Расчет нагрузок на фундамент: Расчет фундаментов мелкого заложения — Уникальная методика расчета!

Содержание

Расчет фундаментов мелкого заложения — Уникальная методика расчета!

Расчет фундаментов мелкого заложения необходим для уточнения его геометрических размеров и выбора разновидности фундамента. Он сводится к расчету трех факторов: величины давления здания на грунт, силы давления грунта в результате морозного пучения и определение прочности рамы фундамента.

Расчет фундаментов мелкого заложения

Нагрузка здания – это совокупность передаваемых нагрузок, в упрощенном расчете – масса всего строения, распределенная на 1 м2 нижней плоскости фундамента. Сила деформации пучения определяется по справочным данным для конкретного типа грунта. Прочность рамы зависит от геометрии фундамента и применяемой арматуры.

Расчет нагрузки здания

Для того чтобы вычислить массу здания, необходимо иметь проект, учитывающий размеры строения, материалы, конструкцию и прочие его особенности. Расчет нагрузки на фундамент ведется с учетом зимней снеговой нагрузки. Способ расчета прост: вычисляют массы отдельных конструктивных частей строения, суммируют их и делят на площадь подошвы фундамента. Определяют для данного типа грунта удельное расчетное сопротивление грунта R­0 и сопоставляют его с полученным значением удельной нагрузки N. Если R­0 < N, пересматривают размеры или форму фундамента: выполняют его с широкой подошвой, с расширением книзу или увеличивают его ширину.

Пример расчета: кирпичный одноэтажный дом 10х8 м, со стенами из полнотелого красного кирпича шириной в 0,4 метра, с железобетонным перекрытием пола и деревянными перекрытиями потолка. Крыша – двускатная, крытая профнастилом. Постройка планируется на тяжелой суглинистой почве, регион – Москва.

По приведенной методике расчета нагрузка N = 23 т/м2.

Морозное пучение и выбор типа мелкозаглубленного фундамента

Понятие «пучинистые грунты» многих ставит в тупик. Попробуем разобраться, что это такое. Различные грунты обладают разной способностью накапливать влагу. Крупнозернистый песок, скальные породы не задерживают воду, а глины, наоборот, связывают ее, становятся пластичными и долго остаются влажными. Вода при замерзании расширяется, при этом грунт, содержащий много влаги, увеличивается в размерах. Это явление получило название «морозное пучение».

В зависимости от состава и размера частиц грунты можно разделить на 5 групп – они приведены в таблице 1.

Разновидности грунта (Типы грунтов)

В зависимости от группы грунта выбирают конструкцию мелкозаглубленного фундамента по рисунку и определяют его габаритные размеры, глубину заложения и высоту подсыпки. Вычисляют площадь нижнего основания фундамента Af.

По данным таблицы и рисунку выбираем группу фундаментов, соответствующую типу грунта III «тяжелые суглинки». Это фундамент, не заглубленный в грунт, на песчано-гравийной подсыпке. Ширина фундамента – 0,4 м; высота – 0,7 м; толщина подсыпки – 0,5 м.

 

 

 

 

 

 

 

 

 

 

 

 

 

Методика расчета деформаций

Расчет проводят по двум условиям:

  • расчетная величина деформации пучения не превышает допустимой предельной деформации;
  • относительная деформация грунта с учетом нагрузки не превышает предельной относительной для конкретного типа строения.

Предельные деформации для конкретного типа строения определяют по таблице 2.

Таблица 2 – Допустимые деформации

Чтобы определить указанные величины деформаций для конкретного строения, нужно произвести ряд сложных расчетов.

Деформацию пучения вычисляют по формуле

Формула для расчета деформации пучения

В этой формуле N – удельное давление всего строения на грунт, оно вычисляется по отдельной методике и выражается в тоннах на 1 м2.

Коэффициент b зависит от соотношения толщины подсыпки к ширине основания, он определяется по таблице 3.

Таблица 3 – Определение коэффициента

Величина Pr – на подошву от пучинистого грунта, для ленточного фундамента оно вычисляется по формуле:

Величина Pr – на подошву от пучинистого грунта

Показатель b – ширина ленты фундамента, а ss – сопротивление промерзшего грунта, его можно найти в СНиП 2.02.01-83.

Мощность слоя грунта, подверженного вспучиванию под фундаментом dz определяется как dz = df – d – hп, где df – средняя глубина промерзания, определенная по таблице 4, а величины d и hП – высота фундамента и толщина подсыпки, в метрах.

Таблица 4 – Средняя глубина промерзания грунта по регионам

Средняя глубина промерзания грунта по регионам

После расчета мощности слоя грунта dz определяют по графикам коэффициент условий работы промерзающего грунта ka определяемый по графикам в зависимости от величины dz и значения площади подошвы фундамента Af на единицу его длины.

График – коэффициент условий работы промерзающего грунта k

Деформацию пучения ненагруженного основания hfi находят по формуле из таблицы 5, соответствующей типу выбранного фундамента и его геометрическим размерам: глубины заложения фундамента d и толщины подушки hп.

Таблица 5 – Расчетные формулы для различных типов грунтов

Расчетные формулы для различных типов грунтов

    1. Определяем мощность промерзающего слоя пучинистого грунта  dz = df – d – hп. Расчетная глубина промерзания df для Москвы по таблице 4 равна 1,4 м. dz = 1,4-0,7-0,5=0,2 м.
    2. Определяем удельную площадь фундамента на метр его длины, при ширине фундамента 0,4 м площадь равна 0,4 м2.
    3. По рисунку определяем коэффициент ka, он равен 0,56.
    4. Находим по СНиП 2.02.01-83 показатель σs – 64.
    5. Определяем по  формуле  т/м2.
    6. Находим по формуле м
    7. Находим коэффициент b по таблице 3 для фундамента ленточного типа: для выбранного соотношения толщины подсыпки к ширине основания 0,5/0,4=1,25 он равен фундамента 0,88.
    8. Нагрузка здания, согласно расчетам, равна 23 т/м2.
    9. Определяем м = 0,1 см.

    Допустимая деформация пучения по таблице 2 равна 2,5 см. Условие выполняется.

Относительную деформацию пучения с учетом жесткости рамы строения находят по формуле

Формула – для деформацию пучения с учетом жесткости рамы

Показатель w, находящийся в зависимости от коэффициента гибкости конструкций строения l по ВСН 29-85, определяют по приведенному графику.

Показатель W определяют по графику

Dhfp– разность деформаций пучения при максимуме и минимуме предзимней влажности грунта.

L – длина стены строения, м.

    • Определяем по методике ВСН 29-85 значение показателя гибкости конструкций строения l – 0,55.
    • Определяем по графику значение показателя w – 0,03.
    • Определяем разность деформаций пучения по методике ВСН 29-85. Dhfp = 0,0022 м.
    • Длина стен строения равна 10 и 8 м.
    • Относительная деформация с учетом жесткости рамы для длинной стены   м.
    • Для короткой стены  м
    • Допустимое значение по таблице 2 – 0,0005 м. Условие выполняется.

Если в результате расчета окажется, что условия не выполняются, необходимо увеличить расчетную толщину подушки или площадь фундамента, изменив ширину основания.

Как рассчитать нагрузку на фундамент + пример, таблица

Перед строительством дома важно грамотно запроектировать его несущие конструкции. Расчет нагрузки на фундамент позволит обеспечить надежность опор под здание. Его проводят перед подбором фундамента после определения характеристик грунта.

Содержание статьи

Какие воздействия испытывает фундамент и их определение

Самый главный документ при определении веса конструкций дома — СП «Нагрузки и воздействия». Именно он регламентирует, какие нагрузки приходятся на фундамент и как их определить. По этому документу можно разделить нагрузки на следующие типы:

  • постоянные;
  • временные.

Временные в свою очередь делятся на длительные и кратковременные. К постоянным относят те, которые не исчезают при эксплуатации дома (вес стен, перегородок, перекрытий, кровли, фундамента). Временные длительные — это масса мебели и оборудования, кратковременные — снег и ветер.

Постоянные нагрузки

Чтобы рассчитать постоянные нагрузки, потребуется знать:

  • размеры элементов дома;
  • материал, из которого они изготовлены;
  • коэффициенты надежности по нагрузке.

Совет! Для начала рекомендуется нарисовать схему дома, на которой будут нанесены габариты здания, размеры его конструкций. Далее можно воспользоваться таблицей, в которой приведены массы для основных материалов и конструкций.

Тип конструкцииМасса
Стены
Из керамического и силикатного полнотелого кирпича толщиной 380 мм (1,5 кирпича)684 кг/м2
То же толщиной 510 мм (2 кирпича)918 кг/м2
То же толщиной 640 мм (2,5 кирпича)1152 кг/м2
То же толщиной 770 мм (3 кирпича)1386 кг/м2
Из керамического пустотелого кирпича толщиной 380 мм532 кг/м2
То же 510 мм714 кг/м2
То же 640 мм896 кг/м2
То же 770 мм1078 кг/м2
Из силикатного пустотелого кирпича толщиной 380 мм608 кг/м2
То же 510 мм816 кг/м2
То же 640 мм1024 кг/м2
То же 770 мм1232 кг/м2
Из бруса (сосна) толщиной 200 мм104 кг/м2
То же толщиной 300 мм156 кг/м2
Каркасные с утеплением толщиной 150 мм50 кг/м2
Перегородки и внутренние стены
Из керамического и силикатного кирпича (полнотелого) толщиной 120 мм216 кг/м2
То же толщиной 250 мм450 кг/м2
Из керамического кирпича пустотелого толщиной 120 мм (250 мм)168 (350) кг/м2
Из силикатного кирпича пустотелого толщиной 120 мм (250 мм)192 (400) кг/м2
Из гипсокартона 80 мм без утеплителя28 кг/м2
Из гипсокартона 80 мм с утеплителем34 кг/м2
Перекрытия
Железобетонные сплошные толщиной 220 мм с цементно-песчаной стяжкой 30 мм625 кг/м2
Железобетонные из пустотных плит 220 мм со стяжкой 30 мм430 кг/м2
Деревянное по балкам высотой 200 мм с условием укладки утеплителя плотностью не более 100 кг/м3 (при меньших значениях обеспечивается запас по прочности, поскольку самостоятельные расчеты не имеют высокой точности) с укладкой в качестве напольного покрытия паркета, ламината, линолеума или ковролина160 кг/м2
Кровля
С покрытием из керамической черепицы 120 кг/м2
Из битумной черепицы70 кг/м2
Из металлической черепицы60 кг/м2

Также потребуется рассчитать собственную массу фундамента дома. Перед этим нужно определиться с глубиной его заложения. Она зависит от следующих факторов:

  • глубина промерзания почвы;
  • уровень расположения грунтовых вод;
  • наличие подвала.

При залегании на участке крупнообломочных и песчаных грунтов (средний, крупный) можно не углублять подошву дома на величину промерзания. Для глин, суглинков, супесей и других неустойчивых оснований, необходима закладка на глубину промерзания грунта в зимний период. Определить ее можно по формуле в СП «Основания и фундаменты» или по картам в СНиП «Строительная климатология» (этот документ сейчас отменен, но в частном строительстве может быть использован в ознакомительных целях).

При определении залегания подошвы фундамента дома важно контролировать, чтобы она располагалась на расстоянии не менее 50 см от уровня грунтовых вод. Если в здании предусмотрен подвал, то отметка основания принимается на 30-50 см ниже отметки пола помещения.

Определившись с глубиной промерзания, потребуется подобрать ширину фундамента. Для ленточного и столбчатого ее принимают в зависимости от толщины стены здания и нагрузки. Для плитного назначают так, чтобы опорная часть выходила за пределы наружных стен на 10 см. Для свай сечение назначается расчетом, а ростверк подбирается в зависимости от нагрузки и толщины стен. Можно воспользоваться рекомендациями по определению из таблицы ниже.

Тип фундаментаСпособ определения массы
Ленточный железобетонныйУмножают ширину ленты на ее высоту и протяженность. Полученный объем нужно перемножить на плотность железобетона — 2500 кг/м3. Рекомендуем: Расчет ленточного фундамента.
Плитный железобетонный Умножают ширину и длину здания (к каждому размеру прибавляют по 20 см на выступы на границы наружных стен), далее выполняют умножение на толщину и плотность железобетона. Рекомендуем: Расчет плитного фундамента по нагрузке.
Столбчатый железобетонныйПлощадь сечения умножают на высоту и плотность железобетона. Полученное значение нужно помножить на количество опор. При этом вычисляют массу ростверка. Если у элементов фундамента имеется уширение, его также необходимо учесть в расчетах объема. Рекомендуем: Расчет столбчатого фундамента.
Свайный буронабивнойТо же, что и в предыдущем пункте, но нужно учесть массу ростверка. Если ростверк изготавливается из железобетона, то его объем перемножают на 2500 кг/м3, если из древесины (сосны), то на 520 кг/м3. При изготовлении ростверка из металлопроката потребуется ознакомиться с сортаментом или паспортом на изделия, в которых указывается масса одного погонного метра. Рекомендуем: Расчет буронабивных свай.
Свайный винтовойДля каждой сваи изготовитель указывает массу. Нужно умножить на количество элементов и прибавить массу ростверка (см. предыдущий пункт). Рекомендуем: Расчет винтовых свай.

На этом расчет нагрузки на фундамент не заканчивается. Для каждой конструкции в массе нужно учесть коэффициент надежности по нагрузке. Его значение для различных материалов приведено в СП «Нагрузки и воздействия». Для металла он будет равен 1,05, для дерева — 1,1, для железобетона и армокаменных конструкций заводского производства — 1,2, для железобетона, который изготавливается непосредственно на стройплощадке — 1,3.

Временные нагрузки

Проще всего здесь разобраться с полезной. Для жилых зданий она равняется 150 кг/м2 (определяется исходя из площади перекрытия). Коэффициент надежности в этом случае будет равен 1,2.

Снеговая зависит от района строительства. Чтобы определить снеговой район потребуется СП «Строительная климатология». Далее по номеру района находят величину нагрузки в СП «Нагрузки и воздействия». Коэффициент надежности равен 1,4. Если уклон кровли более 60 градусов, то снеговую нагрузку не учитывают.

Определение значения для расчета

При расчете фундамента дома потребуется не общая его масса, а та нагрузка, которая приходится на определенный участок. Действия здесь зависят от типа опорной конструкции здания.

Тип фундаментаДействия при расчете
ЛенточныйДля расчета ленточного фундамента по несущей способности нужна нагрузка на погонный метр, исходя из нее рассчитывается площадь подошвы для нормальной передачи массы дома на основание, исходя из несущей способности грунта (точное значение несущей способности грунта можно узнать только с помощью геологических изысканий). Полученную в сборе нагрузок массу нужно разделить на длину ленты. При этом учитываются и фундаменты под внутренние несущие стены. Это самый простой способ. Для более подробного вычисления потребуется воспользоваться методом грузовых площадей. Для этого определяют площадь, с которой передается нагрузка на определенный участок. Это трудоемкий вариант, поэтому при строительстве частного дома можно воспользоваться первым, более простым, способом.
ПлитныйПотребуется найти массу, приходящуюся на каждый квадратный метр плиты. Найденную нагрузку делят на площадь фундамента.
Столбчатый и свайныйОбычно в частном домостроении заранее задают сечение свай и потом подбирают их количество. Чтобы рассчитать расстояние между опорами с учетом выбранного сечения и несущей способности грунта, нужно найти нагрузку, как в случае с ленточным фундаментом. Делят массу дома на длину несущих стен, под которые будут установлены сваи. Если шаг фундаментов получится слишком большим или маленьким, то сечение опор меняют и выполняют расчет заново.

Пример выполнения вычислений

Удобнее всего сбор нагрузок на фундамент дома делать в табличной форме. Пример рассмотрен для следующих исходных данных:

  • дом двухэтажный, высота этажа 3 м с размерами в плане 6 на 6 метров;
  • фундамент ленточный железобетонный монолитный шириной 600 мм и высотой 2000 мм;
  • стены из кирпича полнотелого толщиной 510 мм;
  • перекрытия монолитные железобетонные толщиной 220 мм с цементно-песчаной стяжкой толщиной 30 мм;
  • кровля вальмовая (4 ската, значит, наружные стены по всем сторонам дома будут одинаковой высоты) с покрытием из металлической черепицы с уклоном 45 градусов;
  • одна внутренняя стена посередине дома из кирпича толщиной 250 мм;
  • общая длина гипсокартонных перегородок без утепления толщиной 80 мм 10 метров.
  • снеговой район строительства ll, нагрузка 120 кг/м2 кровли.

Далее рассмотрен пример расчета в табличной форме.

Определение нагрузкиКоэффициент надежностиРасчетное значение, тонн
Фундамент

0,6 м * 2 м * (6 м * 4 + 6 м) = 36 м3 — объем фундамента

36 м3*2500 кг/м3 = 90000 кг = 90 тонн

1,3117
Наружные стены

6 м * 4 шт = 24 м — протяженность стен

24 м * 3 м = 72 м2 -площадь в пределах одного этажа

(72 м2 * 2) *918 кг/м2 — 132192 кг = 133 тонны — масса стен двух этажей

1,2159,6
Внутренние стены

6 м * 2 шт * 3 м = 36 м2 площадь стен на протяжении двух этажей

36 м2 * 450 кг/м2 = 16200 кг = 16,2 тонн — масса

1,219,4
Перекрытия

6 м * 6 м = 36 м2 — площадь перекрытий

36 м2*625 кг/м2 = 22500 кг = 22, 5 тонн — масса одного перекрытия

22,5 т * 3 = 67,5 тонн — масса подвального, междуэтажного и чердачного перекрытий

1,281
Перегородки

10 м * 2,7 м (здесь берется не высота этажа, а высота помещения) = 27 м2 — площадь

27 м2 * 28 кг/м2 = 756 кг = 0,76 т

1,20,9
Кровля

(6 м * 6 м)/cos 45ᵒ (угла наклона кровли) = (6 * 6)/0,7 = 51,5 м2 — площадь кровли

51,5 м2 * 60 кг/м2 = 3090 кг — 3,1 тонн — масса

1,23,7
Полезная нагрузка

36м2 * 150 кг/м2 * 3 = 16200 кг = 16,2 тонн (площадь перекрытий и их количество взяты из предыдущих расчетов)

1,219,4
Снеговая

51,5 м2 * 120 кг/м2 = 6180 кг = 6,18 тонн (площадь кровля взята из предыдущих расчетов)

1,48,7

Чтобы понять пример, эту таблицу нужно смотреть совместно с той, в которой приведены массы конструкций.

Далее необходимо сложить все полученные значения. Итого нагрузка для данного примера на фундамент с учетом собственного веса составляет 409,7 тонн. Чтобы найти нагрузку на один погонный метр ленты, необходимо разделить полученное значение на протяженность фундамента (посчитано в первой строке таблицы в скобках): 409,7 тонн /30 м = 13,66 т/м.п. Это значение берут для расчета.

При нахождении массы дома важно выполнять действия внимательно. Лучше всего уделить этому этапу проектирования достаточное количество времени. Если совершить ошибку в этой части расчетов, потом возможно придется переделывать весь расчет по несущей способности, а это дополнительные затраты времени и сил. По завершении сбора нагрузок рекомендуется перепроверить его, для исключения опечаток и неточностей.

Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU. Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер. Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.

Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

Хорошая реклама

Читайте также

Сбор нагрузок на фундамент: пример расчета, таблица

Схема ленточного фундамента

На стадии проектирования строительства жилого дома для правильного определения геометрических размеров фундамента в обязательном порядке выполняется сбор нагрузок, действующих на конструкции здания. От того, насколько точно будет выполнен расчет, зависит общая несущая способность дома или сооружения, его долговечность и прочность. По результатам расчетных данных подбирается площадь фундамента, его конфигурация, глубина расположения нижней отметки. Существуют нормативные строительные документы (СНиП), в которых четко описан принцип составления сбора нагрузок и их предельно допустимые значения.

Разновидность нагрузок

Конструкция фундамента находится под влиянием постоянных и временных нагрузок, значение которых зависит от многих факторов: климатического района застройки, видов грунтов основания, строительных материалов для основных конструкций стен, крыши, перекрытий.

Постоянные нагрузки

К постоянным видам нагрузок относятся:

  • Собственный вес конструкций здания.
  • Расчетные показатели давления грунтов на боковую поверхность ленточного фундамента.
  • Давление от грунтовых вод.

При выполнении расчетов усилия от постоянного веса считаются самым серьезным видом нагрузки.

Временная нагрузка

Конструкция здания может подвергаться периодическим временным нагрузкам, таким как:

  • Снеговая, показатель которой зависит от толщины снежного покрова в каждом конкретном регионе.
  • Ветровая, определяемая по таблице усредненных показателей розы ветров в данной местности.
  • Сейсмическая (для районов с повышенной сейсмичностью).
  • От веса мебели в помещениях и перемещения людей.

Показатели временных нагрузок можно найти в ДБН В.1.2-2 2006 «Нагрузки и воздействия» в разделе 6 по таблице 6.2.

Учет необходимых параметров

Влияние грунтового основания на фундамент

Для обеспечения надежности несущего основания необходимо грамотно и правильно произвести подсчет всех нагрузок от усилий и внешних факторов, влияющих на проектируемое здание.

Для успешного выполнения сбора нагрузок необходимо предусмотреть следующие параметры:

  1. Климатические условия места под застройку.
  2. Тип почвенных грунтов и их структурные особенности.
  3. Уровень горизонтальной линии грунтовых вод.
  4. Особенности конструкции здания, объема и вида материалов для строительства здания.
  5. Вид кровельной конструкции с материалами.

Все эти факторы служат исходными данными составления расчетной несущей способности ленточного фундамента.

Расчет несущего основания

Схема устройства ленточного фундамента

Расчет несущей способности ленточного фундамента можно производить двумя способами. Первый способ с применением сложных формул и точных расчетных показателей используют архитекторы и конструкторы при составлении проектной документации на строительство дома. Второй способ – более простой и понятный, рассчитанный на широкий круг желающих для самостоятельного подбора площади фундаментов. Этот вид расчета основан на использование таблиц с усредненными коэффициентами видов постоянных и временных нагрузок.

Глубина залегания

При проведении расчетов по сбору нагрузок на фундамент рекомендуется найти суммарный вес элементов конструкции и определить глубину залегания подошвы ленточной конструкции. Чтобы вычислить необходимую глубину залегания низа ленточного фундамента необходимо определить глубину промерзания грунта и сделать структурный анализ почвы. Для каждого региона существует свой показатель промерзания почвы, выведенный на основе длительных наблюдений и многолетнего опыта.

В строительстве принято закладывать ленточный фундамент на отметке ниже точки промерзания грунта.

Определение нижней отметки

Таблица 1. Глубина замерзания грунтов по регионам страны

Чтобы легче было понимать принцип сбора исходных данных, рекомендуется обратить внимание на конкретный примерный расчет сбора нагрузок на несущую фундаментную конструкцию с помощью таблиц усредненных коэффициентов.

Например, требуется найти проектную отметку расположения подошвы фундамента жилого дома, расположенного в городе Курск.

Таблица 2. Уровень промерзания почвы

Таблица помогает вычислить проектную глубину, на которой целесообразно размещать ленточный фундамент. Для выбранного участка строительства с глинистыми грунтами типа «супесь» искомое значение расположения нижней точки ленты фундамента равняет 3/4 табличного значения уровня промерзания грунтов.

Путем несложных арифметических вычислений определяется величина показателя:

120 см х 3/4 =120 см х 0,75 =90 см

Эта цифра показывает минимальную глубину заложения надежного фундамента, которая исключает риски деформации несущих конструкций из-за сезонных циклов замерзания и оттаивания почвы. По желанию застройщика, можно сделать и более заглубленный фундамент. Но и расчетной глубины, равной 90 см, будет вполне достаточно, чтобы получился прочный и надежный жилой дом.

Сбор нагрузок от кровельной конструкции

Расчетный коэффициент материала кровли для сбора кровельной нагрузки

Кровельная нагрузка от собственного веса равномерно распределяется на несущие стены дома. Например, если жилой дом оборудован стандартной классической двухскатной крышей, в этом случае она будет опираться на две боковые противоположные крайние стены. Для определения кровельной нагрузки такого вида кровли следует произвести необходимый расчет, который удобно представить в табличном виде:

Пример сбора кровельной нагрузки:

НаименованиеЗначение
1Длина стороны крыши10 м
2Площадь кровли100 м2
3Материал покрытияЧерепица
4Коэффициент из таблицы70 кг/м2
5Расчет кровельной нагрузки100м2 /10м х70 кг/м 2 =700 кг/м2

Суммарный вес от крыши на ленточный фундамент составит: 700 кг/м 2.

Усилия от снежной нагрузки

В зимнее время толщина снежного покрова может достигать максимального размера, который составляет 250–450 мм.

Вначале необходимо найти показатель снеговой нагрузки по табличным данным карты среднего снежного покрова.

Таблица 3. Карта для определения показателя снеговой нагрузки

Так как снег равномерно распределяется по всей площади крыши, то показатель снеговой нагрузки напрямую зависит от площади кровли.

В примерном расчете кровля 2-х скатная с уклоном в 45 градусов. Длину одного ската крыши с уклоном 45 градусов определяем по формуле:

Длина cката = (Длина кровли /количество скатов кровли): косинус 45 градусов.
Если подставить в расчет конкретные цифры примера, то получится следующие значения:
Длина cката = (10 м / 2): 0,525 = 9,52 м.

Теперь необходимо вычислить площадь кровли, которая зависит от длины ската, конька кровли и количества скатов крыши:

Площадь кровли = Длина cката х длина конька х количество скатов.

В нашем примере расчетная площадь кровли составляет:

S кровли=9, 52 метра х 10м х 2 =190, 4 м 2.

По справочной таблице 3 снеговой нагрузки находим средний коэффициент снеговой нагрузки для города Курск. Табличное значение составляет 126 кг/м 2.

Чтобы определить нагрузку от веса снега на ленточный фундамент необходимо знать площадь нагруженных стен фундамента: Р снега = (S кровли х коэффициент таблицы): S стен нагруженных фундаментов.

Крыша в нашем примере имеет два ската, значит, снеговую нагрузку воспринимают две стороны ленточного фундамента, длина которых составляет 10 м. Ширина ленточного фундамента 500 мм. Значит, площадь нагружаемых стен фундамента составляет:

(10м +10 м) : 0,5 м=10 м2.

В нашем примере снеговая нагрузка на фундамент составляет:

Р снега = (190,4 м2 х126 кг/м2): 10 м2=2399 кг.

Для удобства и наглядности все расчетные показатели удобно свести в таблицу, в которой видна вся цепочка промежуточных расчетов:

Длина ската (уклон 45 град)9,52 м
1Площадь крыши190,4 м 2
2Снег, коэффициент для Курска126 кг/м 2
3Количество скатов2
4Площадь нагружаемых стен фундамента10м 2
5Снеговая нагрузка2399 кг

Расчетная снеговая нагрузка на конструкцию ленточного фундамента составляет 2399 кг.

Нагрузки от веса этажного перекрытия

Усилие в виде давления от веса перекрытий дома передается на несущие стены и фундамент, поэтому расчет этажных нагрузок находится в прямой зависимости от их суммарной площади.

Таблица 4. Усредненный вес перекрытия

В нашем примере, в жилом доме имеется два перекрытия – одно из деревянного массива, а второе монолитная железобетонная плита. По табличным данным 4 определяем искомые показатели и производим дальнейшие расчеты.

Нагрузка от перекрытия 1, выполненного из сборных железобетонных элементов:

Площадь перекрытия = 10 м х 10 м = 100 м .

По таблице 4 находится коэффициент веса железобетонных плит перекрытия, равный 500кг/м 2.

Вычисляем нагрузку от веса перекрытия: 100м2 х 500 кг/м 2=50000 кг.

Нагрузку от перекрытия 2 из деревянных конструкций определяем аналогичным путем: Площадь перекрытия=10 м х10 м=100м2.

Коэффициент веса деревянных конструкций по табличным данным равен 150 кг/м2. Расчетная нагрузка от деревянного перекрытия составляет: 100м2 ж150 кг/м 2 =150000 кг

Суммарный вес нагрузок от перекрытия составляет: 50000 кг +150000 кг=65000 кг

Площадь нагружаемых стен фундамента составляет 10м2 (расчет снеговой нагрузки).

Зная это значение, можно найти нагрузку от веса перекрытий на 1 м2 площади фундамента: 65000 кг: 10 м2=6500 кг

Суммарный вес перекрытий 6500 кг на 1 м 2.

Нагрузки от стен дома

Чтобы вычислить показатель от собственного веса стен дома необходимо знать их объем и общий вес, который зависит от вида применяемого материала для кладки стен. Составляется таблица, в которой легко и наглядно можно увидеть весь путь подсчета данных.

Таблица 5. Усреднённый вес стен.

Для расчета нагрузки от собственного веса стен здания необходимо выполнить следующие вычисления. Вначале определяем площадь стен здания. В нашем примере длина каждой стены составляет 10 м, высота 3 м. Находим периметр стен: Р = (10+10+10+10) м х 3 м=120 м2.

Для дальнейших расчетов потребуется значение объема стен здания. При толщине наружных стен 0,4 м объем стен составит:

V= 120 м2 х 0,4 м=48 м3. В качестве материала для стен используется пустотелый кирпич. В таблице усредненных показателей находим значение веса кирпича, равный 1400 кг/м3.Используя значение этого коэффициента и объема стен можно найти общую стеновую нагрузку: 48 м3 х1400 кг/м3=67200 кг.

Ширина ленточного фундамента составляет 500 мм. Периметр стен фундамента составляет 40 м.

Площадь стен фундамента:40 м х0,5 м=20м2.

Определяем стеновую нагрузку на 1 м2 фундамента: 67200 кг: 20 м2=3360 кг.

Результаты вычислений заносим в таблицу:

Сторона здания10 м  
Периметр40 мКоэффициент по таблице для кирпича1400 кг/м3
Высота стен3 мОбщий вес стен из кирпича67200 кг
Площадь стен120 м2Площадь стен фундамента при ширине 500 мм20 м2
Объем стен при толщине стен 400 мм48 м2Расчетная нагрузка на 1 м2 фундамента3360 кг

Сбор дополнительных усилий

Этот показатель учитывает собственный вес конструкции фундамента, который в виде равномерных нагрузок передается непосредственно на грунтовое основание. Для определения этого значения, необходимо знать объем фундамента и удельную плотность строительных материалов, из которых он изготовлен.

 

Таблица 6.Усредненный показатель плотности материалов

Для вычисления нагрузки от собственного веса ленточного фундамента используем значения предыдущих расчетов площади стен фундамента 20 м2 и отметки залегания фундамента 0,9 м. Определяем объем ленточного фундамента: 20 м2 х 0,9 м=18 м3.

По таблице усредненных показателей плотности материалов находим значение плотности фундамента из бетона на гранитном щебне, который равен 2300 кг/м3.Для определения нагрузки от собственного веса фундамента используем полученный объем стен фундамента и табличный коэффициент: 18 м2 х 2300 кг/м3 =41400 кг.

Чтобы узнать расчетную нагрузку на 1 м2 фундамента используется общая нагрузка от веса фундамента и площадь стен фундамента: 41400 кг: 20 м2=2079 кг/м2

Данные заносим в таблицу

Площадь фундамента20 м2
1Отметка залегания низа фундамента0,9 м
2Объем фундамента18 м3
3Коэффициент плотности бетона2300 кг/м3
4Общая нагрузка на грунт41300 кг
5Расчетная нагрузка на 1 м2 фундамента2065 кг/м2

Общая суммарная нагрузка на грунт составит 2065 кг/кв.м.

Видеопример расчета фундамента:

После учета показателей нагрузок от расчетных усилий на ленточный фундамент, принимается окончательное решение по габаритам конструкции опорной части жилого дома. При этом важно не превышать предельно допустимую суммарную нагрузку, которую способен выдержать фундамент.

Сбор нагрузок на фундамент. Как рассчитать, примеры

Чтобы посчитать вес строения, нужно знать только удельный вес материалов и их объемы. Такие данные с легкостью могут предоставить поставщики строительных материалов.

При выполнении расчетов можно также использовать усредненные значения удельного веса конструкций. Для удобства они приведены в таблице 2.

Таблица 2 — Справочные данные с усредненными значениями удельного веса конструкций дома: стен, перекрытий, кровли.

Удельный вес 1 м2 стены

Каркасные стены толщиной 200 мм с утеплителем    

40-70 кг/м2

Стены из бревен и бруса   

70-100 кг/м2

Кирпичные стены толщиной 150 мм   

200-270 кг/м2

Железобетон толщиной 150 мм   

300-350 кг/м2

Удельный вес 1 м2 перекрытий

Чердачное по деревянным балкам с утеплителем, плотностью до 200 кг/м3    

70-100 кг/м2

Чердачное по деревянным балкам с утеплителем плотностью до 500 кг/м3   

150-200 кг/м2

Цокольное по деревянным балкам с утеплителем, плотностью до 200 кг/м3   

100-150 кг/м2

Цокольное по деревянным балкам с утеплителем, плотностью до 500 кг/м3   

200-300 кг/м2

Железобетонное   

500 кг/м2

Удельный вес 1 м2 кровли

Кровля из листовой стали    

20-30 кг/м2

Рубероидное покрытие    

30-50 кг/м2

Кровля из шифера   

40-50 кг/м2

Кровля из гончарное черепицы

60-80 кг/м2

Согласно п. 4.2. СП 20.13330.2011 расчетное значение нагрузки определяется как произведение ее нормативного значения на коэффициент надежности по нагрузке (γf) для веса строительных конструкций, соответствующий рассматриваемому предельному состоянию:

Таблица 3 — Таб. 7.1 СП 20.13330.2011 

Конструкции сооружений и вид грунтов

Коэффициент надежности, γf

Конструкции

Металлические

Бетонные (со средней плотностью свыше 1600 кг/м), железобетонные, каменные, армокаменные, деревянные

Бетонные (со средней плотностью 1600 кг/м, изоляционные, выравнивающие и отделочные слои (плиты, материалы в рулонах, засыпки, стяжки и т.п.), выполняемые:

в заводских условиях

на строительной площадке

Грунты:

В природном залегании

На строительной площадке

 

1,05

1,1

 

 

1,2

1,3

 

1,1

1,15

Выполним расчеты на примере каркасно-щитового дома с мансардой с размерами в плане 6х9 м:


Чтобы посчитать вес от стен дома необходимо вычислить их периметр. Периметр наружных стен + внутренние стены: Р=47 м, среднюю высоту стен примем h=4,5 м. Тогда вес от конструкции стен будет равен: Р х h х удельный вес материала стен.

47 м х 4,5 м х 70 кг/м2 = 14 805 кг = 14,8 т.

Далее посчитаем вес крыши. Принимаем, что вес крыши (деревянная стропильная система с покрытием из металлочерепицы) равен 40 кг/м2 (суммарный вес металлочерепицы, обрешетки, стропилы). Тогда вес крыши будет равен:S крыши х удельный вес 1 м2.

92 м 2 х 40 кг/м2= 3 680 кг = 3,7 т.

Также необходимо посчитать вес от перекрытий. Принимаем, что вес деревянного пола вместе с утеплителем будет равен 100 кг/м2. Тогда вес от перекрытий будет равен:S перекрытия*удельный вес*количество.

54 м2х 0,1 т/м2 х 2 = 10,8 т.

После того как выполнены все необходимые расчеты, полученный вес сооружения умножаем на коэффициент надежности, о котором мы говорили ранее (в расчете для каркасно-щитового дома коэффициент принимаем равным 1,1 – для деревянных конструкций):

29,3 т х 1,1 = 32,2 т

Нагрузка от самого здания составит 32,2 т. Этот вес принят условно, без вычета дверных и оконных проемов.

Расчёт нагрузки на фундамент разного типа 🔨 Как выполняется расчёт

Неприятно наблюдать, как в недавно построенном доме появляются на стенах трещины. Самое печальное в этой ситуации, что исправить практически ничего изменить нельзя, а если и можно что-то сделать, то это весьма проблематично.

А ведь всего этого можно было избежать, если бы изначально расчету нагрузки на фундамент было уделено достаточно внимания.Ознакомьтесь с материалом о том зачем это делается, а также как грамотно и верно выполнять расчёт нагрузки на фундамент.

Как выполняется расчет

Что включается в такой расчет, и что нужно учитывать? Рассмотрим некоторые параметры.

  • У различных видов грунта отличная друг от друга несущая способность, поэтому нельзя опираться на тот факт, что у друга дом на мелкозаглубленном ленточном фундаменте стоит уже несколько лет, и ничего.
  • Учитывая вес строительных материалов, проводится вычисление массы строения.
  • Какая снеговая нагрузка на кровлю в регионе. Тип, и форма крыши играют огромную роль в таком подсчете.
  • Ветровая нагрузка. Любой дом, особенно высокий, испытывает ощутимые нагрузки в ветреную погоду, а если ветер постоянно дует в одну и ту же сторону, то фундамент будет подвержен дополнительной нагрузке. Особенно это ощутимо в легких домах, с не очень прочным фундаментом.
  • Вес мебели, сантехники и отделочных материалов.

Полученные данные и собранная информация служит для учета несущей характеристики, размера и опорной площади возводимого фундамента. Пренебрежение этими требованиями приводит к ситуациям, описанным в начале статьи.

Расчет нагрузки для ленточного фундамента

При расчете нагрузки на ленточный фундамент, нужно определить количество заливаемого бетона, для чего нужно узнать общую площадь с учетом установленной опалубки. Полученную цифру (в м3) нужно умножить на массу 1 м3, которая колеблется в пределах 2000–2500 кг. При расчете фундамента лучше перестраховаться, поэтому за основу возьмем 2500 кг.

Потребуется узнать полную массу дома, снеговую нагрузку на крышу и давление ветра. Эти 4 показателя слаживаются и делятся на площадь основания. Выглядит это так:

(масса фундамента + масса дома + снеговая + ветровая нагрузка) / площадь основания = искомая цифра.

Поскольку расчет получается приблизительным, нужно иметь запас прочности около 25%.

Расчет нагрузки для столбчатого фундамента

Для того чтобы определить нагрузку на столбчатый фундамент, придется умножить площадь сечения столба на его высоту, в результате чего станет известен объем одной опоры. Полученные данные умножаются на цифру, обозначающей плотность материала, из которого сделаны столбы (q). Таким образом произведен расчет нагрузки для одного столба, а чтобы узнать расчетную нагрузку всего фундамента, результат перемножим на количество опор.

Если при расчете получилось, что фундамент не соответствует требованиям, то можно увеличить сечение столбов или увеличить число опор, сократив между ними расстояние.

Расчет нагрузки для свайного фундамента

Расчет нагрузки на свайный фундамент выполняется таким образом:

  • Полная масса будущего здания умножается на коэффициент запаса надежности.
  • Опорная площадь 1 квадратного сечения сваи определяется путем перемножения размеров двух сторон.  При использовании круглых свай опорная площадь одной из них вычисляется по формуле: R2×3,14. Затем полученные данные умножаются на количество используемых свай, задействованных в фундаменте.
  • Теперь необходимо узнать нагрузку на 1 см2 грунта, для чего масса здания делится на опорную площадь фундамента, и удостовериться, что нормативная допустимая нагрузка на грунт в норме.

Одной из особенностей свайного фундамента является правильный выбор сечения и длины свай, для чего нужно знать особенности грунта. Например, в некоторых районах, свая длиной в 3 м может не дойти до твердого основания, и приобретать опоры нужно только после предварительной геологической разведки.

В случае необходимости грунт можно уплотнить путем вбивания дополнительных, не предусмотренных проектом свай, но это приведет к дополнительным, незапланированным затратам.

Анализ грунта

Проектируя фундамент, можно самостоятельно выполнить геодезический анализ грунта, узнав:

  • Тип почвы.
  • Уровень расположения грунтовых вод.

Также необходимо узнать уровень промерзания грунта, в чем могут помочь карты с такими данными.

Рис. Уровень промерзания грунта в России

Используя ручной бур, по периметру площадки и в центре делается несколько скважин, глубиной до 2,5 м, в результате чего можно увидеть, какой тип почвы, а на следующий день можно увидеть, появилась ли в ней вода, и какой ее уровень.

Рис. Слои почвы в Московской области

Что касается типа почвы, то разобраться в этом непростом вопросе поможет дополнительная информация:

  • Если при извлечении бура почва рассыпается – это песчаный грунт.
  • Из извлеченного грунта можно скатать цилиндр, но при этом он весь покрывается трещинами – это супеси.
  • Получается скатать цилиндр, но при попытке согнуть он ломается – это легкий суглинок.
  • Скатанный цилиндр на изгибе покрывается многочисленными трещинами – это тяжелый суглинок, в составе которого много глины.
  • Цилиндр скатывается легко, на изгибе не ломается и не трескается – перед нами глинистый грунт.

Используя полученные данные, можно определить какой тип фундамента лучше всего сделать на этом участке и нужно ли делать для него дренажную систему.

Определение несущей способности грунта

Ниже приведена таблица, с помощью которой можно разобраться с несущей способность грунта. Зная, какой тип грунта вы извлекли при пробном бурении, не составит его найти в таблице, и получить больше информации.

Тип почвы Несущая способность
Супесь От 2 до 3 кгс/см2
Щебенистая почва с пылевато -песчаным заполнителем 6 кгс/см2
Плотная глина От 4 до 3 кгс/см2
Щебенистая почва с заполнителем из глины От 4 до 4.5 кгс/см2
Среднеплотная глина От 3 до 5 кгс/см2
Гравийная почва с песчаным заполнителем 5 кгс/см2
Влагонасыщенная глина От 1 до 2 кгс/см2
Гравийная почва с заполнителем из глины От 3.6 до 6 кгс/см2
Пластичная глина От 2 до 3 кгс/см2
Крупный песок Среднеплотный — 5, высокоплотный — 6 кгс/см2
Суглинок От 1.9 до 3 кгс/см2
Средний песок Среднеплотный — 4, высокоплотный — 5 кгс/см2
Песок, супеси, глина, суглинок, зола От 1.5 до 1.9 кгс/см2
Мелкий песок Среднеплотный — 3, высокоплотный — кгс/см2
Сухая пылеватая почва Среднеплотная — 2.5, высокоплотная — 3 кгс/см2
Водонасыщенный песок Среднеплотный  — 2, высокоплотный — 3 кгс/см2
Влажная пылеватая почва Среднеплотная — 1.5, высокоплотная 2 кгс/см2
Водонасыщенная пылеватая почва Среднеплотная — 1, высокоплотная — 1.5 кгс/см2

Таблица 1: Расчетное сопротивление разных видов грунтов

Наши услуги

Компания «Богатырь» предоставляет услуги по погружению железобетонных свай – мы забиваем сваи, выполняем лидерное бурение и привезем непосредственно на строительную площадку сваи, с помощью которых и соорудим свайный фундамент. Если вы заинтересованы в том, чтобы проектировка, гео разведка и монтаж свайного фундамента был выполнен высококвалифицированными специалистами, то отправьте запрос или позвоните нам, воспользовавшись формой и контактными данными, указанными внизу сайта.

Как рассчитать нагрузку на фундамент дома


Исследование свойств грунтов и подготовка основания является важнейшим этапом строительства зданий и сооружений. В процессе проектирования конструкций выполняют расчет нагрузки на фундамент. От правильности и достоверности используемых величин зависит дальнейший ход проектирования строительного объекта.

Алгоритм ведения расчетов

Подсчет усилий выполняют специалисты сертифицированных институтов и строительных лабораторий. Сотрудники специализированных учреждений обладают всеми необходимыми знаниями и высоким уровнем подготовки. Оснащение исследовательских центров высококлассной техникой значительно упрощает процесс подсчета нагрузок.

Сбор нагрузок на фундамент

Определение необходимых величин ведут с высокой точностью. Правильность вычислений влияет на прочность и надежность всех конструкций.

При возведении частных домов выполнение расчетов с высокой точностью не требуется. В этом случае используют упрощенный вариант подсчетов. В качестве технических инструментов применяют специальные компьютерные программы – строительные калькуляторы.

Подсчет усилий от конструктивных элементов ведут с помощью укрупненных показателей. Для корректировки вычислений под конкретные условия строительства применяют поправочные коэффициенты.

Какие воздействия испытывает фундамент и как их определить

В процессе эксплуатации сооружение испытывает следующие усилия:

Виды нагрузок, действующих на фундаменты

  • Статические (постоянные).
  • Динамические (переменные).

Статические усилия оказываются весом элементов. Они не изменяются с течением времени. Подобное воздействие оказывают перекрытия и стены. Статические усилия используются в качестве определяющих при проведении вычислений.

При расчете фундамента используют вес крыши, внутренних и наружных стен дома, плит (балок) перекрытий, лестничных маршей, опорной части.

Динамические усилия являются переменной величиной. Включают в себя влияние людей, мебели и оборудования, атмосферных явлений и осадков.

Внимание! Воздействие ветра для условий малоэтажного строительства не учитывается.

Действие атмосферных осадков в виде снега является самой значительной разновидностью динамических усилий. Воздействие снега учитывают при подсчете усилий на основание.

Зачем нужны вычисления

Расчет нагрузки на фундамент необходим для решения следующих задач:

Рекомендуемые пропорции фундаментов

  • выявления положительных и отрицательных качеств условий строительства;
  • определение геометрических размеров и площади опирания;
  • подбор оптимального количества строительных материалов;
  • предотвращение деформаций основания в процессе эксплуатации сооружения;
  • обеспечение прочности, надежности и долговечности конструкций;
  • рациональное использование людских и технических ресурсов.

Целью подсчетов является определение усилий от здания на 1 м2 грунтового основания. Полученный результат сравнивают с допустимыми значениями.

Если расчетные данные меньше предельных значений, тогда проектирование объекта переходит в дальнейшую стадию. Превышение полученных значений над предельными цифрами требует принятия альтернативных решений.

Проектирование фундаментов

Порядок вычисления нагрузки на фундамент

Исходными данными для решения задачи являются:

  • район строительства объекта;
  • характеристики грунта;
  • уровень поверхностных, грунтовых вод;
  • материал конструктивных элементов;
  • планировка помещений;
  • этажность здания;
  • тип кровельного покрытия.

Порядок расчета

Определение глубины заложения фундамента. Глубина заложения опорной части сооружения зависит от местоположения объекта, характеристики грунта. Величина принимается по табличным данным. Соответствующие таблицы приведены в нормативных документах.

Справочная таблица для определения глубины заложения фундамента

Определение усилий от кровельного покрытия. Нагрузка от кровли зависит от типа строения и материала элементов. Характер распределения воздействий зависит от формы крыши:

  • в односкатных крышах усилия распределяются на одну (нижнюю) сторону;
  • в двускатных крышах – на две противоположных стороны фундамента;
  • при четырех и более скатах – на все стороны опорной части.

Определение усилий от количества покрытий дома

Определение снеговой нагрузки. Воздействие от снега зависит от годовой толщины снежного покрова. Величина определяется по нормативным данным. Площадь снежного покрова принимают равной площади проекции крыши на горизонтальную плоскость.

Снеговые нагрузки

Подсчет нагрузки от перекрытий. Степень воздействия перекрытий зависит от этажности здания, материала плит (балок) перекрытий. Площадь всех перекрытий принимают равной площади всего строения. Характеристики материала принимают по таблицам.

Таблица допустимых значений балок перекрытий

Расчет нагрузки от стен. Усилия зависят от толщины стен, их положения и материала. Удельный вес материала принимают по таблицам.

Влияние опорной части строения на грунт. Усилие от фундамента зависит от его размеров и материала изготовления. Для предварительного подсчета толщину основания принимают равной толщине стен.

Подсчет суммарной нагрузки на 1 м2 грунта. Суммарные усилия определяют путем сложения результатов всех предыдущих вычислений.

Сравнение и анализ полученных результатов.

Нагрузка на фундамент разных конструкций

Пример выполнения вычислений с помощью калькулятора

Процесс расчета нагрузки на фундамент полностью автоматизирован. Для выполнения задачи используются компьютерные технологии. Компьютерные программы для расчета зданий называются калькуляторами.

Алгоритм автоматизированного подсчета указан в СНиП 2.01.07-85 от 01.01.1987 г. «Нагрузки и воздействия».

Исходные данные

В качестве примера для расчета фундамента используем следующие исходные данные:

Программа для расчета фундамента согласно свойствам грунта

  • Здание 2-этажное кирпичное.
  • Размеры строения в плане — 6*6 метров.
  • Высота этажа – 3 м, высота помещения – 2,7 м.
  • Толщина наружных стен – 510 мм.
  • Толщина внутренней стены – 250 мм.
  • Фундамент ленточный из монолитного железобетона.
  • Ширина опоры – 600 мм, высота – 2000 мм.
  • Толщина перекрытия из монолитного железобетона – 220 мм.
  • Толщина цементно-песчаной стяжки по верху перекрытия – 30 мм.
  • Кровля 4-скатная с уклоном 45°. Материал кровельного покрытия – металлочерепица.
  • Суммарная длина всех межкомнатных перегородок из гипсокартона – 10 м. Толщина перегородок – 80 мм.
  • Нагрузка от кровли – 120 кг/м2 кровли.
  • Снеговой район строительства – ll.

Расчет

Последовательность и результаты расчета ленточного фундамента приведены в таблице.

Порядок вычисленийКоэффициент надежностиПолученное значение, т
Определяем вес фундамента

Объем ленточной опоры

0,6*2*(6*4 +6) = 36 м3

Масса опорной части (железобетон – 2500 кг/м3)

36*2500=90 тонн

1,3117,0
Определяем тяжесть наружных стен дома

Суммарная длина наружных ограждений

6*4=24 м

Площадь наружных ограждений в пределах одного этажа

24*3=72 м2

Масса наружных ограждений (удельный вес полнотелого кирпича – 918 кг/м2)

(72*2) *918≈133 тонны

1,2159,6
Определяем тяжесть внутренних стен

Площадь внутренних ограждений

6*2*3= 36 м2

Масса внутренних ограждений (пустотелый кирпич – 450 кг/м2)

36*450 кг/м2=16,2 тонны

1,219,4
Определяем тяжесть перекрытий

Площадь перекрытий

6*6=36 м2

Масса одного перекрытия (железобетон – 625 кг/м2)

36*625=22, 5 тонны

Масса всех перекрытий (подвального, межэтажного и чердачного)

22,5*3=67,5 тонны

1,281,0
Определяем вес перегородок

Площадь перегородок

10*2,7=27 м2

Масса перегородок (гипсокартон – 28 кг/м2)

27*28 кг/м2=756 кг≈0,76 т.

1,20,9
Определяем вес крыши

Площадь кровли

(6*6)/cos45ᵒ= (6*6)/0,7=51,5 м2

Тяжесть кровли (древесина – 60 кг/м2)

51,5 м2*60=3090 кг≈3,1 тонны

1,23,7
Определяем массу цементно-песчаной стяжки (раствора – 150 кг/м2)

Площадь перекрытий

6*6=36 м2

Масса цементно-песчаной стяжки

36 м2*150*3=16200 кг=16,2 тонны

1,219,4
Определяем вес снежного покрова

Площадь кровли

(6*6)/cos45ᵒ= (6*6)/0,7=51,5 м2

Масса снежного покрова (уплотненный снег – 120 кг/м2)

51,5*120=6180 кг=6,18 тонны

1,28,7
Всего409,7
Итоги расчета нагрузки на фундамент

409,7/30=13,66 т/пог.м

Суммарную нагрузку на 1 м2 грунта сравнивают с допустимой величиной. Искомую цифру принимают равной удельному сопротивлению грунта на сжатие. Указанная величина указывается по нормативным документам.

Результаты расчетов

На результатах расчетов основан весь процесс постройки фундамента

По результатам расчета фундамента делают вывод о допустимости применения тех или иных материалов. В случае необходимости вносят изменения в размеры и конструкцию элементов сооружения. По измененным величинам проводят повторные вычисления.

Вычислительный процесс осуществляют с особым вниманием ко всем деталям. Используемые характеристики берут из достоверных источников информации, нормативной литературы, технических справочников.

Процедуру принятия решений повторяют несколько раз для исключения ошибок. Каждый результат подлежит многократной разносторонней проверке. Правильность вычислений гарантирует высокое качество, надежность и долговечность конструкций.

Видео по теме: Самостоятельный расчёт необходимой площади фундамента


Сбор нагрузки на фундамент: пример расчета

Когда дело касается строительства нового дома, стоит задуматься о качестве и форме фундамента. Ведь именно он — главная деталь и надежная основа. Фундамент не только укрепляет дом, но и поддерживает его стены. Когда при возведении этой части здания возникают ошибки, на долгую службу можно даже не надеяться. Буквально через несколько лет сильной нагрузки на стены вы сможете заметить необратимые последствия и дефекты.Суть фундамента в том, чтобы минимизировать воздействие здания на землю, на которой оно расположено. Если несерьезно отнестись к возведению фундамента, дом начнет коробиться и уйдет в землю.

Вот почему так важно перед началом строительства дома внимательно провести все расчеты сбора нагрузки на фундамент, примеры которых приведены ниже. Все данные следует перепроверять несколько раз, ведь именно от них будет зависеть успех результата.

Какие виды нагрузок могут повлиять на фундамент

Для приема нагрузки на фундамент (пример приведен в статье) воздействуют самые разные типы нагрузок. Они временные и постоянные. Здесь все зависит от того, что именно будет постоянно присутствовать в вашем доме. В любом случае, все это можно разделить на четыре группы:

  • Суммарная масса элементов дома, несущих основную нагрузку на здание.
  • Также есть так называемые полезные нагрузки.Это то, что люди привыкли регулярно менять на новые. Возможно, вы уже догадались, что такие предметы являются деталями интерьера. Также к этому моменту можно отнести и наличие автомобиля в доме. Если вы собираетесь построить гараж вместо одной из комнат, вес и размер машины очень важны. Кроме того, учитываются все инструменты и садовые принадлежности, которыми разместится гараж.
  • Непосредственная нагрузка на фундамент. Это основа самого дома.
  • Нагрузки динамические. Это естественное явление: сила ветра, размер дождя и снегопада.

Расчет дополнительных коэффициентов

Чтобы точно рассчитать примерные нагрузки сбора на фундамент под колонной, нужно быть уверенным даже в самых жалких деталях. Конечно, сделать это можно только после составления полного плана дома, в котором будут учтены все размеры и объемы. Когда вы только начинаете проектировать всю конструкцию, вы можете примерно определиться с местом и типом фундамента.И только после выполнения этих действий можно переходить к сбору грузов.

Итак, какие факторы действительно важны:

  • Вам нужно приблизительно посчитать количество людей, которые будут жить в вашем доме.
  • Точно знать перечень и количество материалов, которые будут использованы при строительстве и отделке здания.
  • Конечно, не менее важным фактором является размер самого дома.
  • Оборудование счетное.
  • Климатические условия, приемлемые для вашего участка.
  • Ну и та самая почва, на которой будет построен дом.

Как лучше рассчитать расчетную нагрузку

Для того, чтобы рассчитать пример набора нагрузок на фундамент многоэтажного дома, который повлияет, нужно приложить много сил и знаний. Лучше всего доверить это дело специалистам. Если вы решили сделать это самостоятельно, не создавайте сразу панику и думайте, что это нереальная задача. Если внимательно рассмотреть и учесть все нюансы, получить идеальные фигуры вряд ли получится, но результат с наименьшим отклонением вполне возможен.

Таким образом, вы всегда можете оставить нужные деньги на что-то посильнее. Чтобы получить наиболее верную и точную цифру, нужно всего лишь прикинуть примерный сбор нагрузки и все умножить на коэффициент приближения.

Как определить качество почвы

Если вы хотите довести расчеты до совершенства, необходимо учитывать такой важный фактор, как характеристики грунта, на котором будет возводиться здание.В противном случае сбор нагрузок на свайный фундамент (пример расчета начинается с наложения стен) не будет надежным. Чтобы рассмотреть все детали, необходимо вспомнить четыре характеристики земли:

  • выдержит ли дом;
  • уровней усадки;
  • насколько сильно замерзает в холодное время года;
  • на какой глубине находятся грунтовые воды.

Несущая способность грунта

Самый первый показатель указывает на то, что земля может выдерживать нагрузку, которую будет создавать будущее здание.Если земля готова к сопротивлению и имеет достаточно плотное основание, можно не растягивать фундамент по поверхности участка. Все зависит от несущей способности земли.

Нагрузки и расчет фундамента — 953 слова

Содержание

1. Вопрос 1 1

1.1. ФУНДАМЕНТ НА ​​ВЕРШИНЕ СКЛОНА 1

1.2. ФУНДАМЕНТ НА ​​ЛИЦЕ НА СКЛОНЕ 3

2. Вопрос 2 5

3. Ссылки 6

ВОПРОС 1

Опишите, пожалуйста, проблему несущей способности фундамента при комбинированных нагрузках на склоне (см. Рисунок 1).Уменьшится ли несущая способность? Если да, то каковы причины?

Рисунок 1- По вопросу 1

ФУНДАМЕНТ НА ​​ВЕРХНЕМ СКЛОНЕ

Мейерхоф (1957) указал, что для фундамента, расположенного на склоне или рядом с ним, пластическая зона на стороне склона относительно меньше, чем у основания. подобный фундамент на выровненном грунте и, как следствие, снижается несущая способность фундамента у откосов. Он предложил решение для максимальной несущей способности фундаментов на склонах или вблизи них (рис.’.N_cq + 1/2 γ.B.N_γq

Рисунок 1.1 — Плоскость разрушения для неглубокого фундамента около или на склоне

, где Ncq — коэффициент, представляет собой комбинированный эффект сцепления грунта и давления покрывающих пород и N_γq представляет собой коэффициент для комбинированного эффекта сопротивления грунта сдвигу под фундаментом и давления покрывающих пород. Вышеприведенное уравнение применимо только для фундаментов на склоне или рядом с ним, которые находятся на расстоянии b от вершины склона. Мейерхоф (1957) также предложил диаграммы для коэффициентов несущей способности (N_cq и N_γq).’.N_cq

Для сыпучего грунта (c = 0) → 〖(N〗 _cq = 0) (рисунок 1.3) → 〖q〗 _u = 1/2 γ.B.N_γq

Важно отметить, что в с использованием рисунка 1 ….

… середины бумаги …

… с, чтобы быть более однородным. (Venkatramaiah, 1995)

Рисунок 2.1 — Распределение контактного давления под жестким фундаментом, нагруженным равномерным (Venkatramaiah, 1995)

Для связного грунта дополнительное давление может вызвать сдвиг грунта по периметру, контактное давление на краях фундамента будет максимальным, а к центру будет уменьшаться.Однако для несвязного грунта (например, песка) максимальное контактное давление будет находиться в центре основания и будет уменьшаться к краю, поскольку грунт отодвигается по краям из-за пониженного ограничивающего давления.

Источники

Дас, Б. М. (2009). Фундаменты мелкого заложения: несущая способность и осадка, второе издание. ГБ: CRC Press Inc.

Fang, H. Y. (1990). Справочник по фундаментальному проектированию: Springer US.

Венкатрамайя, К. (1995). Геотехническая инженерия: New Age International Pub.(P) Limited.

Различные виды нагрузок на свайные основания и их расчет

Свайный фундамент — это наиболее распространенный тип глубокого фундамента, используемый для передачи структурных нагрузок, а именно осевой нагрузки и поперечной нагрузки, в более глубокие слои твердого грунта. Чтобы выбрать и спроектировать подходящий тип сваи, необходимо понимать типы нагрузок на сваи и механизм их передачи.

Осевые нагрузки создают сжимающие или растягивающие силы, действующие параллельно оси фундамента.Если свая вертикальная, то осевая нагрузка равна приложенной вертикально. Боковые нагрузки создают моменты, сдвиг и последующий боковой прогиб в свайном фундаменте. Боковое отклонение активирует боковое сопротивление в прилегающем грунте.

1. Осевые нагрузки

Осевая нагрузка может быть сжимающей (направленной вниз) или растягивающей (подъем). Когда он сжимается, глубокие фундаменты противостоят нагрузке за счет сопротивления трения и сопротивления опоры носка, как показано на рис.1.

Однако, когда нагрузка является растягивающей, сопротивление вызывается боковым трением и весом фундамента, как показано на рис. 1. В глубоких фундаментах с увеличенным основанием подъемным нагрузкам также противодействуют опоры вдоль потолка увеличенного основания. база. Осевые нагрузки включают в себя постоянные нагрузки, временные нагрузки, снеговые и ледовые нагрузки, которые передаются от надстройки на свайный фундамент.

Рис.1: Осевые нагрузки на сваи

Постоянные и живые нагрузки

Статические нагрузки можно рассчитать после того, как проектировщик конструкции предоставит все подробности о конструкции надстройки.Что касается временных нагрузок, применяемые коды используются для расчета временной нагрузки на основе типа и функции каждого помещения в здании.

Если вам не предоставлена ​​такая информация, можно определить первоначальную оценку нагрузки для каждого этажа в случае высотных зданий, которая колеблется от 10 до 15 кПа / этаж. Собственный вес свайного фундамента зависит от толщины основания, размера и количества свай, а также от удельного веса бетона.

2. Боковые нагрузки

Боковые нагрузки вызывают сдвиг и момент в глубоком фундаменте, как показано на рис.2. Эти сдвиги и моменты вызывают боковые прогибы фундамента, которые, в свою очередь, мобилизуют поперечные сопротивления в прилегающем грунте.

Величины этих боковых прогибов и сопротивлений, а также соответствующая несущая способность фундамента зависят от жесткости как почвы, так и фундамента.

Свайные фундаменты обычно обнаруживают сопротивление боковым нагрузкам от пассивного сопротивления грунта на поверхности крышки, сдвигу на основании крышки и пассивному сопротивлению грунта валам свай.Последний источник обычно является единственным надежным.

Рис.2: Боковые нагрузки на сваи

Ветровые нагрузки

Ветровые нагрузки создают значительную эксцентричную нагрузку на плане фундамента, как показано на рис. 3. Как показывает практика, ветровая нагрузка на конструкцию может рассматриваться как 1,5% от статической нагрузки или давление 2 кПа для высоких конструкций высотой до 200 м. Если высота конструкции превышает 200 м, то для расчета давления ветра используется испытание в аэродинамической трубе. В различных стандартах предусмотрены процедуры оценки ветровых нагрузок, такие как ASCE7 и AS1170.2–2011.

Рис. 3: Ветровая нагрузка на здания, которые передавались на свайный фундамент

Землетрясения

Подобно ветровым нагрузкам, землетрясения создают большую эксцентрическую нагрузку на план фундамента. Этот тип нагрузки в основном горизонтальный, и его необходимо учитывать при проектировании свай.

Конструктор должен учитывать инерционные эффекты, обусловленные нагрузок, приложенных к свае опорной конструкцией, как кинематические эффекты, связанные с наземными течениям, порожденным землетрясением, действующей на кучу, возможные потери поддержки грунта во время землетрясения из-за сжижения или частичной потери прочность почвы.Нагрузки от землетрясений рассчитываются с использованием спектров реакции и динамического структурного анализа.

Рис. 4: Землетрясения на свайный фундамент

Нагрузки от давления земли

Нагрузки от давления грунта особенно связаны со стенами подвала и системой подконструкции. С самого раннего этапа проектирования теорию давления грунта можно использовать для расчета нагрузок от давления грунта. Однако взаимодействие грунта и конструкции используется для детального и окончательного проектирования.

Нагрузки от наземных движений

Движение грунта — еще одна причина боковых нагрузок, действующих на свайный фундамент.Желательно учитывать взаимодействие между системой фундамента и источником движения грунта через величину движения грунта, а не пытаться напрямую преобразовать движение грунта в эквивалентную силу.

3. Прочие грузы

Другое источники нагрузки, которые, возможно, необходимо учитывать, включают снег, лед, термический эффекты, сильные удары и взрывы. Требования к учету таких нагрузок: изложены в соответствующих стандартах, регулирующих конструктивное проектирование зданий.

Полевые испытания и упрощенный метод расчета для статической буровой узловой сваи

Для исследования несущих характеристик нового типа статического бурового узлового фундамента (SDRN), который состоит из сваи PHC, бамбуковой сваи и цементного грунта , были проведены полевые испытания трех свай путем установки датчиков внутреннего напряжения арматуры для сбора данных испытаний. Результаты испытаний показывают, что сваи SDRN находились в упругом состоянии, а кривые нагрузки-осадки медленно менялись до достижения предельной прочности.По мере увеличения нагрузок на головку сваи трение вала сваи постепенно увеличивалось, а осевые силы постепенно уменьшались по глубине сваи. С учетом взаимодействия сваи, цементных грунтов и окружающих грунтов предложен упрощенный метод расчета осадки и несущей способности свай SDRN. При соответствующих параметрах результаты расчетов, полученные по предлагаемой методике, сравнивались с данными натурных экспериментов, что свидетельствует о приемлемых соглашениях; Таким образом, можно сделать вывод, что применимость и прогностическая способность предложенного метода были проверены.

1. Введение

Благодаря преимуществам экономической выгоды и высокой скорости забивки по сравнению с буронабивными сваями, предварительно напряженные пустотные бетонные сваи (PHC) в последнее время широко используются в глубоких мягких грунтах в Китае. Тем не менее, трение вала сваи PHC всегда невелико при использовании в мягких грунтах, в результате чего легко достигается конечное несущее состояние, и после этого происходят большие осадки. Процесс строительства сваи PHC оказывает сильное сдавливающее действие на окружающую инфраструктуру и почвы [1, 2].Как новый тип сборных железобетонных свай, бамбуковые сваи широко используются для эффективного улучшения несущих свойств фундаментов. Тем не менее, аналогичные проблемы, связанные с упомянутыми выше сваями PHC, также возникали в процессе строительства бамбуковых свай. Благодаря незначительному сдавливающему эффекту в процессе строительства статическая буровая узелковая свая (SDRN) получила широкое распространение в глубоких мягких грунтах провинции Чжэцзян в Китае. Сделан вывод, что статическая буровая узелковая свая (SDRN) впервые была использована в Японии, а затем внедрена в Китае [3, 4]; Свая SDRN состоит из сваи PHC, бамбуковой сваи и окружающих цементированных грунтов.Метод статического бурения с укоренением является новым и экологически безопасным, он оказывает незначительное воздействие на окружающие фундаменты и значительно снижает выбросы бурового раствора [4–6]. Процесс строительства можно резюмировать следующим образом: (1) Бурение скважины: установите буровой станок в проектное положение и просверлите сваю с помощью специального шнека с регулируемой скоростью бурения в соответствии с геологическими условиями. В процессе бурения скважина ремонтируется и защищается путем закачки бентонитовой суспензии с высоким содержанием воды.(2) Расширяющийся конец сваи: используемый здесь буровой станок специально изготовлен с расширяемым крылом, которое увеличивает диаметр на дне отверстия для заливки увеличенного основания сваи; весь процесс контролируется системой автоматического управления. (3) Заливка цементного раствора на конце сваи и со стороны ствола сваи: многократное поднятие и опускание бурового станка в процессе затирки, чтобы цементная паста вводилась в основание расширяющейся лунка и зацементированный грунт успешно формируется.Заливка цементного раствора со стороны сваи: извлечение бурового раствора и заливка цементного раствора со стороны сваи вдоль отверстия и повторное перемешивание при извлечении бурового станка. (4) Посадка: установка сваи в отверстие, заполненное цементным раствором, после бурения машина вытащена. Весь процесс контролируется, чтобы гарантировать, что свая остается вертикальной и достигает заданной глубины. Процесс строительства статической буровой узловой сваи также показан на Рисунке 1.


Для изучения несущих характеристик статической буровой корневой сваи при вертикальной нагрузке были проведены полномасштабные разрушающие и неразрушающие полевые испытания на трех статических буровых установках с укоренением. сваи были вынесены.Испытанные сваи были прикреплены тензодатчиками для исследования механизма передачи нагрузки статических буронабивных свай. Расчетные нагрузки и распределение осевых усилий были получены в результате полевых испытаний, что указывает на важные несущие характеристики свайного фундамента нового типа.

Для оценки осадки свай и моделирования механизма передачи нагрузки между стволом сваи и окружающим грунтом были предложены различные методы прогнозирования несущей способности и осадки свайного фундамента при вертикальных нагрузках в течение последних нескольких десятилетий.Однако считается, что исследования методов расчета этой сваи нового типа (SDRN) далеко отстают от инженерной практики. Многие исследователи предложили упрощенные аналитические методы, учитывающие относительное смещение между стволом сваи и окружающим грунтом [7–10]. Используя функции передачи нагрузки для описания поведения взаимодействия сваи и грунта, метод передаточной функции был предложен для описания механизма передачи нагрузки Сидом и Ризом [11], а позже был расширен многими другими исследователями [10, 12, 13].Несмотря на то, что вышеупомянутые методы имеют много преимуществ в анализе механизма осадки и передачи нагрузки для одиночной сваи, они не подходят для этой композитной сваи нового типа (SDRN) и не применимы из-за взаимодействия между сваей PHC и бамбуковой совместной сваей. окружающие почвы и цементный грунт. Что касается сложного механизма взаимодействия между сваями и окружающими грунтами, наиболее надежным методом оценки реакции одиночной сваи на вертикальные нагрузки должно быть испытание статической нагрузкой на сваи в полевом масштабе.Однако высокие затраты и затраты времени являются проблемами, вызванными испытаниями статической нагрузки на сваи на месте. Между тем, упрощенные методы, позволяющие быстро оценить несущие характеристики одиночной сваи этой сваи нового типа (SDRN), а также нелинейность между цементным грунтом и окружающим грунтом, редко доступны в инженерной практике. Цель данной статьи — получить лучшее представление о поведении статической буровой узловой сваи (SDRN) на основе анализа полевых испытаний и предложить упрощенный метод расчета для прогнозирования несущей способности и осадки для этой сваи нового типа. с учетом взаимодействия сваи, цементных грунтов и окружающих грунтов.Проведенный сравнительный анализ результатов расчетных и полевых испытаний показал, что предложенный метод достаточно точен для прогнозирования поведения свайного фундамента нового типа.

2. Полевые условия и описание испытательной сваи

Три статические буровые узловые сваи были испытаны в полевых условиях, и датчики напряжения арматуры, используемые для измерения напряжения арматуры в арматурном каркасе, были встроены в сваи во время производственного процесса в цехе, и хорошая защита была получена во время строительства, как показано на рисунке 2.Измерители напряжения арматурных стержней были расположены на 1,5 м, 18 м, 28 м, 39 м, 46,5 м и 53,5 м ниже головки испытательных свай, соответственно, и каждая позиция закладной секции имела набор из четырех датчиков, как показано на рисунке. 3 (а).


Для оптимальной конструкции в испытательных сваях использовалась композитная свая, сочетающая в себе сваю PHC в верхней части с соответствующим бамбуковым соединением сваи в нижней части, как показано на рисунке 3 (b). Размер узловых свай, использованных в полевых испытаниях, составлял: 650–500 (100) мм в нижней части статической буровой узловой сваи на 15 м и 600 (110) мм в верхней части сваи на 40 м.Детальное значение типа 650-500 (100) мм состоит в том, что внешний диаметр бамбукового соединения в свае составляет 650 мм, внешний диаметр остальных частей составляет 500 мм, а толщина стенки сваи составляет 100 мм. 600 (110) мм означает, что внешний диаметр сваи составляет 600 мм, а толщина стенки трубной сваи составляет 110 мм. Подробное значение вышеуказанных размеров также показано на Рисунке 3 (b).

Полевые испытания были проведены в Шанхае, Китай, и на том же месте были испытаны три статические буровые узловые сваи с укоренением.Геотехнические свойства и параметры полевого грунта приведены в таблице 1.

ЕВРОКОД 7 И ПОЛЬСКАЯ ПРАКТИКА

ЕВРОКОД 7 И ПОЛЬСКАЯ ПРАКТИКА Внедрение Еврокода 7 в Польше Научно-исследовательский институт дорог и мостов Беата Гаевска В Польше проектирование с предельными состояниями и частными коэффициентами было введено в 1974 году.

Дополнительная информация

8.2 Энергия упругой деформации

Раздел 8. 8. Энергия упругой деформации Энергия деформации, запасенная в упругом материале при деформации, рассчитывается ниже для ряда различных геометрических форм и условий нагружения. Эти выражения для

Дополнительная информация

Колебания свободного луча

Колебания свободно-свободной балки Изгибные колебания балки описываются следующим уравнением: y EI xyt 4 2 + ρ A 4 2 (1) yx LE, I, ρ, A — соответственно модуль Юнга, второй момент

Дополнительная информация

Напряжения в балке (основные темы)

Глава 5 Напряжения в балке (основные темы) 5.1 Введение Балка: нагрузки, действующие поперек продольной оси, нагрузки создают поперечные силы и изгибающие моменты, напряжения и деформации из-за V и

Дополнительная информация

Рисунок 2.31. CPT оборудование

Испытания грунта (1) Испытание на месте Для определения прочности грунта в горах Лас-Колинас были проведены портативные испытания на проникновение конуса (Японское геотехническое общество, 1995) в трех точках C1-C3

Дополнительная информация

Алгебра 1 Название курса

Алгебра 1 Название курса Общее для всего курса 1.Какие шаблоны и методы используются? В рамках всего курса 1. Студенты будут иметь навыки решения и построения графиков линейных и квадратных уравнений 2. Студенты будут иметь навыки

Дополнительная информация

ick Анализ и проектирование фундамента

ick Foundation Анализ и проектные работы: ick Foundation Местоположение: Описание: Опора: Детальный анализ и проектирование запатентованного ick фундамента для башен ветряных турбин. Гибридные башни Gestamp Дата: 31.10.2012

Дополнительная информация

Укрепление набережной

Объединение насыпей 36-1 Объединение насыпей В этом руководстве RS2 используется для совместного анализа дорожной насыпи, подверженной нагрузке от типичного ежедневного движения.Модель Запуск RS2 9.0 Модель

Дополнительная информация

ЭТОГО ЛАЙНЕР ДОСТАТОЧНО?

ЭТОГО ЛАЙНЕР ДОСТАТОЧНО? Филип Макфарлейн, Opus International Consultants Ltd. РЕЗЮМЕ Объем работ по восстановлению трубопроводов, проводимых в Новой Зеландии, увеличивается с каждым годом. Больший диаметр

Дополнительная информация

Смысл чисел и операции

Числовое значение и операции, представляющие их: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6. N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Продемонстрируйте понимание положительных целочисленных показателей

Дополнительная информация

Основы теории упругости

G22.3033-002: Темы компьютерной графики: Лекция № 7 Геометрическое моделирование Лекция по основам теории упругости Нью-Йоркского университета № 7: 20 октября 2003 г. Лектор: Денис Зорин Скрайб: Адриан Секорд, Йотам Гинголд

Дополнительная информация

Оптимизация конструкции плоских балок

Оптимизация конструкции плоских балок NSCC29 R.Abspoel 1 1 Отдел структурной инженерии, Делфтский технологический университет, Делфт, Нидерланды РЕЗЮМЕ: В проектировании стальных пластинчатых балок высшая степень

Дополнительная информация

Как спроектировать фундамент

Исламский университет — Инженерный факультет Газы Кафедра гражданского строительства ГЛАВА (2) ИССЛЕДОВАНИЕ ОБЪЕКТА Инструктор: д-р Джехад Хамад Определение Процесс определения слоев природного

Дополнительная информация

Сваи с боковой нагрузкой

Сваи с боковой нагрузкой 1 Реакция на грунт, смоделированная кривыми p-y Чтобы правильно проанализировать свайный фундамент с боковой нагрузкой в ​​грунте / скале, необходимо применить нелинейную зависимость, которая обеспечивает грунт

Дополнительная информация

Испытания на проникновение конуса центрифуги в песок

Болтон, М.Д., Гуи, М. В., Гарнье, Дж., Корте, Дж. Ф., Багге, Г., Лауэ, Дж. И Ренци, Р. (1999). GeÂotechnique 9, No. 53-55 ТЕХНИЧЕСКОЕ ПРИМЕЧАНИЕ Испытания на проникновение конуса центрифуги в песок M. D. BOLTON, M. W. GUI,

Дополнительная информация

9 Площадь, периметр и объем

9 Площадь, периметр и объем 9.1 Двумерные фигуры В следующей таблице приведены названия некоторых двухмерных фигур. В этом разделе мы рассмотрим свойства некоторых из этих фигур.Прямоугольник Все углы прямые

Дополнительная информация

% PDF-1.2 % 1665 0 объект > endobj xref 1665 154 0000000016 00000 н. 0000003436 00000 н. 0000003621 00000 н. 0000003654 00000 п. 0000003713 00000 н. 0000004558 00000 н. 0000004945 00000 н. 0000005015 00000 н. 0000005199 00000 н. 0000005317 00000 н. 0000005499 00000 н. 0000005652 00000 п. 0000005789 00000 н. 0000005930 00000 н. 0000006090 00000 н. 0000006241 00000 н. 0000006391 00000 п. 0000006596 00000 н. 0000006756 00000 н. 0000006903 00000 н. 0000007094 00000 п. 0000007316 00000 н. 0000007457 00000 н. 0000007637 00000 н. 0000007830 00000 н. 0000007969 00000 п. 0000008111 00000 п. 0000008250 00000 н. 0000008392 00000 н. 0000008569 00000 н. 0000008755 00000 н. 0000008886 00000 н. 0000009032 00000 н. 0000009224 00000 н. 0000009362 00000 п. 0000009500 00000 н. 0000009653 00000 п. 0000009808 00000 н. 0000009945 00000 н. 0000010083 00000 п. 0000010236 00000 п. 0000010378 00000 п. 0000010521 00000 п. 0000010663 00000 п. 0000010806 00000 п. 0000010947 00000 п. 0000011101 00000 п. 0000011309 00000 п. 0000011490 00000 п. 0000011629 00000 п. 0000011800 00000 п. 0000011962 00000 п. 0000012122 00000 п. 0000012297 00000 п. 0000012512 00000 п. 0000012682 00000 п. 0000012805 00000 п. 0000012937 00000 п. 0000013072 00000 п. 0000013221 00000 п. 0000013383 00000 п. 0000013545 00000 п. 0000013702 00000 п. 0000013858 00000 п. 0000013996 00000 п. 0000014191 00000 п. 0000014341 00000 п. 0000014522 00000 п. 0000014707 00000 п. 0000014834 00000 п. 0000014971 00000 п. 0000015114 00000 п. 0000015256 00000 п. 0000015411 00000 п. 0000015565 00000 п. 0000015709 00000 п. 0000015851 00000 п. 0000015995 00000 н. 0000016177 00000 п. 0000016346 00000 п. 0000016530 00000 п. 0000016683 00000 п. 0000016835 00000 п. 0000016978 00000 п. 0000017139 00000 п. 0000017308 00000 п. 0000017443 00000 п. 0000017662 00000 п. 0000017861 00000 п. 0000018065 00000 п. 0000018265 00000 п. 0000018490 00000 п. 0000018630 ​​00000 п. 0000018768 00000 п. 0000018907 00000 п. 0000019047 00000 п. 0000019187 00000 п. 0000019327 00000 п. 0000019465 00000 п. 0000019606 00000 п. 0000019744 00000 п. 0000019844 00000 п. 0000019943 00000 п. 0000020040 00000 н. 0000020137 00000 п. 0000020235 00000 п. 0000020333 00000 п. 0000020431 00000 п. 0000020529 00000 п. 0000020627 00000 н. 0000020725 00000 п. 0000020823 00000 п. 0000020921 00000 п. 0000021019 00000 п. 0000021117 00000 п. 0000021215 00000 п. 0000021313 00000 п. 0000021411 00000 п. 0000021509 00000 п. 0000021607 00000 п. 0000021705 00000 п. 0000021804 00000 п. 0000021903 00000 п. 0000022002 00000 п. 0000022101 00000 п. 0000022200 00000 н. 0000022299 00000 п. 0000022398 00000 п. 0000022497 00000 п. 0000022596 00000 п. 0000022695 00000 п. 0000022830 00000 н. 0000022941 00000 п. 0000022964 00000 п. 0000023072 00000 п. 0000023179 00000 п. 0000024188 00000 п. 0000024211 00000 п. 0000025117 00000 п. 0000025140 00000 п. 0000026151 00000 п. 0000026174 00000 п. 0000027071 00000 п. 0000027094 00000 п. 0000028016 00000 п. 0000028039 00000 п. 0000029006 00000 п. 0000029029 00000 н. 0000029938 00000 н. 0000029961 00000 н. 0000030041 00000 п. 0000030751 00000 п. 0000003756 00000 н. 0000004535 00000 н. трейлер ] >> startxref 0 %% EOF 1666 0 объект > endobj 1667 0 объект [ 1668 0 р ] endobj 1668 0 объект > / Ф 1765 0 Р >> endobj 1669 0 объект > endobj 1817 0 объект > поток HS] HQ> w fgm] \] 6AŸZ (~ t, M] d # kN29? N; CIid / CaC.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *


Количество слоев Название слоя почвы Высота нижнего слоя слоев (м) Толщина слоя почвы (м) Удельное сопротивление пробиванию (м) Значение предельного сопротивления трению стороны сваи (кПа) Предельное сопротивление трению конца сваи (кПа)

①-1 Разное заполнить 1.09 1,09 15
②-1 Глина илистая −0,31 1,4 0,65 40 песок −3,61 3,3 2,75 15
илистая илистая глина −7,51 3,9 0,46 −17.04 9,53 0,61 40
⑤-1 илистая глина −25,41 8,37 1,04 55 55 ил −36,11 10,7 1,63 65
⑤-4 Илистая глина −38,41 2,3 2,13 ил −42.31 3,9 4,28 65
⑧-1 Глина илистая −47,21 4,9 2,01 60 60 межслойный с илистой глиной −55,17 7,96 7,04 80 3500
Ил
Расчетный фонд