Настройка продувки на котле: Продувка котла: порядок выполнения, назначение

Содержание

Непрерывная и периодическая продувка котла

Поделиться «Непрерывная и периодическая продувка котла»

В статье дана информация о непрерывной и периодической продувке котла, приведена реальная схема продувки и конструкторские чертежи связанные с РНП и РПП

Проблемы из-за солей в котловой воде

В котловой воде должен поддерживаться постоянный солевой состав, т.е. ввод солей и загрязнений с питательной водой должен соответствовать выводу их из котла. Это достигается проведением непрерывной и периодической продувок.

При недостаточном выводе солей из котла происходит накопление их в котловой воде и интенсивное накипеобразование на теплонапряжённых участках экранных труб, что снижает теплопроводимость труб, приводит к отдулинам, разрывам, аварийным остановам, и соответственно к снижению надёжности и экономичности работы котла. Поэтому оптимальный и своевременный вывод солей и шлама из котла имеет решающее значение.

Сепараторы пара в барабане

Чем выше параметры пара, тем хуже растворяются соли в питательной воде.

Чем меньше растворенных солей в котловой воде и чем суше в итоге пар, тем он считается чище. Вынос влаги с паром считается недопустимым, так как в ней содержатся соли, и при испарении они осядут на внутренних поверхностях труб в виде осадка.

жалюзийный сепаратор барабана котла

Внутри барабана котла находятся специальные устройства (сепараторы), которые отделяют влагу от пара. Очень часто внутри барабанов котлов устанавливаются циклонные сепараторы, которые отделяют водные частицы от пара. Также применяют жалюзийные сепараторы, такой сепаратор показан на схеме барабана среднего давления.

Для предотвращения выпадения накипи на поверхностях теплообмена котла, в барабан вводят фосфаты, при этом в котловой воде образуются труднорастворимые соединения в виде шлама. Вывод солей из барабана котла достигается за счет продувки.

продувка из барабана котла

Обычно барабан разбивается на чистый отсек и грязные. Вода из чистого отсека продувается в грязный.

Это делается для того, чтобы потерять как можно меньше воды с продувкой. Продувка будет осуществляться из грязного (солевого отсека), где концентрация солей намного выше, чем в чистом отсеке, следовательно унос воды с продувкой из грязного отсека будет ниже.

Грязные отсеки меньше, чистого, поэтому основная часть пара генерируется в чистом отсеке и следовательно общее содержание солей в паре падает. Это называется ступенчатым испарением. Ступенчатое испарение в барабане котла (или за его пределами в случае использования выносных циклонов) снижает затраты на подготовку воды, и затраты на топливо, так как с продувкой мы теряем тепло.

Как осуществляется непрерывная продувка котла

Котловая вода должна быть такого качества, чтобы исключить:

  1. Накипь и шлам на поверхностях нагрева.
  2. Отложения различных веществ в пароперегревателе котла и паровой турбине.
  3. Коррозию трубопроводов пара и воды.

Расчет величины продувки котла:

Продувка определяется в процентах от номинальной паропроизводительности котла:

Р=Gпр/Gпар * 100%

Согласно пункту 4. 8.27 правил технической эксплуатации электрических станций и сетей РФ величина непрерывной продуки котла принимается:

  • Не более 1% для КЭС
  • Не более 2% для КЭС и отопительных ТЭЦ восполнение потерь на которых производится с химически очищенной водой
  • Не более 5% на отопительных ТЭЦ, при 0% возврата пара от потребителей

Т.е если у Вас к примеру, конденсационная станция с турбиной К-330-240 с расходом свежего пара 1050 т/ч то величина продувки составит 10,5 т/ч.

Соответственно расход пара из котла определяется как разность расхода пительной воды и расхода продувки.

Размер непрерывной продувки при различных режимах работы должен дистанционно поддерживаться по расходомеру непрерывной продувки или регулироваться машинистом котла по требованию персонала химцеха.

Периодическая продувка

Периодическая продувка производится с целью вывода шлама из нижних точек всех коллекторов и направляется в расширитель периодической продувки и далее через барбатёр в промливневую канализацию.

Периодическая продувка, как ясно из названия не носит постоянного характера и производится время от времени. Периодическая продувка ограничена по времени и продолжается не более 30 секунд. Считается, что почти весь шлам удаляется сразу в первые секунды продувки.

Пример с эксплуатации: Периодическая продувка котла №3 проводится в среду и субботу персоналом КТЦ под контролем оперативного персонала химцеха. Каждая панель экранов продувается при полном открытии вентиля периодической продувки в течение 30 сек. При нарушении режимов по требованию персонала химцеха производятся внеочередные периодические продувки. При растопках котла периодические продувки производятся при 20, 60 атм в барабане котла и при достижении номинальных параметров.

Размер непрерывной продувки и время проведения периодических продувок фиксируются в суточных ведомостях экспресслаборатории дежурным лаборантом или начальником смены химцеха.

Схемы и чертежи продувки котла

Схема продувки котла

схема продувки котла

Это часть из реальной развернутой схемы парогазовой установки 450 МВт. На схеме показано, как осуществляется непрерывная и периодическая продувка.

Непрерывная продувка из барабана высокого давления поступает в сепаратор/раширитель непрерывной продувки. На линии по ходу среды устанавливается: запорная ручная арматура, расходомер, электрофицированый регулятор, набор дроссельных шайб, электрофицированная арматура и набор дроссельных шайб.

В конце статьи приведен пример расчета расширителя непрерывной продувки.

РНП оборудован предохранительным клапаном.

В данной схеме, насыщенный пар из сепаратора непрерывной продувки отправляется в барабан низкого давления. На паропроводе устанавливается запорная ручная арматура и обратный клапан. Дренаж из РНП будет отправляется в бак чистых стоков.

Продувка из РНП отправляется в расширитель периодической продувки, на линии устанавливаются электрический регулирующий клапан и запорная ручная арматура. Далее дренаж из РПП сбрасывается в бак слива из котлов.

Чертеж паропровода из сепаратора непрерывной продувки к деаэратору

пар от РНП к деаэратору

На конструкторском монтажно-сборочном чертеже показана компоновка паропровода низкого давления из расширителя непрерывной продувки в атмосферный деаэратор.

На паропроводе установлены две арматуры, одна – запорная (позиция 2) и другая – обратный клапан (позиция 1), чтобы пар не смог пойти обратно в расширитель.

Чертеж выхлопа от предохранительного клапана РНП

продувка от предохранительного клапана РНП

На другом чертеже показан выхлопной трубопровода от предохранительного клапана РНП. Трубопровод от предохранительного клапана направляется к краю главного корпуса и в створе колонн уводится на крышу, на высоту более 2х метров, чтобы обеспечить безопасность персоналу станции. На выхлопном трубопроводе предусматривается гидрозатвор, для удаления дренажа в дренажный коллектор. Из опыта эксплуатации диаметр трубы гидрозатвора рекомендуется делать больше, чем обычного дренажа, для препятствия его засорения, так как в выхлопной трубопровод из атмосферы могут попадать листья и другая грязь.

Чертеж выпара из расширителя периодической продувки

выпар из расширителя периодической продувки

На чертеже показан выпар из расширителя периодической продувки.

Он также выводится за пределы здания но сбоку. Выпар в отличие от выхлопа носит постоянный характер. Для охлаждения выпара, предусмотрено специальное устройство впыска холодной воды в трубопровод.

Тепловой расчет расширителя непрерывной продувки

тепловой расчет РНП

Рассмотрим балансы расширителя на примере. Будем считать продувку котла ЕП-670-13,8-545 ГМ работающего с турбиной Т-180/210-130.

Исходные данные: расход питательной воды: Gпв = 187,91 кг/с

Принимаем расход продувочной воды: Gпр = 0,3 % * Gпв = 0,03*187,91 = 5,64 кг/с

Принимаем давление в расширителе непрерывной продувки: Pрнп = 0,7 МПа

У нас будет два уравнения и два неизвестных, а именно:

  • Gпр1 — расход воды на выходе из РНП
  • Gпр2 – расход пара на выходе из РНП (этот пар сбрасывается в деаэратор повышенного давления 0,6 МПа)

Уравнения:

  1. Gпр = Gпр1 + Gпр2
  2. Gпр*hпр = Gпр1* hпр’ + Gпр2* hпр’’

Известные величины: 1,20 ГБ (1 300 147 052 байт)

  • Расход продувки поступающей из барабана котла: Gпр = 5,64 кг/с
  • Энтальпия продувочной воды из барабана: hпр определяется, как энтальпия воды при давлении насыщения в барабане, hпр = f(Pб)=f(13,8 МПа) = 1563 кДж/кг
  • Энтальпия воды на выходе из РНП: hпр’, определяется как энтальпия воды при насыщение в РНП: hпр’=f(Pрнп) = f(0,7 МПа) =697,1 кДж/кг
  • Энтальпия пара на выходе из РНП: hпр’’, определяется как энтальпия насыщенного пара в РНП: hпр’=f(Pрнп) = f(0,7 МПа) =2763,0 кДж/кг

Все энтальпии определялись в программе water steam pro, о ней мы рассказывали в статье Уравнение материального баланса и выбор деаэратора и там же есть ссылки, где ее можно скачать.

Итоговые уравнения:

  1. 5,64 = Gпр1 + Gпр2
  2. Gпр*1563 = Gпр1* 697,1 + Gпр2* 2763,0

Находим неизвестные:

  • Gпр1 = 3,27 кг/с
  • Gпр2 = 2,36 кг/c

 

 

 

 

Поделиться «Непрерывная и периодическая продувка котла»

(Visited 48 529 times, 1 visits today)

Читайте также

советы по настройке оборудования для корректной работы


Не можете найти инструкцию? Рекомендации из брошюры вам не помогли? У вас есть возможность прочитать нашу статью о настройке котлов. Если не знаете, как обходиться с газовым оборудованием, вам нужен мастер. Но согласитесь, не помешает раз за разом экономить время и деньги благодаря знаниям об основных настройках. Эффективная регулировка газового котла намного проще, чем может показаться.

Из статьи вы поймете принципы регулировки давления, тяги и мощности при работе устройства. Узнаете вероятные причины проблем вместе с вариантами их устранения. Если вам предстоит настройка котла, пользуйтесь нашими материалами. Не забывайте о правилах безопасности, и вы успешно настроите прибор, устраните мелкие неполадки.

Настройками газового котла следует интересоваться задолго до покупки, с учетом нужд и разных особенностей. Мы написали, какие параметры можно или нужно менять в используемом приборе. Новое устройство следует настраивать и готовить к работе, а некоторые нежелательные моменты удастся скорректировать.

Содержание статьи:

Настройка автоматики котла и давления

Перенастройку выполняют в случае, если автоматика срабатывает слишком часто. Эту неполадку называют тактованием, и возникает она из-за чрезмерного роста температуры теплоносителя. Уменьшите подачу газа в основную горелку, так вы защитите котел от износа.

У метода есть также запасной вариант — достаточно скрутить кран перед котлом. Помните, что неполное сгорание топлива приводит к увеличению объема дымовых газов и гари.

Место установки котла на кухне: газ можно убавлять краном после подводки, а также на опуске, если это не помешает работе плиты и других газовых приборов

Чтобы избавиться от тактования, перенесите (если есть) в более холодное место или снизьте температуру воздуха в месте установки. Увеличьте количество теплоносителя в системе отопления. Замените основную горелку, если тактование появилось из-за ее повышенной мощности.

Проблемы с автоматикой и частое выключение наблюдают при таких обстоятельствах:

  • упало или подпрыгнуло напряжение;
  • сильный ветер погасил горелку;
  • уменьшилась проходимость дымохода;
  • снизилось давления газа.

Чтобы улучшить работу автоматики, наведите рукоятку автоблока (газового клапана) на положение «искра». Загорится запальник (пилотная горелка, запальная горелка). Оставьте ручку на 30 секунд в таком положении, после чего верните на позицию «выключено» — белый кружок.

Котлы выпускают с термостатами (терморегуляторами), суточными и недельными программаторами. Терморегулятор отключает котел при достижении заданной температуры, потом прибор включается автоматически. Пока хозяева в отъезде, они могут положиться на регулятор с 7-дневным периодом работы. Суточный прибор снимает потребность в постоянном контроле за котлом.

Недельный программатор для газовых котлов Computherm Q7, на котором можно выбирать порог чувствительности, задавать параметры перехода между отоплением и охлаждением и блокировать кнопки

Давление налаживают на автоблоке. К примеру, возьмем Eurosit 630. Агрегат поддерживает температуру воды в отопительном контуре и останавливает подачу газа в опасной ситуации. На Eurosit 630 есть ручка, которая крутится и имеет 7 режимов пламени, — наведите ее на положение «1», снимите крышку и прикрутите винт слева под рукояткой. Крутите по часовой — подача газа будет меньше и плавнее, автоматика заработает лучше.

Настройте также максимальный режим. Наведите ручку на «7» и прикрутите винт на дне агрегата, теперь уже против часовой стрелки. От уменьшения уровня пламени снизится давление газа и эффективность горелки котла на той же настройке мощности.

Определите сначала нужные стороны на автоблоке. Поверхность с рукояткой считайте боковой. Агрегат устанавливают по-разному: иногда эта сторона сбоку, иногда сверху. Не перепутайте нужные винты (позолоченные) с креплениями.

Давление нужно снизить в таких случаях:

  • пламя гаснет вскоре после загорания;2
  • при зажигании ;
  • пламя выходит за отведенные ему пределы;
  • красный или красно-оранжевый цвет огня.

Давление обычно повышается зимой: газораспределительные компании поднимают значение с 200 до 280 мм водяного столба. Установите регулятор давления или уменьшите подачу через опуск.

Подготовка котла к работе

Устройство регулируют после установки, зажигания и длительного простоя. После монтажа проверяют все датчики и предохранители, работоспособность узлов.

Подключение и первую настройку газового котла должны выполнять сотрудники компании, с которой был подписан договор на ТО: они обязаны проверить все ключевые показатели и датчики, испытать прибор в действии и провести инструктаж

При запуске котла необходимо проделать пять шагов:

  1. Прогрейте устройство.
  2. Полностью откройте .
  3. Отрегулируйте пламя на всю мощность, до голубого и желтого сегментов.
  4. Прикрывайте вентиль на опуске до удаления желтой части огня.
  5. Проверьте режимы работы и автоматику, которая отвечает за безопасность.

Это же проделывают после установки.

Котлы нуждаются в регулярной очистке. После перерыва в работе устройства дымоход заполняют насекомые и пауки. Осмотрите трубу и вентилятор, уберите мелкую живность. Устраните налет из продуктов горения и льда. Очистите от сажи камеру сгорания. В загрязненном состоянии она вызывает проблемы с зажиганием.

По этой же причине стоит удалить грязь из изолятора, где находится провод, который идет в камеру сгорания. Очистите элемент мягкой тканью. Большое количество грязи убирайте растворителем. Подсушите изолятор, прежде чем возобновить работу котла.

Вовремя удаляйте . Если котел плохо греет воду, то промойте также отопительный контур. Залейте горячей воды и добавьте средство для устранения минеральных отложений. Проверьте работу датчика протока, и если с ним все в порядке — пользуйтесь котлом.

Как отрегулировать тягу в котле?

Со временем ослабевает тяга, поэтому проверьте ее в устройстве и дымоходе. Взгляните в смотровое окно. Прочистите отводящие пути от сажи. Тягу ухудшает плохая погода: газы не всегда выходят полностью, а приходящий воздух может нарушать работу горелки. Осмотрите строение дымохода, сравните его с требованиями по СНиП 2.04.05-91.

Дефлектор улучшает тягу в дымоходе, так как создает эффект падения давления, а кроме него, используют также дымовые вентиляторы и дымоходные флюгеры

Регулятор тяги (шибер) устанавливают при избыточной тяге. В связи с этим появляется противоположная проблема. Дымоход чрезмерно остывает и постепенно покрывается конденсатом изнутри. Труба забивается от скопления сажи и льда. Если забыть покрутить шибер хотя бы раз в 2—3 дня, потом этот прибор портится, смена положений открыто/закрыто становится невозможной.

Подбирайте регулятор тяги по принципу: больше длина или высота дымохода — меньше диаметр шибера по сравнению с этим же показателем трубы. Тогда дымоход прослужит дольше.

Есть также регуляторы горения, которые иногда называют механическими регуляторами тяги и мех. терморегуляторами. Приборы этого типа чаще устанавливают на твердотопливных устройствах, но на газовых их используют тоже — водяной термостат — на нем нет цепочки. Агрегаты для газовых котлов не влияют на регулирование тяги в дымоходе.

Настройка регулятора горения для газового котла выглядит так:

  1. Перед установкой слейте воду из котла, и если систему отопления невозможно изолировать кранами, то удалите весь теплоноситель.
  2. Уберите заглушку и вкрутите вместо нее регулятор.
  3. Потом заполните систему теплоносителем и разожгите горелки.
  4. Прокрутите рукоятку до нужного положения по температуре.

Ориентируйтесь на отметки на маховике, если точная температура на регуляторе не отображается. Летом ставьте ровно посередине промежутка между низким и средним значениями. Зимой — между средним и высоким.

Шибер с задвижкой: такие регуляторы тяги используют наряду с приборами с внутренней заслонкой, которую можно крутить внешней ручкой

Прежде чем остановиться на каком-то оптимальном значении, проверьте все режимы температуры.

Настройка зажигательного устройства

Подготовьте плоскогубцы, мультиметр, отвертки, рожковые ключи и спирт. Аккуратно снимите клеммы, замкните между собой и подожмите плоскогубцами. Запустите пилотную горелку. Учтите его и проверьте сопротивление мультиметром. Если значение не 1—2 Ома, замените измеритель тяги на новый. Если в пределах нормы — прочистите датчик ваткой, смоченной в спирте. Установите обратно и проверьте, заработало ли зажигательное устройство.

Иногда проблема остается. В таком случае осмотрите прерыватель термопары (тягопрерыватель): снимите клеммы и определите сопротивление. Если значение не соответствует 3 Омам, воспользуйтесь рожковыми ключами.

Инструментом № 9 уберите гайку, которая соединяет прерыватель и термопару. Потом ключом № 12 открутите тягопрерыватель на полоборота. Затем возьмите вставку с контактами и снимите прерыватель. Соедините ключом № 9 электромагнитный клапан и термопару. Проверьте зажигание. Если не включается — проблема в термопаре.

Уберите крепеж между термопарой и пилотной горелкой ключом № 10 и проверьте электродвижущую силу термоэлемента вольтметром. В случае с работающей термопарой просто протрите спиртом ее соединение с прерывателем и соберите все обратно.

Переносной мультиметр выполняет функции тестера, омметра, амперметра и вольтметра: устройства бывают цифровыми, аналоговыми, иногда в виде измерительных клещей

Подача газа к котлу происходит так:

  1. Газ попадает в сетчатый фильтр, который очищает топливо от твердых микрочастиц.
  2. Топливо идет дальше при открытом вентиле и электромагнитном клапане.
  3. Газ поступает на пилотную горелку.
  4. Зажженный запальник дает пламя на основную горелку и на термопару.

Контрольная система пускает пламя на основную горелку, если огонь присутствует также на пилотной. Прекращает подачу топлива при отсутствии или сильном снижении тяги в дымоходе. Автоматическая схема регулирования дает максимальную безопасность при подаче газа к котлам и другим подобным устройствам.

Регулировка мощности газового котла

В этом случае стоит задача снизить или увеличить показатель. Непрямой способ регулировки подразумевает уменьшение подачи через краны: который стоит после подводки к котлу и тот, что на опуске. Диапазон регулирования уменьшится, поэтому лучше предпочесть прямые методы.

Чтобы увеличить мощность, выберите вариант:

  1. Настройте горелку на желаемый показатель — актуально для модулирующих агрегатов.
  2. Купите более производительную горелку.
  3. Замените форсунки на большие по сечению. Помните, с ростом теплоотдачи у котла вырастет потребление газа, риск поломки раньше срока, снизится КПД.

В идеале настройку по увеличению мощности лучше доверить специалисту по котлам. Рост мощности по указанным вариантам достигает 15 %. Если этого недостаточно, используйте дополнительные устройства для обогрева комнат. Не забывайте очищать котел, чтобы сохранять уровень мощности.

Трубки с микрофакелами для атмосферной горелки — такой прибор работает практически бесшумно, но отличается низкой мощностью, высушивает воздух в помещении и зависит от большого количества внешних факторов

Иногда приходится уменьшать мощность. Сначала ее регулируют через меню: параметрами температуры теплообменника и времени антициклирования. Затем настраивают . При потребности меняют горелку на модуляционную.

Причины для изменения мощности котла:

  1. Увеличение: нужно переоборудовать прибор одновременно с наращиванием мощности, подключить бойлер косвенного нагрева, увеличилась площадь для отопления.
  2. Снижение: отказ от одной из функций (отопления или горячего водоснабжения), части функционала (обогрева отдельных комнат, теплого пола), снижение производительности котла.

При избыточном потреблении топлива стоит осмотреть вторичный теплообменник и удалить остатки солей вручную или химическим составом. На загрязнение укажет характерное бульканье при работе котла.

Расход повышается из-за низкой удельной теплоты сгорания (теплотворности) газа. Норма составляет не меньше 7 600 ккал м³. У плохо осушенного топлива теплотворность опускается почти в два раза.

Настройте также . Их регулируют, зависимо от строения:

  • у одностадийных есть только положения «включен» и «выключен»;
  • двухстадийные клапаны оборудуют 1 входом и 2 выходами, а открываются они на промежуточном положении;
  • трехстадийные есть у котлов, у которых два уровня мощности;
  • с помощью моделирующих клапанов мощность удается регулировать более плавно, у них много режимов пламени, помимо положений «включено» и «выключено».

Смотрите на цвет пламени. Если имеет заметную желтую часть, прикрутите вентиль на опуске, чтобы снизить подачу топлива.

Многофункциональный газовый клапан 845 SIGMA с модуляцией мощности, регулятором выходного давления и блоком управления подачей топлива — рассчитанный на разные виды резьбы и фланцы

Еще раз задайте рабочую температуру отопления на терморегуляторе. Принцип его действия заключается в том, что в работу включается стержень. С падением температуры элемент уменьшается и открывает подачу топлива. Рост температуры приводит к увеличению стержня, отчего газ начинает поступать в меньшем объеме.

При нехватке воздуха осмотрите заслонку, наддув и регулятор температуры. Хлопок при зажигании основной горелки появляется из-за забитых путей подачи воздуха. Уберите пыль из них и входных отверстий.

Выводы и полезное видео по теме

Регулировка мощности газового котла:

Настройка комнатного терморегулятора — модели lt08:

Подробная настройка в меню котла Bosch Gaz 6000 W:

Теперь вы знаете, в каком регулировании нуждаются котлы. Понимаете, как можно повлиять на расход газа. Можете выполнить регулировку мощности газового котла и его узлов, не вызывая мастера. Ухаживайте за устройством, чтобы использовать полученные знания только для настроек, а не для починки. Делайте только то, что вам под силу. При потребности обратитесь к специалисту по котлам. Звоните на экстренные номера, если есть опасность.

Пишите комментарии по поводу настройки газовых котлов. Напишите о критериях, по которым выбирали свое устройство, о качестве работы прибора. Расскажите, как настраиваете свой котел и насколько часто это делаете. Форма для обратной связи расположена ниже.

Настройка горелок газовых котлов без вызова специалиста

Принцип работы газового котла базируется на нагревании циркулирующей жидкости, проходящей по теплообменнику. Тепло образуется в камере сгорания как результат работы газовой горелки обогревательного устройства. Именно от качественной настройки, а затем работы горелки зависит производительная мощность котла, его КПД. Рассмотрим основные аспекты выбора и настройки горелки газового котла подробнее.

Как выбрать?

На что нужно обратить внимание при выборе горелочного устройства для котла:

— производительная мощность
— уровень шума при работе (касается наддувных моделей)
— тип обогревательного оборудования, для которого приобретается горелка
— разновидность топлива

— плюсы и минусы данного устройства
— предусмотреть возможные сбои в работе местной линии газоснабжения.

Учитывая эти факторы, можно выбрать наиболее подходящее горелочное устройство для котла так, чтобы он работал максимально эффективно, не обременяя частым профилактическим обслуживанием.

 

Камера сгорания отопительного оборудования

Газовые котлы отличаются прежде всего конструкцией камеры сгорания. Она бывает двух типов:

  • открытая;
  • закрытая.

Открытая камера представляет собой достаточно простое устройство сгорания. Выглядит так: над горелкой располагается теплообменник в виде змеевика из тонких медных трубок. Благодаря открытой конструкции воздух, необходимый для реакции горения, поступает к месту воспламенения газа из окружающей среды.

Как правило, хватает воздуха из помещения (при условии организации хорошей вентиляции). Но есть настенные модели с забором воздуха извне, для чего монтируется специальное отверстие в стене. Открытые камеры сгорания требуют обязательного наличия дымохода.

Чаще всего устанавливается для моделей напольных газовых котлов, а также использовалась для комплектации котла старого образца (при этом розжиг производила запальная горелка).

Схемы устройства камеры згорания

Закрытая камера сгорания отличается конструкцией нагревательного блока. Теплообменник расположен над горелкой. Корпус блока закрыт, воздух для горения нагнетается вентилятором, установленным в камере. Через двойные стенки камеры пропускается теплоноситель, нагревая его, увеличивая КПД котла. Газ сжигается почти полностью, продукты горения отводятся каоксиальной трубой под давлением воздуха.

 

Виды горелок

По своим конструктивным, функциональным отличиям горелочные устройства делятся:

По назначению:

  • для промышленного оборудования большой мощности
  • для оборудования бытового назначения.

По используемому типу топлива:

  • устройства для природного газа;
  • устройства для сжиженного газа;
  • универсальные устройства.

По регулировке пламени:

  • одноступенчатые – способны работать на включение/выключение;
  • двухступенчатые (как разновидность – модели с плавной модуляцией) – работают на полную мощность, при достижении нужной температуры пламя уменьшается вполовину;
  • модулируемые – котлы с модулируемой горелкой отличаются плавной регулировкой силы пламени.

По принципу работы:

  1. инжекционные/атмосферные. Работают при подаче воздуха из помещения. Устанавливаются соответственно в открытых камерах сгорания. Использовались также и для моделей котла старого образца.
  2. вентиляторные/наддувные. Работают в камерах сгорания изолированного типа. Воздух для горения подается вентилятором. По своим конструктивным особенностям делятся на:
    — вихревые (отверстия форсунок круглой формы)
    — прямоточные (форма узкой щели круглого/прямоугольного сечения).
  3. диффузно-кенетические. Воздух поступает двумя одновременно: один смешивается с газовым топливом, второй добавляется непосредственно в камере при горении.

 

Устройство газовой горелки для котла

Атмосферные и вентиляторные горелочные устройства отличаются своим строением. Это обусловлено разным способом подачи кислорода в камеру при сжигании топлива.

Устройство атмосферной горелки.

Воздух поступает в камеру горения непосредственно из помещения. Внутри канала горелочного устройства расположены сопла. Газ подается в сопла, смешиваясь с воздухом, который также имеет сюда доступ. На небольшом расстоянии от сопел располагаются выходные прорези, через которые подается готовая топливная смесь. Между соплами и выходными отверстиями создается область пониженного давления, что способствует постоянному нагнетанию воздуха для смешивания.

В камере сгорания постоянно работает запальная горелка для розжига основного устройства.

Устройство вентиляторной горелки.

Блок устройства состоит из:

  1. двигателя;
  2. вентилятора;
  3. автоматического блока управления;
  4. редуктора;
  5. реле давления воздуха;
  6. смесителя топливной массы.

Воздух нагнетается извне вентилятором, подается в камеру сгорания для образования топливного вещества. Соотношение воздуха и газа возможно регулировать с помощью заслонки и вентилятора.

 

Пламя горелки

Одним из индикаторов правильной работы горелки является цвет пламени. Для газового оборудования характерно ровное голубоватое пламя без примесей других цветов. Наличие вкраплений желтого, красного говорит о том, что горелка работает плохо, это снижает эффективность обогревательного оборудования.

В первую очередь, это касается инжекционных горелочных устройств, но и для вентиляторных иногда характерно тоже. Пламени элементарно может не хватать кислорода. Также вместе с воздухом может попадать пыль, другой мелкий мусор, который будет засорять устройство, снижая КПД котла. Все это непосредственно сказывается на пламени. Если оно гудит, горелка работает громко, огонь изменил цвет – необходимо настроить правильную работу устройства.

 

В каких случаях требуется регулировка пламени горелки?

Атмосферная газовая горелка для обогревательного оборудования чаще выходит из строя. Ею оснащаются модели как настенного, так и напольного котла.  Инжекционная горелка напольного оборудования снижает свою эффективность по разным причинам:

  • Мощность горелки завышена. Случается, когда для маленького обогревательного оборудования приобретается горелка высокой мощности. При этом для горения недостаточно места, приток воздуха для такой мощности слабый, что приводит к переходу пламени от голубого к желтому, закопчению камеры сгорания, дымохода.
  • Если дымоход плохо прочищен, ухудшается тяга котла. При этом отработанные продукты горения слабо выводятся, приток воздуха малый. Это ухудшает горение, пламя желтеет.
  • Дефект самой горелки не дает возможность правильно настроить полное сгорание топлива.
  • Из-за перепадов давления в системе газоснабжения хорошо отрегулированное оборудование может выбрасывать большое количество неотработанного газа в дымоходную трубу. Частично он оседает копотью, сажей. Большой слой сажи снижает тягу, увеличивает расход топлива.
  • Запуск отопительного оборудования после ремонта.
  • Наличие посторонних шумов при работе котла, газовой горелки.
  • Смена вида топлива.

Возможно Вам будет интересно узнать о принципе работы двухконтурного газового котла >>>

Настройка оборудования

Напольные газовые котлы с атмосферной горелкой можно настроить самостоятельно. Наддувные же системы регулируются автоматическим блоком управления, не требуют дополнительной настройки.

Схема действий при настройке одноступенчатого оборудования:

  1. Установить устройство на котле.
  2. Подсоединить к газопроводному патрубку.
  3. Проверить на абсолютную герметичность.
  4. Снять корпус горелочного оборудования.
  5. С помощью манометра сделать замеры давления газа на входе.
  6. Подсоединить к электричеству. Проследить, чтобы перемычки, фазы были подключены верно.
  7. В дымоходной трубе разместить газоанализатор.
  8. Запустить устройство.
  9. С помощью манометра снять показания давления на выходе из горелочного блока. Показания давления должны соответствовать параметрам, обозначенным в техпаспорте.
  10. Приток воздуха отрегулировать воздушной заслонкой.
  11. Показания газоанализатора также должны соответствовать всем нормам установки газового оборудования.

Настройка газового оборудования должна проводиться специалистами. Самые простые котлы открытого типа возможно настроить самостоятельно при наличии определенных навыков, знаний устройства горелочного блока. От качества работы горелки зависит эффективность котла, уровень его КПД, расход топлива. Поверхностно определить, что оборудование работает неисправно можно по изменившемуся пламени горелки.

Руководство по воде — Контроль продувки котла

Продувка котла — это удаление воды из котла. Его цель — контролировать параметры котловой воды в установленных пределах для минимизации накипи, коррозии, уноса и других специфических проблем. Продувка также используется для удаления взвешенных твердых частиц, присутствующих в системе. Эти твердые частицы вызваны загрязнением питательной воды, осадками при внутренней химической обработке или превышением пределов растворимости других растворимых солей.

Фактически, часть котловой воды удаляется (продувка) и заменяется питательной водой.Процент продувки котла:

количество продувочной воды

X 100 = продувка%

количество питательной воды

Продувка может варьироваться от менее 1% при наличии питательной воды исключительно высокого качества до более 20% в критической системе с некачественной питательной водой. На установках с подпиточной водой, умягченной цеолитом натрия, процентное содержание обычно определяется с помощью теста на содержание хлоридов.В котлах высокого давления растворимый инертный материал может быть добавлен в котловую воду в качестве индикатора для определения процента продувки. Формула для расчета процента продувки с использованием хлорида и ее вывод показаны в Таблице 13-1.

Таблица 13-1. Алгебраическое доказательство формулы продувки.

Пусть

x = Количество питательной воды

y = количество продувочной воды

a = концентрация хлоридов в питательной воде

b = концентрация хлоридов в котловой воде

k = процент продувки

По определению процентной продувки

Поскольку общее количество хлоридов, поступающих в котел, должно равняться общему количеству хлоридов на выходе из котла,

xa = xb

Умножение обеих сторон на 100 дает:
xb

дает:

Потому что по определению 100 y

= k , затем k =

100 а или
x б

Cl в питательной воде X 100 = продувка%
Cl в котловой воде

ПРЕДЕЛЬНЫЕ ФАКТОРЫ, ВЛИЯЮЩИЕ НА УДАР

Основной целью продувки является поддержание содержания твердых частиц в котловой воде в определенных пределах.Это может потребоваться по определенным причинам, например, из-за загрязнения котловой воды. В этом случае требуется высокая скорость продувки для максимально быстрого удаления загрязнений.

Скорость продувки, необходимая для конкретного котла, зависит от конструкции котла, условий эксплуатации и уровней загрязнения питательной воды. Во многих системах скорость продувки определяется по общему количеству растворенных твердых частиц. В других системах уровень щелочности, кремнезема или взвешенных твердых частиц определяет требуемую скорость продувки.

В течение многих лет нормы продувки котлов устанавливались для ограничения загрязнения котловой воды до уровней, установленных Американской ассоциацией производителей котлов (ABMA) в ее Стандартной гарантии чистоты пара. Эти стандарты использовались, хотя они носили общий характер и не применялись в каждом отдельном случае. Сегодня для определения скорости продувки часто используется ASME «Консенсус по эксплуатационным методам контроля питательной и котловой воды в современных промышленных котлах», представленный в таблице 13-2.

Этот консенсус применим как к контролю осаждения, так и к качеству пара. Во всех случаях должна использоваться хорошая инженерная оценка. Поскольку каждая конкретная система котла отличается, пределы регулирования также могут быть разными. Существует множество механических факторов, которые могут повлиять на пределы контроля продувки, включая конструкцию котла, мощность, уровень воды, характеристики нагрузки и тип топлива.

В некоторых случаях пределы контроля продувки для конкретной системы могут определяться опытом эксплуатации, осмотрами оборудования или испытаниями на чистоту пара, а не критериями качества воды ASME или ABMA.В некоторых случаях возможно превышение стандартных пределов общего содержания твердых веществ (или проводимости), диоксида кремния или щелочности. Пеногасители были успешно применены для обеспечения более высоких, чем обычно, пределов твердых веществ, как показано на Рисунке 13-1. Хелатирующие и эффективные программы диспергирования также могут позволить превышение определенных критериев для воды.

Максимально возможные уровни для каждой конкретной системы можно определить только исходя из опыта. Влияние характеристик воды на качество пара можно проверить с помощью испытания на чистоту пара.Однако влияние на внутренние условия должно определяться по результатам, наблюдаемым во время ремонта конкретного агрегата.

Для некоторых котлов может потребоваться более низкий уровень продувки, чем обычно, из-за необычной конструкции котла или рабочих критериев, или из-за потребности в исключительно чистой питательной воде. На некоторых предприятиях пределы продувки котла ниже, чем необходимо, из-за консервативной философии эксплуатации.

РУЧНАЯ ПРОДУВКА

Периодическая ручная продувка предназначена для удаления взвешенных твердых частиц, включая любой осадок, образующийся в котловой воде.Ручной отвод продувки обычно расположен в нижней части самого нижнего корпуса котла, где образующийся ил имеет тенденцию оседать.

Правильно контролируемая периодическая ручная продувка удаляет взвешенные твердые частицы, обеспечивая удовлетворительную работу котла. Большинство промышленных котельных систем содержат как ручную периодическую продувку, так и систему непрерывной продувки. На практике клапаны ручной продувки периодически открываются в соответствии с рабочим графиком. Чтобы оптимизировать удаление взвешенных твердых частиц и экономичность, частые короткие удары предпочтительнее, чем нечастые длительные удары.В системах, использующих питательную воду для котлов исключительно высокого качества, образуется очень мало шлама. Ручная продувка в этих системах может происходить реже, чем в системах, использующих питательную воду, загрязненную жесткостью или железом. Консультант по водоподготовке может порекомендовать соответствующий график ручной продувки.

Клапаны продувки на коллекторах водяных стенок котла должны эксплуатироваться в строгом соответствии с рекомендациями производителя. Обычно из-за возможных проблем с циркуляцией коллекторы водяных стенок не сдуваются во время работы агрегата.Продувка обычно происходит, когда агрегат выводится из эксплуатации или ставится на борт. В периоды ручной продувки следует внимательно следить за уровнем воды.

НЕПРЕРЫВНЫЙ ПРОДУВ

Непрерывная продувка, как подразумевает этот термин, — это непрерывное удаление воды из котла. Он предлагает множество преимуществ, которые не дает использование только нижней продувки. Например, воду можно удалить из того места, где в котловой воде больше всего растворенных твердых веществ. В результате можно постоянно поддерживать надлежащее качество котловой воды.Кроме того, можно удалить максимум растворенных твердых частиц с минимальными потерями воды и тепла из котла.

Еще одним важным преимуществом непрерывной продувки является рекуперация большого количества теплоты с помощью продувочных резервуаров-испарителей и теплообменников. Настройки регулирующего клапана необходимо регулярно регулировать для увеличения или уменьшения продувки в соответствии с результатами контрольных испытаний и для постоянного контроля концентрации воды в котле.

Когда используется непрерывная продувка, ручная продувка обычно ограничивается примерно одним коротким продуванием за смену для удаления взвешенных твердых частиц, которые могли осесть рядом с штуцером ручной продувки.

ЭНЕРГОСБЕРЕЖЕНИЕ

Несколько факторов могут способствовать снижению потребления энергии на водяной стороне парогенератора.

Уменьшение масштаба

Теплопередача затрудняется образованием накипи на внутренних поверхностях. Уменьшение накипи за счет надлежащей предварительной обработки и внутренней химической обработки приводит к более чистым внутренним поверхностям для более эффективной передачи тепла и, как следствие, к экономии энергии.

Редукция продувки котловой воды

Уменьшение продувки котловой воды может привести к значительной экономии топлива и воды.

В некоторых установках содержание твердых частиц в котловой воде ниже максимально допустимого. За счет улучшенных методов управления, включая автоматическое оборудование для продувки котла, продувка котловой воды может быть уменьшена для поддержания содержания твердых частиц на уровне, близком к максимально допустимому, но не выше.

Требуемая скорость продувки зависит от характеристик питательной воды, нагрузки на котел и механических ограничений. Изменения этих факторов изменят величину требуемой продувки, вызывая необходимость частой регулировки ручной системы непрерывной продувки.Даже частая ручная регулировка может оказаться недостаточной для соответствия изменениям в условиях эксплуатации. Таблица 13-3 иллюстрирует экономию, возможную при автоматическом управлении продувкой котла.

Скорость продувки часто является наиболее плохо контролируемой переменной программы внутренней очистки. Пределы проводимости для продувки котла с ручным управлением обычно довольно широки, нижние пределы ниже 70% от максимально безопасного значения. Это часто необходимо при ручном управлении, потому что нельзя безопасно поддерживать узкий диапазон.

В установках с подпиточной водой, умягченной цеолитом натрия, системы автоматического управления могут поддерживать проводимость котловой воды в пределах 5% от заданного значения. Документы по эксплуатации завода подтверждают, что при ручной настройке непрерывная продувка находится в пределах этого 5% диапазона не более 20% времени. В целом, средняя установка экономит примерно 20% продувки котла при переходе с регулируемой вручную непрерывной продувки на автоматическую непрерывную продувку. Это снижение достигается без риска образования накипи или уноса из-за высокого содержания твердых частиц в котловой воде.

В некоторых случаях повышение качества питательной воды позволяет значительно снизить скорость продувки при существующем максимально допустимом уровне твердых частиц. Это может быть достигнуто за счет повторного использования дополнительного конденсата в качестве питательной воды или за счет улучшения методов внешней очистки для повышения качества подпиточной воды.

Любое сокращение продувки способствует экономии воды и топлива, как показано в Таблице 13-4. Когда однородные концентрации в котловой воде поддерживаются на уровне или около максимально допустимых уровней, экономия достигается в нескольких областях, включая потребность в подпиточной воде, стоимость технологической воды, стоимость очистки сточных вод продувочной воды, потребление топлива и требования к химической обработке.Эта экономия заметно больше там, где качество подпиточной воды низкое, где оборудование для рекуперации тепла отсутствует или неэффективно и где условия эксплуатации часто меняются.

Рекуперация тепла

Рекуперация тепла часто используется для снижения потерь энергии в результате продувки котловой воды. На Рис. 13-2 показана типичная система рекуперации тепла после продувки котла с использованием расширительного бака и теплообменника.

Установка оборудования для рекуперации тепла имеет смысл только тогда, когда энергия из расширительного бака или продувочной воды может быть рекуперирована и использована.Когда уже имеется избыточная подача отработанного пара или пара низкого давления, нет оснований для установки оборудования для рекуперации тепла.

Если экономически оправдано, продувка котловой воды может быть использована для нагрева технологических потоков. В большинстве случаев в системах рекуперации тепла продувкой котловой воды для деаэрации используется пар мгновенного испарения из расширительного бака. Сброс из расширительного бака проходит через теплообменник и используется для предварительного нагрева подпиточной воды котла. При использовании эффективного теплообменника единственные потери тепла — это конечная разница температур между поступающей подпиточной водой и продувочной водой в канализацию.Эта разница обычно составляет 10-20 ° F (5-10 ° C).

В Таблице 13-5 представлен типичный расчет для определения экономии топлива, достигнутой в системе рекуперации тепла с использованием расширительного бака низкого давления и теплообменника. Рисунок 13-3 можно использовать для определения количества пара мгновенного испарения, извлекаемого из расширительного резервуара.

Таблица 13-5. Пример возможной экономии топлива за счет использования рекуперации тепла при непрерывной продувке.

900 11% мгновенного пара =
Испарение (пар) 5 000 000 фунтов
Продувка: +263,000 фунтов / день (5.0%)
Питательная вода (пар + продувка) 5 263 000 фунтов
Давление котла: 600 фунтов на квадратный дюйм
Температура питательной воды (используется свежий пар): 240 ° F
Температура подпиточной воды: 60 ° F
Объем топлива (масла) 145 000 британских тепловых единиц / галлон
(при КПД котла 75%) Х 0.75
Доступное тепло топлива: 108,750 британских тепловых единиц / галлон
Используя расширительный бак при давлении 5 фунтов на кв. Дюйм, количество доступного пара можно рассчитать по формуле:
H b — H f

Х 100

В т
где
H b : тепло жидкости при давлении в котле 475 британских тепловых единиц / фунт
H f : тепло жидкости при давлении вспышки -196 британских тепловых единиц / фунт

В т : скрытая теплота парообразования при давлении вспышки

960

Х 100

БТЕ / фунт

% мгновенного пара =

29.1

(продувка)

263 000 фунтов

(@ 29,1% мгновенного пара)

Х.291
Мгновенный пар доступен при 5 фунтах / кв. Дюйм изб .: 76 500 фунтов
Общее количество тепла мгновенного пара при 5 фунтах на кв. Дюйм: 1,156 британских тепловых единиц / фунт

(Нагрев подпиточной воды при 60 ° F)

-28 британских тепловых единиц / фунт

Теплота мгновенного пара

1,128 британских тепловых единиц / фунт

(имеется мгновенный пар)

х 76,500 фунтов
Экономия тепла мгновенным паром 86 292 000 британских тепловых единиц
Теплота жидкости при фунтах / кв. Дюйм ман. 196 британских тепловых единиц / фунт
Тепло жидкости при 80 ° F — 48 британских тепловых единиц / фунт
Рекуперация тепла 148 британских тепловых единиц / фунт

(продувка)

263 000 фунтов

(продувка не прошита)

Х 0.709

(рекуперация тепла)

Х 148 британских тепловых единиц / фунт
Экономия тепла от теплообменника: 27 597 000 британских тепловых единиц

(экономия тепла на мгновенном паре)

86 292 000 британских тепловых единиц
Общая экономия тепла: 113,889,000 британских тепловых единиц

(доступное тепло топлива)

108,750 британских тепловых единиц / галлон
Экономия топлива: 1.047 галлонов

(по цене 0,80 долл. США за галлон)

х 0,80
Ежедневная экономия $ 837,60
х 365 дн / год
Годовая экономия 305 724 долл. США

ДЕЙСТВУЮЩЕЕ ОБОРУДОВАНИЕ

Ручная продувка

Оборудование для ручной продувкой, считается частью котла и устанавливается вместе с блоком, как правило, состоит из взлетной линии, быстрого открывания клапана и запорный клапан.Отводная линия всегда находится в самой нижней части самого нижнего корпуса котла, где должна образовываться наибольшая концентрация взвешенных веществ.

Некоторые типы водотрубных котлов имеют более одного штуцера для продувки. Они допускают продувку с обоих концов грязевого барабана. На коллекторах установлены продувочные патрубки для слива и удаления взвешенных твердых частиц, которые могут накапливаться и ограничивать циркуляцию. Производитель котла обычно устанавливает определенные ограничения на продувку водосточных коллекторов.Эти ограничения следует строго соблюдать.

Непрерывная продувка

Обычно оборудование непрерывной продувки устанавливается производителем котла. Точное расположение отводной линии непрерывной продувки зависит, прежде всего, от схемы циркуляции воды. Его положение должно обеспечивать отвод самой концентрированной воды. Трубопровод также должен быть расположен так, чтобы питательная вода котла или химический раствор не попадали прямо в него. Размер линий и регулирующих клапанов зависит от количества требуемой продувки.

На рис. 13-4 показано типичное место в паровом барабане для соединения непрерывной продувки. В большинстве единиц линия взлета находится на несколько дюймов ниже минимального уровня воды. В других конструкциях отбор осуществляется близко к низу парового барабана.

Автоматическая продувка

Автоматическая система управления продувкой непрерывно контролирует воду в котле, регулирует скорость продувки и поддерживает удельную проводимость воды в котле на желаемом уровне.Основные компоненты автоматической системы управления продувкой включают измерительный узел, центр управления и регулирующий клапан продувки. Типовая модулирующая система автоматического управления продувкой котла показана на Рисунке 13-5.

КОНТРОЛЬ ПРОДУВКИ

Если необходимо поддерживать экономичную скорость продувки, необходимо часто проводить соответствующие испытания котловой воды для проверки концентраций в котловой воде. При использовании подпитки, размягченной цеолитом натрия, необходимость продувки котла обычно определяется путем измерения электропроводности котловой воды, что позволяет косвенно измерить содержание растворенных твердых частиц в котловой воде.

Другие компоненты котловой воды, такие как хлориды, натрий и диоксид кремния, также используются в качестве средства контроля продувки. Испытание на щелочность использовалось в качестве дополнительного контроля продувки для систем, в которых щелочность котловой воды может быть особенно высокой.

Всего твердых

С технической точки зрения гравиметрические измерения представляют собой удовлетворительный способ определения общего содержания твердых частиц в котловой воде; однако этот метод используется редко, поскольку анализ требует много времени и слишком сложен для повседневного контроля.Кроме того, сравнение общего содержания твердых частиц в котловой воде с общим содержанием твердых частиц в питательной воде не обязательно обеспечивает точное измерение концентрации питательной воды в котле по следующим причинам:

  • образцы котловой воды могут не показывать типичное содержание взвешенных твердых частиц из-за осаждения или образования отложений
  • Внутренняя очистка
  • позволяет добавлять в котловую воду различные твердые вещества
  • разложение бикарбонатов и карбонатов может привести к выделению газообразного диоксида углерода и снижению общего содержания твердых веществ в котловой воде

Растворенные твердые вещества

Удельная проводимость котловой воды является косвенным показателем содержания растворенных твердых частиц и обычно может использоваться для контроля продувки.Однако определение скорости продувки на основе относительной удельной проводимости питательной воды и котловой воды не дает прямого измерения концентраций питательной воды в котле. На удельную проводимость влияют потери углекислого газа с паром и введение твердых веществ в качестве внутренней химической обработки. Более того, удельную проводимость питательной воды (разбавленный раствор) и котловой воды (концентрированный раствор) нельзя сравнивать напрямую.

Удельная проводимость образца обусловлена ​​ионизацией различных присутствующих солей.В разбавленных растворах растворенные соли почти полностью ионизируются, поэтому удельная проводимость увеличивается пропорционально концентрации растворенной соли. В концентрированных растворах ионизация подавляется, и отношение удельной проводимости к растворенным солям уменьшается. Взаимосвязь между удельной проводимостью и растворенными твердыми частицами наиболее точно определяется путем измерения обоих параметров и установления коэффициента корреляции для каждой системы. Однако фактор можно оценить.Содержание твердых веществ в очень разбавленных растворах, таких как конденсат, можно рассчитать с коэффициентом 0,5-0,6 частей на миллион растворенных твердых веществ на микросименс (микромо) удельной проводимости. Для более концентрированного раствора, такого как котловая вода, коэффициент может варьироваться от 0,55 до 0,90 частей на миллион растворенных твердых веществ на микросименс удельной проводимости. Ион гидроксида, присутствующий во многих котловых водах, обладает высокой проводимостью по сравнению с другими ионами. Поэтому обычно перед измерением проводимости нейтрализуют щелочь органической кислотой.Хотя галловая кислота обычно используется для нейтрализации щелочности фенолфталеина в образцах с высокой удельной проводимостью, борную кислоту можно использовать в образцах с низкой и высокой удельной проводимостью с минимальным влиянием на коэффициент корреляции между растворенными твердыми веществами и удельной проводимостью.

Кремнезем, щелочность, натрий, литий и молибдат

При определенных обстоятельствах измерение содержания кремнезема и щелочности котловой воды может использоваться для контроля продувки.Натрий, литий и молибдат использовались для точного расчета скорости продувки в установках высокого давления, где деминерализованная вода используется в качестве питательной воды.

Хлорид

Если концентрация хлоридов в питательной воде достаточно высока для точного измерения, ее можно использовать для контроля продувки и расчета скорости продувки. Поскольку хлориды не осаждаются в котловой воде, относительные концентрации хлоридов в питательной и котловой воде обеспечивают точную основу для расчета скорости продувки.

Тест на содержание хлоридов не подходит для этого расчета, если содержание хлоридов в питательной воде слишком мало для точного определения. Небольшая аналитическая ошибка при определении содержания хлоридов в питательной воде вызовет заметную ошибку при расчете скорости продувки.

Удельный вес

Удельный вес котловой воды пропорционален растворенным твердым веществам. Однако определение растворенных твердых частиц путем измерения удельного веса ареометром настолько неточно, что его нельзя рекомендовать для надлежащего контроля продувки.

Услуги по котлам

SUEZ включают ряд решений, сочетающих химию, оборудование, анализ данных и полевые услуги для решения проблемы производительности котловой воды.

Рисунок 13-1. Влияние концентрации пеногасителя на чистоту пара.

Икс

Рисунок 13-2. Типовая система рекуперации тепла продувкой котла с использованием расширительного бака и теплообменника.

Икс

Таблица 13-2. Предлагаемые пределы качества воды a .

Икс
Рабочее давление барабана b , МПа (psig)

0-2.07

(0–300)

2,08–3,10

(301-450)

3,11–4,14

(451-600)

4,15-5,17

(601-750)

5,18-6,21

(751-900)

6,22-6,89

(901-1000)

6,90-10,34

(1001-1500)

10.35-10,79

(1501-2000)

ПОДАЧА ВОДЫ ч
Растворенный кислород (мг / л O 2 ), измеренный до добавления поглотителя кислорода j <0,040 <0,040 <0,007 <0.007 <0,007 <0,007 <0,007 <0,007
Общее железо (мг / л Fe) 0,100 0,050 0,030 0,025 0,020 0,020 0,010 0,010
Всего меди (мг / л Cu) 0,050 0,025 0,020 0,020 0.015 0,015 0,010 0,010
Общая жесткость (мг / л CaCO 3 ) 0,300 0,300 0.200 0.200 0,100 0,100 — не обнаруживается —
Диапазон pH при 25 ° C 7,5-10,0 7,5-10,0 7,5-10,0 7,5-10,0 7,5-10,0 8.5-9,5 9,0–9,6 9,0–9,6
Средства для защиты системы предварительного котла используйте только летучие щелочные материалы
Нелетучий ТОС
(мг / л C) г г
<1 <1 <0,5 <0,5 <0,5 — как можно ниже, <0,2 -
Маслянистое вещество (мг / л) <1 <1 <0.5 <0,5 <0,5 — как можно ниже, <0,2 -
КОТЕЛЬНАЯ ВОДА
Кремнезем (мг / л SiO 2 ) £ 150 £ 90 £ 40 £ 30 £ 20 £ 8 £ 2 £ 1
Общая щелочность (мг / л CaCO 3 ) <350 d <300 d <250 д <200 д <150 д <100 д

— не обнаруживается e

Щелочность по свободному гидроксиду (мг / л CaCO 3 ) c — не указано —

— не обнаруживается e

Удельная проводимость (мкСм / см) (мкмхо / см при 25 ° C без нейтрализации <3500 f <3000 f <2500 f <2000 f <1500 f <1000 f £ 150 £ 100

a Источник: Комитет по исследованиям пара и воды в теплоэнергетических системах ASME.Тип котла: водотрубный промышленный, повышенный, первичный топливный, барабанный; процентное содержание подпиточной воды: до 100% жаровой воды; условия: включает перегреватель, турбинные приводы или технологические ограничения по чистоте пара; цель по чистоте насыщенного пара.

b При локальных тепловых потоках> 473,2 кВт / м 2 (> 150 000 БТЕ / ч / фут 2 ) используйте значения для следующего более высокого диапазона давления.

c Минимальный уровень щелочности по ОН в котлах ниже 6,21 МПа (900 фунтов на кв. Дюйм) должен указываться индивидуально с учетом растворимости кремнезема и других компонентов внутренней обработки.

d Максимальная общая щелочность при приемлемой чистоте пара. При необходимости измените проводимость как параметр управления продувкой. Если подпитка представляет собой деминерализованную воду при давлении от 4,14 МПа (600 фунтов на кв. Дюйм) до 6,89 МПа (1000 фунтов на кв. Дюйм), щелочность котловой воды должна соответствовать значениям, указанным в таблице, для диапазона 6,90–10,34 МПа (1001–1500 фунтов на кв.

e Относится к свободной щелочности гидроксида натрия или калия. Некоторая небольшая переменная величина общей щелочности будет присутствовать и может быть измерена с предполагаемым конгруэнтным или скоординированным контролем фосфатного pH или обработкой летучими веществами, применяемыми в этих диапазонах высокого давления.

f Максимальные значения часто недостижимы без превышения предложенных максимальных значений щелочности, особенно в котлах ниже 6,21 МПа (900 фунтов на кв. Дюйм) с более чем 20% подпиткой воды, общая щелочность которой составляет> 20% TDS естественным путем или после предварительной обработки известью -сода или натриевой цикл ионообменного умягчения. Фактические допустимые значения проводимости для достижения любой желаемой чистоты пара должны быть установлены для каждого случая путем тщательного измерения чистоты пара. На взаимосвязь между проводимостью и чистотой пара влияет слишком много переменных, чтобы их можно было свести к простому списку табличных значений.

г Нелетучий ТОС — это органический углерод, который не был намеренно добавлен в процессе очистки воды.

h Котлы с давлением ниже 6,21 МПа (900 фунтов на кв. Дюйм) с большими печами, большим пространством для выпуска пара и внутренней обработкой хелантом, полимером и / или пеногасителем иногда могут выдерживать более высокие уровни примесей в питательной воде, чем указанные в таблице, и при этом обеспечивать адекватный контроль отложений и чистота пара. Удаление этих примесей внешней предварительной обработкой всегда является более эффективным решением.альтернативы должны оцениваться с точки зрения практичности и экономии в каждом отдельном случае.

i Значения в таблице предполагают наличие деаэратора.

j Значение не указано, поскольку достижимая чистота пара зависит от многих переменных, включая общую щелочность котловой воды и удельную проводимость, а также конструкцию котла, внутренних устройств парового барабана и рабочих условий (см. Сноску f). Поскольку для котлов этой категории требуется относительно высокая степень чистоты пара, другие рабочие параметры должны быть установлены настолько низкими, насколько это необходимо для достижения такой высокой чистоты для защиты пароперегревателей и турбин и / или предотвращения загрязнения технологического процесса.

Рисунок 13-3. Вспышка пара извлекается из систем непрерывной продувки.

Икс

Эта диаграмма используется для расчета процента котловой воды, сбрасываемой системой непрерывной продувки, которая может быть превращена в пар при пониженном давлении и может быть восстановлена ​​в виде пара низкого давления для отопления или технологического процесса.

Пример : Котел работал при давлении 450 фунтов на кв. Дюйм. Непрерывная продувка составляет 10 000 фунтов / час. Какой процент продувочной воды можно восстановить в виде пара мгновенного испарения при давлении 10 фунтов на кв. Дюйм?

Решение : Найдите 450 фунтов на кв. Дюйм на левой оси.Следуйте по горизонтали вправо до пересечения с кривой «вспышки» 10 фунтов на кв. Дюйм (точка A). Опустите вертикально вниз к нижней оси и прочтите 24,5%. (24,5% от сброса 10000 фунтов / час = 2450 фунтов / час пара мгновенного испарения при давлении 10 фунтов / кв. Дюйм изб.)

Эти кривые были построены по формуле:

91 10 5% мгновенного пара = 900 10
H b H f Х 100
В f

где

H b = теплота жидкости при давлении в котле, БТЕ / фунт

H f = теплота жидкости при давлении вспышки, БТЕ / фунт

В f = скрытая теплота парообразования при давлении вспышки, БТЕ / фунт

Примечание: Для давления в котле от 100 до 800 фунтов на кв. Дюйм, используйте кривые «мгновенного» давления с наклоном от нижнего левого угла к верхнему правому углу и нижней оси.Для давления в котле выше 800 фунтов на квадратный дюйм используйте кривые «мгновенного» давления с наклоном от нижнего правого до верхнего левого угла и верхней оси.

Таблица 13-3. Пример экономии при установке оборудования автоматической продувки (базис: один день).

Икс
Испарение 2,400,000 фунтов / день
Давление котла: 600 фунтов / кв. Дюйм изб.
Ручная продувка: 183 423 фунтов / день (7.1%)
Автоматическая продувка: 145 069 фунтов / день (5,7%)
Снижение продувки: 38 354 фунтов / день
Температура питательной воды: 240 ° F
Температура подпиточной воды: 60 ° F
Теплота жидкости при 600 фунт / кв. Дюйм изб. 475 британских тепловых единиц / фунт
Тепло жидкости при 60 ° F -28 британских тепловых единиц / фунт
Требуемое количество тепла: 447 британских тепловых единиц / фунт
(уменьшение продувки) Х 38,354 фунтов / день
Тепловыделение: 17 144 238 БТЕ / день
Топливо (газ): 1 040 900 10 БТЕ / фут 3

(при КПД котла 80%)

Х.80

Доступное тепло топлива: 832 БТЕ / фут 3
(уменьшение нагрева) 17 144 238 БТЕ / день

÷ 832 БТЕ / фут 3
Уменьшение количества топлива: 20,606 футов 3 / сутки
Экономия топлива 4 доллара США.00/1000 фут 3 : $ 82,42
Сокращение рабочей силы: 0,5 часов
Ежедневная экономия рабочей силы при 30,00 долл. США в час 15,00 $
Редукция воды: 4,598 галлон / день
Ежедневная экономия воды при 0,80 долл. США за 1000 галлонов: $ 3,68
Итого дневная экономия: 101.10
х 365 дн / год
Годовая экономия $ 36 902

Рисунок 13-4. Типовой паровой барабан с указанием места непрерывной продувки.

Икс

Таблица 13-4. Пример возможной экономии топлива за счет уменьшения продувки (основание: один день).

Икс
Испарение (пар) 2 000 000 фунтов / день
Текущая продувка: 128 000 фунтов / день (6%)
Пониженная продувка: — 41 000 фунтов / день (2%)
Уменьшение продувки: 87 000 фунтов / день
Питательная вода (пар плюс продувка): 2 041 000 фунтов
Давление котла 200 фунтов / кв. Дюйм изб.
Температура питательной воды: 215 ° F
Температура подпиточной воды: 60 ° F
Топливо (масло): 145 000 британских тепловых единиц / галлон

(при КПД котла 80%)

Х.80

Доступное тепло топлива: 116 000 британских тепловых единиц / галлон
(уменьшение нагрева) 17 144 238 БТЕ / день
Теплота жидкости при давлении в котле: 362 британских тепловых единиц / фунт
Тепло жидкости при 60 ° F: -28 британских тепловых единиц / фунт
Требуемое количество тепла: 334 британских тепловых единиц / фунт
(уменьшение продувки) 87 000 фунтов / день
Х 334 БТЕ / фунт
Общее сбережение тепла: 29 058 000 БТЕ / день
+116,000
Экономия топлива

(@ 0.80 / галлон)

250

Х 0,80

Дневная экономия: $ 200
х 365 дн / год
Годовая экономия: 72 000 долл. США

Рисунок 13-5. Аппаратура модулирующей автоматической продувки котла

Икс

Продувка в котле | Формула и калькулятор для расчета продувки котла…

Продувка в котле. Определение

Продувка в котле. Обычно вода, подаваемая в котел, содержит высокое содержание общего растворенного твердого вещества (TDS) , а также других растворенных и нерастворенных твердых частиц. При нагревании воды или преобразовании воды в пар эти растворенные твердые частицы не испаряются, отделяются от воды или пара и оседают на дне корпуса.

Эти нерастворенные твердые частицы также ответственны за образование накипи, коррозию и унос твердых частиц с паром и другие специфические проблемы.Это дополнительно предотвратит передачу тепла между газами и водой и, в конечном итоге, приведет к перегреву труб или кожуха котла.

Источник: Campbell

Таким образом, некоторая часть воды со дна кожуха сливается либо периодически, либо постоянно, чтобы поддерживать уровень воды TDS в допустимых рабочих пределах . Поэтому удаление TDS или нечистой воды из корпуса котла называется продувкой.

Продувка в котлах

Существует два способа продувки в зависимости от типа конструкции, мощности котла , а также характеристик питательной воды котла: —

  • Прерывистая или ручная продувка — Когда Продувка производится вручную оператором котла без регулярных интервалов, обозначается как Ручная продувка .Этот тип продувки полезен для удаления из котла шлама или взвешенных твердых частиц. При этом продувочный клапан открывается вручную через равные промежутки времени в соответствии с установленным графиком работы. Хотя для уменьшения тепловых потерь в виде горячей продувочной воды , клапан открывается часто и немного, чтобы позволить только небольшое количество продувки, но этот вид продувки ответственен за высокие потери тепла и давления .

  • Непрерывная продувка — Когда продувка выполняется непрерывно и автоматически для удержания растворенных и взвешенных твердых частиц в рабочих пределах котла, это называется непрерывной продувкой.Автоматическая продувка постоянно контролирует качество питательной воды, а также качество воды внутри корпуса котла и автоматически открывается, как только TDS котловой воды превышает допустимый рабочий предел. Этот тип продувки помогает удалить максимальное количество растворенных твердых частиц. только минимальные потери воды и тепла от котла. Также при непрерывной продувке тепло в виде горячей воды из котла может быть использовано для предварительного нагрева питательной воды путем установки теплообменника или оборудования для рекуперации тепла на пути.

В зависимости от типа работы ручной или непрерывный и автоматический, продувочный клапан поставляется вместе с соответствующими принадлежностями.

Плюсы: —

  • Продувка воды поддерживает уровень TDS воды в допустимых пределах.
  • Предотвращает коррозию и образование накипи на трубах котла.
  • Предотвращает унос загрязнений из пара, тем самым обеспечивая чистый пар.

Минусы: —

  • Продувка водой увеличивает потери тепла и давления, если не принять меры или не выполнить надлежащий график.
  • В конечном итоге эти потери тепла и давления снижают КПД котла.

Также читайте: Котел высокого давления

Формула для расчета продувки котла

Скорость продувки можно рассчитать по следующей формуле

qBD = qS fc / (bc — fc)

Где:

Где:

qBD — скорость продувки в кг / ч

qS — расход пара в кг / ч

FC — общее количество растворенных твердых веществ — TDS — в питательной воде составляет ppm

bc максимально допустимое Всего Растворенные твердые вещества — TDS — в котловой воде в ppm

Расчет продувки котла: онлайн-калькулятор

Для расчета продувки в котле необходимо ввести данные в следующий калькулятор продувки котла Онлайн-калькулятор :

Ознакомьтесь с другими калькуляторами котла, созданными Техническая группа Thermodyne

Прочие калькуляторы, связанные с паровым котлом

Эти калькуляторы h elpful для вакансий инженеров-механиков и еще одного заинтересованного лица

Контроль продувки котла | Eurotherm by Schneider Electric

Это достигается за счет управления продувкой.

Этот процесс включает в себя приведение в действие механизма продувочного клапана, расположенного на корпусе котла, и откачивание небольшого процента котловой воды (содержащей растворенные твердые частицы и не растворенные отложения) из-под поверхности воды в котле.

Для поддержания химического баланса в котле количество химикатов, удаляемых из барабана посредством продувки, должно быть равно количеству химикатов, поступающих через питательную воду. При изменении паровой нагрузки изменяется скорость подачи питательной воды и скорость продувки.

С другой стороны, чрезмерная продувка приводит к неэффективной работе котельной, поскольку каждая продувка вызывает потерю тепла, содержащегося в вытесненной воде. Стоимость топлива может быть напрямую связана с этой потерей тепла. Также следует учитывать стоимость воды и химикатов. Необходимо установить баланс между требованиями удаления растворенных твердых частиц из котельной системы и рентабельной эксплуатацией котельной.

Котел, работающий с КПД 80%, имеет максимальную скорость испарения 5 000 кг / ч при 10 бар и получает питательную воду при 70 ° C.Из 5000 кг / час 4500 кг / час пара идет на экспорт, а 500 кг / час теряется в результате продувки. Используя таблицы пара, теплосодержание воды и пара рассчитывается следующим образом:

4500 кг / час (2357 кДж / кг = 9621 274 кДж / час

500 кг / час (357 кДж / кг = 178 500 кДж / час). ч
Выдача в сумме:

9,799,774 кДж / ч или 2,723 кВт

Приведенный выше пример типичен для современной котельной, использующей только щелочно-обменное умягчение. Скорость продувки намного ниже при использовании деминерализованной питательной воды.В примере потери тепла эквивалентны 1,8% сжигаемого топлива.

При непрерывной работе в течение года расход топлива на один котел составляет примерно 46 500 м3 природного газа, 44 500 литров мазута или 70 тонн угля. К этому добавляются также затраты на приобретение и очистку воды, которая используется в котельной системе.

Управление продувкой может быть разбито на мгновенные или непрерывные системы и может быть ручным, полуавтоматическим или полностью автоматическим.

Контроль продувки котла | Eurotherm by Schneider Electric

Это достигается за счет управления продувкой.

Этот процесс включает в себя приведение в действие механизма продувочного клапана, расположенного на корпусе котла, и откачивание небольшого процента котловой воды (содержащей растворенные твердые частицы и не растворенные отложения) из-под поверхности воды в котле.

Для поддержания химического баланса в котле количество химикатов, удаляемых из барабана посредством продувки, должно быть равно количеству химикатов, поступающих через питательную воду. При изменении паровой нагрузки изменяется скорость подачи питательной воды и скорость продувки.

С другой стороны, чрезмерная продувка приводит к неэффективной работе котельной, поскольку каждая продувка вызывает потерю тепла, содержащегося в вытесненной воде. Стоимость топлива может быть напрямую связана с этой потерей тепла. Также следует учитывать стоимость воды и химикатов. Необходимо установить баланс между требованиями удаления растворенных твердых частиц из котельной системы и рентабельной эксплуатацией котельной.

Котел, работающий с КПД 80%, имеет максимальную скорость испарения 5 000 кг / ч при 10 бар и получает питательную воду при 70 ° C.Из 5000 кг / час 4500 кг / час пара идет на экспорт, а 500 кг / час теряется в результате продувки. Используя таблицы пара, теплосодержание воды и пара рассчитывается следующим образом:

4500 кг / час (2357 кДж / кг = 9621 274 кДж / час

500 кг / час (357 кДж / кг = 178 500 кДж / час). ч
Выдача в сумме:

9,799,774 кДж / ч или 2,723 кВт

Приведенный выше пример типичен для современной котельной, использующей только щелочно-обменное умягчение. Скорость продувки намного ниже при использовании деминерализованной питательной воды.В примере потери тепла эквивалентны 1,8% сжигаемого топлива.

При непрерывной работе в течение года расход топлива на один котел составляет примерно 46 500 м3 природного газа, 44 500 литров мазута или 70 тонн угля. К этому добавляются также затраты на приобретение и очистку воды, которая используется в котельной системе.

Управление продувкой может быть разбито на мгновенные или непрерывные системы и может быть ручным, полуавтоматическим или полностью автоматическим.

Продувка котла

Растворенные твердые частицы и частицы в подпиточной воде останутся в котле при выработке пара.Во время работы общее количество растворенных твердых веществ (TDS) накапливается, в конечном итоге достигая уровня концентрации, при котором работа котла становится невозможной.

  • Общее количество растворенных твердых частиц — TDS — обычно измеряется в ppm

Если твердые частицы не удаляются из котла, они могут привести к

  • образованию накипи
  • унос
  • коррозия
  • охрупчивание

Химическая обработка и непрерывная химическая обработка Поверхностная продувка обычно используется для удаления твердых частиц с той же скоростью, с какой они добавляются из питательной воды.

Рекомендуемые максимальные уровни TDS зависят от типа котла — обычно от 2000 до 10000 ppm. TDS можно контролировать путем измерения электропроводности котловой воды. Повышение проводимости указывает на загрязненную воду.

В целом

  • короткие частые продувки более эффективны для удаления шлама котловой воды, чем
  • а одна длительная нечастая продувка

Обратите внимание, что продувочные резервуары требуются Единым сантехническим кодексом (UPC) 1) и Uniform Mechanical Код (UMC) 1) Коды для любых установок высокого давления, превышающих 15 фунтов на кв.

1) Международная ассоциация сантехников и механиков (IAPMO) разрабатывает Единый сантехнический кодекс (UPC), который широко применяется в западных Соединенных Штатах.

Из-за высокого давления и температуры в котлах во время продувки образуется большое количество пара мгновенного испарения. ВНИМАНИЕ, что горячая вода и пар ОПАСНЫ. Необходимо соблюдать осторожность при проектировании, строительстве и эксплуатации.

Ручная продувка

Ручная продувка может быть выполнена путем заклеивания ленты в нижней части котла, откуда удаляются осевшие твердые частицы.С помощью ручной продувки устройства контроля уровня воды и запорные устройства очищаются от любых твердых частиц, мешающих их работе.

Для всех паровых котлов требуется устройство для ручной продувки, даже если они оснащены автоматическими системами непрерывной продувки или нет.

Автоматическая непрерывная продувка

В системе непрерывной продувки используется откалиброванный клапан и кран продувки рядом с поверхностью воды в котле. Вода непрерывно забирается из верхней части котла с заданной скоростью.

Руководство ASME по качеству воды в водотрубных котлах

Максимально допустимые примеси в воде:

Для полной таблицы с щелочностью CaCO 3 , общим содержанием растворенных твердых веществ и удельной проводимостью — поверните экран!

Давление в бойлере
(фунт / кв. Концентрация
(ppm)
Щелочность CaCO 3
(ppm)
Общее количество растворенных твердых веществ
— TDS —
(ppm)
Удельная электропроводность

01 * см

0 — 300 0.1 0,05 0,3150 700 3500 7000
300-450 0,05 0,025 0,3 90 600 3000 6000
450-600 0,03 0,02 0,2 40 500 2500 5000
600-750 0.025 0,02 0,2 30 400 1000 4000
750-900 0,02 0,015 0,1 20 300 750 3000
900 — 1000 0,02 0,015 0,05 8 200 625 2000

*) Электропроводность измеряется в 1 / Ом · м, 1 / Ом · м, сименс / м, см / м или мо / м.

  • 0,042 мкСм / см — Сверхчистая вода (20 ° C)
  • 0,5 — 5 мкСм / см — Деионизированная вода
  • 100 — 300 мкСм / см — Мягкая грунтовая вода
  • 45000 — 55000 мкСм / см — Морская вода
  • > 100000 мкСм / см — Концентрированные кислоты или щелочи (высококонцентрированный водный раствор гидроксида калия или гидроксида натрия (каустическая сода))

Продувка котла

Во время работы котла вода нагревается и испаряется, чтобы получилась струя.Следовательно, концентрация растворенных твердых частиц увеличивает бойлер. В то же время тот факт, что воде требуется больше энергии для испарения, увеличивает потребление энергии. Чтобы предотвратить образование накипи и контролировать потребление энергии, вода, содержащаяся в котле, сбрасывается и заменяется питательной водой. Эта операция называется продувкой. Продувка определяется по ее концентрации в растворенных твердых частицах и зависит от условий эксплуатации и конструкции котла.

В зависимости от конструкции котла продувка может осуществляться вручную или непрерывно. Обычно большинство промышленных систем могут работать с обоими. Ручная продувка позволяет сбрасывать воду, когда качество воды приближается к эксплуатационным. Автоматическая продувка позволяет регулировать качество воды и постоянно поддерживать уровень взвешенных частиц внутри резервуара нагревателя. Для контроля качества котловой воды и оценки необходимости продувки можно измерить различные параметры: щелочность, уровень взвешенных твердых частиц, хлоридов, кремнезема и т. Д.

Очистка сточных вод после продувки котла

Свойства сточных вод после продувки котла зависят от предварительной обработки подпиточной воды и количества циклов концентрирования. В любом случае, температура, pH и уровень растворенных твердых частиц, по крайней мере, в продувочной воде должны быть отрегулированы перед тем, как попасть в канализацию. В определенных случаях также может быть интересно повторно использовать сточные воды после продувки, особенно в некоторых районах, где воды не хватает.

Типичные варианты управления продувкой включают:

Сброс в поверхностные воды — Невозможно для рециркуляционного охлаждения из-за качества воды.

Сброс на очистные сооружения — Может потребоваться предварительная очистка.

Очистка и повторное использование — Варианты повторного использования воды различаются в зависимости от характера водопользования наряду с широким спектром других соображений, включая законы повторного использования воды и наличие воды.

Нулевой сброс жидкости (ZLD) — Эта альтернатива включает обширную обработку продувки для облегчения ее повторного использования в сочетании с уменьшением объема для минимизации или устранения необходимости в сливе жидкости.

Продувка котла — трудный для обработки поток. Для стабильной работы требуется сочетание технологий. Один из наиболее эффективных методов — обратный осмос. Мембраны обратного осмоса используются для разделения растворенных ионов и получения пермеата высокого качества. Требуемая предварительная обработка включает фильтрацию, умягчение, регулировку pH и / или ионный обмен.

Преимущества очистки продувочной воды включают:

  • меньшее обслуживание,
  • меньшее загрязнение и коррозию,
  • сокращение количества используемых химикатов,
  • более стабильное качество воды.

Общая эффективность воды увеличивается, и почти 100% продувочной воды можно использовать повторно.

Lenntech предлагает устойчивые и комплексные решения для очистки и повторного использования продувочной воды с учетом широкого спектра технологий и стратегий. В условиях растущего во всем мире спроса на воду и дефицита воды наши решения подходят для снижения эксплуатационных расходов котлов и уменьшения водного следа.

Наши преимущества

  • Спроектированные и разработанные по индивидуальному заказу решения для уникальных систем очистки продувочной воды градирни и специального оборудования.
  • Решения «под ключ», включая проектирование, проектирование, производство, автоматизацию, установку, техническое обслуживание и обучение.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *