теме.

С целью его разрушения

Расчеты единиц паропроницаемости и сопротивления паропроницаемости.Технические характеристики мембран.

Часто вместо значения Q используется значение сопротивления паропроницаемости, на наш взгляд это Rp (Па * м2 * ч / мг), зарубежный Sd (м). Сопротивление паропроницаемости обратно пропорционально Q. Более того, импортированный Sd — это тот же Rp, только выраженный как эквивалентное сопротивление диффузии паропроницаемости воздушного слоя (эквивалентная толщина диффузионного воздуха).
Вместо дальнейших рассуждений на словах, коррелируем Sd и Rп численно.
Что означает Sd = 0,01 м = 1 см?
Это означает, что плотность диффузионного потока на разности dP составляет:
Дж = (1 / Rп) * dP = Dv * dRo / Sd
Здесь Dv = 2,1e-5м2 / с коэффициент диффузии водяного пара в воздухе ( взято при 0 ° C) /
Sd — это наша самая Sd, а
(1 / Rп) = Q
Преобразуем правильное равенство, используя закон идеального газа (P * V = (m / M) * R * T => P * M = Ro * R * T => Ro = (M / R / T) * P) и посмотрим.
1 / Rп = (Dv / Sd) * (M / R / T)
Следовательно, нам еще не ясно Sd = Rп * (Dv * M) / (RT)
Для получения правильного результата необходимо изобразить все в единицах Rп, точнее
Dv = 0.076 м2 / ч
M = 18000 мг / моль — молярная масса воды
R = 8,31 Дж / моль / K — универсальная газовая постоянная
T = 273K — температура по шкале Кельвина, соответствующая 0 ° C, где будем проводить расчеты .
Итак, подставив все, что имеем:
Sd = Rp * (0,076 * 18000) / (8,31 * 273) = 0,6Rp или наоборот:
Rp = 1,7Sd.
Здесь Sd — это тот же импортный Sd [м], а Rp [Па * м2 * ч / мг] — наше сопротивление паропроницаемости.
Также Sd может быть связан с Q — паропроницаемостью.
У нас есть Q = 0,56 / Sd , здесь Sd [м] и Q [мг / (Па * м2 * ч)].
Проверим полученные соотношения. Для этого берем технические характеристики различных мембран и заменителей.
Сначала я возьму отсюда данные Tyvek.
В итоге данные интересны, но не очень подходят для тестирования формул.
В частности, для мягкой мембраны получаем Sd = 0,09 * 0,6 = 0,05м.Те. Sd в таблице занижено в 2,5 раза или, соответственно, Rп завышено.

Дальнейшие данные беру из Интернета. На мембране Fibrotek
я буду использовать последнюю пару данных о проницаемости, в этом случае Q * dP = 1200 г / м2 / день, Rp = 0,029 м2 * ч * Па / мг
1 / Rp = 34,5 мг / м2 / ч / Па = 0,83 г / м2 / сутки / Па
Отсюда вынимаем падение абсолютной влажности dP = 1200 / 0,83 = 1450 Па. Эта влажность соответствует точке росы 12,5 градусов или влажности 50% при 23 градусах.

В интернете нашел еще на другом форуме фразу:
Т.е. 1740 нг / Па / с / м2 = 6,3 мг / Па / ч / м2 соответствует паропроницаемости ~ 250 г / м2 / день.
Сам попробую получить это соотношение. Отмечается, что значение в г / м2 / день измеряется в том числе при 23 градусах. Берем полученное ранее значение dP = 1450 Па и имеем приемлемую сходимость результатов:
6,3 * 1450 * 24/100 = 219 г / м2 / сутки. Ура, ура.

Итак, теперь мы можем соотнести паропроницаемость, которую вы можете найти в таблицах, и сопротивление паропроницаемости.
Остается убедиться, что полученное выше соотношение между Rp и Sd является правильным. Пришлось порыться и найти мембрану, для которой даны оба значения (Q * dP и Sd), а Sd — это конкретное значение, а не «не более». Перфорированная мембрана на основе полиэтиленовой пленки
А вот данные:
40,98 г / м2 / день => Rp = 0,85 => Sd = 0,6 / 0,85 = 0,51м
Опять не подходит. Но в принципе результат не за горами, что с учетом того, что неизвестно, по каким параметрам определяется паропроницаемость, вполне нормально.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *