Как найти ноль: Как найти фазу: простые и действенные способы

Содержание

Как найти фазу, землю и ноль в квартирной электропроводке – PROFI.RU — За профи говорят дела

Алексей Помазов
профессиональный электромонтёр, инженер промышленного оборудования, опыт работы — 18 лет

В комментариях к статье «Что нужно знать о ремонте электропроводки» был задан вопрос о том, как в электропроводке найти ноль и землю, если провода не соответствуют традиционным цветам. На вопрос отвечает специалист по электромонтажу, эксперт PROFI.RU.

Согласно правилам устройства электроустановок (ПУЭ, главный документ всех электриков) — электропровода разного назначения должны иметь отличающуюся по цвету маркировку. И если проводку в вашей квартире делал грамотный специалист, то, открыв разделительную коробку, вы увидите провода разного цвета.

  • Земля будет жёлтой, зелёной либо жёлто-зелёной.
  • Ноль будет синим или голубым.
  • Фазе досталась самая богатая палитра, она бывает серой и красной, розовой и бирюзовой, оранжевой и фиолетовой, но чаще всего — коричневой, чёрной или белой.

Но иногда домашнего мастера ждёт неприятный сюрприз в виде проводов одного цвета. Или того хуже — от щитка до квартиры тянутся провода одного цвета, а внутри помещения — другого. Как разобраться в хитросплетении проводов?

Правильнее всего пригласить квалифицированного электрика, электричество — штука коварная и опасная. Но если вы совершенно уверены в своей осторожности и аккуратности, действуйте!

Ищем фазу

Первым делом отключите подачу тока в квартиру на электрощите. Все переключатели должны быть выключены! Затем нужно добраться до проводов, сняв уплотняющую рамку и раскрутив розетку.

Отсоединив провода от розетки, обязательно разведите их в разные стороны.

После этого можно освободить провода от изоляции и, подав в квартиру напряжение, приступить к поиску фазы при помощи индикаторной отвёртки. Держите инструмент только за защитный корпус, расположив указательный палец на металлическом конце рукоятки. Поочерёдно прикоснитесь жалом отвёртки к проводам.

Фаза — тот, на котором загорится индикатор. Если провод двухжильный, этого достаточно: второй проводник — это ноль. В случае трёхжильного придётся продолжить изыскания при помощи мультиметра.

В поиске земли

Мультиметр — это комбинированный электроизмерительный прибор, сочетающий функции вольтметра, амперметра и омметра. Нужно включить мультиметр на измерение переменного напряжения в диапазоне выше 220 вольт. Одним из щупов прибора прикасаемся к найденной ранее фазе, другим — сначала к одному из неопознанных проводов, потом к другому. Смотрим, какое значение напряжения показывает мультиметр в каждом из случаев. 220 вольт соответствует нулю, при прикосновении к земле значение будет меньше.

Кстати, при помощи мультиметра можно определить и фазу. Диапазон измерения будет тот же — выше 220 вольт. Щупом, который тянется от гнезда с маркировкой V, поочерёдно прикасаемся к проводам. Фаза просигнализирует о себе показателем 8–15 вольт, а ноль — нулём на шкале прибора.

Как понять где фаза а где ноль в проводах: 5 способов узнать

Согласно нормам ПУЭ к выключателю должен подсоединяться фазный провод. При ремонте или реконструкции электропроводки могут возникнуть и другие ситуации, при которых имеет значение, какой из проводов нейтраль, а какой фаза.

При наличии бирок на концах проводников это несложно, но как понять где фаза, а где ноль в проводах, если маркировка на проводах отсутствует? В этом случае необходимо иметь минимальные знания электротехники или внимательно изучить следующую статью.

Зачем нужно определять, где фаза, а где ноль

Для работы электроприборов не имеет значения, к какой клемме присоединяется фазный, а к какой нулевой проводник, но для повышения безопасности людей, живущих в доме, эти провода в некоторых ситуациях должны подключаться определённым образом:

  • К выключателю освещения необходимо подводить фазный провод, а к лампе нулевой. Это обеспечивает отсутствие напряжения в светильнике при выключенном освещении и позволяет производить замену лампы и ремонт осветительной аппаратуры без отключения автоматического выключателя. Это требование так же указано в «библии» электромонтёров — ПУЭ п.6.6.28.
  • Наличие в схеме электропроводки УЗО. Использование вместо нулевого проводника заземляющего при подключении электроприборов, освещения и розеток приводит к появлению тока утечки, нарушению равенства токов в нейтрали и фазном проводе и срабатыванию дифзащиты

Простые способы, как найти фазу

Для поиска фазного провода в электропроводке используются различные методы.

По цветовой маркировке

Это самый простой метод, позволяющий выполнить эту работу без каких-либо приборов, однако он применим только к электропроводке, выполненной согласно стандарту IEC 60446, принятому в 2004 году.

В этом случае согласно правилам цветовой маркировки изоляции проводов фазный провод в однофазной электропроводке и двух- или трёхжильных кабелях чаще всего окрашен в коричневый цвет, а в трёхфазной проводке и четырёх- или пятижильных кабелях оболочка может быть любого цвета, кроме синего и жёлто-зелёного.

С помощью индикаторной отвертки

Этот инструмент позволяет определить фазный контакт даже в закрытой розетке. Принцип работы индикаторной отвёртки основан на протекании через него активного тока, причём жало индикатора должно касаться проверяемого проводника, а вторым проводником является тело человека.

Принципиальная схема индикатора состоит из следующих узлов:

  • Жало отвёртки. Является одним из контактов электросхемы инструмента.
  • Индикатор. В старых моделях это неоновая лампочка, в более новых светодиод или ЖК дисплей.
  • Токоограничивающий элемент. В аппаратах с неонкой это резистор номиналом 1 МОм, в индикаторах со светодиодом или дисплеем ток ограничивается электронной схемой с питанием от батареек.
  • Контактное кольцо или площадка. Находится в рукоятке и служит для замыкания цепи через тело и перед тем, как найти фазу и ноль индикаторной отверткой, следует дотронуться к нему пальцами.

При прикосновении жала к фазному проводу, а человека к контактному кольцу в рукоятке ток начинает идти по цепи «жало-неонка-резистор-контакт-тело-пол» и лампа загорается.

Важно! При помощи индикаторной отвёртки с гарантией можно найти только фазный провод. Отсутствие сигнала не указывает на нулевой проводник, он может быть отключённым или оборванным, а при подаче питания на нём так же может появиться напряжение.

Как найти фазу указателем напряжения

Более надёжными являются индикаторы напряжения, как старые, которые использовались ещё в советское время, ПИН-90, так и более современные, имеющие встроенную функцию указания фазы.

Принцип действия этих устройств аналогичен индикаторной отвёртке, но конструкция прибора позволяет кроме фазного найти так же заземляющий и нейтральный проводники.

Для определения фазы один из щупов должен касаться проверяемого провода, а рукой при этом необходимо, в зависимости от конструкции, касаться второго щупа или специального вывода. При контакте с фазой на приборе загорится лампочка, светодиод или прозвучит звуковой сигнал.

С помощью мультиметра

Этот прибор можно применять для поиска фазы аналогично индикаторной отвёртке, однако необходимо использовать цифровой мультиметр. Он имеет встроенный усилитель сигнала и является более чувствительным, чем стрелочный прибор, требующий больший ток для работы показания которого составят менее 1 В. Есть два варианта, как найти фазу с помощью мультиметра.

Более надёжным способом является поиск фазного проводника при контакте тела с прибором:

  1. 1. перед тем, как найти фазу мультиметром, следует подключить щупы к прибору;
  2. 2. переключить мультиметр для измерения переменного напряжения ACV на предел 750В;
  3. 3. один из щупов взять за металлический наконечник незащищённой рукой;
  4. 4. вторым щупом поочерёдно дотронуться до всех проверяемых проводов.

При прикосновении к фазному контакту дисплей прибора покажет наличие напряжения. Его величина зависит от многих факторов и находится в диапазоне 20-100 Вольт.

Так же, как и индикатор напряжения, после определения фазного проводника мультиметром можно найти нулевой провод и заземляющий.

Такой метод поиска фазы не указан в инструкции к прибору, поэтому для большей безопасности можно использовать «бесконтактный» метод, при котором нет необходимости дотрагиваться рукой до второго щупа. Показания мультиметра при этом составят 3-15 Вольт, что достаточно для поиска фазы.

При помощи контрольной лампы

Кроме методов, требующих специальных инструментов, существует достаточно опасный способ, как понять, где фаза, а где ноль в проводах при помощи контрольной лампы или контрольки. Для этого достаточно иметь обычную лампу, патрон и два куска провода. Для сборки этого приспособления провода с зачищенными концами подключают к патрону и закручивают в него лампу.

Для определения фазного провода один из проводов присоединяют к заведомо заземлённому элементу — нейтральному или заземляющему проводнику, шине заземления в электрощитке или контуру заземления здания, а вторым проводом поочерёдно прикасаются к проверяемым проводам.

В случае контакта с фазным проводом лампа загорится.

В трёхпроводной электропроводке с заземляющим контактом контрольную лампу последовательно подключают попарно ко всем трём проводам. Тот проводник, при присоединении к которому лампа будет светиться с обоими другими проводами является фазным, оставшиеся являются нейтралью и заземлением.

Этот метод проверки наличия напряжения запрещён ПТБЭЭП и другими нормативными документами. Из-за высокого тока потребления контрольная лампа загорится только при низком сопротивлении электропроводки. Включённая последовательно с проверяемым контактом лампа или плохой контакт в скрутке или клеммнике не позволят лампочке включиться, однако прикосновение к этим проводам опасно для жизни.

Кроме того, возможна ситуация, при которой в кабеле будет обрыв в нулевом и заземляющем проводниках. При этом во всех вариантах подключения контролька светиться не будет, что позволит сделать ошибочный вывод об отсутствии напряжения в сети.

Как определить фазу и ноль

Далеко не всегда достаточно определить, какой из проводников является фазным. Очень часто, особенно в трёхпроводной однофазной системе электроснабжения, нужно найти нулевой контакт. Это необходимо при подключении розеток или освещения и не всегда, если один из проводов фазный, то второй обязательно нейтраль.

Он может быть отключённым, оборванным или замыкать на ту же или другую фазу. Поэтому необходимо проверку производить для всех проводов и существуют разные способы, как понять, где фаза, а где ноль в проводах.

Информация! Для поиска нулевого, фазного и заземляющего проводов можно использовать те же приборы, которые применялись для определения фазы.

По цветовой маркировке

Это самый простой способ, позволяющий определить фазный и нулевой провод без каких-либо приборов, «на глаз». Единственный недостаток этого метода заключается в том, что он применим только к электропроводке, проложенной после 2004 года при полной уверенности, что при этом были соблюдены правила цветовой маркировки изоляции проводов:

  • нейтраль N — синий или голубой;
  • заземление РЕ — в продольную жёлто-зелёную полосу;
  • фаза L — в однофазной электропроводке коричневая, в трёхфазной проводке оболочка может быть любого цвета кроме синего(голубого) и жёлто-зелёного.

Важно! Цветовая маркировка проводов не всегда и далеко не всеми электриками соблюдается. Поэтому этот метод является лишь косвенным, по которому нельзя судить есть напряжение на проводе или нет.

При помощи контрольной лампы, индикатора или вольтметра

В двухпроводной схеме электроснабжения это сделать несложно. После определения фазного проводника необходимо узнать, является ли оставшийся проводник нейтралью. Для этого достаточно любым способом проверить потенциал между ними.

Если прибор покажет напряжение сети 220В, значит эти провода, соответственно, ноль и фаза. В противном случае ноль на этом контакте отсутствует из-за аварии или неправильного монтажа.

В трёхпроводной системе с заземляющим проводом выполнить поиск ноля сложнее. Для этого необходимо:

  1. 1. перед тем, как определить фазу и ноль, в электрощитке от вводного автомата нужно отключить нейтральную клемму;
  2. 2. найти фазный провод;
  3. 3. определить, с каким из двух оставшихся проводников и фазным прибор показывает наличие напряжения.

Этот контакт является заземлением.

Определение ноля и заземления при помощи УЗО

Один из самых простых методов различить нейтральный и заземляющий контакты — это при помощи контрольной лампы и УЗО или дифавтомат.

Лампочка или другой электроприбор должны иметь мощность не менее 10 Вт, а УЗО уставку срабатывания не более 30мА.

Для поиска ноля и заземления необходимо:

  • найти фазу одним из вышеперечисленных способов;
  • отключить вводной автоматический выключатель;
  • подключить к фазному проводу и одному из оставшихся контрольную лампу;
  • включить автомат;
  • если сработает дифференциальная защита, то выбранный проводник является заземляющим, в противном случае это нейтраль.

Для надёжности данную последовательность действий желательно повторить для второго провода.

Совет! При отсутствии в схеме УЗО его допускается установить временно, снаружи электрощита. Подключение при этом можно выполнить при помощи отрезков гибкого провода.

Вывод

В связи с тем, что определение фазы при помощи цветовой маркировки имеет ограниченную область применения — новая электропроводка, причём выполненная профессионалами, а использование контрольной лампы запрещено ПТБЭЭП и может быть опасным для жизни, существует только три надёжных способа, как узнать, где ноль, а где фаза. Это индикаторная отвёртка, индикатор напряжения с функцией поиска фазы и мультиметр, причём два последних устройства позволяют найти не только фазный проводник, но так же нейтраль и заземление.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Как определить фазу и ноль индикатором-пробником. Цвета фазного провода

Генераторы, вырабатывающие на электростанциях электроэнергию, имеют три обмотки, по одному из концов которых соединяют вместе, и этот общий провод называют Ноль. Оставшиеся три свободных конца обмоток называются Фазами.

Цвета и обозначение проводов

Для того, чтобы без приборов найти фазный, нулевой и заземляющий провод электропроводки, они, в соответствии с правилам ПУЭ покрываются изоляцией разный цветов.

На фотографии представлена цветовая маркировка электрического кабеля для однофазной электропроводки напряжением переменного тока 220 В.

На этой фотографии представлена цветовая маркировка электрического кабеля для трехфазной электропроводки напряжением переменного тока 380 В.

По представленным схемам в России начали маркировать провода с 2011 года. В СССР цветовая маркировка была другая, что необходимо учитывать при поиске фазы и нуля при подключении установочных электроизделий к старой электропроводке.

Таблица цветовой маркировки проводов до и после 2011 года

В таблице представлена цветовая маркировка проводов электрической проводки, принятая в СССР и России.
В некоторых других странах цветовая маркировка отличается, за исключением желто — зеленого провода. Международного стандарта пока нет.

Обозначение L1, L2 и L3, обозначают не один и тот же фазный провод. Напряжение между этими проводами составляет 380 В. Между любым из фазных и нулевым проводом напряжение составляет 220 В, оно и подается в электропроводку дома или квартиры.

В чем отличие проводов N и PE в электропроводке

По современным требованиям ПУЭ в квартиру кроме фазного и нулевого проводов, должен подводиться еще и заземляющий провод желто — зеленого.

Нулевой N и заземляющий провода PE подключаются к одной заземленной шине щитка в подъезде дома. Но функцию выполняют разную. Нулевой провод предназначен работы электропроводки, а заземляющий – для защиты человека от поражения электрическим током и подсоединяется к корпусам электроприборов через третий контакт электрической вилки. Если произойдет пробой изоляции и фаза попадет на корпус электроприбора, то весь ток потечет через заземляющий провод, перегорят плавкие вставки предохранителей или сработает автомат защиты, и человек не пострадает.

В случае, если электропроводка проложена в помещении кабелем без цветовой маркировки то определить, где нулевой, а где заземляющий проводник приборами невозможно, так как сопротивление между проводами составляет сотые доли Ома. Единственной подсказкой может послужить тот факт, что нулевой провод заводится в электрический счетчик, а заземляющий проходит мимо счетчика.

Внимание! Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.

Индикаторы-пробники для поиска фазы и ноля

Прибор, предназначенный для поиска ноля и фазы, называется индикатором. Широкое применение получили световые индикаторы для определения фазы на неоновых лампочках. Низкая цена, высокая надежность, долгий срок службы. В последнее время появились индикаторы и на светодиодах. Они дороже и дополнительно требуют элементов питания.

На неоновой лампочке

Представляет собой диэлектрический корпус, внутри которого находятся резистор и неоновая лампочка. Касаясь по очереди к проводам электропроводки отверточным концом индикатора, Вы по свечению неоновой лампочки находите фазу. Если лампочка засветилась от прикосновения, значит, это фазный провод. Если не светится, значит, это нулевой провод.

Корпуса индикаторов бывают разных форм, цветов, но начинка у всех одинаковая. Для исключения случайного замыкания, советую на стержень отвертки надеть трубку из изоляционного материала. Не следует индикатором откручивать или затягивать винты с большим усилием. Корпус индикатора сделан из мягкой пластмассы, стержень отвертки запрессован неглубоко и при большой нагрузке корпус ломается.

Светодиодный индикатор-пробник

Индикатор-пробник для определения фазы на светодиодах появились сравнительно недавно и завоевывают все большую популярность, так как позволяют не только найти фазу, но и прозванивать цепи, проверять исправность лампочек накаливания, нагревательных элементов бытовых приборов, выключателей, сетевых проводов и многое другое. Есть модели, с помощью которых можно определять местонахождение электропровода в стенах (чтобы не повредить при сверлении) и найти, в случае необходимости, место их повреждения.

Конструкция светодиодного индикатора-пробника, такая же, как и на неоновой лампочке. Только вместо нее используются активные элементы (полевой транзистор или микросхема), светодиод и нескольких малогабаритных батареек постоянного тока. Батареек хватает на несколько лет работы.

Для нахождения фазы светодиодным индикатором-пробником, отверточным его концом прикасаются последовательно к проводникам, при этом к металлической площадке на торце рукой касаются нельзя. Эта площадка используется только при проверке целостности электрических цепей. Если при поиске фазы Вы будете касаться этой площадки, то светодиод будет светить и при касании индикатором к нулевому проводу!

Ярко засветившийся светодиод укажет на наличие фазы. По правилам, фазный провод должен быть с правой стороны розетки. Как проверять контакты и цепи таким индикатором-пробником, подробно изложено в прилагаемой к нему инструкции.

Как самому сделать индикатор-пробник


для поиска фазы и ноля на неоновой лампочке

При необходимости можно своими руками сделать индикатор-пробник для поиска и определения фазы.

Для этого нужно к одному из выводов любой неоновой лампочки, даже стартера от светильника дневного света, припаять резистор номиналом 1,5-2 Мом и на него надеть изолирующую трубку.

Лампочку с резистором можно разместить в ручку отвертки или корпус от шариковой ручки. Тогда внешний вид самодельного индикатора-пробника, мало чем будет отличаться, от промышленного образца.

Поиск или определение фазы выполняется точно так же, как и промышленным индикатором-пробником. Удерживая лампочку за цоколь, концом резистора прикасаются к проводнику.

При подборе резистора иногда возникают трудности с определением его номинала, если на корпусе резистора вместо числа нанесены цветные кольца. С этой задачей поможет справиться онлайн калькулятор.

Почему индикатор светится


при прикосновении к нулевому проводу

Такой вопрос мне задавали многократно. Одной из причин является неправильное применение светодиодного индикатора. Как правильно держать светодиодный индикатор-пробник при поиске фазы, написано в статье выше.

Второй возможно причиной такого поведения индикатора является обрыв нулевого провода. Например, сработал автомат защиты, установленный после счетчика на нулевом проводе. В старых квартирах это не редкость и является грубым нарушением обустройства электропроводки. Необходимо в обязательном порядке удалить автомат с нулевого провода или закоротить его выводы перемычкой.

При обрыве нулевого провода на него через включенные в электросеть приборы, например, через индикатор подсветки выключателя, телевизор в дежурном режиме, любое зарядное устройство, выключенный только кнопкой пуск компьютер и другие электроприборы, поступает фаза. Индикатор это и показывает. В таком случае нулевой провод может быть опасным и прикосновение к нему недопустимо. Нужно найти и устранить обрыв нулевого провода, который может находиться и в распределительных коробках.

Как найти фазу и ноль с помощью контрольки электрика

Контролька электрика на лампочке накаливания

Для проверки наличия питающего напряжения в электрической сети ранее электрики использовали самодельную контрольку, представляющую собой маломощную лампочку накаливания, вкрученную в электрический патрон. К патрону подсоединены два проводника из многожильного провода длиной около 50 см.

Для того, чтобы проверить наличие напряжения, нужно проводниками контрольки прикоснуться к проводам электропроводки. Если лампочка засветилась, напряжение есть.

Контролька электрика на светодиоде

Контролька электрика на лампочке требует бережного отношения и занимает много места. Гораздо удобнее сделать контрольку электрика на светодиоде по нижеприведенной схеме.

Схема простая, последовательно с любым светодиодом включается токоограничивающее сопротивление. Светодиод любого типа и цвета свечения. Пользоваться ней так же, как и контролькой электрика на лампочке.

Светодиод и резистор можно разместить в корпусе от шариковой ручки подходящего размера. На фото контролька для автомобилиста. Схема такой контрольки такая же. Только в зависимости от типа используемого светодиода, резистор R1 ставится номиналом около 1 кОм.

Проверить наличие напряжения на проводах в бортовой сети автомобиля такой контролькой просто, правый конец по схеме соединяется с массой, а левым касаетесь любого контакта. Если напряжение на контакте есть, светодиод засветится. Если к положительной клемме аккумулятора прикоснуться одним концом предохранителя, а ко второму прикоснуться контролькой, то если светодиод не будет светить, значит, предохранитель в обрыве. Так можно проверять и лампочки накаливания, и наличие контакта в переключателях.

Поиск фазы при наличии нулевого и заземляющего проводников

Если требуется найти фазу в электропроводке, которая имеет фазный, нулевой и заземляющий провода, то с помощью контрольки это легко сделать. Достаточно выполнить три касания проводами контрольки. Нужно присвоить каждому проводу условный номер, например 1, 2 и 3 и по очереди прикасаться к парам проводов 1 – 2, 2 – 3, 3 – 1.

Возможно следующее поведение лампочки. Если при прикосновении к 1 – 2 лампочка не засветилась, значит, провод 3 фазный. Если светит при прикосновении к 2 – 3 и 3 – 1, значит 3 фазный. Смысл простой, при прикосновении к нулевому и заземляющему проводнику лампочка светить не будет, так как практически это проводники, на щитке соединенные вместе.

Вместо контрольки можно включить любой вольтметр переменного тока, рассчитанный на измерение напряжения не менее 300 В. Если одним щупом вольтметра прикоснуться к фазному проводу, а другим к нулевому или заземляющему, то вольтметр покажет напряжение питающей сети.

Поиск фазы и нуля контролькой

Внимание, прикосновение к любым оголенным проводникам при поиске фазы контролькой может привести к поражению электрическим током.

Делается все очень просто, один конец провода контрольки подсоединяется к зачищенной до металла трубе центрального отопления или водопровода, а другим по очереди касаетесь проводам или контактам электропроводки. При прикосновении к фазному проводу лампочка засветит.

Если до металла трубы не добраться, то можно воспользоваться водой, текущей из смесителя. Для этого включаете воду и один провод контрольки помещаете под струю воды как можно ближе к смесителю. Вторым концом провода касаетесь проводов электропроводки. Слабый свет лампочки подскажет Вам, где фаза.

В контрольку лучше всего вкрутить самую маломощную лампочку, я использовал лампочку от подсветки холодильников мощностью 7,5 Вт. Для того, чтобы дотянуться до воды, можно использовать кусок любого провода или стандартный удлинитель.

Поиск фазы и ноля вольтметром или мультиметром

Нахождение фазы вольтметром или мультиметром проводится так же способом, как и контролькой электрика, только вместо концов контрольки подключается щупы прибора.

Для определения нуля в трехфазной сети с помощью тестера или мультиметра достаточно измерять напряжение между проводами, которое между фазами будет равно 380 В, а между нулем и любой из фаз – 220 В. То есть провод, относительно которого вольтметр будет на остальных трех показывать 220 В и есть нулевой.

Поиск фазы и ноля с помощью картошки

Если у Вас под рукой не оказалось технических средств для поиска фазы, то можно с успехом воспользоваться экзотическим или народным, иначе не назовешь, способом определения фазы, посредством картошки. Не подумайте, что это шутка. Для кого-то это может быть единственно доступный метод, который можно с успехом применить на практике.

Конец одного проводника нужно подсоединить к водопроводной трубе (если она не пластиковая) или батарее отопления. Если труба окрашена, то нужно место присоединения зачистить до металла, чтобы обеспечить электрический контакт. Противоположный его конец воткнуть в срез картошки. Другой проводник тоже втыкается одним концом на максимальном расстоянии от предыдущего в картошку, вторым концом через резистор номиналом не менее 1 Мом по очереди прикасаются к проводам электропроводки. Некоторое время нужно подождать. Если на срезе картошки реакции нет, это ноль, если есть – фаза. Я не рекомендую пользоваться этим методом, если не знаете правил безопасности работы с электрическими установками.

Как видите, на фото вокруг проводов при подсоединении к фазному проводу электропроводки на поверхности среза картошки произошли изменения. При прикосновении к нулевому проводу реакции не последует.


Андрей 19.09.2012

Здравствуйте, я в хрущевке полностью поменял проводку, протянул трехжильный кабель ВВГ 3×2,5. Можно ли на этажном распределительном щитке закрепить к корпусу желтый провод заземления? Электрик с ЖЭУ сказал сделать именно так.

Александр

В квартирах хрушевок и сталинок обычно так и делают, электрик сказал правильно.

Как найти фазу и ноль без приборов, мультиметра и индикатора

С помощью современных индикационных отверток несложно разобраться в том, как отличить ноль от заземления. Для поиска применяется световой сигнал, возникающий внутри отвертки при обнаружении фазы. Следовательно, другая цепь будет нолем (землей). Несмотря на простоту задачи, имеются в этом деле и определенные нюансы, о которых пойдет речь в этой статье.

Поиск фазы

Индикационная отвертка включает металлический щуп, за которым расположено сопротивление (чаще всего углеродистое), благодаря чему ограничивается ток. Световой сигнал образуется за счет газоразрядной лампы небольшого размера.

Со стороны ручки на отвертке имеется металлическая контактная площадка, представляющая собой кнопку. Эту кнопку следует прижать пальцем, так как в противном случае индикатор не станет светиться.

Принцип работы отвертки можно объяснить в нескольких предложениях. У тела имеется емкость — небольшая, но достаточная для пропуска малого тока. Как только фаза начинает колебаться, электроны начинают движение — в сеть и обратно. Благодаря таким движениям, создается мизерный ток. Показатель тока ограничивается резистором, поэтому переживать насчет собственной безопасности не стоит, даже если взяться за контактную площадку индикационной отвертки и, например, водопроводную трубу.

Обратите внимание! Найти отверткой-индикатором ноль нельзя.

Нахождение фазы чрезвычайно важно, поскольку напряжение не должно покидать, к примеру, ламповый патрон, когда выключатель находится в выключенном положении. Если же что-то пошло не так, простая замена лампы может стать крайне опасным мероприятием.

Согласно техническим нормам, фаза должна располагаться в левой части розетки. Если выключатель установлен как полагается (включение нажатием кнопки вверх), то для обнаружения фазы нужно лишь знать, где находится левая рука и низ:

  1. Фаза находится в левом гнезде розетки. В правом гнезде располагается нуль. Если имеется провод в зелено-желтой изоляционной ленте, это земля. Вместо этого провода можно обнаружить резервный провод электропитания напряжением 220 В.
  2. В двойном выключателе контакты входа и выхода находятся по разным сторонам — внизу и вверху. Сторона, где расположен один контакт, является фазой, а сторона, где есть пара контактов, — нулем. Здесь важно сделать замечание, что сказанное верно только для тех помещений, где разводка выполнена правильно.
  3. В случае с одиночным выключателем определить фазу несколько сложнее, поскольку контакты чаще всего располагаются с одной стороны. Бывают и исключения, когда ноль находится внизу. Для определения фазы патрон прозванивается тестером. Следует заметить, что описываемый способ является нарушением правил безопасности, да к тому же может привести к поломке устройства. Именно поэтому данный способ нельзя рекомендовать — мы лишь сообщаем о его возможности. Кроме того, возможен замер переменного напряжения: 220 В можно обнаружить лишь между фазой выключателя и нулем патрона.

Определение фазы по цвету изоляции

Провод нуля чаще всего синий, а провод земли — зелено-желтый. Фаза имеет коричневую или красную расцветку. Однако из любого правила есть исключения. В зданиях старой постройки часто встречаются двухжильные провода с только белым цветом изоляционного материала. Также следует заметить, что некоторые приборы, например, датчики освещения или движения, оснащаются проводами нетипичного цвета. К примеру, нуль может быть черным. Поэтому во многих случаях перед началом проверки рекомендуется заглянуть в руководство по эксплуатации.

Поиск нуля в квартире

Согласно техническим регламентам, электрощит, расположенный в подъезде, должен быть заземленным. В старых зданиях следует ориентироваться на большую клемму, зафиксированную болтом. В новых домах рекомендуется обращать внимание на количество жил. Чаще всего нулевой шине свойственно иметь наибольшее количество подключений, а вот фазы распределяются по отдельным квартирам.

Указанные обстоятельства можно отследить по раскладке защитных автоматов или электросчетчиков. Общий провод является нулем. При этом цвет проводов в данном случае не имеет определяющего значения, хотя, согласно нормативам, современные кабели также оснащаются цветной изоляцией.

Важно! Если здание оснащено заземлением, минимальное количество жил на входе составит не менее пяти. В таких случаях корпус электрощита обычно содержит зелено-желтый провод, а провод нуля используется для отвода тока от электроприборов, то есть замыкания цепи. Причем объединение указанных веток на стороне потребителя не допускается правилами безопасности.

Ниже представлено несколько правил, благодаря знанию которых будет легче понимать устройство электрощита в подъезде:

  1. Защитный автомат должен прерывать именно фазу. Изредка можно встретить модификации с двумя полюсами, однако их использование оправдано только для помещений, эксплуатация которых связана с высокой опасностью. Таким образом, по расположению провода можно уверенно говорить, что это фаза. После этого автомат можно отключить и сделать прозвон жилы на стороне потребителя. В результате определится положение фазы.
  2. Напряжение между нулем и фазой составляет чаще всего 220 В. На основании этого принципа можно определить жилу, которая передает на любую другую жилу разницу напряжения. При этом фазный разброс равен 380 В. Реальные значения могут быть больше на 8-10 %, поскольку российские сети пытаются отвечать европейским стандартам.
  3. Делаем замеры значений во всех жилах при помощи токовых клещей. Суммарное значение всех трех жил должно проходить обратно в электросеть по проводу нуля. Следует заметить, что заземление чаще всего не применяется очень интенсивно, а потому ток будет почти на нуле в любое время дня и ночи. Участок, где отмечается наибольшее значение, является проводом нуля.
  4. Заземлительная клемма распределительного электрощита расположена на видном месте. Исходя из этого, легко определить провод нуля в зданиях с NT-C-S. В других случаях необходим подвод заземления.

Дополнительная информация

Выше рассматривались ситуации, когда нет индикационной отвертки, но имеется мультиметр или токовые клещи. Предполагалось, что до входа в помещение есть земля, фаза и нуль, а помещение со стороны потребителя прозванивается. В случае с тремя жилами метод еще проще, так как между фазой и любым проводом разница потенциалов равна 220 В. При этом нужно заметить, что способ не подойдет в других ситуациях, к примеру, когда имеется нулевая разница межфазного напряжения. В указанном случае тестер будет бесполезен.

Есть и другая методика проверки, применение которой в промышленных условиях, однако, запрещено. Понадобится лампа в патроне с парой оголенных проводов. С помощью лампы определяется фаза — любую жилу можно замкнуть на заземление. Использование с этой целью водопроводных, канализационных или газовых коммуникаций запрещено. Можно использовать кабельную антенну, оплетка которой, согласно нормативам, должна быть заземлена, а это означает, что найти фазу можно будет с помощью тестера (или, как говорилось выше, можно использовать лампу в патроне).

Также можно использовать пожарные лестницы или металлические громоотводные шины. Необходимо зачистить сталь до появления блеска, а затем прозвонить фазу на зачищенном участке. Следует сказать, что далеко не всякая пожарная лестница имеет заземление в отличие от громоотводной шины. При обнаружении такого дефекта рекомендуется обращаться с жалобами на нарушение технологии защитного зануления в управляющие или государственные организации.

Индикационные отвертки

Если отсутствует определенность с цветами изоляции, можно использовать обычную индикационную отвертку. В инструкции к этому приспособления указывается, что с помощью щупа можно определить землю. Однако таким образом находится не только земля, но и любой длинный проводник, в том числе прерванная возле пробки фаза, провод нуля. В результате далеко не всякая индикационная отвертка позволит правильно найти землю.

Необходимо учитывать следующие обстоятельства:

  1. С помощью активной индикационной отвертки можно найти длинный проводник методом отправки к нему сигнала и получения отклика на этот сигнал.
  2. В случае некачественных контактов волна быстро сходит на нет. Таким образом, индикатор может определить землю даже на разорванной фазе возле пробок.
  3. Чтобы найти землю, необходимо дотронуться пальцем до контактной площадки. В данном случае речь идет об активной отвертке. В случае же с пассивным индикатором условие обратное — не должно быть никаких физических контактов с указанной областью.

Современные модели индикационных отверток позволяют проверить наличие тока в проводах даже дистанционно. Для этого в них предусмотрена специальная функция. Причем данная функция подразделяется еще на два режима: повышенная чувствительность и пониженная. С помощью такой отвертки легко определить неиспользуемую часть проводов.

Обратите внимание! Не так уж редко встречаются ситуации, когда в здание по ошибке заводятся две фазы, а не одна, или же происходит другая путаница. Применять отвертку при работе с подобной проводкой нужно крайне осторожно.

Измерить сопротивление проводки не самая простая задача. Намного проще определить фазу. Тем более что в такой ситуации отсутствует риск порчи тестера, что не редкость при попытках замеров сопротивления жилы, находящейся под напряжением. Еще один фактор: низкоомные цепочки часто устанавливаются с ошибкой. К примеру, большая часть тестеров при непосредственном замыкании щупов не показывает нуль. Однако даже если поиск земли при помощи активной индикационной отвертки не дал результата, то некачественные контакты найдутся наверняка.

Обратите внимание! Если пробки отключены, а отвертка светится с пальцем на контактной площадке, скорее всего, нужно менять распредкоробку, а скрутки понадобится заменить, например, на колпачки.

Советы по маркировке проводов

Если ремонты проводятся часто, а провода не имеют маркировки, рекомендуется пометить их принтерной краской. Для фазы можно выбрать красный цвет, для нуля — синий, для земли — желтый. Принтерная краска хорошо держится и плохо смывается. Также по своему усмотрению можно использовать и черный цвет.

Пометив провода, задачу поиска нуля, фазы и земли решите раз и навсегда. Если же маркировку нужно будет удалить, для этой цели лучше всего подойдет концентрат уксусной кислоты.

В щитке, на линии электроплиты есть УЗО или его аналог в виде дифференциального автомата(узо с встроенной защитой от сверхтока), или может быть еть общее узо на вводе? 1. Пригласить электрика, имеющего измерительное оборудование(вольтметр, мультиметр) — пусть он голову ломает.

По-хорошему — нечего вам с проводами копаться, не имея допуска и необходимых знаний и оборудования. Либо сервис инженера для подключения вашей электроплиты.

Ориентировочно, предполагается что схема питания квартиры трехпроводная. Защитный проводник идет от ввода, либо зануление выполенно в щите. Для более качественного и полного ответа надо знать схему питания вашей квартиры.

2. Незконные методы(по отношению к вам), но могущие быть примененными электриками:

Чисто прозвонка линий —

2.1. Отключить вводный рубильник. 2.1.1. Отключить все электроприборы от сети. 2.1.1.1 Взять мультиметр, перевести его в режим измерения сопротивления. Взять длинный провод, один конец которого соединить с любым проводником, не являющимся фазой, а другим концов к щупу мультиметра. 2.1.1.2 Отсоединить в щитке все проводники от шины зануления. 2.1.1.3. Вторым щупом попытаться найти второй конец провода на кухне, среди отключенных. 2.1.1.4. Если не ищется, то перевесить длинный провод на другой, не фазный, проводник на кухне.

Использование особенностей работы узо —

2.2. Взять торшер или лампу. 2.2.1. Соединить одним выводом вилки с фазным проводником, торчащим из стены. 2.2.2. Вторым выводом вилки попеременно коснуться двух не фазных проводников — при контакте с нулевым рабочим, лампа будет гореть, а при контакте с нулевым защитным, у вас вышибет узо этой линии, или общее.

Использование прозвонки, без монтажных операций в щите, если в квартире выполнена трехпроводная однофазная проводка(в смысле все бытовые розетки имеют защитный контакт) —

2.3. Выключить вводный автомат. 2.3.1. Один щуп омметра присоединить к защитному контакту любой розетки. 2.3.2. Вторым щупом найти среди двух не фазных проводов, торчащих из стены на кухне, провод, при контакте с которым омметр покажет минимальное сопротивление.

Советы, реальные:

3. Никогда не пользуйся пробником — он не дает точной картины, может показывать наводку с фазного проводника, на неподключенном проводе. Все показания пробника необходимо проверять тестером или специальными двухщуповыми индикаторами.

4. Вызови электрика.

Давайте попробуем разобраться, как в домашних условиях, не обладая сложными специализированными измерительными инструментами и электронными приборами, самому определить где фаза, где ноль, а где земля в проводке.

Из всех известных методов, наиболее простого определения фазы и ноля, мы отобрали самые, по нашему мнению, доступные в реализации и в то же время безопасные. По этой причине, в статье вы не увидите советов — как найти фазу с помощью картошки или же призывов к кратковременному касанию проводов различными частями тела.

На самом деле, вариантов определения фазы, нуля или заземления, например, в розетке, без применения специализированного оборудования не так уж и много, и порой, в зависимости от ваших целей и задач, бывает достаточно лишь знать стандарт цветовой маркировки электрических проводов принятый у нас, чтоб их различить.

Маркировка проводов по цвету

Действительно, самый простой способ определить фазу, ноль и землю у электрического провода, это посмотреть цветовую маркировку и сравнить с принятым стандартом. Каждая жила в современных проводах, применяемых в электропроводке, а также электрооборудовании имеет индивидуальную расцветку. Зная какому цвету жил какая соответствует функция (фаза, ноль или заземление), легко можно выполнять дальнейший монтаж.

Довольно часто, этого вполне достаточно, особенно в случаях, когда установка производится в новостройках или местах с довольно новой электропроводкой, сделанной профессиональными, компетентными электромонтажниками по всем современным правилам и стандартам.

В нашей стране, как и в Европе в целом, действует

стандарт IEC 60446 2004 года

, который жестко регламентирует цветовую маркировку электрических проводов.

Согласно этому стандарту для квартирной электросети:

Рабочий ноль (нейтраль или ноль) — Синий провод или сине-белый

Защитный ноль (земля или заземление) — желто-зеленый провод

Фаза – Все остальные цвета среди которых – черный, белый, коричневый, красный и т. д.

Теперь, зная стандарт цветовой маркировки проводов, вы сможете без труда определять, какой провод какую функцию выполняет. Это касается большинства случаев, исключение могут составлять провода, подходящие к выключателям, переключателям и т.д., в силу принципиально иной схемы работы этого электрооборудования.

Если же вы не уверены в точном соответствии цветов жил проводов стандарту IEC 60446 2004, у вас старая проводка, вы не исключаете возможность ошибок или даже халатного отношения электромонтажников к своей работе, а может электриками проложены провода другого стандарта и соответственно иной цветовой маркировки, тогда переходим к практическому методу определения фазы и нуля (рабочего и защитного).

КАК САМОМУ ОПРЕДЕЛИТЬ ФАЗУ, НОЛЬ и ЗАЗЕМЛЕНИЕ У ПРОВОДОВ

Итак, начнем по порядку:

ОПРЕДЕЛЕНИЕ ФАЗЫ

Для большего удобства, сперва всегда лучше определять какой из имеющихся проводов фаза. О том, как найти фазу цифровым мультиметром мы уже писали, а как быть если его нет, читайте ниже.

ОПРЕДЕЛЕНИЕ ФАЗЫ ИНДИКАТОРНОЙ ОТВЕРТКОЙ

Самый простой способ обнаружения фазного провода – это поиск с помощью индикаторной отвертки. Этот простейший инструмент должен быть у любого домашнего мастера, занимающегося электрикой в квартире – будь то полный электромонтаж, простая замена ламп или установка светильников, розеток и выключателей.

Принцип работы индикаторной отвертки прост – при касании жалом отвертки проводника под напряжением и одновременном касании контакта, на задней стороне отвертки, пальцем руки — загорается индикаторная лампа в корпусе инструмента, которая и сигнализирует о наличии напряжения. Таким образом легко можно узнать, какой провод фазный.

Принцип действия индикаторной отвертки прост — внутри индикаторной отвертки расположена лампа и сопротивление(резистор), при замыкании цепи (касании нами заднего контакта) лампа загорается. Сопротивление защищает нас от поражения электрическим током, оно снижает ток до минимального, безопасного уровня.

Этот вариант определения фазы своими силами, наиболее предпочтителен и мы рекомендуем пользоваться именно им, тем более что стоимость индикаторной отвертки более чем доступная. Главным недостатком этого способа, является вероятность ошибочного срабатывания, когда индикаторная отвертка, реагируя на наводки, определяет наличие напряжения там, где его нет.

ОПРЕДЕЛЕНИЕ ФАЗЫ, НУЛЯ И ЗАЗЕМЛЕНИЯ КОНТРОЛЬНОЙ ЛАМПОЙ

Еще один способ, которым можно определить фазный, нулевой и провод заземления в современной трехпроводной электрической сети, это использование контрольной лампы. Способ неоднозначный, но действенный, требующий особой осторожности.

Чтоб начать определение, в первую очередь необходимо собрать само устройство контрольной лампы. Самый простой способ использовать патрон, с вкрученной туда лампой, а в клеммах патрона закрепить провода со снятой на концах изоляцией. Если же под рукой нет электрического патрона или нет времени что-то мастерить, можно воспользоваться обычной настольной лампой с электрической вилкой.

Технология определения фазы, нули и земли с помощью контрольной лампы максимально проста – поочередно соединяя провода лампы к проводам требующим определения, каждый с каждым.

Определить фазу и ноль из двух проводов

В случае определения контрольной лампой фазного провода среди двух проводов вы лишь сможете узнать, есть фаза или нет, а какой именно из проводников фазный определить не удастся. Если при соединении проводов контрольной лампы к определяемым жилам она загорится, то значит один из проводов фазный, а второй скорее всего ноль. Если же не загорится, то скорее всего фазы среди них нет, либо нет нуля, чего тоже исключать нельзя.

Таким способом, скорее, удобнее проверять работоспособность проводки и правильность её монтажа. Определять фазу лучше индикаторной отверткой, а вот наличие нуля узнавать так.

Определить фазный провод в таком случае можно подключив один из концов, идущих от контрольной лампы, к заведомо известному нулю (например, к соответствующей клемме в электрощите), тогда при касании вторым концом к фазному проводнику, лампа загорится. Оставшийся провод соответственно ноль.

Найти фазу, ноль и заземление из трех проводов:

В такой трехпроводной системе часто возможно точно определить фазный, нулевой и заземляющий провод контрольной лампой. Соединяем контакты, идущие от контрольной лампы поочередно к жилам требующего определения кабеля.

Действуем методом исключения:

Находим положение, в котором лампа горит, это будет значить, что один из проводов фаза, а другой ноль.

После чего меняем положение одного из контактов контрольной лампы, далее возможны несколько вариантов:

— Если лампа не загорится (при наличии УЗО или дифференциального автомата защиты проверяемой линии они также могут сработать) значит оставшийся свободным провод – ФАЗА, а проверяемые НОЛЬ и ЗЕМЛЯ.

— Если после смены положения лампа ненадолго вспыхнет, при этом сразу сработает УЗО или диф. автомат (если они есть), значит оставшийся свободным провод – НОЛЬ, а проверяемые это ФАЗА и ЗАЗЕМЛЕНИЕ.

— Если линия не защищена устройством защитного отключения (УЗО) или дифференциальным автоматом, и свет будет гореть в двух положениях. В этом случае узнать какой провод рабочий ноль (нуль), а какой защитный (заземление), можно просто отключив в щите учета и распределения электроэнергии вводной кабель от клеммы заземления. После чего так же проверить контрольной лампой все жилы и, опять же методом исключения, в положении, когда лампа не горит опознать проводник заземления.

Как видите, в различных ситуациях, при разных схемах электропроводки, реализованных в квартире, способы и методы определения нуля, фазы и заземления меняются. Если вы столкнулись с ситуацией, не описанной в этой статье, обязательно пишите в комментариях к статье, мы постараемся вам помочь.

А если вы знаете еще, простые способы того, как в домашних условиях, без специализированного инструмента определить фазу, ноль и землю, пишите в комментариях. Статья будет обязательно дополнена. Главное требование, к методам определения, это простота, возможность обойтись в поиске лишь подручными, бытовыми средствами, имеющимися у многих.

Необходимость решения такой задачи может возникнуть при установке розетки, когда к ней подходят немаркированные проводники. В этом случае, перед монтажом розетки должно быть выполнено определение, какой из проводов за что отвечает. Рассмотрим, как определить фазу, ноль и землю индикаторной отверткой, мультиметром, а также подручными средствами.

Как использовать прибор?

Выше мы рассмотрели, как найти при помощи индикаторной отвёртки фазный провод, а вот различить ноль и землю при помощи такого инструмента не получится. Тогда давайте поучимся, как проверить жилы мультиметром.

Подготовительный этап выглядит точно так же, как и для работы с индикаторной отвёрткой. При отключенном напряжении зачистите концы жил и обязательно их разведите, чтобы не спровоцировать случайного прикосновения и возникновения короткого замыкания. Подайте напряжение, теперь вся дальнейшая работа будет с мультиметром:

  • Выберите на приборе измерительный предел переменного напряжения выше 220 В. Как правило, имеется отметка со значением 750 В на режиме «ACV», установите переключатель на это положение.
  • На приборе имеется три гнезда, куда вставляются измерительные щупы. Найдём среди них тот, который обозначен буквой «V» (то есть для измерения напряжения). Вставьте в него щуп.

Читать также: На сколько ампер бывают автоматы

  • Прикасайтесь щупом к зачищенным жилам и смотрите на экран прибора. Если вы видите небольшое значение напряжения (до 20 В), значит, вы касаетесь фазного провода. В случае, когда на экране нет никаких показаний, вы нашли ноль мультиметром.

Для определения «земли» зачистите небольшой участок на любом металлическом элементе домашних коммуникаций (это могут быть водопроводные или отопительные трубы, батареи).

В этом случае у нас будут задействованы два гнезда «СОМ» и «V», вставьте в них измерительные щупы. Прибор установите в режим «ACV», на значение 200 В.

У нас есть три провода, среди них нужно отыскать фазу, ноль и землю. Одним щупом коснитесь зачищенного места на трубе или батарее, вторым дотроньтесь до проводника. Если на экране высвечивается показание порядка 150-220 В, значит, вы нашли фазный провод. Для нулевого провода при аналогичных замерах показание колеблется в пределах 5-10 В, при прикосновении к «земле» на экране ничего не будет отображаться.

Наметьте каждую жилу маркером или изолентой, а чтобы удостовериться в правильности выполненных измерений, сделайте теперь замеры относительно друг друга.

Прикоснитесь двумя щупами к фазному и нулевому проводникам, на экране должна появиться цифра в пределах 220 В. Фаза с землёй дадут немного меньшее показание. А если прикоснуться к нулю и земле, то на экране будет значение от 1 до 10 В.

Использование индикаторной отвертки

Последовательность действий зависит от того, какая система проводки смонтирована в помещении. Рассмотрим правила определения фазного и нулевого провода в разных случаях.

Двухпроводная сеть

Этот вариант электропроводки встречается в старых домах. По современной терминологии данная система обозначается TN-C. Суть ее заключается в том, что нулевой рабочий провод, заземленный на питающей подстанции, совмещает роль защитного заземляющего (PEN). В системе IT также присутствует только фазный и рабочий нулевой проводник, но в обычных жилых и производственных помещениях она не применяется. В двухпроводной сети отдельный заземляющий провод просто отсутствует, то есть, имеется только фаза и ноль. Определить их очень просто: прикасаемся индикатором последовательно к каждой из токоведущих жил, фаза вызывает зажигание индикаторной лампы, как показано на фото ниже:

Система является устаревшей. На вилке любого современного электроприбора имеется три клеммы. Проводка должна выполняться трехпроводной, исключение — группа освещения.

Трехпроводная сеть

В этом варианте, в дом или квартиру заходит три провода. Такие сети имеют несколько разновидностей. В системе TN-S рабочий ноль и защитное заземление раздельно идут от питающей подстанции, где оба соединены с рабочим заземлением. При таком типе проводки, определение назначения проводов можно осуществить следующим образом:

  • в щитке или в распределительной коробке индикатором определить провод, на котором присутствует фаза;
  • два оставшихся – это рабочий и защитный ноль (земля), отсоединяем на щитке один провод из них;
  • если отсоединить рабочий ноль, все электрооборудование в квартире перестанет работать, значит, оставшийся проводник – это земля, или защитное заземление.

Теперь остается определить в розетке среди трех проводов, на котором из них фаза, ноль и земля. Если не удается найти по цвету изоляции, определение их функций может быть выполнено подручными средствами, без приборов. Для этого нужно взять патрон с вкрученной лампой и выведенными наружу проводами. Определение проводим следующим образом. Одним проводником от патрона прикасаемся к фазному проводу (фаза уже найдена с помощью индикатора), вторым поочередно прикасаемся к двум оставшимся. Если на щитке отключен рабочий ноль, лампа зажжется только при соединении с защитным заземлением, и наоборот.

На видео ниже наглядно показывается, как определить фазу, ноль и землю индикаторной отверткой:

Другой разновидностью системы TN является разводка TN-C-S. В этом случае нулевой провод расщепляется на рабочий ноль и защитное заземление на вводе в дом. Здесь, чтобы определить назначение проводников, можно применить последовательность действий, описанную для системы TN-S. Добавляется дополнительная возможность, обследовав место разделения PEN, определить, где рабочий и защитный ноль (земля) по сечению жилы в проводе.

В случае, если заземление выполнено по системе TT, объект (частный дом) имеет собственное заземляющее устройство, от которого выполнена разводка защитного заземления. В этих условиях, как правило, определить фазу, ноль и землю можно путем отслеживания заземляющего проводника по трассе его прокладки.

Определение мультиметром или тестером

Начнем с того, что определить фазу лучше всего с помощью отвертки, совмещенной с индикатором. Будем исходить из того, что если в хозяйстве есть мультиметр, индикатор найдется наверняка. В крайнем случае, можно сделать следующее. В некоторых случаях может помочь определение с помощью мультиметра напряжения между проводом и трубой отопления или водоснабжения. К сожалению, результат здесь не всегда предсказуем. Чаще всего, напряжение между фазой и системой отопления близко к 220 В, во всяком случае, оно должно быть выше, чем между тем же отоплением и нулем. Картина может измениться, например, если вороватый сосед использует трубы отопления как рабочее заземление.

В трехпроводных схемах мультиметр покажет рабочее напряжение между проводником, на который подана фаза и любым из двух других. Определение, какой ноль рабочий, а какой – земля, можно проводить по методике, изложенной выше, то есть, отсоединив на щитке один из приходящих нулей и воспользовавшись контрольной лампой.

Определение полярности мультиметром

Иногда случается, что в новом электрическом аппарате, который необходимо подключить, отсутствует маркировка полярности или необходимо перепаять проводку поврежденного устройства, а все провода одного цвета

В такой ситуации важно правильно определить полюса проводов или контактов

Но при наличии необходимых приборов возникает закономерный вопрос: как мультиметром определить плюс и минус электроприбора?

Для определения полярности мультиметр необходимо включить в режим замера постоянного напряжения до 20 В. Провод черного щупа подключается в гнездо с маркировкой СОМ (он соответствует отрицательному полюсу), а красный подключается в гнездо с маркером VΩmA (он, соответственно, является плюсом).

После этого щупы подсоединяются к проводам или контактам и прибор, полярность которого необходимо узнать, включается.

Если на дисплее мультиметра отображается значение без дополнительных знаков, то полюса определены правильно, контакт к которому подключен красный щуп – это плюс, а к которому подключен черный щуп будет соответствовать минусу.

В том случае если мультиметр показал значение напряжения со знаком минус – это будет означать, что щупы подключены к устройству неверно и красный щуп будет минусом, а черный – плюсом.

Если мультиметр, которым производится замер, аналоговый (со стрелкой и табло с градациями значений), при правильном подключении полюсов стрелка покажет действительное значение напряжения, а сели полюса перепутаны то стрелка будет отклоняться в противоположную сторону относительно нуля, то есть показывает отрицательное значение напряжения тока.

О чем еще важно знать?

Иногда определение назначения токоведущих жил может быть облегчено благодаря знанию их общепринятой цветовой маркировки:

  • Ноль может маркироваться латинской буквой N. Общепринятый цвет изоляции – голубой или синий. Другой вариант окраски изоляции – белая полоса на синем фоне.
  • Земля маркируется латиницей PE. В системе заземления, объединяющей функции защитного и рабочего нуля, обозначается PEN. Цвет применяемой изоляции – желтый, имеющий одну или две полосы ярко – зеленого оттенка.
  • Фаза может обозначаться латинской буквой L или маркироваться как фаза трехфазной электрической сети, то есть A, B или C. Цвет изоляции может быть произвольный, но не повторяющий тех, которыми обозначается земля (защитное заземление) или нулевой проводник. В большинстве случаев, это красный, коричневый или черный цвет.

Полезно знать и правила монтажа электропроводки. Это также может помочь определить, где фаза, ноль и земля. Фаза всегда должна приходить в распределительный щиток на автоматический выключатель или плавкий предохранитель. Нулевая жила может крепиться на шине специальной конструкции, которая имеет несколько клемм. В металлических щитках и клеммных ящиках старого типа, ноль или земля крепились под гайку болтом, приваренным к корпусу ящика. Эти правила могут облегчить определение функций приходящих проводников. Узнать больше о том, как определить фазу и ноль без приборов, вы можете из нашей отдельной статьи.

Теперь вы знаете, как определить фазу, ноль и землю мультиметром или же индикаторной отверткой. Надеемся, предоставленные рекомендации помогли вам решить вопрос самостоятельно!

Наверняка вы не знаете:

  • Способы определения потребляемой мощности электроприборов
  • Что такое чередование фаз
  • Как определить сечение кабеля по диаметру жилы

Способ 1 — визуальный

Самый простой способ определить, где фаза, а где ноль, это посмотреть на цвет изоляции проводов. Дело в том, что цвет каждого провода имеет свою маркировку. Таким образом, можно предполагать, что на коричневые или черные провода подаётся фаза, а на голубой — ноль. Провод жёлто-зелёного цвета, по международным стандартам, служит для того, чтобы подключить заземление.

Ниже на фото можно рассмотреть, какой из проводов относится к фазе, нулю и заземлению.

Как видно на рисунке, синий провод это всегда ноль, а жёлто-зелёный относится к заземлению. Фазный провод может быть различных цветов, но, чаще всего, он коричневый. Конечно же, определение фазы по цвету провода, не всегда 100% рабочий способ, но все же, он имеет место быть.

Если цвет провода определить не удалось, то, не отчаивайтесь, ниже будут приведены другие способы, как можно найти ноль и фазу без приборов.

Как определить фазу и ноль без приборов как найти мультиметром

В состав любого кабеля в обязательном порядке входит одна нулевая жила и одна либо несколько фазных.

От правильного определения функционального назначения жил кабеля зависит простота монтажа и эксплуатации системы электроснабжения, а также безопасность лиц, обслуживающих ее и производящих какие-либо электромонтажные работы.

Основные понятия

Давайте сперва разберемся, что такое ноль и фаза в электричестве.

Итак, фаза в электричестве – это проводник, по которому электрический ток движется в направлении энергопринимающего устройства. Ноль, в свою очередь, является проводником, по которому электрический ток движется в обратном направлении.

Современные требования, предъявляемые к безопасности организации электрических сетей, предполагают также наличие еще одного проводника в составе токоведущего кабеля, который будет выполнять защитную функцию. Заземляющий проводник – это элемент, преднамеренно соединенный с заземляющим контуром и предназначенный для того, чтобы уберечь человека от поражения электрическим током.

Неправильное определение, а также соединение нулевых и фазных жил токоведущего кабеля может привести к непредвиденным ситуациям – короткому замыканию, выходу из строя дорогостоящего оборудования и поражению человека электрическим током. По этой причине чрезвычайно важно уметь отличать фазный и нулевой проводники.

Как отличить фазу от нуля

Существует целый ряд способов – как профессиональных, так и не очень – для определения функционального назначения проводников, входящих в состав кабеля.

С применением мультиметра

Как мультиметром определить фазу и ноль

Просто и надежно определить, где ноль, а где фаза в электропроводке, можно при помощи мультиметра (тестера). Прежде всего, необходимо включить мультиметр в режим измерения переменного напряжения и выбираем подходящий предел измерения (выше напряжения в электрической сети). Далее вы можете избрать один из описанных ниже способов идентификации фазного проводника.

  1. Один из щупов мультиметра зажимается пальцами, другим необходимо коснуться той или иной жилы токоведущего кабеля. В случае соприкосновения щупа с фазой на дисплее мультиметра отобразится показание, приближенное к 220 В.
  2. Если вы ни в коем случае не желаете прикасаться к щупам мультиметра руками, то один из них, как и в предыдущем случае, скоммутируйте с идентифицируемым контактом, а другим дотроньтесь до оштукатуренной стены либо заведомо заземленной металлической поверхности.
  3. Как упоминалось выше, в современных системах электроснабжения предусмотрен также заземляющий проводник. Чтобы разобраться в назначении жил трехжильного либо многожильного кабеля следует попеременно касаться пар проводов щупами мультиметра. На его дисплее при контакте с фазой и нулем, а также с фазой и заземлением будет отображаться значение напряжения, близкое к 220 В (при этом фаза и заземление дают меньшее значение, нежели фаза и ноль). При одновременном касании щупами нулевого и заземляющего проводов, как и при касании двух фаз, на дисплее мультиметра будет «0».

Важно! При идентификации проводников по первому из вышеописанных методов обязательно убедитесь в том, что мультиметр включен в режим измерения напряжения, до того, как будете касаться пальцами одного из его щупов.

Как определить ноль и фазу индикаторной отверткой или отверткой для прозвонки сети

Со специальной индикаторной отверткой работать еще проще. Этот инструмент внешне очень похож на отвертку обыкновенную, но имеет относительно непростую внутреннюю конструкцию. Такую отвертку в народе также называют «контролькой».

 

Индикаторные отвертки

Важно! Не следует применять индикаторную отвертку для осуществления манипуляций над винтовыми соединениями (откручивания винтов и их закручивания). Такие действия являются наиболее распространенной причиной выхода из строя описываемого устройства.

Для того, чтобы определить функциональное назначение кабельных жил с ее помощью, нужно просто поочередно коснуться каждой из них жалом данного инструмента, нажимая при этом специальную кнопку в торцевой его части. Если в процессе указанных манипуляций светодиодная лампочка на отвертке загорится, значит, вы касаетесь фазного проводника, в противном случае – нулевого.

Не стоит путать индикаторную отвертку с отверткой, предназначенной для прозвонки сети. Последней также можно определить функционал той или иной жилы, однако нажимать на металлическую пластину в ее верхней части не нужно – иначе отвертка будет светиться в любом случае. Отвертка для прозвонки сети предусматривает в своей конструкции наличие батареек.

Визуальное определения фазы и нуля

При отсутствии вышеупомянутого инструментария вы можете задаться вопросом, как определить фазу и ноль без приборов. Одним из таких способов является их визуальная идентификация. Дело в том, что в соответствии с требованиями к монтажу электропроводки изоляция каждой жилы кабеля должна быть окрашена в свой собственный цвет.

При этом если с заземлением и нулем все понятно – они должны иметь желто-зеленую (желтую, зеленую) и синюю (голубую) окраску соответственно, то изоляционный слой фазного провода может быть выполнен в одном из следующих цветов: коричневый, черный, серый, а также красный, фиолетовый, розовый, белый, оранжевый, бирюзовый, — в зависимости от действующих на момент прокладки кабельной трассы нормативов.

По цвету проводки

Помимо цветовой, имеет место и буквенно-цифровая маркировка кабельных жил. В соответствии с ней ноль, фаза и земля обозначаются соответственно буквами N (neutral), L (line), PE (protectearth).

Контрольная лампочка

Еще один способ решения вопроса, как найти фазу и ноль без приборов, это самостоятельная сборка так называемой контрольной лампочки. Для ее изготовления потребуется обыкновенная лампа накаливания, подходящий к ней патрон, а также два отрезка медного провода (примерно по 50 сантиметров длиной).

Лампочка вкручивается в патрон, а проводники подключаются к его контактам. Другой конец одного из проводников необходимо закрепить на зачищенном до металлического блеска радиаторе системы отопления (либо на иной заведомо заземленной поверхности), а другим концом второго следует попеременно касаться проводников неопределенного функционала. При этом во время контакта с фазным проводом лампочка должна начать светиться.

Важно! В случае планирования систематического использования контрольной лампочки целесообразно ее саму поместить в защитный кожух, а к концам подсоединенных к патрону проводников прикрепить щупы (как у мультиметра).

Контрольной лампочкой

Контрольная картофелина

Название данного подраздела звучит весьма абсурдно, но тем не менее можно определить функциональное назначение токоведущих жил электрического кабеля и при помощи обыкновенной картофелины. Как и в вышеописанном методе с использованием самодельной контрольной лампочки, нам понадобятся два пятидесятисантиметровыхпровода.

Картофель разрезается пополам и в срез овоща на довольно приличном друг от друга расстоянии вставляются подготовленные проводники. Далее конец одного размещается на отопительной батарее(либо на иной заведомо заземленной поверхности), а конец другого соединяется с идентифицируемой жилой кабеля. Чтобы получить результат, придется подождать пять-десять минут. Если по прошествии указанного времени на срезе картофелины образовалось темное пятно, значит вы проверяли фазный проводник. Если изменений не произошло – нулевой.

Важно! Последние два из вышеописанных методов идентификации функционала токоведущих проводников кабеля системы электроснабжения вы используете на свой страх и риск. При работе с такого рода конструкциями следует соблюдать предельную осторожность, чтобы не получить поражение электрическим током.

Разобравшись с тем, что такое фаза и ноль в электричестве, а также найдя для себя сразу несколько ответов на вопрос, как найти эти самые фазу и ноль в проводке, вы можете выбрать любой подходящий для вас способ. Тем не менее, для того, чтобы проверить фазу и ноль, рекомендуем вам такие методы, как проверка тестером либо специализированной отверткой.

Как найти фазу и ноль? несколько способов определения фазного и нулевого провода » сайт для электриков

Способ №3 – Картошка в помощь!

Забавная, но все же эффективная идея, которая позволяет определить фазу и ноль без индикатора, мультиметра либо другого тестера. Все, что Вам нужно – картошина, 2 провода по 50 см и резистор на 1 МОм. Найти напряжение можно по методике, описанной выше. Конец первого проводника подключается к трубе, второй конец вставляется в срез картошки, как показано на фото. Что касается второго провода, один его конец нужно вставить в тот же срез, на максимально возможном расстоянии от уже вставленной жилы, а вторым Вы будете щупать те выводы, на которых Вам нужно найти фазу и ноль без приборов. Определение происходит следующим образом:

  • Если на срезе образовалось небольшое потемнение – это фазный проводник;
  • Никакой реакции не произошло – Вы «нащупали» ноль.

Следует сразу же отметить, что в данном случае определение должно происходить с небольшой выдержкой времени при контакте жилы со срезом картошки. Вы должны дотронуться проводом к картошине и подождать около 5-10 минут, после чего будет виден результат!

Наглядный видео урок по определению полярности без приборов своими руками

По похожей методике можно определить полярность контактов в цепи постоянного тока. Для этого два провода опускаются в чашку с водой и если возле одного из них начинают образовываться пузыри, как показано на фото ниже, значит, это минус и, соответственно, вторая жила – плюс.

Цифровой мультиметр очень полезная вещь в быту. С помощью тестера просто определить, какой из проводов фаза, ноль, а какой заземление.

Любая электросеть, как бытовая, так и промышленная может быть с постоянным током или с переменным. При постоянной подаче электронапряжения электроны перемещаются в одном направлении, при переменной подаче это направление постоянно меняется.

Переменная сеть в свою очередь состоит из двух частей – рабочей и пустой фазы. На рабочую, которую называют в электричестве так и называют — «фазой», подаётся рабочее электронапряжение, а на пустую, которая получила название «ноль» — нет. Она нужна для создания замкнутой сети для работы и подключения электроприборов, а также для заземления сети.

Домашняя электропроводка: находим ноль и фазу

Установить в домашних условиях, где какой провод находится, можно разными способами. Мы разберем только самые распространенные и доступные практически любому человеку: с использованием обычной электрической лампочки, индикаторной отвертки и тестера (мультиметра).

Про цветовую маркировку фазных, нулевых и заземляющих проводов на видео:

Проверка с помощью электролампы

Перед тем, как приступить к такой проверке, нужно собрать с использованием лампочки устройство для проверки. Для этого ее следует вкрутить в подходящий по диаметру патрон, после чего закрепить на клемме провода, сняв изоляцию с их концов стриппером или обычным ножом. Затем проводники лампы нужно поочередно прикладывать к тестируемым жилам. Когда лампа загорится, это будет означать, что вы нашли фазный провод. Если проверяется кабель на две жилы, уже понятно, что вторая будет нулевой.

Проверка индикаторной отверткой

Хорошим помощником в работе, связанной с электрическим монтажом, является индикаторная отвертка. В основе работы этого недорогого инструмента лежит принцип протекания сквозь корпус индикатора емкостного тока. В ее состав входят следующие основные элементы:

  • Металлический наконечник, имеющий форму плоской отвертки, который прикладывается к проводам для проверки.
  • Неоновая лампочка, загорающаяся при прохождении сквозь нее тока и сигнализирующая таким образом о фазовом потенциале.
  • Резистор для ограничения величины электрического тока, который защищает устройство от сгорания под воздействием мощного потока электронов.
  • Контактная площадка, позволяющая при прикосновении к ней создать цепь.

Если вы проверяете наличие напряжения на проводе с помощью этого прибора при дневном свете, то придется приглядываться в ходе работы более внимательно, так как свечение сигнальной лампы будет плохо заметно.

При касании жалом отвертки фазного контакта сигнализатор загорается. При этом ни на защитном нуле, ни на заземлении светиться он не должен, в противном случае можно сделать вывод, что в схеме подключения имеются неполадки.

Пользуясь этим индикатором, будьте внимательны, чтобы нечаянно не коснуться рукой провода под напряжением.

Про определение фазы наглядно на видео:

Проверка мультиметром

Для определения фазы с помощью домашнего тестера прибор нужно поставить в режим вольтметра и измерить попарно величину напряжения между контактами. Между фазой и любым другим проводом этот показатель должен составлять 220 В, а прикладывание щупов к заземлению и защитному нулю должно показывать отсутствие напряжения.

Как отличить друг от друга фазу и ноль?

Для того чтобы отличить «фазу» от других проводов можно воспользоваться таким инструментом, как индикаторная отвёртка.

Если дотронуться до металлической части провода, жалом этой отвёртки при этом, придерживая противоположный торец указательным пальцем то индикатор, будет светиться при наличии фазного провода. Также можно определить «фазу» с помощью мультиметра.

Для этого необходимо включить прибор в режим измерения переменного тока.

Выставить максимально возможное напряжение на приборе. Минусовой щуп необходимо подсоединить к какому-нибудь заземлённому предмету, например, к радиатору отопления, а другой попеременно подключать к проводникам.

Когда прибор покажет напряжение, которое примерно равно 220 В. то проводник, к которому вы подключились и есть фазный провод.

Как определить «фазу» и «ноль» без измерительных приборов.

Для того чтобы обнаружить фазу можно использовать проверенный временем, очень простой и недорогой способ.

С помощью обыкновенного патрона с лампой накаливания несложно определить пару «ноль» — «фаза». Нужно взять патрон и два провода, которые отходят от него попеременно подсоединять к проводам с предполагаемыми фазным и нулевым проводами.

Когда же лампочка загорится это будет означать что один из подключённых проводов является фазным. Теперь останется узнать какой именно. Очень просто это сделать если в электрической сети включена система УЗО. В этом случае если подключить патрон с лампой одним концом к третьему проводу, который является в данном случае заземлением, а другой попеременно к другим проводникам.

В момент, когда произойдёт автоматическое отключение электричества, будет означать то, что второй провод, к которому вы подсоединили щуп мультиметра, является «фазой». Соответственно третий проводник будет «ноль».

Если нет УЗО то после определения пары «фаза» — «ноль», один провод следует подключить к заземлению, а второй будет слегка искрить при соприкосновении с «фазой».

Заблуждения, которые могут возникнуть при определения фазного провода.

Это не совсем заблуждения, просто, если следовать этому способу определения фазы можно неправильно сделать вывод о том, где именно она находится.

Способ определения фазы по цвету провода

Если рабочие, которые занимались монтажом проводки сделали всё правильно то фазный провод должен быть чёрного или коричневого цвета.

Но полностью полагаться на такой способ определения фазы нельзя, т. к. не исключено, что при подключении, провода просто перепутали. И вместо фазного провода чёрного цвета там будет «земля» или «ноль».

В заключении стоит отметить, что заниматься самостоятельными электромонтажными работами стоит только в том случае если вы очень хорошо разбираетесь в том, что делаете, в противном случае стоит обратиться к специалистам, которые выполнят работы по монтажу проводки, качественно и в срок.

О чем еще важно знать?

Иногда определение назначения токоведущих жил может быть облегчено благодаря знанию их общепринятой цветовой маркировки:

  • Ноль может маркироваться латинской буквой N. Общепринятый цвет изоляции – голубой или синий. Другой вариант окраски изоляции – белая полоса на синем фоне.
  • Земля маркируется латиницей PE. В системе заземления, объединяющей функции защитного и рабочего нуля, обозначается PEN. Цвет применяемой изоляции – желтый, имеющий одну или две полосы ярко – зеленого оттенка.
  • Фаза может обозначаться латинской буквой L или маркироваться как фаза трехфазной электрической сети, то есть A, B или C. Цвет изоляции может быть произвольный, но не повторяющий тех, которыми обозначается земля (защитное заземление) или нулевой проводник. В большинстве случаев, это красный, коричневый или черный цвет.

Полезно знать и правила монтажа электропроводки. Это также может помочь определить, где фаза, ноль и земля. Фаза всегда должна приходить в распределительный щиток на автоматический выключатель или плавкий предохранитель. Нулевая жила может крепиться на шине специальной конструкции, которая имеет несколько клемм. В металлических щитках и клеммных ящиках старого типа, ноль или земля крепились под гайку болтом, приваренным к корпусу ящика. Эти правила могут облегчить определение функций приходящих проводников. Узнать больше о том, как определить фазу и ноль без приборов, вы можете из нашей отдельной статьи.

Теперь вы знаете, как определить фазу, ноль и землю мультиметром или же индикаторной отверткой. Надеемся, предоставленные рекомендации помогли вам решить вопрос самостоятельно!

Наверняка вы не знаете:

  • Способы определения потребляемой мощности электроприборов
  • Что такое чередование фаз
  • Как определить сечение кабеля по диаметру жилы

Как определить ноль и фазу? Самые быстрые способы

Часто при монтаже бытового электрооборудования мастеру важно знать, где находится «фаза». Такая необходимость возникает в тех случаях когда, например, требуется установить выключатель или подключить чувствительные к правильной фазировки электротехнические устройства

Если выключатель света подключён правильно, то при положении «выкл» будет обесточен участок проводки который ведёт к патрону и можно абсолютно спокойно проводить монтажные работы в этом месте, например замену лампочки, не опасаясь удара электрическим током.

Определить наличие или отсутствие электрического тока в цепи «на глаз» не представляется возможным, поэтому стоит приобрести специальные приборы и инструменты.

  • Индикаторная отвёртка.
  • Тестер или мультиметр.
  • Пассатижи.

Цена их, как правило, не велика. При выборе стоит отдать предпочтение только тем моделям, которые имеют надёжную изоляцию.

Определение фазы, нуля и заземляющего провода

Если сеть трехпроводная, но выполнена проводом одного цвета, либо вы не уверены в правильности их подключения, необходимо определять назначение проводников перед установкой каждого элемента сети.

  1. Определите описанным выше способом фазный провод с помощью индикаторной отвертки и отметьте его маркером.
  2. Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
  3. Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
  4. Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй – поочередно к двум другим. Лампа загорится при касании нулевого проводника.

Если все указанные мероприятия не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут вызвонку всех цепей. Не забывайте, что речь идет, прежде всего, о безопасности.

Для отыскания фазного провода или клеммы в розетке, вам понадобится один из приборов — индикаторная отвертка или мультиметр.

Правила работы с индикаторной отверткой

При отсутствии заземляющего провода решить задачу, как определить фазу будет очень легко. Достаточно воспользоваться обыкновенной индикаторной отверткой.

В этом случае действия происходят следующим образом:

  • Вначале обесточивается сеть путем отключения автомата. После этого на проводах острым ножом зачищается изоляция примерно на 1-1,5 см. Жилы нужно развести между собой, чтобы исключить случайное соприкосновение.
  • Включается автомат и подается напряжение. Концом индикаторного устройства нужно по очереди коснуться зачищенных мест проводников. При попадании на фазовый провод светодиод начнет светиться.
  • Обнаруженную фазу следует отметить, после чего вновь выключить автомат и сделать все запланированные подключения.
  • Подключая освещение, выключатель нужно соединять с фазным проводом. Именно он будет обеспечивать разрыв контакта, выключение и включение осветительных приборов.

При работе с трехпроводной сетью все проводники могут оказаться одинакового цвета, поэтому нужно обязательно установить назначение каждого из них. Процесс обнаружения происходит в следующем порядке:

  • Задача, как найти фазу решается теми же способами, что и в двухпроводной сети, после этого провод нужно отметить, отделив его от других проводов.
  • Ноль и землю определяют мультиметром в режиме измерения напряжения. Один щуп касается фазного провода, а другой – нулевого и заземляющего, по очереди. Меньшее напряжение показывает нулевой провод.
  • В случае одинакового напряжения измеряется сопротивление провода заземления. Оно должно быть не выше 4 Ом, а сопротивление нуля будет заметно выше.

Как определить фазу и ноль

Индикаторная отвертка

Что такое фаза, как определить фазу и ноль в электричестве

Цвет проводов фаза, ноль, земля

Схема подключения люстры с 3 лампами

Как определить сечение провода

Народный способ

Существует также народный способ идентификации нулевой и фазовой жилы. Несмотря на то, что некоторые специалисты относятся к нему довольно саркастически, этот метод работает достаточно эффективно.

Для определения понадобятся следующие элементы:

  • 2 многожильных провода, длиною около полуметра;
  • резистор номиналом на 1 МОм;
  • крупная картофелина.

Схема проверки напоминает идентификацию фазы на контрольной лампочке. Один конец провода крепят к металлу (зачастую используют отопительные или водопроводные трубы), другой плотно примыкают к разрезанной вдоль картофелине. Второй проводник также примыкают к овощу, а другой его конец соединяют с резистором и интересующей жилой.

Результат исследования придется подождать около 10 мин. При контакте с фазой мякоть овоща потемнеет, а в случае с нулем она останется неизмененной.

Проверить назначение проводника можно с помощью подручных средств. Но такие методы далеко не безопасны. Поэтому применять их нужно исключительно в крайних случаях. А лучше – обзавестись специальной индикаторной отверткой.

Назначение фазы и нуля

Чтобы полностью понять, что же именно подразумевает словосочетание “фаза и ноль в электрике” обратимся к аналогии. Электрический ток наиболее удобно сравнивать с водой, а токонесущие провода – с трубами.

Итак, представим следующее. У нас имеется одна труба, по которой горячая вода из резервуара поступает в большую кастрюлю. Также имеется вторая труба, которая по мере наполнения кастрюли сбрасывает излишек поступающей горячей воды обратно в резервуар. Теперь расшифровка: первая труба – фаза, кастрюля – полезная нагрузка, вторая труба – ноль. Ток по фазе приходит к нагрузке, а по нулевому проводу уходит обратно. Вот и все.

Теперь представим что произойдет, если из-за неисправности второй трубы горячая вода из кастрюли не будет уходить обратно в резервуар. В этом случае кастрюля очень быстро наполнится, а кипяток начнет с нее выливаться и может нас ошпарить.

Чтобы этого избежать, подводим к кастрюле третью трубу. Эта труба будет играть роль аварийного выхода для поступающей воды. Тогда, если вторая труба, отводящая воду отказывается работать, то излишек воды будет уходить через третью трубу. А третья труба идет в землю в специально выкопанный для этого котлован. Вот именно этот пример нам наглядно демонстрирует заземление.

Выше мы описали работу тока в однофазной сети, а также назначение фазы и нуля. В трехфазной происходит то же самое, только ток течет одновременно по трем проводам, а возвращается по четвертому.

Из примера становится понятно, что нельзя путать фазу с нулем, а также нельзя их соединять между собой. Для удобства все кабеля имеют свою цветовую маркировку, благодаря которой можно без всяких приборов определить принадлежность провода к фазе или нулю.

Внимание! Для пущей уверенности лучше перед началом работы все-таки прозвонить кабель, несмотря на цветовую маркировку. Очень часто в силу собственного незнания, неопытные электрики вообще не заморачиваются по поводу цвета проводов, и именно из-за этого существует опасность

Тут хорошо работает правило: доверяй, но проверяй!

По поводу цветовой маркировки. В электричестве приняты следующие обозначения: фазный провод коричневого, черного либо белого цвета, нулевой – голубого или синего, а провод заземления имеет желто-зеленый цвет.

Имейте ввиду, цвета не всегда могут быть такими: не так давно мне в трехфазной сети попались три красных провода (фаза), а нулевой провод был черного цвета.

Другие варианты проверки

Кроме перечисленных способов проверки фазы и нуля мультиметром, существует проверка с использованием контрольной ламы.
Способ довольно необычный и требует особой осторожности, но действенный. Для такого устройства необходим патрон, лампа, провод со срезанной на концах изоляцией

При использовании лампы удастся определить — есть фаза или нет, а какой именно фазный проводник — установить не получится. Если во время соединения проводки контрольной лампы с определяемыми жилам она засветится, тогда один из проводов фазный, а второй вероятнее ноль. Если не засветится, то фазы нет либо фазы, либо ноля, что тоже возможно

Для такого устройства необходим патрон, лампа, провод со срезанной на концах изоляцией. При использовании лампы удастся определить — есть фаза или нет, а какой именно фазный проводник — установить не получится. Если во время соединения проводки контрольной лампы с определяемыми жилам она засветится, тогда один из проводов фазный, а второй вероятнее ноль. Если не засветится, то фазы нет либо фазы, либо ноля, что тоже возможно.

Правильно определить фазу

Провода трехжильные

Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль – искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).

Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.

Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:

  1. В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая – земля (в противном случае – резервный провод питания напряжением 220 вольт).

  2. В двойном выключателе входные, выходные контакты разнесены по разную сторону. Одни находятся внизу, другие – наверху. Бок, где один-единственный контакт, станет фазой. Два других, соответственно, – нулевым проводом (рабочий плюс защитный). Подразумевается, разводка электрики квартиры сделана верно, в старых домах часть раскладки верна, другая выполнена наоборот.
  3. Для одинарного выключателя столь просто определить фазу не получится, контакты лежат на одном боку (хотя если есть исключение, нуль находится снизу, если выполнены условия, указанные выше). Допускается попросту прозвонить тестером патрон. Сразу говорим, это нарушение техники безопасности, и прибор может сломаться. Поэтому рекомендовать метод штатным не можем. Попробуйте измерить переменное напряжение: 230 вольт окажется лишь меж двумя точками: фаза выключателя и нуль патрона.

Фазы автомобиля

Электрические сети помогают многим объектам. Автомобиль считается относительно простым устройством. Основу снабжения составляют аккумулятор 12 вольт (реально – 14,5 В), генератор, уровень выходного напряжения которого регулируется сообразно вариациям оборотов. Напряжение после выпрямления пригодно подпитывать аккумулятор бортовой сети. Активация вала генератора ведется аккумулятором через специальное регулирующее устройство.

Трехфазная схема Ларионова

Выпрямляемые диодным мостом схемы Ларионова фазы питают авто. Популярная сегодня методика. Диодов присутствует шесть штук. Фазы сливаются механическим объединением после выпрямления единой магистралью. Обеспечивает максимальную мощность. Чувствительные компоненты авто (бортовой компьютер), дополнительно выпрямляют нестабильный ток. Чтобы продлить срок службы устройства.

Далее напряжение идет потребителям. Дворники, система индикации, освещение, зажигание. Бортовой компьютер может выдать закодированное сообщение: пора проверить датчик фаз. Элемент, работа которого использует эффект Холла, определяет положение распределительного вала двигателя. Подобными оснащают стиральные машины, оценивая скорость вращения. Авто определяет угловое положение вала. Датчик выдает импульсы, оценивая параметры которых компьютер получит нужную информацию.

Сенсорами авто напичкан. На две клеммы подается питание, третья формирует сигнал. Для проверки посмотрим схему: местонахождение узлов. Затем вплотную займемся прозвонкой. Имитируя условия формирования импульсов, пользуйтесь постоянным магнитом.

Вопрос, как определить фазу и ноль мультиметром на авто, отпадает. Опорой служит корпус автомобиля – масса. Понятное дело, генератор работает только при запущенном двигателе. Внутри квартиры ищем фазу и нуль, здесь масса задана априори. Можно вызванивать пробитую изоляцию (например, диодов выпрямительного моста). На авто проще простого измерить три фазы мультиметром. Действующее значение косвенно сказали. Порядка 20 вольт (учитывая потери неидеального моста).

Ошибки пользователей мультиметра

Китайские мультиметры настроены работать, даже если неправильно поставлены щупы. Сломать прибор случайно остерегайтесь. Избегайте способа: воткнуть черный провод в разъем измерения высоких токов, красный – на свое место. Попытаетесь измерить переменное напряжение высоковольтной линии – ремонт обеспечен. Нельзя применять неправильные диапазоны. Зарекитесь пытаться измерить переменное напряжение, применив шкалу постоянного. Проверка фаз станет последней в жизни мультиметра.

Прибор выводится из строя большим напряжением переменной полярности. Прочее (к примеру, неправильная полярность щупов) не так страшно.

Фаза и нуль в электрике

Электроэнергия появляется в результате упорядоченного движения заряженных частиц в проводах — электронов. Рождаются эти электроны в огромных электростанциях — таких как, например, Волгоградская ГРЭС (гидроэлектростанция), Нововоронежская АЭС (атомная электростанция) и многих других в нашей стране. Далее по очень толстым проводам эта энергия передается на промежуточные подстанции (как правило, такие стоят по периферии городов), а от них — до местных КТП (комплектная трансформаторная подстанция), которые есть почти в каждом дворе.

Уровни напряжения в таких сетях варьируются от 750000 вольт до 380 вольт в конечной КТП. И именно последние делают так, что в розетке обычного дома появляется 220В. Казалось бы, все просто, но! В розетке находятся два провода. И из уроков физики каждый знает, что в электрике есть «фаза» и «нуль». Эти два слова дают нам свет, тепло, воду, газ и многое другое, чем мы пользуемся каждый день. Теперь по-порядку.

Замер сопротивления «кольца фаза-нуль»

Для планового контроля и своевременного обнаружения и устранения нарушений безопасности в электросети обеспечения её нормальной работы, проводятся систематические замеры сопротивления кольца фаза-нуль, так как причинами поломок приборов освещения являются сетевые перегрузки и короткое замыкание.

Самый быстрый и эффективный способ выявления и предотвращения таких случаев – это замер сопротивления.

Не всем известно, что значит понятие «кольцо фаза-нуль». Оно означает контур, созданный соединением нулевого проводника, расположенного в заземленной нейтрали. Замыкание этой электрической сети образует кольцо фаза-нуль.

Сопротивление в контуре измеряется:

  1. Падением напряжения в выключенной цепи.
  2. Падением напряжения вследствие сопротивления растущей нагрузки.

По цвету провода

Узнать назначении жилы можно по цвету ее изоляции. Существует стандарт цветовой маркировки проводников. Нулевые провода принято обозначать голубым либо синим цветом. Заземление можно найти по зеленому цвету изоляционного материала. Впрочем, здесь допустимо использовать также желтую маркировку либо сочетание зеленого и желтого цветов.

С фазовым проводом дело обстоит труднее. Палитра оттенков его обозначения довольно широка:

  • белый;
  • черный;
  • красный;
  • коричневый;
  • серый;
  • оранжевый;
  • розовый;
  • фиолетовый цвет.

Встречаются фазы даже бирюзового цвета. В этом случае следует быть очень аккуратным, чтобы случайно не перепутать его с зеленым заземлением или с голубым нулем.

Строго говоря, определение по цвету изоляции – не самый надежный способ. Поэтому специалисты часто называют его условным. Во-первых, цветная маркировка встречается далеко не всегда, – например, в старых постройках использовали исключительно белый цвет изоляции для всех кабелей. Во-вторых, сами специалисты-электромонтажники часто пренебрегают установленными правилами маркировки, подсоединяя к системе те провода, которые оказались под рукой.

Как найти фазу и ноль

Выполняя работы по дому, часто возникает необходимость отремонтировать розетку или выключатель, перевесить люстру или установить новую розетку. Для подключения дополнительного электрооборудования необходимо уметь отличить фазу от нуля. Это довольно просто, если дом построен недавно, а электропроводку делали квалифицированные специалисты.

Простой способ определения

Для того чтобы самому найти назначение каждого проводника достаточно знать правила цветового обозначения электропроводов. Современные коттеджи должны иметь контур заземления. А это значит, что разводка выполнена трехпроводным кабелем, а цвета должны соответствовать:

  • Желто-зеленая оплетка обозначает подключение жилы к контуру заземления;
  • Синий или голубой цвет говорит, что это нулевая жила;
  • Фазный провод обозначают любым другим цветом. Он может быть красным, белым, коричневым, фиолетовым и т. п.

Таким образом, в идеале должна маркироваться вся электропроводка. Однако нет гарантии, что ее монтаж производил действительно специалист или на вводе не переключались электропровода.

ВАЖНО! Никогда не доверяйте цветовому обозначению кабеля, если не вы производили монтаж электропроводки.

Инструменты и материалы для выполнения работы

Прежде чем приступить к работе, необходимо приготовить инструменты и материалы, которые могут потребоваться во время ремонта:

  • индикаторная отвертка для определения фазы и нуля;
  • тестер или мультиметр, но ими нужно знать, как определить фазу ноль или землю;
  • плоскогубцы и кусачки — бокарезы;
  • маркировочный материал. Это могут быть цветной термоусадочный кембрик или маркировочные клипсы.

Всегда перед началом работы необходимо определить ноль и фазу.

Как с помощью индикаторной отвертки определить фазную жилу кабеля

Для того чтобы узнать, где ноль, а где фаза пользуются как индикаторной отверткой, так и мультиметром. Если ремонт производит не специалист, у которого нет соответствующих приборов, то для определения, где фазовый провод достаточно иметь индикатор.

Его можно купить в магазине за символическую плату. Методика определения очень проста, достаточно вставить жало индикаторной отвертки в розетку, а пальцем руки дотронуться до контакта на ее ручке. Если загорелся индикатор, то это и есть фазная жила.

Если проводка в доме двухжильная, то второй проводник будет нулевым. Сейчас уже не выполняют электропроводку в квартирах и домах двухжильным кабелем.

Если проводка старая, бывают случаи, когда индикатор определяет фазу в розетке на обоих контактах. Аналогичная ситуация может быть и при монтаже новой электропроводки.

В этом случае определение фазы будет затруднено, такая ситуация возникает, если нулевой проводник в щитке не подключен. Достаточно подсоединить его в щитке или распределительной коробке.

Все работы, связанные с монтажом, переключением или подключением проводов, следует производить при отключенных автоматах, т. е. проводка должна быть обесточена. Подробнее про индикаторы напряжения можно узнать тут.

Работа с мультиметром

Специалист, выполняющий работы должен иметь понятие, как проверить мультиметром напряжение в сети. Для этого достаточно вставить щупы в розетку, предел измерений устанавливают на напряжение больше измеряемого.

А измерения производиться на переменном напряжении. Показания должны соответствовать напряжению сети 220 вольт. Электрик, производящий монтаж электропроводки, обязан уметь пользоваться измерительными приборами.

Он должен иметь понятие, как с помощью мультиметра определить фазу или ноль. Специалист, который умеет работать с тестером, знает не только как можно определить фазу или ноль. Но и сможет проверить целостность электропроводки.

При монтаже осветительных приборов возникает необходимость в проверке исправности лампочек. Важно не только иметь знания, как проверить лампочку мультимтером, но и учитывать, что энергосберегающие и светодиодные лампы таким прибором проверить невозможно.

Определение напряжения без индикатора и мультиметра

Если у электрика нет под рукой мультиметра или измерительной отвертки, он должен понимать, как определить фазу с помощью контрольной лампы.

ВАЖНО! Пользоваться контрольной лампой могут только профессиональные электрики, знакомые с техникой безопасности и имеющие специальный допуск работы в электроустановках.

Что необходимо знать перед началом ремонта

Прежде чем приступать к ремонту электропроводки необходимо иметь ввиду:

  • некоторые специалисты утверждают, что на нулевом проводе отсутствует напряжение. Эти утверждения ошибочные;
  • в розетке не обязательно знать, где фазный контакт, а где нулевой, что в корне неправильно. Существует оборудование, которое при подключении требует строгого соблюдения полярности;
  • в целях соблюдения техники безопасности, следует понимать, как правильно подключить выключатель света, что подключается к светильнику — ноль или фаза.

Трехпроводная электропроводка

Если электропроводка выполнена трехпроводным кабелем, то у электрика не должно возникнуть затруднений, как определить заземление. Согласно нормам желто-зеленый провод всегда подсоединяют к контуру заземления.

Иногда проводку выполняют отдельными проводами без учета цветового обозначения. Используют провода, какие есть под рукой. В этом случае необходимо воспользоваться тестером или мультиметром.

Прежде всего, определяют, на какой провод подводится фаза. Для этого проще всего воспользоваться индикаторной отверткой. Применяя следующий алгоритм проверки можно узнать назначение двух других проводов.

Измеряя напряжение на жилах кабеля, можно понять, где земля. Между фазной и нулевой жилами  напряжение всегда будет выше, чем между фазной и землей.

Данная методика применима только в коттеджах или индивидуальных домах. Где имеется отдельный контур заземления. В многоквартирных домах применяют схему с глухо заземленной нейтралью. В этом случае показания прибора будут одинаковыми.

Существует еще один способ как определить провод заземления. Он справедлив только при условии, если подводящие в дом провода промаркированы.

Для того чтобы знать как определить где фаза, а где ноль достаточно прозвонить прибором все провода и таким образом довольно легко определяется назначение электропроводов.

Если у вас нет опыта или не знаете как с помощью индикаторной отвертки или с помощью мультиметра определить ноль или фазу в проводах. Следует обратиться за помощью к профессиональному электрику.

Перед началом самостоятельного ремонта электропроводки необходимо изучить технику безопасности при работе с электроустановками. Не стоит слушать советы как проверить фазу или ноль без приборов, даже если проверенный способ кажется достоверным.

Всегда нужно помнить, что электричество не определяется нашими органами чувств. У него нет звука, запаха или цвета. Поэтому люди, не имеющие опыта работы с электричеством, чаще всего получают травмы от электричества. Если вы не знаете, как определить фазу ноль и землю, как проверить напряжение в розетке, лучше доверить эти работы профессионалам.

Нулей функции — объяснение и примеры

Одна из наиболее распространенных проблем, с которыми мы сталкиваемся в наших базовых и продвинутых классах алгебры, — это поиск нулей определенных функций — сложность будет меняться по мере того, как мы продвигаемся и овладеваем мастерством решения нулей функций.

Судя по названию, нули функции — это значения x, где f (x) равно нулю.

Мы находим нули на уроках математики и в повседневной жизни. Например, если мы хотим узнать сумму, которую нам нужно продать, чтобы обеспечить безубыточность, мы в конечном итоге найдем нули уравнения, которое мы составили.Это лишь один из многих примеров проблем и моделей, в которых нам нужно найти нули f (x).

Благодаря обширному применению функций и их нулей мы должны научиться манипулировать различными выражениями и уравнениями, чтобы находить их нули. В этой статье мы узнаем:

  • Знайте, что представляет собой ноль функции.
  • Узнайте, как найти нули общих функций.
  • Определить нули функции по ее графику.

Давайте продолжим и начнем с понимания фундаментального определения нуля.

Что такое ноль функции?

Понимание того, что представляют собой нули, может помочь нам узнать, когда находить нули функций по их выражениям, и узнать, как найти их по графику функции. Как правило, нули функции — это значение x, когда сама функция становится равной нулю .

Нули функции могут иметь различную форму — если они возвращают значение y, равное 0, мы будем считать его нулем функции.

Нули определения функции

Нули функции — это значений x, когда f (x) равно 0 .Отсюда и его название. Это означает, что когда f (x) = 0, x является нулем функции. Когда график проходит через x = a, a называется нулем функции. Следовательно, (a, 0) является нулем функции .

  • Функция f (x) = x + 3 имеет ноль при x = -3, поскольку f (-3) = 0.
  • Функция g (x) = x 2 -4 имеет два нуля: x = -4 и x = 4. Это означает, что f (-4) = 0 и f (4) = 0.
  • График h (x) проходит через (-5, 0), поэтому x = -5 является нулем h (x) и h (-5) = 0.

Если дан график функции, ее действительные нули будут представлены отрезками x. Это имеет смысл, поскольку нули — это значения x, когда y или f (x) равно 0.

Х-точки пересечения функции: (x 1 , 0), (x 2 , 0), (x 3 , 0) и (x 4 , 0). Это означает, что для графика, показанного выше, его действительные нули равны {x 1 , x 2 , x 3 , x 4 } .

Однако есть случаи, когда график не проходит через точку пересечения по оси x.Это не означает, что функция не имеет нулей, но вместо этого нули функции могут иметь сложную форму.

Как найти нули функции

?

Нахождение нулей функции может быть столь же простым, как выделение x на одной стороне уравнения или многократное изменение выражения для нахождения всех нулей уравнения.

В общем случае для данной функции f (x), ее нули можно найти, установив функцию на ноль .Значения x, которые представляют заданное уравнение, являются нулями функции. Чтобы найти нули функции, найдите значения x, где f (x) = 0.

Как найти нули квадратичной функции?

Существует множество сложных уравнений, которые в конечном итоге можно свести к квадратным уравнениям. Вот почему на наших промежуточных классах алгебры мы будем уделять много времени изучению нулей квадратичных функций.

Чтобы найти нули квадратичной функции, мы приравниваем данную функцию к 0 и решаем значения x, которые удовлетворяют уравнению.Вот несколько важных напоминаний при нахождении нулей квадратичной функции:

  • Убедитесь, что квадратное уравнение имеет стандартную форму (ax 2 + bx + c = 0).
  • Фактор, когда это возможно, но не бойтесь использовать формулу корней квадратного уравнения.
  • Квадратичная функция может иметь не более двух нулей.

Мы уже знакомы с различными стратегиями нахождения нулей квадратичных функций в прошлом, поэтому вот руководство по выбору наилучшей стратегии:

Как найти нули полиномиальной функции?

Тот же процесс применяется к полиномиальным функциям — приравнивает полиномиальную функцию к 0 и находит значения x, которые удовлетворяют уравнению .Это руководство может помочь вам найти лучшую стратегию поиска нулей полиномиальных функций.

Нужен дополнительный обзор решения полиномиальных уравнений? Не беспокойтесь, перейдите по этой ссылке и освежите свои знания о решении полиномиальных уравнений.

Как найти нули рациональной функции?

Рациональные функции — это функции, у которых есть полиномиальное выражение как для числителя, так и для знаменателя. Применяя тот же принцип при нахождении нулей других функций, мы приравниваем рациональную функцию к 0.

Допустим, у нас есть рациональная функция f (x) с числителем p (x) и знаменателем q (x).

f (x) = p (x) / q (x)

Чтобы найти его ноль, приравняем рациональное выражение к нулю.

p (x) / q (x) = 0

Поскольку q (x) никогда не может быть равным нулю, мы упрощаем уравнение до p (x) = 0. Что это означает для всех рациональных функций?

При нахождении нуля рациональных функций мы приравниваем числитель к 0 и решаем относительно x .

Как найти нули других функций?

Как вы уже догадались, правило остается тем же для всех видов функций . Если задана уникальная функция, обязательно приравняйте ее выражение к 0, чтобы найти ее нули.

Вот еще несколько функций, с которыми вы, возможно, уже сталкивались в прошлом:

Тип функции Пример
Логарифмическая функция

f (x) = лог 2 2x

Узнайте, как решать логарифмические уравнения здесь.

Функция мощности

f (x) = 3x 1/3

Попрактикуйтесь здесь в решении уравнений, включающих степенные функции.

Экспоненциальная функция f (x) = 2 x + 1
Тригонометрическая функция f (x) = -3 sin x

Нули из любой из этих функций вернут значения x, где функция равна нулю. Получив график этих функций, мы можем найти их действительные нули, проверив точки пересечения по оси x на графике.

График выше показывает f (x) = -3 sin x от -3π до 3π. Все точки пересечения по оси x графика — это все нули функции между интервалами. Следовательно, нули между данными интервалами: {- 3 π, -2 π , π, 0, π, 2π, 3π}.

Готовы применить то, что мы только что узнали? Давайте попробуем решить некоторые из этих задач.

Пример 1

Функция f (x) имеет следующую таблицу значений, как показано ниже.

x -3-2–1 0 1 2 3
f (x) 64 9 0 1 0 9 64

На основании таблицы, каковы нули функции f (x)?

Решение

Всегда возвращайтесь к тому факту, что нули функций — это значения x, когда значение функции равно нулю.

Мы видим, что когда x = -1, y = 0, а когда x = 1, y = 0 тоже. Следовательно, нули f (x) равны -1 и 1.

Пример 2

График f (x) показан ниже. Используя этот график, каковы нули функции f (x)?

Решение

График f (x) проходит через ось x в точках (-4, 0), (-1, 0), (1, 0) и (3, 0). Это точки пересечения по оси x и, следовательно, действительные нули функции f (x).

Следовательно, нулей f (x) равны {-4, -1, 1, 3} .

Пример 3

Какие нули у g (x) = –x 3 — 3x 2 + x + 3?

Решение

Найдите нуль функции g (x), приравняв кубическое выражение к 0.

–x 3 — 3x 2 + x + 3 = 0

Перегруппируйте уравнение, чтобы мы могли сгруппировать и разложить выражение на множители.

–x 3 + x — 3x 2 + 3 = 0

-x (x 2 — 1) — 3 (x 2 — 1) = 0

(-x-3) (x 2 — 1) = 0

Примените свойство разности двух квадратов, a 2 — b 2 = (a — b), (a + b) ко второму коэффициенту.

(-x-3) (x — 1) (x + 1) = 0

Приравняйте каждый множитель к 0, чтобы найти x.

-x- 3 = 0

-x = 3

х = 3

х — 1 = 0

х = 1

х + 1 = 0

х = -1

Следовательно, нулей функции g (x) равны {-1, 1, 3}.

Пример 4

Какие нули у h (x) = –2x 4 — 2x 3 + 14x 2 + 2x — 12?

Решение

Приравняйте выражение h (x) к 0, чтобы найти его нули.Это приведет к полиномиальному уравнению.

–2x 4 — 2x 3 + 14x 2 + 2x — 12 = 0

Разделите обе части уравнения на -2, чтобы упростить уравнение.

x 4 + x 3 — 7x 2 — x + 6 = 0

Перечислите возможные рациональные множители выражения, используя теорему о рациональных нулях. В нашем случае p = 1 и q = 6.

Коэффициенты p ± 1
Коэффициенты q ± 1, ± 2, ± 3, ± 6
Возможные нули (p / q) ± 1/6, ± 1/3, ± 1/2, ± 1

Давайте продолжим и воспользуемся синтетическим делением, чтобы проверить, удовлетворяют ли x = 1 и x = -1 уравнению.

Это означает, что x = 1 является решением, а h (x) можно переписать как -2 (x — 1) (x 3 + 2x 2 -5x — 6). Используйте кубическое выражение в следующем синтетическом делении и посмотрите, является ли x = -1 также решением.

Следовательно, x = -1 — решение, а (x + 1) — множитель h (x). Следовательно, мы имеем h (x) = -2 (x — 1) (x + 1) (x 2 + x — 6).

Чтобы найти два оставшихся нуля h (x), приравняйте квадратное выражение к 0.

х 2 + х — 6 = 0

(х — 3) (х + 2) = 0

х + 2 = 0

х = -2

х — 3 = 0

х = 3

Следовательно, нулей h (x) равны {-2, -1, 1, 3}.

Пример 5

Какие нули у g (x) = (x 4 -10x 2 + 9) / (x 2 -4)?

Решение

Функция g (x) является рациональной функцией, поэтому, чтобы найти ее ноль, приравняйте числитель к 0.

x 4 -10x 2 + 9 = 0

Решите относительно x, которое удовлетворяет уравнению, чтобы найти нули g (x).

Пусть a = x 2 и сведем уравнение к квадратному уравнению.

(x 2 ) 2 — 10x 2 + 9 = 0

а 2 — 10а + 9 = 0

(а — 1) (а — 9) = 0

Приравняйте каждый коэффициент к 0, чтобы найти, затем замените x 2 обратно, чтобы найти возможные значения нулей g (x).

а — 1 = 0

х 2 — 1 = 0

х 2 = 1

х = ± 1

а — 9 = 0

х 2 — 9 = 0

х 2 = 9

х = ± 3

Следовательно, нули g (x) равны {-3, -1, 1, 3}.

Практические вопросы

1. Воспользуйтесь приведенными ниже таблицами и найдите нули для каждой соответствующей функции.

а.

x -3-2–1 0 1 2 3
f (x) -54-24 -8 0 6 16 36

г.

x -3-2–1 0 1 2 3
f (x) 80 15 0–1 0 15 80

г.

x -π / 2 -π / 3 -π / 6 0 π / 6 π / 3 π / 2
f (x) 0 √3 1 / √3 0 -1 / √3 -√3 0

2.Каковы нули следующих функций на графиках, показанных ниже?

а.

г.

г.

3. Найдите нули следующих функций.

а. f (x) = 2x 3 + 3x 2 — 3x — 2

г. g (x) = -2x 4 + 4x 3 + 18x 2 — 4x — 16

г. h (x) = (x 4 — 1) / (x 4 + 2x 3 — 9x 2 — 2x + 8)

Изображения / математические рисунки создаются с помощью GeoGebra.

Предыдущий урок | Главная страница | Следующий урок

Как найти нули функции

При работе с функциями иногда необходимо вычислить точки, в которых график функции пересекает ось x. Эти точки возникают, когда значение x равно нулю и являются нулями функции. В зависимости от типа функции, с которой вы работаете, и ее структуры, она может не иметь нулей или иметь несколько нулей. Независимо от того, сколько нулей имеет функция, вы можете вычислить все нули одинаково.

TL; DR (слишком долго; не читал)

Вычислите нули функции, установив функцию равной нулю, а затем решив ее. Многочлены могут иметь несколько решений для учета положительных и отрицательных результатов даже экспоненциальных функций.

Нули функции

Нули функции — это значения x, при которых полное уравнение равно нулю, поэтому вычислить их так же просто, как установить функцию равной нулю и решить относительно x.Чтобы увидеть базовый пример этого, рассмотрим функцию f (x) = x + 1. Если вы установите функцию равной нулю, тогда она будет выглядеть как 0 = x + 1, что дает вам x = -1 после вычитания 1 с обеих сторон. Это означает, что нуль функции равен -1, поскольку f (x) = (-1) + 1 дает результат f (x) = 0.

Хотя не для всех функций так легко вычислить нули для, тот же метод используется даже для более сложных функций.

Нули полиномиальной функции

Полиномиальные функции потенциально усложняют задачу.Проблема с полиномами заключается в том, что функции, содержащие переменные, возведенные в четную степень, потенциально могут иметь несколько нулей, поскольку как положительные, так и отрицательные числа дают положительные результаты при умножении на себя четное число раз. Это означает, что вам нужно вычислять нули как для положительных, так и для отрицательных возможностей, хотя вы все равно решаете, устанавливая функцию равной нулю.

Пример поможет понять это. Рассмотрим следующую функцию: f (x) = x 2 — 4.Чтобы найти нули этой функции, вы начинаете таким же образом и устанавливаете функцию равной нулю. Это дает вам 0 = x 2 — 4. Добавьте 4 с обеих сторон, чтобы изолировать переменную, что дает вам 4 = x 2 (или x 2 = 4, если вы предпочитаете писать в стандартной форме). Отсюда извлекаем квадратный корень из обеих частей, в результате получаем x = √4.

Проблема в том, что и 2, и -2 дают вам 4 в квадрате. Если вы укажете только один из них как ноль функции, вы проигнорируете законный ответ.Это означает, что вы должны указать оба нуля функции. В данном случае это x = 2 и x = -2. Однако не все полиномиальные функции имеют нули, которые так точно совпадают; более сложные полиномиальные функции могут дать существенно разные ответы.

Нахождение нулей функций — видео и стенограмма урока

Что такое ноль функции?

Ноль функции — это значение x , которое при подключении к функции дает нулевое значение y .Он имеет другие имена, такие как x -перехват и корень функции. Если задана как упорядоченная пара, она всегда будет иметь номер в качестве координаты x , за которым следует 0 для координаты y . Например, (4,0), (-2,0) и (0,0) могут быть нулями некоторой функции. Графически ноль функции — это пересечение оси x и графика функции. У разных типов функций разное количество нулей. График некоторых функций не пересекает ось x и поэтому не имеет нулей ( x -перехваты).Другие функции имеют одну или несколько. Найти эти нули — очень распространенная задача в алгебре.

Линейные и квадратичные функции

Линейные функции — это функции, которые можно представить в форме y = mx + b . Их графики всегда представляют собой линии. У линейных функций будет не более одного нуля. Нуль линейной функции можно найти, заменив y нулем и затем решив для x .

Квадратичные функции — это функции, которые можно представить в форме f ( x ) = ax 2 + bx + c , которая называется стандартной формой.Графически эти графики представляют собой параболы. Нули функции находятся там, где f ( x ) = 0. Эти функции могут иметь 0, 1 или 2 действительных нуля. Существует несколько методов нахождения нулей квадратичной функции, включая свойство извлечения квадратного корня, разложение на множители, завершение квадрата и квадратную формулу. Из всех этих методов квадратичная формула является наиболее полезной, потому что она работает для всех квадратичных функций. Для этого необходимо определить значения a , b и c , а затем подставить эти значения в формулу корней квадратного уравнения.

Другие функции

Давайте посмотрим на пару других функций, которые существуют.

1. Многочлены высшего порядка

Для многочленов со степенью больше 2 поиск нулей становится намного сложнее. Существует небольшая вероятность того, что многочлен будет множителем. Вы также можете использовать теорему о рациональном корне , которая гласит, что если многочлен имеет рациональный корень (ноль), он будет существовать при значении x , так что x является одним из множителей постоянного члена, деленного на один из факторов коэффициента к ведущему члену.Обратите внимание, что это была большая IF — многочлен часто не имел рационального корня. Для полиномов более высокого порядка самый простой способ найти ноль — это использование графического калькулятора.

2. Экспоненциальные и логарифмические функции

Экспоненциальные функции будут иметь форму ab x . Если экспоненциальная функция соответствует этой форме и значение b не равно нулю; тогда у функции не будет нуля. График никогда не пересечет ось x .Расположение точки перехвата y будет (0, a ). Логарифмические функции — это функции, обратные экспоненциальным функциям. Если экспоненциальная функция имеет точку пересечения y в точке (0, a ), то ее обратная логарифмическая функция будет иметь точку пересечения x (ноль) в точке ( a , 0).

3. Рациональные функции

Наконец, рациональные функции — это функции в форме f ( x ) = p ( x ) / q ( x ), где p ( x ) и q ( x ) являются полиномами, а q ( x ) не может равняться нулю.Чтобы найти нуль рациональной функции, найдите нули p ( x ).

Использование графического калькулятора

Графический калькулятор можно использовать для нахождения действительных корней функций. Чтобы найти нули функции с помощью графического калькулятора, выполните следующие действия. Приведенные здесь указания относятся к графическим калькуляторам марки TI-83 и 84. Другие бренды будут выполнять те же операции с аналогичными кнопками.

  1. Введите функцию в банк функций y = (верхняя левая кнопка).
  2. Постройте график функции с помощью кнопки «График» (верхняя правая кнопка).
  3. Используйте стандартное окно 10 на 10, выбрав кнопку «Масштаб», а затем z-стандарт.
  4. Если вы не видите пересечения графика и оси x , увеличивайте значения x -min и x -max, пока не увидите.
  5. Как только вы окажетесь в поле зрения, выберите 2-й расчетный.
  6. Выберите ноль.
  7. На экране появится надпись «Граница слева»; переместите курсор влево от нуля и нажмите «Ввод».’
  8. На экране появится надпись «Правая граница»; переместите курсор вправо от нуля и нажмите «Ввод».
  9. На экране появится надпись «Угадай»; нажмите «Enter».
  10. Ваше значение x — это ваш ноль или корень.

Графический калькулятор не найдет ненастоящие корни.

Резюме урока

Хорошо, давайте на минутку рассмотрим, что мы узнали о поиске нулей функции, при этом функция является процессом, который принимает один фрагмент данных (ввод), а затем выполняет определенные операции над входом и выдает выход.Как мы узнали, нахождение нуля функции означает нахождение точки ( a , 0), где пересекаются график функции и точка пересечения y . Чтобы найти значение a из точки ( a , 0), вам нужно установить функцию равной нулю, а затем решить для x . Это предполагает использование различных методов в зависимости от типа выполняемой вами функции. Мы рассмотрели следующие функции:

  • Линейные функции , которые могут быть представлены в форме y = mx + b .
  • Квадратичные функции , которые представляют собой функции, которые можно представить в форме f ( x ) = ax 2 + bx + c , которая называется стандартной формой.
  • Полиномы более высокого порядка, но с использованием теоремы о рациональном корне , которая гласит, что если многочлен имеет рациональный корень (ноль), то он будет существовать при значении x , так что x является одним из факторов постоянный член, деленный на один из множителей коэффициента к главному члену.
  • Экспоненциальные функции , который имеет форму ab x .
  • Логарифмические функции , которые являются функциями, обратными экспоненциальным функциям.
  • Рациональные функции , которые представляют собой функции в форме f ( x ) = p ( x ) / q ( x ), где p ( x ) и q ( x ) являются полиномами. и q ( x ) не может равняться нулю.

Мы также узнали, как найти нуль функции, построив график функции на графическом калькуляторе и затем выполнив поиск точки пересечения.

Действительный ноль функции

А настоящий ноль из функция это настоящий номер что делает значение функции равным нулю.

Настоящее число, р , является нулем функции ж , если ж ( р ) знак равно 0 .

Пример:

ж ( Икс ) знак равно Икс 2 — 3 Икс + 2

Находить Икс такой, что ж ( Икс ) знак равно 0 .

0 знак равно Икс 2 — 3 Икс + 2

0 знак равно ( Икс — 2 ) ( Икс — 1 )

Икс знак равно 2 или же Икс знак равно 1

ж ( 2 ) знак равно 2 2 — 3 ( 2 ) + 2 знак равно 0

ж ( 1 ) знак равно 1 2 — 3 ( 1 ) + 2 знак равно 0

С ж ( 2 ) знак равно 0 а также ж ( 1 ) знак равно 0 , оба 2 а также 1 находятся настоящие нули функции.

BioMath: квадратичные функции

В этом разделе мы узнаем, как найти корень (корень) квадратного уравнения. Корни также называются перехватами x или нулями. Квадратичная функция графически представлена ​​параболой с вершиной, расположенной в начале координат, ниже оси x или выше оси x . Следовательно, квадратичная функция может иметь один, два или нулевой корень.

Когда нас просят решить квадратное уравнение, нас действительно просят найти корни.Мы уже видели, что завершение квадрата — полезный метод решения квадратных уравнений. Этот метод можно использовать для вывода квадратной формулы, которая используется для решения квадратных уравнений. Фактически, корни функции

f ( x ) = ax 2 + bx + c

даются по формуле корней квадратного уравнения. Корни функции — это перехваты x . По определению, координата y точек, лежащих на оси x , равна нулю.Поэтому, чтобы найти корни квадратичной функции, мы устанавливаем f ( x ) = 0 и решаем уравнение:

ax 2 + bx + c = 0.

Мы можем сделать это, заполнив квадрат как,

Решая x и упрощая, получаем

Таким образом, корни квадратичной функции имеют вид,

Эта формула называется квадратной формулой , и ее вывод включен, чтобы вы могли видеть, откуда она взялась.Мы называем термин b 2 −4 ac дискриминантом . Дискриминант важен, потому что он говорит вам, сколько корней имеет квадратичная функция. В частности, если

1. b 2 −4 ac <0 Настоящих корней нет.

2. b 2 −4 ac = 0 Имеется один действительный корень.

3. b 2 −4 ac > 0 Есть два настоящих корня.

Рассмотрим каждый случай индивидуально.

Случай 1: Нет настоящих корней

Если дискриминант квадратичной функции меньше нуля, эта функция не имеет действительных корней, а парабола, которую она представляет, не пересекает ось x . Поскольку квадратная формула требует извлечения квадратного корня из дискриминанта, отрицательный дискриминант создает проблему, потому что квадратный корень из отрицательного числа не определяется по действительной прямой.Пример квадратичной функции без действительных корней дается формулой

.

f ( x ) = x 2 — 3 x + 4.

Обратите внимание, что дискриминант f ( x ) отрицательный,

b 2 −4 ac = (−3) 2 — 4 · 1 · 4 = 9 — 16 = −7.

Эта функция графически представлена ​​открывающейся вверх параболой, вершина которой лежит выше оси x.Таким образом, график никогда не может пересекать ось x и не имеет корней, как показано ниже,

Случай 2: Один настоящий корень

Если дискриминант квадратичной функции равен нулю, эта функция имеет ровно один действительный корень и пересекает ось x в одной точке. Чтобы увидеть это, мы устанавливаем b 2 −4 ac = 0 в формуле корней квадратного уравнения, чтобы получить,

Обратите внимание, что это координата x вершины параболы.Таким образом, парабола имеет ровно один действительный корень, когда вершина параболы лежит прямо на оси x . Простейший пример квадратичной функции, имеющей только один действительный корень, —

y = x 2 ,

, где действительный корень равен x = 0.

Другой пример квадратичной функции с одним действительным корнем:

f ( x ) = −4 x 2 + 12 x — 9.

Обратите внимание, что дискриминант f ( x ) равен нулю,

b 2 −4 ac = (12) 2 — 4 · −4 · −9 = 144 — 144 = 0.

Эта функция графически представлена ​​параболой, которая открывается вниз и имеет вершину (3/2, 0), лежащую на оси x . Таким образом, график пересекает ось x ровно в одной точке (т.е. имеет один корень), как показано ниже,

.

Случай 3: Два настоящих корня

Если дискриминант квадратичной функции больше нуля, эта функция имеет два действительных корня ( x -перехватывание).Извлечение квадратного корня из положительного действительного числа хорошо определено, и два корня равны,

Пример квадратичной функции с двумя действительными корнями:,

f ( x ) = 2 x 2 -11 x + 5.

Обратите внимание, что дискриминант f ( x ) больше нуля,

b 2 — 4 ac = (−11) 2 — 4 · 2 · 5 = 121 — 40 = 81.

Эта функция графически представлена ​​открывающейся вверх параболой, вершина которой лежит ниже оси x . Таким образом, график должен пересекать ось x в двух местах (т.е. иметь два корня), как показано ниже,

.

*****

В следующем разделе мы будем использовать квадратную формулу для решения квадратных уравнений.

Решение квадратных уравнений

Тест рациональных корней — ChiliMath

Тест рациональных корней (также известный как теорема рациональных нулей) позволяет нам найти все возможные рациональные корни многочлена.Предположим, что a является корнем многочлена P \ left (x \ right), что означает P \ left (a \ right) = 0. Другими словами, если мы подставим a в многочлен P \ left (x \ right) и получим ноль , 0, это означает, что входным значением является корень функции.

Но как нам найти возможный список рациональных корней? Вот вкратце, как это работает!


Ключевые идеи теста рациональных корней

Предположим, у нас есть некоторый многочлен P \ left (x \ right) с целыми коэффициентами и ненулевым постоянным членом:

Тогда любой рациональный корень из P \ left (x \ right) имеет вид:


Лучший способ изучить этот метод — взглянуть на несколько примеров!

Примеры того, как найти рациональные корни многочлена с помощью теста рациональных корней

Пример 1: Найдите рациональные корни многочлена, представленного ниже, с помощью теста рациональных корней.

Поиск рациональных корней (также известных как рациональные нули) многочлена аналогичен поиску рациональных пересечений по оси x.

  • Начните с определения постоянного члена a 0 и ведущего коэффициента a n .
  • Определите положительные и отрицательные факторы каждого.

Коэффициенты постоянного члена, {a_0} = 6 \, \,: \, \, \ pm \, \ left ({1,2,3,6} \ right)

Факторы главного члена, {a_n} = 3 \, \,: \, \, \ pm \, \ left ({1,3} \ right)

  • Запишите список возможных рациональных корней, найдя {p \ over q}, которое представляет собой просто отношение множителей постоянного члена и ведущего члена .Убедитесь, что вы отслеживаете возможные комбинации.

Вот как я это делаю . Я беру каждый числитель и делю его на все знаменатели. Затем я перехожу к следующему числителю и снова делю на все знаменатели. Я повторяю этот процесс, пока не перебью все числители. Это гарантирует, что мы охватили все возможные комбинации.

БОЛЬШОЕ ПРЕДУПРЕЖДЕНИЕ : После того, как вы запишите все комбинации, упростит дроби, чтобы избавиться от дубликатов.

Итак, это числа без дубликатов , которые мы проверим как возможные корни. У нас есть двенадцать (12) возможных кандидатов для проверки.

  • Помните, что если a является корнем многочлена P \ left (x \ right), то P \ left (a \ right) = 0. Теперь давайте проверим каждое число.
  • Следовательно, рациональные корни многочлена

Вот график многочлена, показывающий, где он пересекает или касается оси x.Фактически, это точки пересечения многочлена по оси x.


Пример 2: Найдите рациональные корни многочлена, приведенного ниже, с помощью теста рациональных корней.

Постоянный член равен a 0 = –2, а его возможные множители равны p = ± 1, ± 2. Для ведущего коэффициента мы имеем a n = 4, а его множители равны q. = ± 1, ± 2, ± 4.

  • Чтобы найти возможные корни многочлена, запишите в виде

Запишите все возможные

комбинации:

  • Упростите каждую дробь, чтобы исключить повторяющиеся или идентичные значения.Вот наш новый и улучшенный список!
  • Из-за того, что каждое число учитывается плюс или минус, у нас будет восемь (8) возможных кандидатов в качестве корней этого многочлена.

Если вы вставляете каждое значение в данный многочлен и получаете ноль, это означает, что подставленное вами число является корнем! Попробуйте это на бумаге, и вы убедитесь, что есть только три значения , удовлетворяющие этому условию.

Следовательно, рациональные корни многочлена

это

Графически это показывает, что многочлен касается или пересекает ось x в тех корнях, которые определены с помощью теста рациональных корней.

Нулей линейных функций

График линейной функции представляет собой прямую линию. Графически то место, где линия пересекает ось $ x $, называется нулем или корнем. Алгебраически ноль — это значение $ x $, при котором функция $ x $ равна $ 0 $. Линейные функции могут не иметь нуля, одного или бесконечного числа нулей. Если через любую точку оси $ y $ проходит горизонтальная линия, кроме нуля, нулей нет, так как линия никогда не пересечет ось $ x $. Если горизонтальная линия перекрывает ось $ x $ (проходит через ось $ y $ в нуле), то имеется бесконечно много нулей, поскольку прямая пересекает ось $ x $ несколько раз.Наконец, если линия вертикальная или имеет наклон, то будет только один ноль.

Нули можно наблюдать графически. $ X $ -перехват или ноль — это свойство многих функций. Поскольку $ x $ -перехват (ноль) — это точка, в которой функция пересекает ось $ x $, она будет иметь значение $ (x, 0) $, где $ x $ — ноль.

Все линии со значением наклона будут иметь один ноль. Чтобы найти нуль линейной функции, просто найдите точку, в которой линия пересекает ось $ x $.

Нули линейных функций

Синяя линия $ y = \ frac {1} {2} x + 2 $ имеет ноль в точке $ (- 4,0) $; красная линия, $ y = -x + 5 $, имеет ноль в точке $ (5,0) $. Поскольку каждая линия имеет значение для наклона, каждая линия имеет ровно один ноль.

Чтобы найти нуль линейной функции алгебраически, положим $ y = 0 $ и решим относительно $ x $.

Нуль от решения линейной функции выше графического должен соответствовать алгебраическому решению той же функции.

Пример: найти ноль $ y = \ frac {1} {2} x + 2 $ алгебраически

Сначала подставьте $ 0 $ вместо $ y $:

$ \ displaystyle 0 = \ frac {1} {2} x + 2 $

Затем решите относительно $ x $.Вычтите $ 2 $, а затем умножьте на $ 2 $, чтобы получить:

$ \ displaystyle. \ begin {выровнено} \ frac {1} {2} x & = — 2 \\ х & = — 4 \ end {align} $

Ноль равен $ (- 4,0) $. Это тот самый ноль, который был найден с помощью графического метода.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *