Толщина стены из керамзитобетонных блоков без утеплителя: Толщина стен из керамзитобетонных блоков

Содержание

Толщина стен дома из керамзитобетонных блоков

Толщина стены из керамзитобетонных блоков с утеплителем рассчитывается иным способом. Необходимо рассчитать сопротивление теплоотдаче каждого материала в отдельности, затем сложить их и сравнить с нормируемым значением. На этот раз в качестве примера возьмем Екатеринбург. Толщина стены из керамзитобетонных блоков без утеплителя на Урале будет неприемлемо большой. Рассчитаем нормируемое сопротивление теплоотдаче, предварительно выяснив, что Dd = 6 000 для поддержания температуры внутри жилого помещения на уровне 20° C. Подставляем в формулу:

Rreg = a × Dd + b = 0,00035 × 6000 + 1,4 = 3,5

Далее меняем тактику, рассчитываем не толщину, а выясняем коэффициент сопротивления теплоотдаче той стены, которую мы предполагаем возвести. В качестве строительного материала вновь выберем блок «Стандарт». Меняем формулу, если:

Толщина стены = Rreg × λ, то Rreg = Толщина стены / λ

Предположим, что мы «нацелены» на кладку в полтора блока – 0,6 м толщиной, тогда:

Rreg = Толщина стены / λ = 0,6 / 0,41 = 1,46

Один из двух коэффициентов есть. Теперь рассчитаем сопротивление теплоотдаче утеплителя. Выберем ROCKWOOL ФАСАД БАТТС Д ОПТИМА, толщиной 100 мм. Теплопроводность каменной ваты составляет 0,041 Вт/м°C. Подставляем значения в формулу:

Rreg = Толщина утеплителя / λ = 0,1 / 0,041 = 2,43

Складываем первый коэффициент, полученный для керамзитоблока с коэффициентом для каменной ваты, чтобы получить общее сопротивление теплоотдаче «пирога» стены:

1,46 + 2,43 = 3,89 (нам требовалось 3,5)

Как видите, толщина стены из керамзитобетона 0,6 м плюс 100 мм утеплителя соответствуют требованиям с запасом. Таким образом вы можете рассчитывать различные комбинации материалов. Хотите сэкономить на керамзитоблоке — возьмите кладку в блок (0,4 м) и утеплитель 120 мм. Толщина стен из керамзитобетонных блоков в Московской области, соответственно, будет другой.

Толщина стен дома из керамзитобетонных блоков

Толщина стены из керамзитобетонных блоков с утеплителем рассчитывается иным способом. Необходимо рассчитать сопротивление теплоотдаче каждого материала в отдельности, затем сложить их и сравнить с нормируемым значением. На этот раз в качестве примера возьмем Екатеринбург. Толщина стены из керамзитобетонных блоков без утеплителя на Урале будет неприемлемо большой. Рассчитаем нормируемое сопротивление теплоотдаче, предварительно выяснив, что Dd = 6 000 для поддержания температуры внутри жилого помещения на уровне 20° C. Подставляем в формулу:

Rreg = a × Dd + b = 0,00035 × 6000 + 1,4 = 3,5

Далее меняем тактику, рассчитываем не толщину, а выясняем коэффициент сопротивления теплоотдаче той стены, которую мы предполагаем возвести. В качестве строительного материала вновь выберем блок «Стандарт». Меняем формулу, если:

Толщина стены = Rreg × λ, то Rreg = Толщина стены / λ

Предположим, что мы «нацелены» на кладку в полтора блока – 0,6 м толщиной, тогда:

Rreg = Толщина стены / λ = 0,6 / 0,41 = 1,46

Один из двух коэффициентов есть. Теперь рассчитаем сопротивление теплоотдаче утеплителя. Выберем ROCKWOOL ФАСАД БАТТС Д ОПТИМА, толщиной 100 мм. Теплопроводность каменной ваты составляет 0,041 Вт/м°C. Подставляем значения в формулу:

Rreg = Толщина утеплителя / λ = 0,1 / 0,041 = 2,43

Складываем первый коэффициент, полученный для керамзитоблока с коэффициентом для каменной ваты, чтобы получить общее сопротивление теплоотдаче «пирога» стены:

1,46 + 2,43 = 3,89 (нам требовалось 3,5)

Как видите, толщина стены из керамзитобетона 0,6 м плюс 100 мм утеплителя соответствуют требованиям с запасом. Таким образом вы можете рассчитывать различные комбинации материалов. Хотите сэкономить на керамзитоблоке — возьмите кладку в блок (0,4 м) и утеплитель 120 мм. Толщина стен из керамзитобетонных блоков в Московской области, соответственно, будет другой.

Толщина стен дома из керамзитобетонных блоков

Толщина стены из керамзитобетонных блоков с утеплителем рассчитывается иным способом. Необходимо рассчитать сопротивление теплоотдаче каждого материала в отдельности, затем сложить их и сравнить с нормируемым значением. На этот раз в качестве примера возьмем Екатеринбург. Толщина стены из керамзитобетонных блоков без утеплителя на Урале будет неприемлемо большой. Рассчитаем нормируемое сопротивление теплоотдаче, предварительно выяснив, что Dd = 6 000 для поддержания температуры внутри жилого помещения на уровне 20° C. Подставляем в формулу:

Rreg = a × Dd + b = 0,00035 × 6000 + 1,4 = 3,5

Далее меняем тактику, рассчитываем не толщину, а выясняем коэффициент сопротивления теплоотдаче той стены, которую мы предполагаем возвести. В качестве строительного материала вновь выберем блок «Стандарт». Меняем формулу, если:

Толщина стены = Rreg × λ, то Rreg = Толщина стены / λ

Предположим, что мы «нацелены» на кладку в полтора блока – 0,6 м толщиной, тогда:

Rreg = Толщина стены / λ = 0,6 / 0,41 = 1,46

Один из двух коэффициентов есть. Теперь рассчитаем сопротивление теплоотдаче утеплителя. Выберем ROCKWOOL ФАСАД БАТТС Д ОПТИМА, толщиной 100 мм. Теплопроводность каменной ваты составляет 0,041 Вт/м°C. Подставляем значения в формулу:

Rreg = Толщина утеплителя / λ = 0,1 / 0,041 = 2,43

Складываем первый коэффициент, полученный для керамзитоблока с коэффициентом для каменной ваты, чтобы получить общее сопротивление теплоотдаче «пирога» стены:

1,46 + 2,43 = 3,89 (нам требовалось 3,5)

Как видите, толщина стены из керамзитобетона 0,6 м плюс 100 мм утеплителя соответствуют требованиям с запасом. Таким образом вы можете рассчитывать различные комбинации материалов. Хотите сэкономить на керамзитоблоке — возьмите кладку в блок (0,4 м) и утеплитель 120 мм. Толщина стен из керамзитобетонных блоков в Московской области, соответственно, будет другой.

Толщина стен дома из керамзитобетонных блоков

Толщина стены из керамзитобетонных блоков с утеплителем рассчитывается иным способом. Необходимо рассчитать сопротивление теплоотдаче каждого материала в отдельности, затем сложить их и сравнить с нормируемым значением. На этот раз в качестве примера возьмем Екатеринбург. Толщина стены из керамзитобетонных блоков без утеплителя на Урале будет неприемлемо большой. Рассчитаем нормируемое сопротивление теплоотдаче, предварительно выяснив, что Dd = 6 000 для поддержания температуры внутри жилого помещения на уровне 20° C. Подставляем в формулу:

Rreg = a × Dd + b = 0,00035 × 6000 + 1,4 = 3,5

Далее меняем тактику, рассчитываем не толщину, а выясняем коэффициент сопротивления теплоотдаче той стены, которую мы предполагаем возвести. В качестве строительного материала вновь выберем блок «Стандарт». Меняем формулу, если:

Толщина стены = Rreg × λ, то Rreg = Толщина стены / λ

Предположим, что мы «нацелены» на кладку в полтора блока – 0,6 м толщиной, тогда:

Rreg = Толщина стены / λ = 0,6 / 0,41 = 1,46

Один из двух коэффициентов есть. Теперь рассчитаем сопротивление теплоотдаче утеплителя. Выберем ROCKWOOL ФАСАД БАТТС Д ОПТИМА, толщиной 100 мм. Теплопроводность каменной ваты составляет 0,041 Вт/м°C. Подставляем значения в формулу:

Rreg = Толщина утеплителя / λ = 0,1 / 0,041 = 2,43

Складываем первый коэффициент, полученный для керамзитоблока с коэффициентом для каменной ваты, чтобы получить общее сопротивление теплоотдаче «пирога» стены:

1,46 + 2,43 = 3,89 (нам требовалось 3,5)

Как видите, толщина стены из керамзитобетона 0,6 м плюс 100 мм утеплителя соответствуют требованиям с запасом. Таким образом вы можете рассчитывать различные комбинации материалов. Хотите сэкономить на керамзитоблоке — возьмите кладку в блок (0,4 м) и утеплитель 120 мм. Толщина стен из керамзитобетонных блоков в Московской области, соответственно, будет другой.

Толщина стен из керамзитобетонных блоков: наружных, несущих, перегородочных

Нужная толщина стен из керамзитобетонных блоков подбирается в зависимости от определенных факторов. В учет берутся функциональные предназначения постройки, климатические условия, тип кладки. Также следует учитывать, что толщина стены из керамзитобетонных блоков с отсутствием утеплителя будет отличаться от габаритов стен обшитых утеплительным стройматериалом.

Керамзитобетонные блоки при достаточно легком удельном весе, имеют хорошие прочностные характеристики, что позволяет построить здание на легком типе фундаментной основы. Такие стены обладают хорошей звуко- и теплоизоляцией. Толщина стен возведенных из керамзитобетонных элементов будет зависеть от таких факторов:

  • В каких условиях будет эксплуатироваться постройка, например это будет жилое здание или промышленное предприятие.
  • Условия климата в регионе, где будет возводиться дом.
  • Еще один немаловажный пункт – выбор кладки.
  • Толщину также будет определять свойства влагостойкости и теплопроводности утеплительных материалов.
  • Не менее важным будет учесть слой отделочных материалов.

Какие средние показатели толщины стен возводимых в центральных регионах страны? Для такой местности будет достаточно построить стены из керамзитобетонных блоков толщина, которых будет составлять 40-60 сантиметров. Если строительство будет проходить в регионах с более холодными климатическими условиями, стены из керамзитобетонных блоков должны быть утеплены специальными стройматериалами. В итоге должен получиться пирог стены из керамзитобетонных блоков, утеплителя и облицовки.

Керамзитобетонные стены бывают двух типов – несущие, и перегородки, у которых нет несущей нагрузки. Вертикальные несущие конструкции испытывают большую нагрузку и служат опорой для перекрытия и крыши. Не несущие перегородки помогают разделить внутреннее пространство на комнаты. Выбор типа конструкции зависит от предназначения стен. Наружные конструкции несущие, также и внутренние стены бывают несущими, единственное отличие — это отсутствие надобности их утепления.

Толщина наружных стен без утеплителя

От габаритов панелей из керамзитобетона и вариантов кладки будет определяться толщина стен.

  1. Панели с параметрами 59х29х20 см, используют для возведения стены 60 см. В таком варианте потребуется лишь утеплить пустоты в панелях.
  2. Блоки с размерами 39х19х20 см, ширина без утеплителя будет равна 40 см.
  3. Изделия равны 23.5х50х20 см, то кладка будет иметь толщину 50 см плюс внутренняя и внешняя штукатурка.

Керамзитобетонные изделия бываю полнотелые и пустотелые. Плотный тип блока имеет большую прочность и подходит для создания несущей конструкции.

Толщина наружных стен с утеплителем

Ширина стены будет зависеть от предназначения постройки:

  1. При возведении складского, подсобного помещения. Укладку производят в один слой с шириной изделия 20 см. Внутренний поверхностный слой следует оштукатурить, а поверхность снаружи утеплить десяти сантиметровым слоем минеральной ватой, пенопластом или пенополистиролом.
  2. В случае, когда строят такую небольшую постройку, как баню, то укладка будет схожа с типом кладки подсобного помещения, различие будет лишь в том, что теплоизоляционный слой составит 5 см.
  3. Кладку в три слоя осуществляют непосредственно при сооружении жилого дома. В процессе работ между блоками оставляют небольшое расстояние. Общая толщина составит 60 см, внутреннюю часть поверхности покрывают штукатуркой, в зазоры между панелями прокладывают утеплительный материал.

Рассмотрим устройство трехслойной кладки с утеплительным материалом и облицовкой из силикатных кирпичей:

  • Возводится стена из пустотелого конструкционно-изоляционного керамзита с шириной 19-39 см;
  • Производят оштукатуривание поверхности внутри помещения;
  • Устанавливают плиту из минеральной ваты либо пенополистирола, рекомендованная плотность не меньше 25. Толщина стройматериала составит 4-5 см;
  • Крепежи лучше использовать из полимера или металла;
  • В обязательном порядке производят сооружение вентиляционного зазора;
  • Облицовочный кирпич 1,2 см.

Возводить многослойные конструкции без обустройства вентиляционных зазоров категорически не рекомендуется. Наружная часть поверхности служит паробарьером. Конденсат образуется на внешней поверхности теплоизоляции. Чтобы избежать образования сырости между стройматериалами, и вывести образование паров из сооружения нужно сделать вентиляционные зазоры.

Толщина перегородочных стен

Какой толщины должны быть стены из керамзитоблоков? Межкомнатные панели, предназначенные для перегородок, производятся размером 39х19х9 см.

Например, если будет использоваться перегородочный керамзитобетонный блок, плотность которого составляет 600 кг/куб.м, значит оптимальная толщина будет равна 18 см. При использовании изделий имеющих плотность 900кг/куб.м, рекомендуется использовать толщину перегородки не меньше 38 см, дополнительная отделка не понадобится.

Толщина несущих стен

Наружные стены, которые несут нагрузку, строят из стеновых панелей. Конструкционные блоки применяют для сооружения любого вида перекрытий, ограничений в эксплуатационных свойствах нет. Если применены конструкционно-теплоизоляционные изделия, в индивидуальных случаях предусмотрен монтаж армопояса в месте верхних рядов кладки и перекрытием. Такая методика позволит равномерно распределить нагрузку.

Толщина стен для бань и гаражей позволяет сооружать плиты для перекрытия из железобетона. Для таких работ нужна специальная строительная техника.

Толщина кладки несущих стен из керамзитобетона для 2-х, 3-х этажных зданий должна составлять не меньше 40 сантиметров. Это наиболее подходящие размеры для постройки наружных стен, где будут построены перекрытия из железобетона.

Толщина стен для разных регионов

Кладку блоков из керамзитобетона для областей, где встречается холодные климатические условия, производят таким образом:

  1. Строят две стены, параллельны друг к другу.
  2. Конструкция должна быть связана арматурой.
  3. Производят укладку утеплителя.
  4. Внешнюю и внутреннюю сторону стены штукатурят.

При возведении дома строители используют общие правила и нормы, в которых указано:

  • в северной части страны должны составлять не меньше 60 см;
  • в центральной зоне от 40 до 60 сантиметров;
  • в южных регионах от 20 до 40 см.

Пример расчета

Для вычисления оптимальной толщины керамзитобетонных стен, нужно знать функциональное предназначение здания. Если брать в учет регламент строительных нормативов и правил, получается, что ширина должна быть учтена с утеплительным материалом и составлять не менее 64 сантиметров.

Стены, обладающие такой толщиной, подойдут для помещений жилого типа. Для правильного расчета расхода требуемых стройматериалов, нужно учитывать суммарные показатели всех стен, которые будут построены в здании со всеми перегородками и высотой этажа.

Все показатели нужно перемножить. Также учитывают примерные показатели толщины цементного раствора для стяжки и швов, примерно это 15 см. Число, которое получиться нужно, умножить на толщину стены, а после разделить на объем керамзитобетонных панелей.

В итоге получится нужное число изделий необходимых для возведения стен. Примерная стоимость рассчитывается таким образом: количество блоков умножают на цену 1 изделия, после нужно добавить расходы закупки теплоизоляционных стройматериалов.

Расчет толщины стены с утеплителем

Такие расчеты будут отличаться от классической формулы. Потому что нужно взять в учет сопротивление теплоотдаче каждого из материалов по отдельности, после их складывают и сравнивают с нормативными числами. Для примера берется город Екатеринбург. Толщина стен, на Уральском крае будет значительно большей. Расчет нормированного сопротивления теплоотдачи Dd равняется 6000, для поддержания температуры внутри дома равной 20 градусам С. Формула расчета:

Rreg = a ? Dd + b = 0,00035 ? 6000 + 1,4 = 3,5

Если толщина керамзитобетонных стен 60 см, с приплюсованными 10 см утеплительного стройматериала будут соответствовать общим требованиям. По такому же принципу производят расчет различных комбинаций строительных элементов.

При желании можно сэкономить на керамзитобетоне, для этого рекомендуется взять для укладки блоки 40 см и утеплитель 1.2 см.

Отзывы строителей

Строился двухэтажный дом из керамзитобетона на заглубленном ленточном фундаменте. Перекрытие первого этажа выполнено из заводской плиты. Второй этаж имеет перекрытие из тавровых балок. Здание отапливается газом, потери тепла в зимний период не значительные, и составляют 7-9 %. Укладка производилась на теплую заводскую смесь, по цене такой материал не дешевый, зато качество и практичность отличные. Отделка фасада была произведена с соблюдением всех технологий. Единственный минус такой конструкции – требуется время на усадку. По этой причине отделка была произведена через год.

Профессиональные мастера, производившие строительные работы, описанные выше, указывают на такие характеристики керамзитобетонных блоков:

  • морозоустойчивость 50F;
  • теплопроводность 0.14;
  • плотность строительных материалов равна 800 кг/куб.м;
  • керамзитобетонные блоки позволяют возводить стандартную толщину стен – 40 см;
  • прочность при сжатии 22.4 кг/кв.см.

Укладку стен из керамзитобетона следует производить по длине одной панели с горизонтальной перевязкой. При этом нужно делать смещение на половину или четвертину. Фасадный слой блоков для перегородок нужно окрасить либо обработать штукатуркой. Такой метод повысит сопротивляемость окружающей влажной среде.

от чего зависит и пример расчета?

Керамзитобетоном называют один из видов бетона. Он в последнее время стал достаточно часто использоваться в строительных работах: постройка коттеджей, хозяйственных строений, гаражей. Также его используют для того, чтоб заполнить каркас для многоэтажных домов, которые построены из железобетона. Этот материал стал настолько популярен, что уже трудно представить страну, в которой он бы не применялся строителями. Точнее, используются изготовленные заранее керамзитобетонные стеновые блоки.

Многие, кто еще не успел оценить преимущества этого материала, начинают замечать их. Те, кто решает  использовать его для своего строительства, должны тщательно подойти к такой характеристике, как толщина стены из керамзитобетонных блоков. Это все неспроста, потому что изучив все нюансы, у вас получится выжать максимум из этого утеплителя.

Зависимость толщины от типа кладки

Толщина поверхности, отделанная керамзитобетонным блоком, в основном зависит от того, какой вы выберите вариант кладки. Каждый вариант, в свою очередь, зависит от погодных, климатических условий. Также учитывается, насколько сильно эксплуатируется постройка. Когда строительство капитальное, то часто могут использоваться не только один блоки из керамзитобетона. Кроме того применяют кирпичи, пено- шлакоблоки. Толщина будущей кладки будет зависеть от того, какая требуется теплоизоляция для конкретной постройки. Еще будет учитываться различные теплопроводные и влагоотталкивающие характеристики утеплителя.

В зависимости от выбора кладки, вы будете высчитывать толщину стен, которая делается керамическими блоками. Причем будет учитываться наружный и внутренний слой отделочной штукатурки, нанесенный на стену:

  1. Первый вариант: если опорная стена выложена блоками по 390:190:200 миллиметров, то кладку нужно укладывать толщиной 400 миллиметров, не считая слоев внутренней штукатурки и утепления, что находится снаружи.
  2. Второй вариант: если конструкция несущей стены состоит из блоков размером 590:290:200 миллиметров, то стена должна быть ровно 600 миллиметров. Утеплителем в таком случае стоит заполнять специальные пустоты в блоках между стенами.
  3. Третий вариант: если вы решите использовать керамзитобетонный блок размером 235:500:200 миллиметров, то толщина стены будет 500 миллиметров. Плюс добавьте к расчетам слои штукатурки с обеих сторон стены.
Вернуться к оглавлению

Влияние теплопроводности

Схема керамзитобетонного блока.

В строительных работах важно рассчитать коэффициент теплопроводности, так как она имеет влияние на долговечность всей конструкции. Коэффициент важен при расчетах толщины стен, которые состоят из керамзитобетонных блоков. Теплопроводность – это такое свойство материала, которое характеризует процесс передачи тепла от теплых предметов к прохладным. Это всем известно еще с уроков физики.

Теплопроводность в расчетах выражается через специальный коэффициент. Он учитывает параметры тел, между которыми передается тепло, количество тепла, и время. Этот коэффициент показывает, сколько тепла может быть передано на протяжении одного часа от одного тела к другому, которые имеют размеры один метр толщины и один квадратный метр площади.

Разные характеристики имеют свое влияние на теплопроводность каждого материала. К ним относятся размер, вид, наличие пустот материала или вещества, его химический состав. Влажность, температура воздуха также влияют на этот процесс. Например, низкая теплопроводность наблюдается у пористых материалов и веществ.

Вернуться к оглавлению

Рекомендованная толщина для жилого дома

Для каждого конкретного здания измеряется своя толщина стен. Она меняется в зависимости от назначения постройки. Для жилого дома норма толщины будет составлять ровно 64 сантиметра. Это все прописано в специальных строительных нормах и правилах. Правда, некоторые считают иначе: что несущая стена жилого дома может быть толщиной 39 сантиметров. На самом деле, такие расчеты подойдут скорее для летнего домика, загородной дачи, гаража, построек для хозяйственных целей. Можно возводить внутренние отделки стеной такой толщины.

Вернуться к оглавлению

Пример расчета

Таблица приведенного сопротивления теплопередачи для различных конструкций стен.

Очень важным является момент проведения точного расчета. Нужно учесть оптимальная толщину стен, которые сделаны из керамзитобетонных блоков. Для достижения результата используйте очень простую формулу, состоящую из одного действия.

Строители, для решения этой формулы, должны знать две величины. Первым надо узнать коэффициент теплопроводности, про который было сказано раньше. В формуле он пишется через знак «λ». Вторая величина, которую нужно учесть – коэффициент сопротивления теплопередаче. Эта величина зависит от многих факторов, например, от погодных условий района, где находится здание. Местность, в которой потом будет использоваться здание, тоже немаловажный фактор. Эта величина в формуле будет выглядеть как «Rreg». Ее можно определить по нормам и правилам строительства.

Величина в формуле, которую нам надо найти, а именно толщина строящейся стены, мы обозначаем значком «δ». В итоге формула будет выглядеть таким образом:

δ = Rreg х λ

Чтоб привести пример, можно рассчитать толщину строящейся стены в городе Москва и его области. Величина Rreg для этого региона страны уже рассчитан, установлен официально в специальных правилах и нормах строительства. Таким образом, он составляет 3-3,1. А величину стен можно взять для примера любую, так как вы на месте уже будете рассчитывать свою. Толщина блока может быть абсолютно разной. Например, можно будет взять 0,19 Вт/(м*⁰С).

В итоге, после решения данной формулы:

δ = 3 х 0,19 = 0,57 м.

мы понимаем, что толщина стен должны составлять 57 сантиметров.

Опытные строители, специалисты рекомендуют делать толщину стен от сорока до шестидесяти сантиметров, если здание будет находиться в таких центральных регионах России, как Московский, Санкт-Петербургский.

Вот так, рассчитав простую формулу, можно построить такие стены у дома, чтоб обеспечить безопасность здания, его устойчивость и долговечность. Всего лишь, выполнив простое действие, вы построите по-настоящему хороший и надежный дом.

Толщина стены из керамзитобетонных блоков

Климатические условия в России весьма разнообразны и толщина стен с утеплителем оптимальная для одного региона будет излишня или совершенно недостаточна для другого. Поэтому для определения толщины стены из керамзитобетонных блоков применяют расчетные формулы, а для этого необходимо знать коэффициент теплопроводности материала.

Теплопроводность керамзитового блока

В случае использования керамзитобетонных блоков, теплопроводность зависит от фракции керамзита и плотности. Чем крупнее керамзит тем ниже теплопроводность, а чем больше связующего раствора используется при производстве – тем выше плотность:

  1. Конструкционный – обладает наибольшей плотностью до 1700 кг/м3. Показатель  теплопроводности – 0,55 Вт/(м׺С). Применяется при возведении внешних несущих конструкций в сооружениях и зданиях жилого и общественного назначения.

    Крупноформатные конструкционные керамзитоблоки

  2. Конструкционно-теплоизоляционный – плотность в диапазоне 700-800 кг/м3. Показатель  теплопроводности – 0,21-0,45 Вт/(м׺С). Используется при строительстве многослойных ограждающих конструкций.
  3. Теплоизоляционный – плотность около 600 кг/м3. Показатель  теплопроводности – 0,10-0,20 Вт/(м׺С). Применяется в качестве утепляющего самонесущего слоя в ограждающих и монтажных конструкциях.

Расчет толщины керамзитобетонных стен

Для определения толщины стены для конкретного региона России необходимо знать две величины – коэффициент теплопроводности элемента конкретного типа, использующегося при строительстве (λ) и показатель сопротивления теплопередаче Rreg принятый в среднем по региону.

Коэффициент Rreg выведен эмпирическим путем на основании погодно-климатических данных региона. Полная таблица значений находится в нормативной документации СНиП 23-02-2003 «Тепловая защита зданий», частично приведена в таблице ниже:

Принимаем толщину стены из керамзитобетона за δ. Тогда формула примет следующий вид:

 δ = Rreg × λ

В качестве примера рассчитаем толщину несущей стены из керамзитобетона в Новгороде. Показатель сопротивления теплопередаче для Новгорода (согласно таблице) равен 0,29-3,13, принимаем 3. Берем максимальный коэффициент теплопроводности для теплоизоляционного элемента – 0,19 Вт/(м׺С). Подставляем значения в формулу:

δ = 3 х 0,19 = 0,57 м

В результате получаем величину 57 см – минимально необходимый размер несущей конструкции дома из керамзитобетона при условии использования специального керамзитобетона с максимальным эффектом утепления.

От плотности самого блока и его конструкции (пустотелый или полнотелый) зависит и тип кладки – применение одно- или двустенной конструкции, с облицовкой кирпичом или без. Эти показатели так же регламентируются СНиП 23-02-2003.

К примеру, если использовать перегородочные керамзитобетонные блоки плотностью 600 кг/м3  толщина должна быть не менее 0,18 м, но если это внешняя ограждающая конструкция, то обязательным условием является отделка внешней стороны облицовочным кирпичом. Если же используются изделия с плотностью 900 кг/м3, то толщина стены должна быть не менее 0,38 м, но никаких дополнительных элементов отделки делать не нужно.

Разновидности конструкции керамзитобетонных стен и их толщина

Трехслойная кладка с применением утеплителя и облицовкой из силикатного кирпича.

  1. Кладка стены и из пустотелых конструкционно-изоляционных керамзитобетонных блоков;
  2. Штукатурка на внутренней поверхности;
  3. Минераловатная плита или пенополистирол плотности не менее 25;
  4. Полимерные (базальтово-пластиковые) или металлические крепежи;
  5. Вентиляционный зазор;
  6. Облицовочный кирпич.

Кладка соответствует длине одного блока, выполняется перевязкой элементов между собой. Внешний облицовочный слой возводится толщиной в кирпич, для придания конструкции необходимой жесткости и устойчивости производится перевязка крепежами через два ряда.

Трехслойная кладка с применением утеплителя и перегородочным блоком в качестве облицовки.

  1. Минеральная или гипсовая штукатурка;
  2. Кладка из пустотелых блоков;
  3. Теплоизоляция, минвата или пенополистирол;
  4. Полимерные (базальтово-пластиковые) или металлические крепежи;
  5. Вентиляционный зазор;
  6. Кладка из перегородочных полнотелых блоков теплоизоляционного типа.

Кладка производится по длине одного элемента с горизонтальной перевязкой половинным или четвертным смещением. Фасадную поверхность перегородочных плит можно окрасить или обработать цементно-песчаной штукатуркой, для повышения сопротивления влагопоглощению.

Стена с вентилируемым навесным фасадом на основании из керамзитобетона.

  1. Внутренняя штукатурка: гипс, декоративная, цементно-песчаная;
  2. Кладка из полнотелых блоков;
  3. Теплоизоляция;
  4. Технологический зазор;
  5. Система навесного фасада, крепится на обрешетке;
  6. Сайдинг.

Возведение многослойных конструкций производится  с обязательным устройством вентиляционного зазора. Наружный слой является паробарьером. И горизонт конденсации приходится на внешнюю поверхность теплоизоляции. Для того чтобы материал не отсыревал и не лишался своих основных параметров необходимо выводить водяной пар из конструкции.

Толщина несущей стены из керамзитобетонных блоков. Толщина несущих и внутренних стен из керамзитобетонных блоков, отзывы строителей

.

Толщина стены из керамзитобетонных блоков напрямую зависит от типа кладки, которых на сегодняшний день насчитывается около четырех. Каждый из них подбирается с учетом климатических условий расположения объекта, интенсивности эксплуатации здания. В капитальном строительстве используются не только керамзитобетонные блоки.Идеальными строительными материалами также являются кирпич, пеноблоки, шлакоблоки, фасонный газобетон. Толщина кладки зависит от требований к теплоизоляции, теплофизических характеристик утеплителя.

Виды кладки

Толщина стены из керамоблоков в первом варианте кладки формируется сочетанием размерных параметров несущей стены, внутреннего слоя штукатурки и внешнего слоя утеплителя. .

Блочные стены с утеплителем

Толщина стены из керамзитобетонных блоков в различных типах кладки представляет собой конструкцию с высокими теплофизическими характеристиками. Внутренняя и внешняя части трехслойной стены соединяются арматурными стержнями, которые обеспечивают устойчивость и прочность конструкции

При строительстве жилых или производственных зданий следует решать вопросы обмена воздушных масс в помещения. , так как материал стенового блока с утеплителем не совсем справляется с поставленной задачей.Скопившийся конденсат снижает теплоизоляционные свойства утеплителя, способствует образованию болезнетворных микроорганизмов.

Чтобы определить, какая толщина стены из керамзитобетонных блоков подходит для средней полосы России, следует обратить внимание на рекомендации специалистов: однослойные, 40-60 мм. Плотность пустотелых элементов (с заделанными или сквозными пустотами) не должна быть ниже 800-1000 кг / м 3. Плотность монолитных блоков должна превышать 1000 кг / м 3.

При работе на сайте необходимо учитывать взаимодействие материалов не только между собой, но и со всей конструкцией в целом.

Стены любой толщины из керамзитобетонных блоков нуждаются в защите от передачи тепловой энергии из помещения наружу через стены. В процессе решения проблемы учитывается ряд условий, позволяющих продлить срок эксплуатации постройки.

  1. Материалы плотной текстуры следует располагать ближе к внутренней части поверхности стены. Снаружи следует размещать пористые блоки, чтобы предотвратить образование конденсата на изоляции.
  1. При трехслойной кладке внутренняя стена должна превышать толщину внешней стены.
  1. Пароизоляционная мембрана устанавливается с изнаночной стороны утеплителя, расположенного снаружи внутренней стены.

Для примера расчета толщины несущей стены из керамзитобетонного блока можно рассмотреть Московскую область.Используя математическую формулу δ = R рег x λ, где R рег — Москва и Московская область (3 — 3,1) с коэффициентом теплопроводности 0,19 Вт / (м * C), получаем результат: δ = 3 x 0,19 = 0,57 м.

Возведение стен из блоков на основе керамзитобетона характеризуется рядом преимуществ, среди которых:

  • показатели повышенной прочности;
  • мощные теплоизоляционные свойства;
  • простота и безупречное качество отделки и др.

Технология укладки с использованием джутовой ленты, которая размещается в пространстве между внутренней и внешней полосами раствора, гарантирует предотвращение появления «мостиков холода». Популярный материал используется практически во всех странах, в какой бы климатической зоне они ни находились.

Блоки Алексинского завода стеновые толщиной 0,4 и 0,6 м

Выдавить максимум преимуществ из использования керамзитобетонных блоков можно при правильном определении толщины стен.Иногда особенности строительства требуют использования в кладке подпорных стен, помимо блоков на основе керамзитобетона, кирпича и блоков другого типа. Вам необходимо точно знать, какими должны быть теплоизоляционные характеристики стен объекта.

Наиболее распространены два решения: подпорные стены из блоков на основе керамзитобетона возводятся толщиной 0,4 или 0,6 м (без внутренней штукатурки и внешней отделки).

Толщина 0.4 метра можно получить, используя легкие агрегатные блоки размером 390: 190: 188 мм сплошного (M75 F50 D1300) и 2 полых (M25 F35 D800), 4 (M35 F35 D900) и 8-щелевых (M35 F35 D900) типов.

При создании стен толщиной 0,6 метра следует использовать 6-ти щелевые пустотелые керамзитобетонные блоки формата 300х390х188 или 600х390х188 мм. При установке перегородок можно использовать блоки марки M75 D1300 формата 120x390x188 или пустотелые ПКС толщиной 80 и 90 мм — 390×90 (80) x188.

Все, что требуется для решения строительных задач, есть в ассортименте керамзитобетонных блоков Алексинского завода.

О нюансах выбора толщины

Толщина стен, которой следует придерживаться в том или ином регионе страны, указывается дизайнерам соответствующими стандартами. В ЦО РФ для стен жилых домов рекомендуется с определенным запасом норма толщины 64 см, для других построек — 0.4 мес. Параметр выше 0,6 м несколько завышен по сравнению с расчетными данными. Простая формула учитывает значения 2-х коэффициентов:

  • теплопроводность «λ»;
  • сопротивление теплопередаче «Ррег».

Толщина подпорных стенок δ = Rрег (3,0-3,1 в ЦО РФ) x λ (0,19) = 0,57 м …

Это один из видов бетона. В последнее время этот материал все чаще используют для различных работ: при строительстве коттеджей, хозяйственных построек, гаражей и т. Д.Также керамзитобетон используют для заливки каркаса многоэтажных домов, возводимых из железобетона. Керамзитобетон настолько популярен, что применяется практически во всех странах мира, а точнее, используются уже изготовленные блоки из керамзитобетона.

Закажите керамзитобетонные блоки на выгодных условиях, позвонив нам по телефонам:

.

или отправьте заявку через .

Те, кто еще не смог оценить все достоинства керамзитобетона, уже начинают их праздновать.Тем, кто решил начать строительство дома из этого материала, стоит внимательно изучить вопрос, касающийся толщины стен из керамзитобетонных блоков.

Разберемся, почему этот нюанс так важен.

Зависимость толщины от типа кладки

Толщина стены, возведенной блоками из керамзитобетона, в первую очередь зависит от выбора типа кладки. В свою очередь, каждый вид зависит от погоды и климата. Также необходимо учитывать, сколько будет использовано здание.В капитальном строительстве могут применяться и другие строительные материалы: кирпич, шлакоблоки или пеноблоки. Толщина стен будущей постройки также будет зависеть от того, какая теплоизоляция помещения потребуется. Кроме того, нужно учитывать показатели теплопроводности и влагоотталкивания используемого материала.

В зависимости от того, какой вариант кладки выбран, будет рассчитана толщина стен. При этом также учитываются как внутренний, так и внешний слои штукатурки, которой отделаны стены.

Варианты кладки:

  • Первый вариант: подпорная стена строится из блоков размером 390/190/200 мм. В этом случае блоки укладываются толщиной 400 мм без учета внутренних слоев штукатурки.
  • Второй вариант: несущая стена кладется блоками 590 х 290 х 200 мм. В такой ситуации размер стены должен составлять 600 мм, а образовавшиеся пустоты в блоках заполняются утеплителем.
  • Третий вариант: при использовании блоков из керамзитобетона размером 235 на 500 и 200 мм в результате стена будет 500 мм.Кроме того, в расчеты добавляются слои штукатурки с обеих сторон стены.

Влияние теплопроводности

Блок-схема керамзитобетона.

Перед началом любых строительных работ нужно рассчитать коэффициент теплопроводности, так как он имеет большое значение для долговечности конструкции. Полученный коэффициент необходим для расчета толщины стен из керамзитобетонных блоков.Теплопроводность — характеристика материала, говорящая о способности передавать тепло от теплых предметов к холодным.

В расчетах эта характеристика материала отображается через определенный коэффициент, который учитывает параметры объектов, между которыми происходит теплообмен, а также время и количество тепла. По коэффициенту можно узнать, сколько тепла может быть передано за один час от одного объекта к другому, при этом размер объектов составляет 1м2 (площадь) на 1м2 (толщина).

Различные характеристики по-разному влияют на теплопроводность материала. К этим характеристикам относятся: размер, состав, тип и наличие пустот в материале. Также на теплопроводность влияет температура и влажность воздуха. Например, пористые материалы обладают низкой теплопроводностью.

При строительстве каждого конкретного дома измеряется собственная толщина будущих стен. Он может варьироваться в зависимости от назначения постройки. Для строительства жилого дома толщина стен должна быть ровно 64 см, что прописано в специальных нормах и правилах проведения строительных работ.Но некоторые думают иначе, и я делаю несущую стену толщиной всего 39 см. На самом деле такие расчеты подходят только для дачи, гаража или загородного коттеджа.

Пример расчета толщины стенки

Расчет должен быть очень точным. Необходимо учитывать лучшую толщину стен, возводимых из керамзитобетонного материала. Чтобы произвести точный расчет, нужно воспользоваться специальной формулой.

Для этого нужно знать всего две величины: коэффициент теплопроводности и коэффициент сопротивления теплопередаче.

Первое значение обозначается «λ», а второе «Rreg». На значение коэффициента сопротивления влияет такой фактор, как погодные условия местности, где будут проводиться строительные работы. Определить такой коэффициент можно согласно строительным нормам и правилам.

Толщина будущей стены обозначается буквой «δ». А формула его расчета будет выглядеть так:

δ = Rreg x λ

Например, вы можете рассчитать необходимую толщину стены для строительства дома в Москве или Подмосковье.Коэффициент сопротивления теплопередаче для этого участка уже рассчитан и составляет примерно 3–3,1. Толщина самого блока может быть любой, например взять 0,19 Вт. Рассчитав приведенную выше формулу, получим следующее:

δ = 3 х 0,19 = 0,57 м.

То есть толщина стен должна быть 57 см.

Опытные строители советуют возводить стены толщиной от 40 до 60 см при условии, что здание находится в центральных регионах России.

Таким образом, рассчитав простую формулу, можно построить такие стены, которые обеспечат не только безопасность конструкции, но и ее прочность и долговечность. Выполнив такое простое действие, вы сможете построить по-настоящему крепкий и надежный дом.

Керамзитобетон — один из видов бетона. В последнее время довольно часто стал применяться в строительных работах: возведении коттеджей, хозяйственных построек, гаражей. Его также используют для заполнения каркаса многоэтажных домов из железобетона.
Этот материал стал настолько популярным, что уже трудно представить себе страну, в которой бы его не использовали строители. Точнее, используются готовые стеновые блоки из керамзитобетона.
Толщина поверхности, отделанной керамзитобетонным блоком, в основном зависит от того, какой тип кладки вы выберете. Каждый вариант, в свою очередь, зависит от погодных и климатических условий. Также учитывается, насколько здание эксплуатируется. Когда строительство капитальное, то зачастую можно использовать не одни только блоки из керамзитобетона.Кроме того, используются кирпичи, пеношлакоблоки. Толщина будущей кладки будет зависеть от того, какой утеплитель требуется для конкретной постройки. Также будут учтены различные теплопроводные и влагоотталкивающие характеристики утеплителя.
В зависимости от выбора кладки вы рассчитаете толщину стены, которая сделана из керамических блоков. При этом будут учтены внешний и внутренний слои нанесенной на стену отделочной штукатурки:
Первый вариант: если несущая стена облицована блоками 390: 190: 200 миллиметров, то кладку необходимо укладывать толщиной 400 миллиметров, не считая слоев внутренней штукатурки и утеплителя, который находится снаружи.
Второй вариант: если конструкция несущей стены состоит из блоков размером 590: 290: 200 миллиметров, то стена должна быть ровно 600 миллиметров. В этом случае стоит заполнить утеплителем специальные пустоты в блоках между стенами.
Третий вариант: если вы решили использовать керамзитобетонный блок размером 235: 500: 200 миллиметров, то толщина стены будет 500 миллиметров. Плюс к расчетам добавьте слои штукатурки с обеих сторон стены.
Теплопроводность — свойство материала, характеризующее процесс передачи тепла от теплых предметов к холодным. Это всем известно с уроков физики.
Теплопроводность в расчетах выражается через специальный коэффициент. Он учитывает параметры тел, между которыми передается тепло, количество тепла и время. Этот коэффициент показывает, сколько тепла может быть передано в течение одного часа от одного тела к другому, которые имеют толщину один метр и площадь одного квадратного метра.
Различные характеристики по-своему влияют на теплопроводность каждого материала. К ним относятся размер, тип, наличие пустот в материале или веществе и его химический состав. На этот процесс также влияют влажность и температура воздуха. Например, низкая теплопроводность наблюдается в пористых материалах и веществах.
Для каждого конкретного здания измеряется собственная толщина стен. Он меняется в зависимости от назначения постройки. Для жилого дома норма толщины будет ровно 64 сантиметра.Все это прописано в специальных строительных нормах и правилах. Правда, некоторые думают иначе: несущая стена жилого дома может иметь толщину 39 сантиметров. На самом деле такие расчеты больше подходят для дачи, дачи, гаража, построек хозяйственного назначения. Со стеной такой толщины возможно возведение внутренней отделки.
Пример расчета
Очень важен момент проведения точного расчета. Необходимо учитывать оптимальную толщину стен, которые выполнены из керамзитобетонных блоков.Воспользуйтесь очень простой одношаговой формулой для достижения результата.
Строителям необходимо знать две величины, чтобы решить эту формулу. Первое, что нужно знать, это коэффициент теплопроводности, о котором говорилось ранее. В формуле это пишется через знак «λ». Вторая величина, которую необходимо учитывать, — это коэффициент сопротивления теплопередаче. Это значение зависит от многих факторов, например, от погодных условий местности, где находится здание. Рельеф, на котором будет использоваться здание, также является важным фактором.Это значение в формуле будет иметь вид «Rreg». Его можно определить по строительным нормам и правилам.
Значение в формуле, которое нам нужно найти, а именно толщину строящейся стены, мы обозначаем знаком «δ». В итоге формула будет выглядеть так:
В результате после решения этой формулы:
δ = 3 x 0,19 = 0,57 м.
мы понимаем, что толщина стен должна быть 57 сантиметров.
δ = Rreg x λ
В качестве примера можно рассчитать толщину строящейся стены в городе Москва и Подмосковье.Величина Rreg для этого региона страны уже рассчитана, официально установлена ​​в специальных строительных нормах и правилах. Таким образом, это 3-3,1. А размер стен можно взять для примера любой, так как вы уже на месте рассчитаете свои. Толщина блока может быть совершенно разной. Например, можно будет взять 0,19 Вт / (м * ⁰С).
Опытные строители, специалисты рекомендуют делать толщину стен от сорока до шестидесяти сантиметров, если здание будет располагаться в таких центральных регионах России, как Москва, Санкт-Петербург.Петербург.


Использование керамзитобетона при возведении наружных стен, перегородок и перекрытий — обычная практика; этот кладочный материал ценится за прочность, хорошие изоляционные свойства, соответствие нормам безопасности и стабильность характеристик. Толщина строительных конструкций, размер и количество блоков определяется расчетом с учетом их функционального назначения и показателей эффективности конкретной марки.В этом случае основным ориентиром являются данные производителя и требования СНиП 23-02-2003.

Для расчета этого значения применительно к конструкциям, контактирующим с внешней средой или участкам с различным температурным режимом, используется простая формула: δ = R рег эмпирически и в зависимости от климатических условий региона и типа помещения (неотапливаемое или жилой). Для Московской области его официальное значение колеблется в пределах 3–3,1 м² · ° C / Вт, для Мурманска и северной полосы — 3.63, южные города — 2.3.

Точное значение для конкретного крупного населенного пункта берется из таблиц, считается усредненным по региону и подходит для использования в расчетах по определению толщины стен для близлежащих объектов.

С учетом этого параметра и примерной теплопроводности блоков классом прочности не менее В3,5 в пределах 0,19-0,21 Вт / м. На практике значение этого показателя всегда выше, рекомендуемый минимум для этих регионов — 64 см.Отклонение вниз допустимо только для редко используемых построек: бань, дач, гаражей или мастерских; для защиты фасадов таких объектов от промерзания рекомендуется покрывать фасады таких объектов 5-сантиметровым слоем утеплителя …

При расчете толщины перегородок ключевыми факторами являются требования к акустическому комфорту и их ожидаемая самонесущая способность. Если нет необходимости монтировать на них тяжелую мебель или оборудование, стандартного минимума 190 мм будет достаточно при условии использования элементов с хорошим звукопоглощением — пустотелых или легких, на основе высокопористых гранул керамзита.Если требуется простое разделение внутреннего пространства, используются изделия более тонкие (90-100 мм). При кладке несущих перегородок ширину увеличивают до 40 см.

Факторы, влияющие на толщину стены из керамзитобетонных блоков

Исходя из вышесказанного, размеры напрямую зависят от двух критериев: климатических условий эксплуатации (чем больше разница между температурой снаружи и заданным диапазоном внутри, тем выше значение коэффициента сопротивления теплопередаче) и теплового проводимость материала.В случае керамзитобетона последнее тесно связано с классом плотности, размером, количеством пустот и степенью влажности. Оптимальные показатели теплоизоляции имеют щелевые камни с удельным весом до 700-1200 кг / м3, худшие — твердые с высокой долей тяжелого песка и мелких гранул в составе.

На первый взгляд, уменьшить толщину очень просто — используя легкие и пустотелые блоки. Но из-за неизбежного снижения прочности этот способ подходит только для перегородок и каркасных домов, но не для внешних капитальных стен.В результате при возведении здания в холодном климате у девелопера есть два варианта: сделать толщину в пределах проектной, увеличив тем самым нагрузку на основание, или утеплить. Вторые признаны более эффективными, в зависимости от места и способа расположения слоя теплоизоляции их различают:

  1. Кладка колодца из двух параллельных стен одинакового размера из керамзитоблоков, соединенных арматурой. Достоинством такого варианта является возможность использования в качестве утеплителя как сыпучих материалов, так и затвердевших пен с низкой плотностью, а также разновидностей плит.
  2. Трехслойный с внешней теплоизоляцией и последующей облицовкой кирпичом или перегородками из керамзитобетона. Отличие от предыдущей схемы заключается в другом способе крепления утеплителя и более тонкой наружной стене.
  3. Системы вентилируемых фасадов с однорядной кладкой. Этот вариант один из самых популярных, при стандартной толщине элементов его ширина варьируется в пределах 20 см. Это позволяет в несколько раз снизить весовую нагрузку на фундамент и сделать его менее массивным.В таких случаях утеплитель всегда имеет жесткую и плиточную форму, заранее укладывается обрешетка для крепления облицовки.
  4. Стены толщиной 20-40 см (в 1 или 1,5 блока соответственно), без пористой и волокнистой изоляции, покрытые с одной или двух сторон толстым слоем теплоизоляционной штукатурки.

Нюансы укладки изделий из керамзитобетона

После определения габаритов конструкций и выбора способа облицовки (однослойная в половину блока, в блоке, две соединенные стены с утеплителем посередине или другие варианты) рекомендуется составить точную схему, с учетом толщины швов и необходимости армирования.Расчет количества элементов и объема шовного раствора проводится заранее, в качестве последнего подбираются классические цементно-песчаные или специализированные готовые смеси. Монтажные работы желательно проводить в теплое время года, основание под рядами надежно утепляют от почвенной влаги рулонными материалами и слоем КПП 20-30 мм.

типов бетонных блоков, используемых в строительстве

Есть две основные категории бетонных блоков: пустотелые и сплошные.Оба этих типа бетонных блоков обычно используются при возведении стен, но могут использоваться и для других целей.

Как вы увидите, не все твердые бетонные блоки являются полностью твердыми, но они более твердые, чем полые. Мы обсудим различные типы бетонных блоков, также известные как бетонные блоки или CMU, более подробно ниже.

Вы, наверное, знакомы с бетонными блоками из местного хозяйственного магазина, и, возможно, вы слышали, что некоторые из них называются шлакоблоками.Это связано с тем, что шлакоблоки изначально были частично сделаны из золы, оставшейся при сжигании угля (часто на угольных электростанциях). Шлак был использован вместо песка и гравия в бетоне, в результате чего были более легкие и менее прочные шлакоблоки.

Термины «бетон» и «цемент» также часто путают. Цемент — это ингредиент, используемый для изготовления бетона. Другие материалы, такие как песок, гравий и камень, составляют около трех четвертей того, что вы найдете в бетоне.Цемент — порошок из глины, известняка и других веществ — смешивается с водой и добавляется в смесь для создания бетона.

История бетона фактически начинается с своего рода природного цемента, который образовался в результате реакций между известняком и горючим сланцем. Впервые он был обнаружен на территории современного Израиля, и считается, что ему около 12 миллионов лет назад. Цемент использовался для строительства всего, от Великой Китайской стены до римского Колизея.

Бетонные блоки — это строительный материал, альтернативный кирпичной кладке, имеющий достоинства и недостатки.Поскольку бетонные блоки больше, чем кирпичи, для их скрепления требуется меньше цемента в стыках раствора. Однако из-за содержания влаги и большего размера бетонные блоки более склонны к перемещению и растрескиванию при смещении фундамента, чем кирпичи.

Сравнение пустотелых бетонных блоков и массивных бетонных блоков

В строительстве используются два основных типа бетонных блоков: пустотелые и полнотелые. Полностью цельные блоки часто используются для таких проектов, как мощение, где важны стабильность и долговечность.Не стоит пытаться ходить по дырявому тротуару.

Пустотные блоки, отверстия в которых занимают более четверти (а обычно более половины) площади их поперечного сечения, используются при строительстве ограждений и других крупных сооружений. Отверстия делают их легче и могут быть полезны при прокладке через них проводки или трубопроводов. Вы также можете пропустить арматуру через отверстия для большей устойчивости.

Пустотелые бетонные блоки

Пустотные бетонные блоки бывают трех марок:

  • Grade A имеет минимальную плотность 1500 кг / м3.
  • Grade B имеет плотность менее 1500 кг / м3.
  • Grade C имеет плотность более 1000 кг / м3.

Марки A и B используются для стен из несущих бетонных блоков, а марка C — для ненесущих стен.

Полые блоки бывают нескольких типов, которые подробно описаны ниже.

Полнобетонные блоки

Полностью массивные бетонные блоки выглядят как серые кирпичи, но обычно больше. Они хороши для создания стен, обеспечивающих защиту от непогоды, например, от сильного ветра.

Их также можно использовать для таких проектов, как садовые стены и клумбы, подпорные стены, фундаменты, ступени и костровые ямы.

Полнобетонные блоки обычно тяжелее пустотелых блоков, но они могут быть дешевле.

Типы пустотелых бетонных блоков

Пустотные бетонные блоки бывают разных размеров, например 100 мм x 200 мм x 400 мм, 150 мм x 200 мм x 400 мм и 200 мм x 200 мм x 400 мм. Эти блоки чаще всего серые, но также могут быть разных цветов, в том числе коричневого и темно-красного.Вот несколько доступных вам вариантов.

Блок растяжителя

Бетонные подрамники используются в строительстве для соединения углов каменных блоков. Их грани укладываются параллельно лицевой стороне стены.

Опорный блок

Как следует из названия, блоки столбов чаще всего используются для строительства столбов или опор. Их также называют блоками с двумя углами, и они сконструированы таким образом, чтобы оба конца оставались видимыми. Столбчатые блоки — это такие блоки, о которых многие люди думают, когда думают о бетонных блоках, и они часто доступны в больших количествах в строительных магазинах.

Блок перемычки

Блоки перемычек, также называемые каналированными или балочными блоками, узнаваемы по их U-образной форме. Глубокие канавки, образованные U-образной формой, которые проходят по длине этих блоков, заполнены бетоном и арматурными стержнями. Используемые при подготовке перемычек, их обычно размещают на дверях и окнах, чтобы передавать нагрузку, давящую сверху вниз.

Блок перемычки со сплошным дном, такой как изображенный здесь, можно приобрести в конфигурации 6 на 8 на 16 дюймов.

Блок косяка

Блоки Jamb имеют неглубокую канавку через два отверстия и более глубокую канавку на одном конце. Они обеспечивают пространство для элементов облицовки окна и часто используются специально в двойных окнах.

Блок колонн

Блок столбцов обычно представляет собой квадратный блок с одним отверстием. Их можно складывать друг с другом, образуя колонны с армированием внутри.

Угловой блок

Угловые блоки размещаются по углам, как и следовало ожидать, или по краям окон и дверных проемов.Плоская сторона выходит наружу, а сторона носилок проходит параллельно стене.

Блок Splitface

Блоки Splitface выглядят как блоки-колонны, за исключением того, что один край имеет очень грубую, почти неровную текстуру, которая обнажает внутренние агрегаты блока. Этот блок очень пористый и поэтому уязвим для повреждения водой, но он также имеет меньший риск заражения термитами и менее подвержен возгоранию.

Блок с разделенными гранями, подобный изображенному выше, может иметь размер 6 на 8 на 16 дюймов.

Блок Bullnose

Блоки Bullnose аналогичны угловым блокам по использованию и структуре, за исключением того, что они имеют закругленные края (что и является причиной их названия).

Один блок с выпуклой головкой, подобный показанному здесь, может иметь размер 6 на 8 на 16 дюймов; блок с двойным выпуклым носиком на одном конце доступен в том же размере.

Разделительный блок

Блоки перегородки похожи на блоки столбов бетонные, за исключением того, что они выше, чем в ширину.Эти узкие блоки выглядят почти как широкие очки, если смотреть прямо.

Типы монолитных бетонных блоков

Ваш выбор не будет таким разнообразным, когда речь идет о твердых бетонных блоках, чем о пустотелых блоках, но у вас все равно будет выбор, который можно использовать для различных целей.

Блок золы-уноса

Летучая зола представляет собой мелкодисперсное порошкообразное вещество, которое при смешивании с водой образует материал, похожий на портландцемент.(Портландцемент создается путем смешивания мелко измельченного или обожженного известняка и глины или сланца.) Более половины бетона, размещаемого в Соединенных Штатах, содержит летучую золу. [7] Замена цементного бетона летучей золой в дорожных проектах, требующих большого количества материала, может быть шагом, позволяющим сэкономить деньги.

Существует два класса летучей золы:

  • Класс C — это разновидность с высоким содержанием кальция, которая содержит менее 2% углерода. Он может составлять от 15% до 40% цементного материала.
  • Class F имеет содержание углерода от 5% до 10% и является материалом с низким содержанием кальция. Обычно он составляет от 15% до 25% цементного материала.

Использование летучей золы может снизить выбросы CO2, обеспечить устойчивость к холодной погоде, а также уменьшить проблемы с растрескиванием и проницаемость. Его также можно использовать для создания гладкой, четко детализированной поверхности. [7]

Летучая зола, как и портландцемент, представляет собой мелкодисперсный порошок, который может действовать как пигмент. Цвет частиц может быть янтарным, коричневым, серым, зеленым, оливковым, красным, желтым или желто-коричневым.Результирующий цвет может варьироваться в зависимости от концентрации частиц, но часто это оттенок серого.

Кирпичи из летучей золы обычно бывают небольшого размера, поскольку они становятся менее прочными, чем больше они становятся, и более склонны к растрескиванию и растрескиванию при больших размерах.

Блок автоклавного аэрирования

Газированный автоклавный блок, сокращенно известный как блок AAC, представляет собой легкий материал, обеспечивающий высокую степень звуко- и температурной изоляции. Его огнестойкость и изоляционные свойства делают его привлекательным выбором, хотя он не так широко доступен, как некоторые другие формы бетона.

Эти легкие бетонные блоки на 80% состоят из воздуха, что объясняет название «газированные». Этому материалу легко придать форму, можно использовать гвозди и шурупы. Но он не такой прочный, как некоторые варианты из более плотного бетона, поэтому это не лучший несущий бетон, и его часто необходимо армировать. Вы также захотите заклеить его защитным покрытием, чтобы избежать повреждения при воздействии элементов.

Эти блоки имеют цвет от белого до светло-серого и могут быть адаптированы для использования в боковых стенах, перегородках и других типах стеновых конструкций, а также для стальных столбов и филеночных панелей.Они доступны в виде блоков, панелей и специальных форм, таких как блоки перемычек и U-образные блоки соединительных балок, оба из которых доступны в разной толщине.

Брусчатка

Брусчатка — это квадратные или прямоугольные массивные блоки, используемые для мощения, на обочинах дорог (где они должны быть окрашены для улучшения видимости) и на пешеходных дорожках.

Хотя они часто имеют форму кирпича, они доступны в различных размерах и цветах, включая песчаник, коричневый, темно-коричневый, угольный и светло-серый.

Сотовый легкий блок

Ячеистый легкий блок — это строительный материал, содержащий три компонента: пену, летучую золу и цемент. Как и AAC, он обеспечивает хорошую изоляцию от звука и экстремальных температур. Он огнестойкий, экологически чистый и относительно недорогой.

Эти светло-серые блоки изготовлены из материала, который существует с 1930-х годов. Они настраиваются и могут быть изготовлены в различных размерах, а также использоваться для стеновых панелей, многослойных стен и парапетов.

Ячеистые легкие блоки высокой плотности могут использоваться для несущих или перегородок; средней плотности можно использовать для ненесущей кирпичной кладки.

Блок заполнителя из вспученной глины

Керамзитобетонные блоки состоят из легких заполнителей летучей золы и цемента. Водонепроницаемые и огнестойкие, их легкий вес позволяет снизить общую нагрузку на конструкцию до 50%. Они также хорошо изолируют от звука и температуры.

Поскольку этот материал обжигается в печи, его можно формовать в разные размеры с разной плотностью.

Заключение

Бетонные блоки могут быть полезными компонентами для различных целей во многих строительных проектах, будь то укладка проезжей части, возведение несущих каменных стен или создание перегородок.

Чтобы выбрать подходящий продукт, вам нужно принять во внимание, как вы будете его использовать, и какие свойства вы хотите выделить.Различные типы бетонных блоков предназначены для использования в разных местах конструкции, например над окнами или в углах. Некоторым нужно больше армирования, чем другим, а у некоторых лучше тепло- и звукоизоляция.

Вам нужен плотный заполнитель или более легкая альтернатива?

Расходы — еще один фактор, который следует учитывать. Сколько тебе нужно потратить?

Ответив на эти вопросы, вы сможете лучше выбрать подходящее оборудование и приступить к строительному проекту.И вы получите больше уверенности в том, что это будет безопасно и что вы все сделаете правильно с первого раза.

Похожие сообщения










Angelus Техническая статья: Рейтинг огнестойкости

Бетонная кладка — предпочтительный материал для возведения огнестойких стен. Это многофункциональная система в единой упаковке:

Негорючий, устойчивый к возгоранию
Конструктивно прочный, исключительные сейсмические характеристики
Не выделяет токсичных газов при нагревании
Долговечный, долговечный, с низкими затратами в течение жизненного цикла

Рейтинги огнестойкости бетонных стен различной толщины основаны на таблице 721 CBC 2019 года.1 (2), Номинальные периоды огнестойкости для различных стен и перегородок, номера позиций с 3-1.1 по 3-1.4:

3-1.1 Вспученный шлак или пемза
3-1.2 Керамзит, сланец или сланец
3-1.3 Известняк, шлак или шлак с воздушным охлаждением
3-1.4 Известковый или кремнистый гравий

Частично залит с цельным раствором 1
CMU ASTM C90 Вес.Классификация NW МВт LW NW МВт LW

Номинальная ширина

4 1
Час
1
Час
1
Час
1
Час
6 1
Час
1
Час
1
Час
3
Часы
3
Часы
3-4
Часы 2
8 1
Час
1
Час
2
Часы
4
Часы
4
Часы
4
Часы
10 2
Часы
2
Часы
2
Часы
4
Часы
4
Часы
4
Часы
12 2
Часы
2
Часы
2-3
Часы 2
4
Часы
4
Часы
4
Часы

1 CMU шириной 4 дюйма представляют собой сплошные блоки вместо залитых сплошным раствором.
2 Может зависеть от места производства или указанного продукта. Проконсультируйтесь с вашим представителем для получения дополнительной информации.

Эквивалентная толщина определена в разделе 722.3.1 CBC 2019 г.

Для бетонных стен с частичным цементным раствором с использованием cmu толщиной 8 дюймов, рассчитанного на 2 часа, рейтинг огнестойкости может быть увеличен до 4 часов, если незацементированные ядра заполнены любым из следующего:

Силиконовая перлитовая изоляция с сыпучим наполнителем, соответствующая стандарту ASTM C 549.
Сыпучая изоляция из вермикулита, соответствующая ASTM C 516.
Керамзит, сланец или легкий заполнитель сланца, соответствующий ASTM C 331.
Песок из шлака с максимальным размером частиц 3/8 дюйма, соответствующий стандарту ASTM C 33.

Расчетная эквивалентная толщина бетонной кирпичной стены может включать толщину нанесенной штукатурки и обрешетки, гипсокартона или гипсовой штукатурки.

Класс огнестойкости стен с КМС с использованием смешанных заполнителей определен в соответствии с разделом 722.3.1 CBC 2019 и ACI 216.1 / TMS 0216 [на котором основан раздел 722.3.1].

Загрузите Справочные материалы по строительным нормам и правилам огнестойкости кладки. В документе выделены разделы кодекса, относящиеся к кладке и огнестойкости.

Что такое R-ценность?

Что такое R-ценность?

Мера устойчивости строительных материалов и конструкций к потоку тепла; чем выше значение R, тем эффективнее теплоизоляция вещества.

, где разница температур между двумя сторонами изоляции выражается в градусах Фаренгейта, площадь — в квадратных футах, время — в часах, а тепловые потери — в британских тепловых единицах. Если вы знаете R-значение перегородки, вы можете использовать эту формулу, чтобы найти теплопотери.

Обратное значение R (1 / R) известно как U-значение. Чем выше значение U, тем лучше отвод тепла.

В Европе принято использовать U-значения вместо R. Здесь значения U определяются уравнением:

Это не обратная величина американского R-значения (кельвин вместо градусов Фаренгейта, метры вместо футов и т. Д.) Чтобы преобразовать американское значение R в европейское значение U, разделите 1 на значение R, а затем умножьте результат на 5,682. Чтобы преобразовать европейское значение U в американское значение R, умножьте его на 0,176, а затем разделите 1 на результат.

R-значение структуры, состоящей из слоев из разных материалов, можно оценить, сложив R-значения слоев. Значение R слоя можно оценить, умножив его толщину в дюймах на значение R на дюйм. Эти методы не дают строго точных результатов (среди прочего, слой воздуха, застрявший на поверхностях между слоями, сам по себе является изолятором), но они близки к этому.

Удобные онлайн-калькуляторы для оценки коэффициента сопротивления многослойной стены, пола или крыши составляют

.

www.ekotrope.com/r-value-calculator

Изоляция
Тип изоляции R-значение
на дюйм толщины
Вермикулит сыпучий 2,08
Перлит, сыпучий наполнитель 2,7
Стекловолокно, одеяла и войлоки 3,33
Стекловолокно, сыпучий наполнитель 2.2
Стекловолокно, плиты 4,5
Минеральная вата, вата 3,66
Минеральная вата, рыхлый наполнитель 2,93
Полистирольные плиты 3,45
Целлюлоза, сыпучий наполнитель 3,6
Пена карбамидоформальдегидная 4,48
Пенополиуретан 5,3
Воздушные зазоры в три четверти дюйма
Тепловой поток вверх 0.87
Тепловой поток вверх, отражающая одна поверхность 2,23
Стены и сайдинг
Деревянный сайдинг со скосом, ½ ″ × 8 ″ внахлест 0,81
Деревянная черепица для сайдинга, экспозиция 16 ″ × 7½ ″ 0,87
Битумная черепица 0,03
Штукатурка, на дюйм 0,20
Строительная бумага 0,06
Обшивка изоляционной панелью для гвоздей толщиной ½ дюйма 1.14
Обшивка изоляционной панелью ½ дюйма, обычной плотности 1,32
изоляционная плита обычной плотности 2,04
Фанера ¼ дюйма 0,31
Фанера 3/8 дюйма 0,47
Фанера ½ дюйма 0,62
Фанера 5/8 дюйма 0,78
Мягкая древесина, на дюйм 1.25
Доска хвойных пород толщиной ¾ дюйма 0,94
Бетонный блок,
три ядра овальной формы
зольный агрегат толщиной 4 дюйма 1,11
шлаковый агрегат толщиной 8 дюймов 1,72
зольный агрегат толщиной 12 дюймов 1,89
песчано-гравийный заполнитель толщиной 8 дюймов 1,11
легкий заполнитель
(керамзит, сланец, шлак, пемза
и др.)),
толщиной 8 дюймов
2,00
Бетонный блок,
две прямоугольные жилы
Заполнитель песка и гравия, 8 дюймов 1,04
Легкий заполнитель толщиной 8 дюймов 2,18
Обычный кирпич, за дюйм 0,20
Лицевой кирпич, на дюйм 0,11
Песчано-гравийный бетон, дюйм 0,08
Гипсокартон ½ дюйма 0.45
5 / 8 дюймов гипсокартон 0,56
Гипсовая штукатурка на легком заполнителе ½ дюйма 0,32
Этажей
Полы с отделкой из твердых пород дерева 0,68
Плитка для пола из асфальта, линолеума, винила или резины 0,05
Ковер с волокнистой подушкой 2,08
Коврик с поролоновой подушкой 1.23
Крыши
Битумная черепица 0,44
Деревянная черепица 0,94
3 / 8 дюймовая крыша 0,33
Двери
Твердая древесина толщиной 1 дюйм 1,56
Массив дерева толщиной 1 дюйм с деревянной шторной дверью 3,3
Массив дерева толщиной 1½ дюйма 2.04
Массив дерева толщиной 1½ дюйма с деревянной шторной дверью 3,7
Массив дерева толщиной 2 дюйма 2,33
Массив дерева толщиной 2 дюйма с деревянной шторной дверью 4,17

Строительные нормы и правила определяют минимальный уровень изоляции. Оптимальное количество изоляции зависит от предположения, какая погода, а также стоимости и наличия топлива для обогрева (или электричества для охлаждения) будет в течение срока службы дома, и сравнения этого со стоимостью изоляции.Национальная лаборатория Окриджа предоставляет апплет, который дает оценку с учетом многих факторов.

www.ornl.gov/~roofs/Zip/ZipHome.html

Для апплета Oak Ridge требуется Java. В Интернете есть много более простых предложений по оптимальным значениям изоляции, большинство из которых основано на рекомендациях Департамента энергетики. Например:

www.allfloridainsulation.com/insulation-levels.html

www.energystar.gov/campaign/seal_insulate/identify_problems_you_want_fix/diy_checks_inspections/insulation_r_values ​​

институт изоляции.org / im-a-homeowner / about-изоляция / how-much-do-i-need /

Хотите больше?

https://www.energy.gov/energysaver/weatherize/insulation/types-insulation

https://www.energy.gov/energysaver/weatherize/insulation/where-insulate-home

Икс

Извините. Для этой страницы нет информации об участниках.

Copyright © 2000 Sizes, Inc. Все права защищены.
Последняя редакция: 19 октября 2015 г.

Исследование тепловых свойств пустотелых сланцевых блоков как материалов для самоизоляции стен

Для снижения энергопотребления и защиты окружающей среды был спроектирован и изготовлен тип пустотелого сланцевого блока с 29 рядами отверстий.В данной работе исследованы термические свойства пустотелых сланцевых блоков и стен. Во-первых, метод защитного теплового ящика был использован для получения коэффициента теплопередачи стенок пустотелых сланцевых блоков. Экспериментальный коэффициент теплопередачи составляет 0,726 Вт / м 2 · K, что позволяет сэкономить энергию по сравнению с традиционными материалами стен. Затем было рассчитано теоретическое значение коэффициента теплопередачи, равное 0,546 Вт / м 2 · K. Кроме того, одномерный стационарный процесс теплопроводности для блока и стен был смоделирован с использованием программного обеспечения для анализа методом конечных элементов ANSYS.Прогнозируемый коэффициент теплопередачи для стен составил 0,671 Вт / м 2 · K, что хорошо согласуется с результатами испытаний. Обладая выдающимися свойствами самоизоляции, этот тип пустотелого сланцевого блока может использоваться в качестве стенового материала без каких-либо дополнительных мер по изоляции в каменных конструкциях.

1. Введение

Во всем мире экономическое развитие все больше ограничивается нехваткой природных ресурсов [1]. Кроме того, экономический рост приводит к таким проблемам, как разрушение окружающей среды и растрата ресурсов.Чтобы улучшить эту ситуацию и повысить энергоэффективность зданий, традиционные полнотелые глиняные кирпичи были официально запрещены в строительстве, что способствует изучению и применению новых материалов для стен [2].

В настоящее время существует много типов новых стеновых материалов, таких как небольшой полый бетонный блок, пенобетонный блок и небольшой полый блок летучей золы. Однако ни один из этих стеновых материалов не является самоизоляционным, поэтому требуются определенные меры по теплоизоляции внешних стен.Меры внешней изоляции для наружных стен широко используются в строительстве, несмотря на некоторые очевидные недостатки, такие как легкое падение, короткий срок службы и низкая безопасность. Кроме того, в традиционной кирпичной кладке толщина швов раствора варьируется от 8 мм до 12 мм, что позволяет легко образовывать явные тепловые мостики и приводить к значительным потерям энергии.

За последние 40 лет были разработаны различные изоляционные спеченные полые блоки, например, предложенные Porothem, Klimation, Poroton, Thermopor, Unipor, Monomur и Thermoarcilla [3].Все эти блоки обладают низкой плотностью, большим числом отверстий, высокой гладкостью поверхности и хорошими тепловыми характеристиками. Zhu et al. [4] исследовали термические свойства бетона из переработанного заполнителя (RAC) и блоков из переработанного бетона. Sodupe-Ortega et al. [5] изготовили прорезиненный длинный пустотелый блок и изучили технико-экономическую осуществимость производства этих блоков с использованием автоматических кирпичных машин. Zhang et al. [6] изучали тепловые характеристики бетонных пустотных блоков с помощью моделирования методом конечных элементов.Fan et al. [7] описал новый строительный материал, названный пенополистиролом из вторичного бетона, и провел соответствующее численное моделирование пустотелых блоков EPSRC и теплоизоляционных стен на основе термодинамических принципов. В недавних работах методы численного моделирования были предложены Del Coz Díaz et al. [8–11] для изучения различных типов стен из разного легкого пустотелого кирпича. Ли и др. [12] представили разработку упрощенной модели теплопередачи полых блоков для простого и эффективного расчета теплового потока.

Пустотелый сланцевый блок состоит из сланца в качестве основного сырья, опилок в качестве порообразователя и промышленных отходов, таких как летучая зола, стальной шлак и крошка макулатуры в качестве вспомогательных материалов. Все это сырье обжигается в соответствии с определенным производственным процессом, чтобы получить новый энергосберегающий и экологически чистый стеновой материал, который обладает такими преимуществами, как легкий вес, большой размер, высокая скорость отверстий и высокая гладкость. Между тем, пустотелые сланцевые блоки в полной мере используют богатые сланцевые ресурсы для сохранения сельскохозяйственных угодий.В процессе возведения стен из пустотелых сланцевых блоков разрабатывается технология строительства швов из раствора толщиной 1-2 мм, позволяющая значительно снизить теплопотери, вызванные структурными тепловыми мостами. Ожидается, что без мер внешней изоляции будут достигнуты отличные теплоизоляционные свойства и энергоэффективность жилых зданий в условиях сильного холода и холода в наружных стенах. Wu et al. [13] исследовали механические и термические свойства стен из пустотелых обожженных блоков.Bai et al. [14, 15] исследовали сейсмическое поведение обожженных теплоизоляционных стен из сланцевых блоков с ультратонкими швами из раствора.

Коэффициент теплопередачи — один из важнейших параметров для оценки тепловых характеристик стен. При заданной температуре окружающей среды чем ниже коэффициент теплопередачи, тем меньше тепла рассеивается через стену. В настоящее время коэффициенты теплопередачи стен в основном определяются измерениями на месте или лабораторными испытаниями [16].В этом исследовании коэффициенты теплопередачи стенок из пустотелых сланцевых блоков были получены в результате лабораторных испытаний и сопоставлены с теоретическими расчетами и результатами моделирования методом конечных элементов. В разделе 2 представлены подробные размеры, производственные процессы, химические компоненты и минеральный состав пустотного сланцевого блока.

2. Блок из пустотелых сланцев
2.1. Детали блока из полых сланцев

Размеры блоков 365 мм × 248 мм × 248 мм с 29 рядами отверстий; плотность составляет 850 кг / м 3 , что позволяет значительно снизить вес здания и повысить эффективность теплоизоляции блоков.Подробные размеры показаны на рисунке 1.


2.2. Сырье
2.2.1. Сланец

Сланец — это древняя осадочная порода, образовавшаяся в результате длительных геологических процессов. Древние породы дробятся на глинистые минералы и небольшое количество обломочных минералов в результате выветривания и затем переносятся в осадочные места во взвешенном состоянии. Все эти минералы отложились механически и превратились в глинистые породы с ламелляционной структурой при низкой температуре и низком давлении из-за внешних сил и эффекта диагенеза.В Китае более 75% поверхности суши покрыто осадочными породами, из которых 77,5% составляют сланцы [17].

Химический состав сланца представлен в таблице 1; Основные минеральные компоненты сланца — кварц, кальцит, натриевый полевой шпат, каолинит и иллит. Соответствующий спектр XRD показан на Рисунке 2. После добычи, дробления и тонкого измельчения сланец является одним из наиболее многообещающих новых материалов для стенок, заменяющих спеченный глиняный кирпич из-за его большого количества хранимых материалов и легкости добычи.

9044 9044 9044 9044 9044 9044 9044 9044 9044 9446 .2. Порообразователь

Функция порообразующего агента заключается в образовании большого количества пор во время процесса спекания, чтобы воспользоваться преимуществом более низкого коэффициента теплопроводности воздуха.Следовательно, порообразователь может эффективно улучшить изоляционные характеристики пустотелых сланцевых блоков и снизить их вес, что улучшает сейсмические характеристики. Принимая во внимание энергосбережение, переработку ресурсов и защиту окружающей среды, опилки были выбраны в качестве порообразователя для пустотелых сланцевых блоков. Как отходы обработки древесины, опилки имеют много преимуществ при использовании в качестве порообразователя. Опилки в основном состоят из стабильных растительных волокон, а потери при возгорании могут достигать 98.49%. При образовании пор внутри блоков может образовываться множество пор, что улучшает теплоизоляционные свойства. Кроме того, опилок также много, их дешево и легко достать.

2.2.3. Промышленные отходы

Летучая зола, стальной шлак и макулатура были добавлены в процессе спекания в качестве вспомогательных материалов.

2.3. Производственный процесс

В качестве нового типа энергосберегающего стенового материала процесс производства пустотелых сланцевых блоков включает измельчение, старение, перемешивание, экструзию, надрез, сушку, схватывание и высокотемпературное спекание.Большинство процессов автоматизировано. Процесс производства пустотелых сланцевых блоков показан на Рисунке 3.


3. Детали эксперимента

Для проверки применимости пустотелых сланцевых блоков были проведены испытания тепловых характеристик стен из каменной кладки в соответствии с китайскими стандартами [18 ].

3.1. Образцы

Испытательные стены с размерами 1650 мм × 1650 мм × 365 мм (длина × высота × ширина) были построены с использованием пустотелых сланцевых блоков (см. Рисунок 4).


Пустотность пустотелого сланцевого блока достигает 54%, а степень его прочности на сжатие достигает 10 МПа. Кроме того, его сотовая сетчатая структура может обеспечить отличные теплоизоляционные характеристики. Были изготовлены три образца, толщина горизонтального шва составляла от 1 мм до 2 мм. Поскольку в испытательных стенах не было вертикальных стыков из раствора, для блокировки и укрепления стенок из пустотелых сланцевых блоков использовались соединения «шпунт и паз». После того, как образцы были полностью высушены с выдержкой в ​​течение 20 дней, были протестированы тепловые характеристики.

3.2. Устройство для испытаний

Схема устройства для испытания характеристик теплоотдачи в установившемся режиме показана на рисунке 5, которое было разработано в соответствии с китайскими правилами GB / T13475-2008 [18] и методом защитного теплового ящика, как показано на рисунке 6. .



Поскольку защитный кожух в методе защитного теплового бокса окружает дозирующий бокс, тепловой поток через стенку дозирующего бокса () и тепловой поток боковых потерь () могут быть уменьшены до незначительного уровня, если внутренние температуры воздуха защитного и измерительного ящиков равны.Теоретически, если однородный образец установлен в устройство, внутренняя и внешняя температура которого одинаковы, температура поверхности образца будет стабильной. Другими словами, тепловой поток через стенки дозатора будет равен тепловому потоку от боковых потерь (). Однако коэффициент теплопередачи реального однородного образца всегда неравномерен, особенно для частей вблизи краев измерительной камеры. Следовательно, температура поверхности образцов и вблизи дозирующей камеры неравномерна, и тепловой поток через стенку дозирующей камеры () и тепловой поток боковых потерь () фактически не могут быть сведены к нулю.В настоящей работе можно получить и с помощью стандартного калибровочного теста. Кроме того, коэффициент теплопередачи можно рассчитать по формуле. (1) включает следующие переменные: подвод тепловой мощности, тепловой поток через образец, температура поверхности на теплой стороне, температура поверхности на холодной стороне, температура воздуха на теплой стороне, температура воздуха на холодной стороне, площадь поверхности образец и термическое сопротивление.

3.3. Процедура тестирования

(1) После 20 дней естественной сушки на воздухе образцы были помещены в испытательную машину.Детали, пересекающие швы между образцом и коробкой для образцов, были заполнены вспенивающимся изоляционным материалом для герметизации, как показано на Рисунке 7 (а). (2) Длина установочных стержней, соединенных с датчиками температуры внутри холодильной камеры и нагрева. измерительная коробка была проверена и отрегулирована, как показано на рисунке 7 (b). (3) После того, как испытательная машина проработала более 20 часов для каждого образца, а диапазон значений мощности нагрева составлял от 0,5 Вт до 3 Вт, все систему можно рассматривать как находящуюся в устойчивом тепловом состоянии.Затем измеренные данные собирались каждые полчаса и вычислялось среднее значение результатов теста.

3.4. Результаты экспериментов и обсуждение

На основании результатов испытаний трех стенок пустотелых сланцевых блоков были рассчитаны тепловые параметры, такие как коэффициент теплопередачи, тепловое сопротивление и общее тепловое сопротивление, которые перечислены в таблице 2.


Химические компоненты Содержание (мас.%)

SiO 2 17.01
Fe 2 O 3 6,83
CaO 6,13
MgO 2,78 88
Na 2 O 1,04
SO 3 0,65
TiO 2 0,77

Образцы Коэффициент теплопередачи
(Вт / м 2 ⋅K)
Тепловое сопротивление
2 K / Вт)
Общее тепловое сопротивление
2 ⋅ К / Ш)

A 0.751 1,275 1,332
B 0,726 1,080 1,377
C 0,703 1,342 1,422 9044 1,342 1,422 9044

Результаты показывают, что коэффициент теплопередачи стен из пустотелых сланцевых блоков составляет 0,726 Вт / (м 2 · K), что соответствует проектному стандарту энергоэффективности общественных зданий в GB50189-2005 [19].

Коэффициент теплопередачи и тепловое сопротивление различных материалов стен, которые измеряются одним и тем же оборудованием и одинаковыми методами испытаний, показаны в таблице 3 в соответствии с исследованиями Yang et al. [20] и Wu et al. [13] и техническая спецификация для бетонных малогабаритных пустотелых блочных зданий из Китая JGJ / T2011 [21]. Эффект сохранения тепла у пустотелых стен из сланцевых блоков в 3,16 раза выше, чем у традиционных стен из глиняного кирпича, в 3,11 раза выше, чем у стен из бетонных блоков, и 1.В 69 раз выше, чем у стен из переработанных бетонных блоков. В качестве материала оболочки здания пустотелые сланцевые блоки могут не только улучшить сохранение тепла и теплоизоляционные характеристики зданий, но также сделать тепловую среду в помещении более комфортной, особенно в холодных регионах.


Материал стены Коэффициент теплопередачи
(Вт / м 2 ⋅K)
Тепловое сопротивление
2 K / W3)
Размеры

Пустотелый сланцевый блок 0.726 1,232 365 мм × 248 мм × 248 мм с 29 рядами отверстий
Глиняный кирпич 2,240 0,296 240 мм × 115 мм × 53 мм
Бетонный блок

46
Бетонный блок

46
0,300 390 мм × 190 мм × 190 мм с тремя рядами отверстий
Блоки из переработанного бетона 1,620 0,457 390 мм × 240 мм × 190 мм с тремя рядами отверстий

4.Теоретический расчет коэффициента теплопередачи стен из пустотелых сланцевых блоков

Оболочки зданий можно разделить на однослойные, многослойные и комбинированные стены в зависимости от их состава. Многослойная стена, такая как двухсторонняя оштукатуренная кирпичная стена, состоит из нескольких слоев различных материалов стен вдоль направления теплового потока. Общее тепловое сопротивление многослойной стены складывается из теплового сопротивления каждой однослойной стены.Предполагая, что теплопередача представляет собой одномерный установившийся процесс теплопередачи, многослойная стенка, параллельная направлению теплового потока, может быть разделена на несколько областей, границы раздела которых определяются в соответствии с составом слоя материала [22]. Среднее тепловое сопротивление многослойной стенки можно рассчитать следующим образом [18]: где — среднее тепловое сопротивление, — общая площадь теплопередачи, перпендикулярная направлению теплового потока, — поправочный коэффициент, равный 0.86 для пустотелого сланцевого блока, — разделенные области, параллельные направлению теплового потока, — тепловые сопротивления поверхностей теплопередачи, — тепловое сопротивление внутренней поверхности, которое составляет 0,11 м 2 · K / Вт, и составляет тепловое сопротивление внешней поверхности, которое составляет 0,04 м 2 · К / Вт [18].

Пустотелые сланцевые блоки с 29 рядами отверстий представляют собой многослойные стенки. Их среднее термическое сопротивление можно рассчитать с помощью вышеупомянутого метода. Для удобства пазами на боковых поверхностях пренебрегаем.Подробное разделение площадей показано на рисунке 8.


Общая поверхность теплопередачи полого сланцевого блока, перпендикулярного направлению теплового потока, разделена на 21 область. Все эти области теплопередачи являются многослойными, за исключением областей 1 и 2. Теплопроводность спеченного сланцевого материала составляет 0,463 Вт / (м · К), тепловое сопротивление слоя воздуха толщиной 8 мм составляет 0,12 м 2 · К / Вт, а тепловое сопротивление слоя воздуха 32 мм составляет 0,17 м 2 · К / Вт.Результаты расчета термического сопротивления приведены в таблице 4.

9044 9044 9044 9044 9044 9 термическое сопротивление пустотелые сланцевые блоки можно получить по формуле (2): m 2 · K / W. Средний коэффициент теплопередачи может быть получен следующим образом:

Предполагая, что толщина горизонтального раствора составляет 2 мм и беря блок и горизонтальное соединение раствора в качестве типовой единицы, коэффициенты теплопередачи находятся где-то и представляют собой боковые площади полый сланцевый блок и шов из строительного раствора, соответственно, и — коэффициенты теплопередачи полых блоков из сланца и шва из строительного раствора, соответственно.По сравнению с результатами экспериментальных испытаний, теоретические расчетные значения и для пустотелых сланцевых блоков меньше из-за упрощения с обеих сторон полого сланцевого блока.

5. Численное моделирование методом конечных элементов
5.1. FEM Model

Для обеспечения альтернативного термического анализа и проектирования пустотелого сланцевого блока была разработана модель FEM с использованием трехмерного теплового элемента SOLID70 с использованием пакета ANSYS, как показано на рисунке 9.


(a) Модель FEM блока
(b) Создание сетки блока
(a) Модель FEM блока
(b) Создание сетки блока

С учетом термического сопротивления Между воздушными прослойками отверстия в блоках трактовались как сплошные элементы с параметрами свойства воздушной прослойки. Тепловой поток между различными материалами рассматривался как непрерывный процесс. По температурам горячей камеры и холодной камеры определялись коэффициент теплопередачи и температурные нагрузки на поверхностях блоков.Температура внутренней поверхности составляет 30 ° C, а температура внешней поверхности -10 ° C.

Фактически, параметры моделирования методом конечных элементов имеют решающее значение для получения разумных результатов расчетов. В существующих моделях FEM значения параметров, которые необходимо указать, были установлены на основе норм теплового проектирования для гражданского строительства Китая [23]. Коэффициенты конвективной теплопередачи внутренней поверхности (защитный тепловой бокс) и внешней поверхности (холодный бокс) стенки пустотелого сланцевого блока составляют 8,7 Вт / (м 2 · K) и 23.0 Вт / (м 2 · К) соответственно. Теплопроводность спеченного сланцевого материала составляет 0,463 Вт / (м · К), теплопроводность слоя воздуха 8 мм составляет 0,067 Вт / (м · К), а теплопроводность слоя воздуха 32 мм составляет 0,188 Вт / (м · К). Теплопроводность раствора составляет 0,339 Вт / (м · К).

Поскольку вертикальный шов из раствора отсутствует, влиянием вертикальных соединений можно пренебречь в модели FEM. Вертикальный стык между сланцевыми блоками был симметричным, а плоскость симметрии считалась адиабатической границей, что означает отсутствие теплообмена по обе стороны от плоскости симметрии.Соответствующие сетки МКЭ и процесс нагружения стенок показаны на рисунке 10, на котором граничные условия и температурное моделирование такие же, как и для сланцевого блока.

5.2. Результаты моделирования

Смоделированные температурное поле и плотность теплового потока для пустотелого сланцевого блока показаны на рисунке 11. Наблюдается, что распределение температуры в блоке изменяется линейно вдоль направления теплового потока и распределяется равномерно. Плотность теплового потока и температурный градиент пустотелого сланцевого блока постепенно увеличиваются снаружи внутрь.Плотность теплового потока и температурный градиент малы для воздушной прослойки внутри блока, но больше на выступе между воздушными прослойками вдоль направления теплового потока. Кроме того, наибольший отвод тепла на единицу площади происходит в ребрах пустотелого сланцевого блока. Легко определить, что внутренний воздушный слой способствует предотвращению потерь тепла.

На рис. 12 показаны результаты моделирования стенки пустотелого сланцевого блока. В вертикальном стыке двух блоков отсутствует воздушная прослойка вдоль направления теплового потока, особенно по краям блоков, где тепловой поток сильный и градиент температуры значительно меняется.И наоборот, тепловой поток невелик, и изменение температурного градиента не так велико на горизонтальных швах раствора. Вектор плотности теплового потока также указывает на меньшие потери тепла через горизонтальные швы раствора. Эффект теплопередачи пустотелых сланцевых блоков зависит от кладочного раствора, качества кладки стен и толщины швов раствора. Швы толщиной 2 мм в стенке пустотелого сланцевого блока достаточно тонкие, поэтому их влиянием на термические свойства можно с полным основанием пренебречь.

Хотя коэффициент теплопередачи не может быть непосредственно получен из результатов моделирования FEM, его можно рассчитать по следующей формуле: где — среднее значение теплового потока, которое может быть взято из карты распределения плотности теплового потока, — это толщина стены, а — разница температур между внутренней и внешней поверхностями стены. Коэффициент теплопередачи стенок полых сланцевых блоков, полученный с помощью этого метода, составляет 0,671 Вт / м 2 · K, что меньше экспериментального значения, но больше теоретического результата в разделе 4.

По сравнению с экспериментальными результатами, теоретические значения и результаты моделирования методом конечных элементов для коэффициентов теплопередачи пустотелых сланцевых блоков меньше. Возможные причины различия следующие: (1) На поверхности имеются трещины или внутренние повреждения, образовавшиеся во время транспортировки блоков, которые повлияют на тепловые характеристики кирпичной стены. (2) В процессе кладки, когда два блока плотно сцепляются друг с другом, теоретически между двумя блоками может образоваться несколько замкнутых воздушных слоев.Однако из-за отклонений блоков в процессе производства воздушные слои между двумя блоками могут быть взаимосвязаны внутри и снаружи стены, что приведет к потере тепла через этот канал и повлияет на тепловые характеристики стены.

Помимо экспериментальных и численных методов, аналитические методы, например, метод гомогенизации, являются альтернативными способами исследования эквивалентных тепловых свойств. Гомогенизация — это довольно общая стратегия, которая предсказывает макроповедение среды на основе ее микроструктуры и свойств.Структуру кладки можно приблизительно рассматривать как периодический составной континуум; он состоит из двух разных материалов (кирпича или блока и раствора), расположенных периодически. Теория гомогенизации для периодических сред позволяет вывести общее поведение кладки из поведения составляющих материалов. До сих пор подход гомогенизации использовался для изучения механических свойств конструкции кладки [24–26]. По термическим свойствам этим методом было проведено несколько исследований.В следующих исследованиях ожидается, что стратегия гомогенизации может быть последовательно использована для прогнозирования тепловых свойств кирпичных стен, исходя из тепловых свойств и композиционных структур блока и раствора.

6. Заключение

В данном исследовании изучаются термические свойства пустотелых блоков сланцев с помощью экспериментальных испытаний, теоретических расчетов и моделирования методом конечных элементов. Из этого исследования можно сделать следующие выводы: (i) Экспериментальный коэффициент теплопередачи стенок пустотелых сланцевых блоков равен 0.726 Вт / м 2 · K, что соответствует нормам проектирования и демонстрирует их замечательные характеристики самоизоляции по сравнению с другими материалами стен. (Ii) Используя теоретическую формулу, коэффициент теплопередачи одиночного пустотелого сланцевого блока составляет 0,544 Вт / м 2 · K, а коэффициент теплопередачи стенки пустотелого сланцевого блока составляет 0,546 Вт / м 2 · K. Используя моделирование методом конечных элементов, коэффициент теплопередачи стенки пустотелого сланцевого блока составляет 0,671 Вт / м 2 · K. Упрощение с обеих сторон пустотелых сланцевых блоков может способствовать более высокому экспериментальному коэффициенту теплопередачи.(iii) Сильный тепловой поток и большой температурный градиент в основном возникают в вертикальных стыках двух блоков, потому что нет воздушной прослойки вдоль направления теплового потока. Тонкие швы толщиной 2 мм обеспечивают высокую самоизоляцию стен из пустотелых сланцевых блоков.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении публикации этой статьи.

Благодарности

Это исследование было поддержано как инновационной группой Сианьского архитектурно-технологического университета, так и проектами Национального плана поддержки науки и технологий «Исследование технологии строительства энергосберегающих материалов для стен» и «Фонд развития отрывков из диссертаций». .”Мы также выражаем признательность за поддержку Китайского фонда естественных наук (гранты № 51478381, 51578444) и ключевого лабораторного проекта Департамента образования провинции Шэньси (15JS050).

Фундаменты зданий Министерства энергетики, Раздел 2-1 Рекомендации

Рисунок 2-1. Бетонная кладка цокольной стены с наружной изоляцией

2.1 Рекомендуемые детали конструкции и конструкции

КОНСТРУКЦИЯ

Основными конструктивными элементами подвала являются стена, основание и пол (см. Рисунок 2-2).Стены подвала обычно строятся из монолитного бетона или бетонных блоков. Стены подвала должны быть спроектированы таким образом, чтобы выдерживать боковые нагрузки от грунта и вертикальные нагрузки от конструкции, расположенной выше. Боковые нагрузки на стену зависят от высоты насыпи, типа почвы, влажности почвы и сейсмической активности. Из-за большого количества переменных, участвующих в структурном проектировании фундамента, окончательное определение толщины стен, прочности бетона, размеров фундамента и армирования должно производиться после консультации с местными строительными нормами или проектированием лицензированным инженером-строителем.

Рисунок 2-2. Компоненты структурной системы подвала

Бетонные опоры служат опорой для бетонных и каменных стен и колонн подвала. Опоры должны иметь размер, достаточный для распределения нагрузки на почву. Замерзшая вода под опорами может вздыбиться, что приведет к растрескиванию и другим структурным проблемам. Если основание не основано на коренных породах или на грунтах, не подверженных промерзанию, опоры должны располагаться ниже максимальной глубины промерзания или быть изолированными для предотвращения промерзания.

Полы из бетонных плит

обычно проектируются так, чтобы иметь достаточную прочность для выдерживания нагрузок на пол без армирования при заливке на ненарушенный или уплотненный грунт. Использование сварной проволочной сетки и бетона с низким водоцементным соотношением может уменьшить растрескивание при усадке, что является важной проблемой для внешнего вида и снижения потенциальной инфильтрации радона. Плиту следует вылить на материал контрольного шва, чтобы он мог двигаться независимо от фундаментной стены. Там, где присутствуют обширные грунты или в районах с высокой сейсмической активностью, могут потребоваться специальные методы строительства фундамента.В этих случаях рекомендуется проконсультироваться с местными строительными чиновниками и инженером-строителем.

УПРАВЛЕНИЕ ВОДОЙ / ВЛАЖНОСТЬЮ

В общем, схемы управления влажностью должны контролировать воду в двух состояниях. Во-первых, поскольку почва, контактирующая со стеной фундамента, всегда имеет относительную влажность 100%, стены фундамента должны иметь дело с водяным паром, который будет иметь тенденцию мигрировать внутрь в большинстве условий. Во-вторых, необходимо предотвратить попадание жидкой воды.Жидкая вода может поступать из таких источников, как:

  • Неконтролируемые потоки поверхностных вод
  • Высокий уровень грунтовых вод
  • Капиллярный поток через подземные фундаменты

Методы контроля накопления влаги в стенах подвала являются важным компонентом всей конструкции. Неправильное управление влажностью может привести к повреждению конструкции, отделке или содержимому подвала, а также к росту плесени, ремонт которой может быть очень дорогостоящим и опасным для здоровья.

Следующие методы строительства предотвратят проникновение избыточной воды в виде жидкой воды и пара в подвал. Это достигается за счет использования соответствующего дренажа и использования замедлителей образования пара, как показано на рисунках 2-3F и 2-3S.

Рисунок 2-3F. Компоненты системы дренажа и гидроизоляции в подвале, деталь фундамента

Рисунок 2-3S. Компоненты системы водоотведения и гидроизоляции подвала, деталь подоконника

  • Управляйте внешней почвой и дождевой водой, используя водосточные желоба и водосточные трубы, а также выравнивая поверхность по периметру не менее чем на шесть дюймов при падении на десять футов пути.Установите дренаж в фундамент, окруженный гравием и обнесенный фильтровальной тканью. Нанесите на стены фундамента либо гидроизоляцию, либо гидроизоляцию (Дастур и др., 2005).
  • Добавьте обратный засыпной материал или дренажную доску вокруг фундамента со свободным дренажем, чтобы земля или дождевая вода стекали в дренаж по периметру, установленный у основания фундамента. Существует множество подходов к проектированию дренажа фундамента, которые обсуждаются в следующем разделе.
  • Добавьте капиллярный разрыв (герметик для поролона с закрытыми порами или прокладка) между верхней частью бетона и пластиной подоконника, чтобы предотвратить миграцию влаги между бетонным фундаментом и конструкцией пола выше.Точно так же, чтобы ограничить количество грунтовых вод, поглощаемых через основание, установите капиллярный разрыв между основанием и стеной фундамента (BSC 2006).
  • Предотвратите проникновение влаги из земли в плиту, покрыв всю землю антипаром. Рекомендуется, чтобы замедлитель образования пара находился в непосредственном контакте с бетонной плитой и чтобы между ними не было песка или гравия (Lstiburek 2008).
  • Включает каменную подушку глубиной четыре дюйма и диаметром 3/4 дюйма (без мелких фракций) над землей и прямо под замедлителем образования пара.Он функционирует как гранулированный капиллярный разрыв под пароохладителем, дренажная подушка и расширитель поля давления воздуха для системы вентиляции почвенного газа.

Бетонные фундаментные стены содержат воду, оставшуюся после заливки, которую необходимо отвести, дав им высохнуть. В случаях, когда большая часть стены находится ниже уровня земли, высыхать можно только внутри. Изоляционный материал и настенные покрытия, размещенные на стенах во время строительства подвесного пространства, действуют как замедлители парообразования, не позволяя стенам высыхать изнутри.По этой причине рекомендуется устанавливать эти настенные покрытия ближе к концу строительства, чтобы обеспечить максимально возможное высыхание бетона (BSC 2006).

В подвальных помещениях важно не только иметь эффективный замедлитель паров, но и иметь полный воздушный барьер. По этой причине все зазоры между фундаментной стеной и пластиной порога, пластиной порога и ленточной балкой, а также ленточной балкой и черным полом должны быть заделаны. Все щели и проемы в фундаментной стене также должны быть должным образом заделаны.

Рисунок 2-4. Компоненты дренажной и гидроизоляционной системы в подвале (дренажная система по одному периметру), деталь основания

ДРЕНАЖНАЯ И ГИДРОИЗОЛЯЦИЯ

Не допускать попадания воды в подвалы — серьезная проблема во многих регионах. Источником воды в основном являются осадки, таяние снега, а иногда и орошение на поверхности. В некоторых случаях уровень грунтовых вод бывает около или выше уровня цокольного этажа время от времени в течение года. Существует три основных линии защиты от проблем с водой в подвалах: (1) поверхностный дренаж, (2) подземный дренаж и (3) гидроизоляция на поверхности стены (см. Рисунки 2-3F, 2-3S и 2-4). .

Цель поверхностного дренажа — удерживать воду из поверхностных источников вдали от фундамента за счет уклона поверхности земли и использования водостоков и водостоков для водостока с крыши. Системы подземного дренажа улавливают, собирают и уносят любую воду из земли, окружающей подвал. Компоненты подземной системы могут включать пористую засыпку, дренажные маты или изолированные дренажные доски, а также перфорированные дренажные трубы в защищенном гравийном слое вдоль основания или под плитой, которые стекают в отстойник или к дневному свету.Местные условия определят, какие из этих компонентов системы подземного дренажа, если таковые имеются, рекомендуются для конкретного участка.

На рис. 2-3F показана система с двойным сливом, которая является наиболее надежным вариантом. На Рис. 2-4 показана конфигурация с одним стоком. В обоих случаях предусматривается отвод воды с поверхности, которая стекает по фундаменту, а также вода, которая может скапливаться под плитой. На Рисунке 2-3F показана передовая система дренажа по периметру фундамента.Он состоит из двух независимых петель перфорированного дренажа фундамента, один внутри фундамента, а другой снаружи. Они сливаются независимо, либо на дневной свет, либо во внутренний отстойник. На рис. 2-4 показан другой вариант, который подходит при хороших дренажных условиях. Это также позволяет дренировать гравийный слой под плитами через каналы, проходящие через основание фундамента. Эти воздуховоды следует размещать как можно ближе к основанию основания, чтобы избежать скопления воды на внутренней стороне основания.Его единственная петля отвода от фундамента находится на внешней стороне основания и отводится на дневной свет или во внутренний отстойник. Следует отметить, что соединение воздуховода с внешней стороной фундамента может снизить эффективность систем снижения давления радона внутри плиты за счет снижения способности системы поддерживать достаточно низкое давление под плитой.

Последняя линия защиты — гидроизоляция — предназначена для защиты от попадания воды в стены конструкции.Во-первых, важно различать необходимость в гидроизоляции и гидроизоляции. В большинстве случаев рекомендуется использовать гидроизоляционное покрытие, покрытое слоем полиэтилена толщиной 4 мил, чтобы уменьшить передачу пара и капиллярной вытяжки из почвы через стену подвала. Однако влагонепроницаемое покрытие не эффективно предотвращает проникновение воды под гидростатическим давлением через стену. Гидроизоляция рекомендуется (1) на участках с ожидаемыми водными проблемами или плохим дренажем, (2) когда планируется законченное пространство подвала, или (3) на любом фундаменте, построенном, где периодически возникает гидростатическое давление на стену подвала из-за дождя, ирригации или снег тает.За исключением очень сухих участков, обычно рекомендуется использовать гидроизоляцию. На участках, где цокольный этаж может быть ниже уровня грунтовых вод, рекомендуется использовать подполье или фундамент в виде плиты на уровне грунта.

РАСПОЛОЖЕНИЕ ИЗОЛЯЦИИ

Рисунок 2-5. Возможные места для утепления подвала

Ключевым вопросом при проектировании фундамента является размещение изоляции на внутренней или внешней поверхности стены подвала (рис. 2-5).С точки зрения использования энергии, нет существенной разницы между одинаковым количеством полной изоляции стены, нанесенной на внешнюю поверхность, и на внутреннюю часть бетонной или кирпичной стены. Однако стоимость установки, простота применения, внешний вид и различные технические аспекты могут быть совершенно разными. Индивидуальные соображения по дизайну, а также местные затраты и практика определяют лучший подход для каждого проекта.

Жесткая изоляция, размещенная на внешней поверхности бетонной или каменной стены подвала, имеет некоторые преимущества по сравнению с внутренним размещением в том, что она (1) может обеспечивать непрерывную изоляцию без тепловых мостов, (2) защищает и поддерживает гидроизоляцию и конструкцию стены при умеренных температурах. , (3) сводит к минимуму проблемы конденсации влаги, и (4) не уменьшает внутреннюю площадь пола подвала (рис. 2-6).Если внешняя изоляция расширяется, чтобы покрыть обод, а ее коэффициент сопротивления R достаточно высок, балки и подоконники можно оставить открытыми для осмотра изнутри на предмет термитов и гниения. С другой стороны, внешняя изоляция на стене может обеспечить путь термитам, если с ней не обращаться должным образом, и может помешать осмотру стены снаружи. Изоляция, которая подвергается воздействию выше класса, должна быть защищена покрытием для предотвращения физического повреждения и деградации. Такие покрытия включают фиброцементную плиту, обрезки (материал типа штукатурки), обработанную фанеру или мембранный материал (Baechler et al.2005). Наружная изоляция помещает фундаментную стену в тепловую оболочку. Это означает, что зимой стена будет теплее, а влага не будет высыхать внутри. Из-за этого непроницаемые материалы, такие как масляная краска, полиэтилен или виниловые обои, не должны использоваться в качестве внутренней отделки.

Рисунок 2-6. Подвал с внешней изоляцией XPS или EPS

Изоляция наружных стен должна быть одобрена для использования в грунтовых условиях. Обычно используются три продукта ниже сорта: экструдированный полистирол, пенополистирол и жесткие панели из минерального волокна.(Baechler et al. 2005). Экструдированный полистирол (номинальное сопротивление R-5 на дюйм) является обычным выбором. Пенополистирол (номинальное R-4 на дюйм) дешевле, но имеет более низкие изоляционные свойства. Пены низкого качества могут подвергаться риску накопления влаги при определенных условиях. Экспериментальные данные показывают, что это накопление влаги может снизить эффективное значение R на 35% -44%. Исследования, проведенные в Национальных лабораториях Ок-Ридж, изучали содержание влаги и термическое сопротивление пенопластовой изоляции, находящейся ниже уровня земли в течение пятнадцати лет; влага может продолжать накапливаться и ухудшать тепловые характеристики после пятнадцатилетнего периода исследования.Это возможное снижение следует учитывать при выборе количества и типа используемой изоляции (Kehrer, et al., 2012, Crandell 2010).

Жесткие панели из стекловолокна и жесткой минеральной ваты (R-4 на дюйм) не изолируют так же хорошо, как экструдированный полистирол, но являются единственными изоляционными материалами, которые могут обеспечить дренажное пространство для фундаментных стен из-за их пористой структуры. Использование этих материалов в качестве дренажного пространства работает только при наличии эффективных дренажных систем по периметру фундамента.

К сожалению, утеплить снаружи сложнее и дороже, чем утеплить фундамент изнутри; это особенно верно при модернизации. По этой причине чаще всего используется внутренняя изоляция. Однако фактические затраты могут быть выше, если требуется законченная, прочная поверхность. Кроме того, пенопластовые изоляционные материалы потребуют огнестойкого слоя для соответствия нормам. Экономия энергии может быть уменьшена с некоторыми системами и деталями из-за тепловых мостов.Изоляция может быть размещена на внутренней стороне балки обода, но с большим риском проблем с конденсацией и меньшим доступом к деревянным балкам и подоконникам для осмотра термитов изнутри. Системы внутренней изоляции не рекомендуются для бетонных фундаментов без полностью заполненных заполнителей из-за повышенного риска накопления влаги внутри стены. Системы внутренней изоляции также не рекомендуются в подвалах, которые имеют риск проникновения влаги из-за неадекватного дренажа, плохой почвы, высокого уровня грунтовых вод или других факторов из-за ограниченной способности этих систем высыхать внутрь.Не следует использовать внутреннюю изоляцию, если нет положительного разрыва капилляров между верхней частью фундаментной стены и системой деревянного каркаса из-за возможности накопления влаги в материалах деревянного каркаса.

При использовании внутренней изоляции она должна соответствовать следующим требованиям (Baechler et al. 2005):

  • Внутреннюю изоляцию нельзя наносить на бетонные стены ниже уровня земли, если только сердцевины блока не заполнены полностью.
  • Применение внутренней изоляции поверх стен, где присутствует влага, вероятно, увеличит содержание влаги в стене из-за того, что она более холодная, и из-за ограничения возможности высыхания внутри.
  • Стена подвала должна сохранять некоторую способность к сушке изнутри, если происходит намокание, поскольку нижняя часть стены не может высохнуть снаружи. Это означает, что внутренние пароизоляционные материалы или любые непроницаемые внутренние покрытия стен, такие как виниловые покрытия для стен или системы масляной / алкидной / эпоксидной краски, должны быть установлены , а не .
  • Стеновая система должна быть герметично закрыта, чтобы влагосодержащий подвальный воздух не попадал в холодную фундаментную стену из-за переноса воздуха и конденсации.
  • Материал, контактирующий с фундаментной стеной и бетонной плитой, должен быть влагоустойчивым. Необходимо использовать разрывы капилляров для предотвращения попадания влаги в материалы, чувствительные к влаге.

Рисунок 2-7. Подвал с внутренней полупроницаемой изоляцией XPS или EPS

Есть два хороших подхода к внутренней изоляции подвала: панели из жесткого пенопласта и аэрозольная пена.Системы жесткого пенопласта состоят из пенополистирольных панелей из вспененного или экструдированного пенополистирола, нанесенных на всю фундаментную стену, как показано на Рисунке 2-7 (BSC 2002). Нанесение распыляемой пены обычно включает распыление всей фундаментной стены и, как правило, краевой балки до соответствующей толщины. При желании к каркасной стене, возведенной внутри пенопласта, может быть добавлен дополнительный утеплитель из необлицованного войлока. Изоляционные материалы из пенопласта легко воспламеняются и должны быть защищены от возгорания.Если дополнительная изоляция не требуется, поверх пенопласта можно прикрепить деревянные планки обшивки, а к полосам обшивки можно прикрепить гипсокартон. Во всех низкосортных постройках рекомендуется использовать гипсокартон без бумажной облицовки, чтобы снизить риск повреждения, связанного с влажностью. Гипсокартон следует держать не менее чем на полдюйма выше пола подвала, чтобы избежать намокания (Baechler et al. 2005). Никакие замедлители образования пара, такие как полиэтилен, виниловые обои или краска на масляной основе, не должны использоваться где-либо в системе, чтобы гарантировать высыхание внутри.

Можно отказаться от использования гипсокартона в качестве барьера воспламенения. Это было сделано с использованием изоляционных панелей из полиизоцианурата, облицованных фольгой, некоторые из которых рассчитаны на использование в подвалах и подпольях в некоторых юрисдикциях. Однако обратите внимание, что неперфорированная фольговая облицовка полностью паронепроницаема, и через нее будет происходить очень незначительное высыхание. Многие юрисдикции также разрешают пенополиуритан высокой плотности покрывать обод и подоконник (но не всю стену) без дополнительной противопожарной защиты.

Модернизация внутренней изоляции сопряжена с дополнительными рисками: между фундаментом и каркасом может не быть разрывов капилляров; изоляция внутри будет способствовать накоплению влаги в каркасе. Между основанием и стеной может не быть разрыва капилляров, что потенциально увеличивает присутствие влаги из-за капиллярного капиллярного капилляра. Поскольку в старых домах гидроизоляционные и дренажные системы часто отсутствуют или не работают, возможно проникновение воды в большом объеме.Описание надежной стратегии модернизации внутренней изоляции см. В Ueno (2011).

В дополнение к более традиционному внутреннему или внешнему размещению, описанному в этом руководстве, существует несколько систем, которые включают изоляцию в конструкцию бетонных или кирпичных стен. К ним относятся (1) изоляция из жесткого пенопласта, залитая внутри бетонной стены (рис. 2-5c), (2) шарики из полистирола, гранулированные изоляционные материалы или распыляемая пена, залитые в полости обычных каменных стен, (3) системы из бетонных блоков. с изолирующими вставками из пенопласта, (4) сформированные, взаимосвязанные блоки из жесткой пены, которые служат в качестве постоянной изолирующей формы для монолитного бетона (изолированные бетонные опалубки, или ICF, рис. 2-5d), и (5) изготовленные каменные блоки с полистироловыми шариками вместо заполнителя в бетонной смеси, что приводит к значительно более высоким R-значениям.Однако эффективность систем, которые изолируют только часть площади стены, следует тщательно оценивать, поскольку тепловые мосты вокруг изоляции могут значительно повлиять на общую производительность.

И, наконец, еще одна технология строительства подвала в новом строительстве — использование сборных бетонных фундаментных стен. Допустимы два типа. Первый — это бетонные стены со встроенными нижними колонтитулами, которые опираются на гравийную основу, которая позволяет осушать всю сборку.Это означает, что до тех пор, пока панели во время строительства правильно загерметизированы, эти стены останутся теплыми и сухими. Эти стены предназначены для утепления снаружи. Вторые — это сборные бетонные стены, которые имеют один дюйм жесткой пенопластовой изоляции, прикрепленной к внутренней части. Эти стены сконструированы так, чтобы можно было установить дополнительную изоляцию между отсеками стоек, и поставляются со встроенными деревянными гвоздями для крепления гипсокартона или обшивки (BSC 2002).

МЕТОДЫ КОНТРОЛЯ ТЕРМИТА И ДРЕВЕСИНЫ

Рисунок 2-8F.Методы борьбы с термитами в подвалах, деталь опор

Рисунок 2-8S. Методы борьбы с термитами в подвалах, деталь подоконника

Методы контроля проникновения термитов через жилые фонды рекомендуются на большей части территории Соединенных Штатов (см. Рисунки 2-8F и 2-8S). Следующие рекомендации применимы в тех случаях, когда термиты представляют собой потенциальную проблему. Для получения более подробной информации проконсультируйтесь с местными строительными чиновниками и нормативами.

  1. Сведите к минимуму влажность почвы вокруг подвала, используя желоба, водосточные трубы и водостоки для удаления воды с крыши, а также установив полную систему дренажа вокруг фундамента.
  2. Удалите с участка все корни, пни и обрезки древесины до, во время и после строительства, в том числе деревянные колья и опалубку с участка фундамента.
  3. Обработайте почву термитицидом или разместите на всех участках, уязвимых для термитов, правильно обслуживаемые приманки.
  4. Поместите соединительную балку или ряд заглушек поверх всех бетонных стен фундамента, чтобы убедиться, что не осталось открытых стержней. В качестве альтернативы, заполните все стержни верхнего слоя строительным раствором и укрепите строительный шов под верхним слоем.
  5. Установите порог на высоте не менее 8 дюймов над уровнем земли; это должно быть обработано консервантом давления, чтобы противостоять гниению. Подоконник должен быть виден изнутри. Поскольку термитные щиты часто повреждаются или устанавливаются недостаточно тщательно, сами по себе они не могут считаться достаточной защитой.
  6. Убедитесь, что внешний деревянный сайдинг и отделка находятся на высоте не менее 6 дюймов над уровнем земли.
  7. Постройте подъезды и внешние плиты так, чтобы они отклонялись от стены фундамента и находились не менее чем на 2 дюйма ниже наружной сайдинга.Кроме того, подъезды и внешние плиты должны быть отделены от всех деревянных элементов 2-дюймовым зазором, видимым для осмотра, или сплошным металлическим слоем, припаянным ко всем швам.
  8. Заполните стык между плиточным полом и фундаментной стеной уретановым герметиком или каменноугольной смолой, чтобы сформировать термитный барьер.
  9. Используйте деревянные стойки, обработанные консервантом, на плите пола в подвале или поместите столбы на гидроизоляцию или бетонную подставку, приподнятую на 1 дюйм над полом.
  10. Стальные пустотелые колонны наверху для остановки термитов.Твердые стальные несущие пластины также могут служить защитой от термитов наверху деревянного столба или полой стальной колонны.

Пенопласт и изоляционные материалы из минеральной ваты не имеют пищевой ценности для термитов, но они могут обеспечить защитное покрытие и облегчить проходку туннелей. Изоляционные установки могут быть детализированы для облегчения осмотра, хотя часто за счет снижения тепловой эффективности.

В принципе, щитки от термитов обеспечивают защиту, но на них не следует полагаться как на барьер.Термитные экраны показаны в этом документе как компонент систем внешней изоляции. Их цель — вытеснить любых насекомых, пролезающих через стену, наружу, где их можно будет увидеть. По этой причине щитки от термитов должны быть сплошными, а все швы должны быть герметизированы, чтобы не допустить обхода насекомыми.

Эти опасения по поводу изоляции и ненадежности защиты от термитов привели к выводу, что обработка почвы является наиболее эффективным методом борьбы с термитами с помощью изолированного фундамента.Однако ограничения на широко применяемые термитициды могут сделать этот вариант либо недоступным, либо вызвать замену более дорогими и, возможно, менее эффективными продуктами. Эта ситуация должна стимулировать использование методов изоляции, которые улучшают визуальный осмотр и создают эффективные барьеры для термитов. Для получения дополнительной информации о методах борьбы с термитами см. NAHB (2006).

МЕТОДЫ УПРАВЛЕНИЯ РАДОНОМ

Рисунок 2-9F. Методы контроля радона для подвалов, деталь опор

Рисунок 2-9S.Методы контроля радона для подвалов, деталь подоконника

Строительные методы минимизации проникновения радона в подвал подходят там, где есть разумная вероятность присутствия радона (см. Рисунки 2-9s, 2-9f и 2-10). Чтобы определить это, свяжитесь с государственным радоновым персоналом. Общие подходы к минимизации радона включают (1) удаление газа из почвы, окружающего подвал, и (2) герметизацию швов, трещин и проникновений в фундаменте.

Герметизация цокольного этажа

  1. Используйте сплошные трубы для отвода сточных вод в пол к дневному свету или механические ловушки, отводящие в подземные стоки.
  2. Используйте полиэтиленовую пленку толщиной не менее 6 мил (минимум) под плитой поверх гравийного дренажного ложа. Эта пленка служит замедлителем радона и влаги, а также предотвращает проникновение бетона в основание заполнителя под плитой во время ее заливки. Прорежьте «x» в полиэтиленовой мембране, чтобы получить проходы. Поднимите язычки и заклейте их до места проникновения герметиком или лентой. Следует проявлять осторожность, чтобы избежать непреднамеренного пробивания барьера; по возможности рассмотрите возможность использования окатанного руслового гравия.Гравий русла реки обеспечивает более свободное движение почвенного газа, а также не имеет острых краев, которые могли бы проникнуть в полиэтилен. Края пленки должны быть притерты не менее 12 дюймов. Полиэтилен должен выступать за верхнюю часть фундамента или быть уплотненным к стене фундамента.
  3. Обработайте стык между стеной и плиточным полом и заделайте полиуретановым герметиком, который хорошо прилегает к бетону и является долговечным.
  4. Избегайте создания желобов по периметру плиты, которые обеспечивают прямой выход в почву под плитой.
  5. Сведите к минимуму растрескивание при усадке, сохраняя содержание воды в бетоне на минимально возможном уровне. При необходимости используйте пластификаторы, а не воду, чтобы улучшить удобоукладываемость.
  6. Укрепите плиту проволочной сеткой или волокнами, чтобы уменьшить растрескивание при усадке, особенно возле внутреннего угла плит L-образной формы.
  7. Если используются, обработайте контрольные швы с углублением на 1/2 дюйма и полностью заполните это углубление полиуретановым или аналогичным герметиком.
  8. Сведите к минимуму количество заливок, чтобы избежать образования холодных швов.Начните отверждение бетона сразу после заливки в соответствии с рекомендациями Американского института бетона (1980; 1983). При температуре 70 ° F требуется не менее трех дней, а при более низких температурах — дольше. Используйте непроницаемый покровный лист или влажную мешковину для облегчения отверждения. Национальная ассоциация производителей готовых смесей предлагает также использовать пигментированный отвердитель.
  9. Создайте зазор шириной не менее 1/2 дюйма вокруг всех вводов водопровода и инженерных сетей через плиту на глубину не менее 1/2 дюйма.Заполните полиуретаном или аналогичным герметиком.
  10. Не устанавливайте отстойники в подвалах в радоноопасных зонах без крайней необходимости. Если используется, накройте поддон герметичной крышкой и выпустите наружу. Используйте погружные насосы.
  11. Установите механические ловушки на всех необходимых сточных трубах пола, выходящих через гравий под плитой.
  12. Разместите отводы конденсата HVAC таким образом, чтобы они стекали на дневной свет за пределы ограждающей конструкции или в герметичные отстойники в подвале.Отводы конденсата, которые соединяются с сухими колодцами или другой почвой, могут стать прямыми путями для почвенного газа и могут быть основным источником поступления радона. По крайней мере, убедитесь, что эти отводы конденсата должным образом закрыты, чтобы всегда был заполнен полный диаметр хотя бы части колена.
  13. Заделайте отверстия вокруг унитазов, сифонов для ванн и других сантехнических приборов (используйте безусадочный раствор).

Герметизация стен подвала

  1. Укрепите стены и опоры, чтобы свести к минимуму растрескивание при усадке и растрескивание из-за неравномерной осадки.
  2. Чтобы замедлить движение радона через пустотные стены из кирпичной кладки, верхний и нижний ряды пустотных стен должны быть сплошными блоками или сплошными засыпками. Если верхняя сторона нижнего ряда ниже уровня плиты, следует заполнить ряд блока на пересечении низа плиты. При установке кирпичного шпона или другого уступа из каменной кладки, ряд непосредственно под этим выступом также должен быть сплошным блоком.
  3. Очистите и заделайте внешнюю поверхность бетонных стен ниже уровня земли, контактирующих с почвой.Установите дренажные доски, чтобы почвенный газ попадал на поверхность за пределами стены, а не через стену.
  4. Установите сплошную гидроизоляционную или гидроизоляционную мембрану снаружи стены. Полиэтилен толщиной 6 мил, обернутый внахлест, заклеенный лентой и размещенный на внешней стороне поверхности стены подвала, будет препятствовать проникновению радона через трещины в стенах.
  5. Заделайте проходы в стене вокруг сантехнических и других инженерных и служебных отверстий полиуретаном или аналогичным герметиком.Как снаружи, так и изнутри бетонные стены должны быть загерметизированы в местах проникновения.
  6. Установить герметичные уплотнения на дверях и других проемах между подвалом и прилегающей к нему подлостью.
  7. Уплотнение вокруг воздуховодов, водопровода и других служебных соединений между подвалом и подвальным помещением.
  8. Не размещайте воздуховоды подачи или возврата воздуха под плитой или в основании.

Улавливание почвенного газа

Рисунок 2-10.Методы сбора и сброса почвенного газа

Самый эффективный способ ограничить проникновение радона и других газов в почву — это использовать активную разгерметизацию почвы (ASD). ASD работает за счет снижения давления воздуха в почве по сравнению с внутренним. Избегать проемов фундамента в почву или герметизировать эти проемы, а также ограничивать источники разгерметизации помещений вспомогательными системами ASD. Иногда используется система пассивной разгерметизации грунта (PSD, без вентилятора). Если тестирование на радон после заселения показывает, что желательно дальнейшее снижение содержания радона, в вентиляционную трубу можно установить вентилятор (см. Рисунок 2-10).

Снижение давления с помощью поддона оказалось эффективным методом снижения концентрации радона до приемлемых уровней даже в домах с чрезвычайно высокими концентрациями (Dudney 1988). Этот метод снижает давление вокруг оболочки фундамента, в результате чего почвенный газ направляется в систему сбора, избегая внутренних пространств и выбрасывая наружу.

В фундаменте с хорошим подземным дренажем уже есть система сбора. Дренажный слой из гравия под плитами можно использовать для сбора почвенного газа.Он должен быть не менее 4 дюймов в толщину и из чистого заполнителя не менее 1/2 дюйма в диаметре. Гравий должен быть покрыт слоем полиэтиленового радона толщиной 6 мил и замедлителем влажности.

Вентиляционная труба из ПВХ диаметром 3 или 4 дюйма должна быть проложена от подкладочного гравийного слоя через кондиционированную часть здания и через самую высокую плоскость крыши. Труба должна заканчиваться под плитой тройником. Чтобы предотвратить засорение трубы гравием, к ножкам тройника можно прикрепить отрезки перфорированного дренажа длиной десять футов и загерметизировать его концы.В качестве альтернативы вентиляционная труба может быть подключена к дренажной системе по периметру, если эта система не подключена к внешней среде. Горизонтальные вентиляционные трубы могут соединять вентиляционную трубу через стены ниже уровня земли с проницаемыми участками под прилегающими плитами. Одной вентиляционной трубы достаточно для большинства домов с площадью перекрытия менее 2500 квадратных футов, которая также включает проницаемый подслой. Вентиляционная труба выводится на крышу через сантехнические желоба, внутренние стены или туалеты.

Система PSD требует, чтобы плита перекрытия была почти воздухонепроницаемой, чтобы не возникало короткого замыкания из-за втягивания чрезмерного количества воздуха в помещении через плиту в систему.Трещины, отверстия в плитах и ​​контрольные швы должны быть заделаны. Крышки отстойников должны быть спроектированы и установлены таким образом, чтобы они были герметичными. Следует избегать сточных вод в полу, которые выходят на гравий под плитой, но при их использовании следует оборудовать механическую ловушку, способную обеспечить герметичное уплотнение.

Еще одно потенциальное короткое замыкание может произойти, если в дренажной системе имеется самотечный сброс в подземный водосток. Эта напорная линия может нуждаться в механическом уплотнении.Линия для отвода подземного дренажа, если она не входит в герметичный отстойник, должна быть построена с прочно приклеенной дренажной трубой, которая выходит на дневной свет. Напорная труба должна располагаться с противоположной стороны от дренажного слива.

В то время как правильно установленная система пассивной разгерметизации почвы (PSD) может снизить концентрацию радона внутри помещений примерно на 50%, системы активной разгерметизации почвы (ASD) могут снизить концентрацию радона внутри помещений на 99%. Система PSD более ограничена с точки зрения вариантов прокладки вентиляционных труб и менее прощает дефекты конструкции, чем системы ASD.Кроме того, в новом строительстве можно использовать небольшие вентиляторы ASD (25-40 Вт) с минимальным энергетическим воздействием. В активных системах используются бесшумные прямые канальные вентиляторы для забора газа из почвы. Вентилятор должен располагаться снаружи, а в идеале — над кондиционируемым помещением, чтобы любые утечки воздуха со стороны положительного давления вентилятора или вентиляционной трубы не попадали в жилое пространство. Вентилятор должен быть ориентирован так, чтобы в корпусе вентилятора не скапливался конденсат. Стек ASD должен быть проложен через здание, пристроенный гараж или навес и выступать на двенадцать дюймов над крышей.Его также можно провести через ленточную балку и вверх по внешней стороне стены до точки, достаточно высокой, чтобы не было опасности перенаправления выхлопных газов в здание через вентиляционные отверстия чердака или другие проходы. Поскольку системы PSD полагаются на естественную плавучесть для работы, стек PSD должен быть проложен через кондиционированную часть дома.

Вентилятор, способный поддерживать всасывание воды в 0,2 дюйма в условиях установки, подходит для обслуживания подсобных систем сбора в большинстве домов (Labs 1988).Это часто достигается с помощью центробежного вентилятора мощностью 0,03 л.с. (25 Вт), 160 куб. Футов в минуту (максимальная мощность), способного втягивать до 1 дюйма воды перед остановкой. В полевых условиях на глубине 0,2 дюйма воды такой вентилятор работает со скоростью около 80 кубических футов в минуту.

Можно проверить всасывание подсистемы подслоя, просверлив небольшое (1/4 дюйма) отверстие в участках плиты, удаленных от точки всасывания, и измерив всасывание через отверстие с помощью микроманометра или наклонного манометра. Целью подсистемы сброса давления внутри плиты является создание отрицательного давления воздуха под плитой по сравнению с давлением воздуха в прилегающем внутреннем пространстве.Всасывание в 5 Па считается удовлетворительным, когда дом находится в наихудшем состоянии разгерметизации (т. Е. Дом закрыт, все вытяжные вентиляторы и устройства работают, а система отопления, вентиляции и кондиционирования воздуха работает с закрытыми внутренними дверями). После испытания отверстие необходимо закрыть.

Системы

PSD требуют почти идеальной герметизации проемов в почве, поскольку система использует 3- или 4-дюймовую трубу для более эффективной вентиляции, чем весь дом. Герметизация отверстий в почве менее критична для борьбы с радоном с помощью систем ASD, хотя это очень желательно для ограничения потерь энергии, связанных с утечкой кондиционированного воздуха в помещении в подстилку с пониженным давлением, а оттуда на улицу.Срок службы вентиляторов ASD составляет в среднем около десяти лет, при этом ожидаемый срок службы выше, если вентилятор защищен от непогоды. Так как система ASD может быть отключена жильцами, сервисные выключатели обычно располагаются в зонах с ограниченным доступом.

Для получения дополнительной информации посетите Центр решений Building America.

Применение пенополистирола (EPS) в зданиях и сооружениях: обзор — Рамли Сулонг — 2019 — Журнал прикладной науки о полимерах

EPS как заполнитель в легком бетоне

Легкий бетон (LWC) получают путем смешивания легких заполнителей, например, вермикулита, пемзы, глины или воздухововлекающих добавок в бетонной смеси.14 При использовании пенополистирола в качестве заполнителя получается LWC, который прочнее и легче вермикулитового бетона. На рисунке 2 показано визуальное сравнение LWC EPS и вермикулита14. Часто для производства LWC с лучшими физико-механическими свойствами используется более одного типа заполнителя. Например, Demirel15 добавил в бетонную смесь как пемзу, так и заполнители EPS, чтобы построить изоляционный блок с более низкой плотностью и теплопроводностью. Отходы, такие как зола бумажного шлама, также добавляются в виде заполнителя вместе с заполнителем EPS для получения устойчивого легкого строительного раствора, который соответствует стандартам ЕС для кладочных, штукатурных и штукатурных растворов.16

Образцы вермикулита и EPS LWC 14 (Воспроизведено из ссылки 14 с разрешения Elsevier.)

Прочность пенополистирола на сжатие зависит от количества пенополистирола, за которым следует соотношение воды и цемента.17 Предыдущие исследования показали, что прочность на сжатие пенополистирола увеличивается с увеличением его плотности.17, 18 Лю и Чен19 также сообщили об аналогичных результатах. с использованием ультразвукового контроля, при котором размер частиц пенополистирола влияет на механические свойства, то есть прочность на изгиб бетона из пенополистирола.Sayadi и др. ,20 изучили влияние частиц EPS на огнестойкость, теплопроводность и прочность на сжатие пенобетона. В этой статье делается вывод о том, что на основе эксперимента с пенобетоном и EPS LWC различной плотности и объема, объемное расширение EPS приводит к значительному снижению теплопроводности, огнестойкости и прочности бетона на сжатие. Применение LWC позволяет снизить статическую нагрузку на конструкцию и уменьшить поперечное сечение элементов, то есть колонн, балок, раскосов и плит.Кроме того, структура, полученная из LWC, легче, что снижает воздействие землетрясения. Более того, с помощью LWC можно получить более длинные пролеты, более тонкие секции и лучшую реакцию на циклическую нагрузку.21

EPS непроницаем, гидрофобен и имеет структуру с закрытыми порами. Гидрофобные свойства пенополистирола привели к низкой теплопроводности комплексов полимер-кальцинированной глины.22 Он был введен в 1973 г. компанией Cork для решения проблемы обычных легких заполнителей, таких как пемза, летучая зола, скорлупа масличных пальм и резиновые отходы, пористые конструкции привели к высокой абсорбционной способности и потребности в воде.Бетон из пенополистирола 23-28 имеет перспективное применение в конструктивных элементах (например, облицовочных панелях, системах композитных полов и несущих бетонных блоках), изоляционном бетоне и защитном слое из-за его поглощения энергии выше среднего.29 Например, пенополистирол имеет амортизирующие свойства, которые позволяют использовать его в качестве буферного слоя поверх плотины из мусора для уменьшения силы удара и увеличения времени удара, вызванного массивными камнями во время потока мусора.30

Когда EPS используется в качестве легкого заполнителя, шарики всплывают и плохо интегрируются с цементной матрицей из-за их низкой плотности и гидрофобных свойств.20 Следовательно, низкая прочность связи на границе раздела и плохая дисперсия между шариками и матрицей решаются за счет использования связующей добавки, например, эпоксидной смолы или водоэмульгированных эпоксидных смол. В качестве альтернативы, минеральные добавки, такие как летучая зола или микрокремнезем, также могут работать как связующая добавка.31 В отличие от обычных заполнителей, бетон с заполнителями из пенополистирола показал лучшую стойкость к химическим веществам и коррозии благодаря инертным характеристикам EPS.20

На основе динамического циклического нагружения, выполненного Ши и др. ., 32 в документе предполагается, что бетон из пенополистирола может быть применен в приложениях, требующих длительных циклических нагрузок, таких как защита подземных военных сооружений, благодаря его прочности и свойствам поглощения энергии. Несмотря на свой легкий вес и хорошие энергопоглощающие свойства, бетон из пенополистирола имеет плохую обрабатываемость и низкую прочность, поскольку шарики из пенополистирола с низким весом подвержены расслоению во время процесса заливки, как сообщают Лю и Чен.19 В этой статье был использован метод обертывания песком. путем частичной замены грубых и мелких заполнителей шариками из пенополистирола и использования мелкодисперсного микрокремнезема в качестве связующей добавки, что привело к повышению плотности и прочности на сжатие пенополистирола.

Кроме того, армирование пенополистирола с использованием стальной фибры увеличило усадку при высыхании.33 В эксперименте Печче и др. . 34 коррозионно-стойких внутренних армирования, таких как оцинкованные стальные стержни, были применены к пенополистиролу (см. Рисунок 3). ) для решения проблемы его повышенной пористости, которая делает его склонным к проникновению. Несмотря на то, что этот тип армирования увеличивает прочность сцепления, он делает пенополистирол более хрупким, поскольку режим разрушения меняется с выдергивания на раскалывание.

Образец EPS LWC, армированный стальным стержнем с оцинкованным покрытием. 34 (Воспроизведено из ссылки 34 с разрешения Springer Nature.) [Цветной рисунок можно посмотреть на сайте wileyonlinelibrary.com]

Было проведено множество исследований по отходам бетона, полученного из пенополистирола. EPS перерабатывается как заполнитель для LWC, и его свойства исследуются и сравниваются с другими традиционными материалами, чтобы способствовать устойчивому развитию. Например, Диссанаяке и др. .35 построили три одноэтажных дома из трех разных материалов; обожженный глиняный кирпич, блок цементного песка и переработанный пенополистирол. На рисунке 4 показана стена дома из пенополистирола. Несмотря на их схожие характеристики в отношении энергии, выбросов углерода и стоимости, в документе говорится, что переработанный пенополистирол является более экологичной альтернативой обычным стеновым материалам, особенно в местах с нехваткой песка. Hernández-Zaragoza и др. ,36 также сообщили, что переработанный заполнитель EPS может заменить песчаный материал для получения менее проницаемого, более гибкого и относительно более дешевого легкого раствора, который по-прежнему соответствует стандарту кладки в Мексике.

Стеновые панели из пенополистирола, расположенные в шахматном порядке. 35 (Воспроизведено из ссылки 35 с разрешения Elsevier.) [Цветной рисунок можно посмотреть на сайте wileyonlinelibrary.com]

Кроме того, отходы пенополистирола могут быть переработаны в качестве смолы для производства композитов. Bhutta и др. ,18 провели эксперимент, в котором отходы EPS перерабатываются в смолу для производства плит из полимерного раствора (PMP) путем смешивания отходов с раствором метилметакрилата (MMA).По результатам испытания на изгиб, PMP на основе EPS – MMA имеет лучшую гибкость и высокую несущую способность, чем панели из раствора, пропитанные полимером. Отходы пенополистирола также могут быть растворены в смоле с использованием таких растворителей, как толуол и ацетон, для получения полимерцементного композита, который может использоваться в качестве коммерческого строительного материала и дезактиватора радиоактивных отходов37.

Кроме того, Кая и Kar38 провели эксперимент с использованием бетона, сделанного из различных составов отходов EPS, цемента и трагакантовой смолы.Они пришли к выводу, что бетон с высоким соотношением EPS к цементу и смоле демонстрирует высокую пористость и низкую плотность, теплопроводность, сжимающее и растягивающее напряжение. Образование искусственных пор приводит к улучшенным изоляционным свойствам. Таким образом, в документе предлагается применение бетона с наполнителем из пенополистирола и смолой для более устойчивого подхода, а также для снижения нагрузки на здания в строительной отрасли. Bicer и Kar39 смешали отходы пенополистирола с трагакантовой смолой, чтобы получить наполнитель для гипсовой штукатурки.Эта штукатурка имеет низкую теплопроводность и применяется в качестве внутренней штукатурки для утепления и отделки зданий.

Декоративная плитка и молдинги

Назначение декоративной лепнины — улучшить общий эстетический аспект здания за счет скрытия переходов и промежутков между поверхностями. На Рисунке 5 показан образец декоративной лепнины из пенополистирола, а на Рисунке 6 показано, как она наносится на здание. В настоящее время EPS заменил камень в качестве материала для декоративной лепки, как это наблюдается в Северной Америке и других странах, где EPS заделывают армирующей сеткой перед нанесением полиуретанового (PUR) или полимерцементного покрытия.40 Полимерная пена — популярный материал для декоративной плитки и лепки.

Образец декоративной лепнины. 2 (Воспроизведено из ссылки 2 с разрешения Elsevier.) [Цветной рисунок можно посмотреть на сайте wileyonlinelibrary.com] Здание с декоративной лепниной из пенополистирола 2 (Воспроизведено из ссылки 2 с разрешения Elsevier.) [Цветной рисунок можно посмотреть на сайте wileyonlinelibrary.com]

Кроме того, EPS является распространенным теплоизоляционным материалом в строительной отрасли.2 Благодаря своей хорошей термической, структурной прочности и водостойкости, EPS является одним из пенопластов, которые положили начало разработке конструкционных панелей, известных как пенобетон с изоляцией. Например, пенополистирол специально используется в изолированном виниловом сайдинге.41 Сайдинг — это формирование самого внешнего слоя здания. Он предлагает защиту от внешних воздействий, а также в декоративных целях. Слой вспененного пенополистирола прикреплен к обратной стороне обычного винилового внешнего слоя для улучшения изоляции, жесткости и прочности сайдинга.

Несмотря на то, что пенополистирол выполняет функцию декоративной лепнины для улучшения внешнего вида здания, Дорудиани и Омидиан2 сообщили, что пенополистирол представляет собой вредный риск для здоровья и безопасности при использовании в жилых районах, и его следует устранить, если не будет решена проблема воспламеняемости. Например, добавление антипирена на основе диаммонийфосфата в древесный композитный продукт из древесной муки и отходов пенополистирола улучшило огнестойкие свойства композита, сделав его более безопасным для использования в качестве пола, мебели и декоративных панелей.42

EPS для панельных приложений

Структурная изоляционная панель

Разработанная почти 75 лет назад, структурная изоляционная панель (СИП) представляет собой многослойную панель, используемую в качестве конструктивного элемента в бетонном здании, например, для стены, крыши и пола.43 Это высокоэффективная трехслойная композитная строительная панель, используемая в качестве элементы полов, стен и крыш из стального или деревянного каркаса жилых и легких коммерческих зданий.44, 45 Обычно панель изготавливается на заводе и доставляется на строительную площадку для сборки. СИП состоит из трехслойных структур путем приклеивания тонкого слоя (облицовки) к каждой стороне толстого слоя (сердцевины). Например, на рисунке 7 , сердцевина сделана из пенополистирола, зажатого между двумя ориентированно-стружечными плитами (OSB). Напряжение изгиба поддерживается лицевыми панелями, которые стабилизируются сердечником. Сердечник противодействует поперечной нагрузке и повышает жесткость конструкции, удерживая лицевые листы на фиксированном расстоянии.В результате SIP превосходит свои составляющие по соотношению жесткости к весу.46

SIP из полистирола и OSB.43 (Воспроизведено из ссылки 43 с разрешения Journal of Engineering, Project and Production Management.) [Цветной рисунок можно посмотреть на wileyonlinelibrary.com]

Пропитка древесных лицевых панелей или облицовочного материала обеспечивает защиту от воды, переносимого ветром мусора и биологического разложения, например, образования плесени и нападения термитов.OSB — традиционный облицовочный материал при производстве SIP с пенополистиролом в качестве основы.44 С точки зрения производительности, SIP считается ключевым компонентом в современном строительстве из-за его высокой гибкости и прочности. Хотя сердцевина из пенополистирола со значительной адсорбцией воды менее предпочтительна в качестве изоляционного материала, поскольку она снижает тепловую эффективность зданий.47

Как правило, теплопроводность сердечника EPS уменьшается с увеличением его плотности.48 Sariisik и Sariisik49 экспериментировали с использованием пемзы в качестве компонента SIP.Изоляционный блок, состоящий из пенополистирола, зажатого между двумя слоями пемзы LWC (см. Рисунок 8), имеет низкую теплопроводность и звуковую проводимость 0,33 Вт · м · К -1 и 60 дБ, соответственно. Структурная оценка SIP с использованием компьютерного программного обеспечения также практикуется несколькими исследователями. Bajracharya и др. .50 провели структурный анализ сэндвич-панелей EPS для применения в перекрытиях с помощью Strand7; программное обеспечение на основе конечных элементов, результаты которого хорошо согласуются с экспериментальными результатами, что расширило использование SIP для производства более легких конструкционных плит с лучшей тепло- и звукоизоляцией.Более того, на основе результатов компьютерного моделирования в соответствии с ENISO-6946, полученных Ede и Ogundiran, 51 композитная стеновая панель из пенополистирола имеет более высокую несущую способность и термическое сопротивление, что доказано как возможная замена традиционному бетонному пустотелому кирпичу.

Изоляционный блок, полученный путем прослоения пенополистирола между пемзой LWC.49 (Воспроизведено из ссылки 49 с разрешения Springer Nature.)

Хопкин и др. .Компания 52 провела исследование натурных естественных огнестойких испытаний гипсокартонных конструкций SIP и инженерных балок перекрытий. СИП состоял из двух облицовочных плит OSB и сердечника; изолятор на основе вспененного полимера, такой как EPS или PUR. Изготовленные легкие панели применялись в жилых домах, например, в многоквартирных домах, школах и гостиницах в качестве основного компонента для несущего сжатия52. .Следовательно, низкая прочность конструкции СИП очевидна независимо от типа используемого сердечника. Существует высокая вероятность обрушения плиты пола, если PFP плохо закреплен или определен. Однако избыточность системы и альтернативные пути загрузки спасли тестовые конструкции от полного разрушения. Плохо герметичные компоненты фитинга привели к возникновению механизма распространения огня.

В Южной Корее пенополистирол добавляют в бетонный пол в качестве упругого материала, чтобы уменьшить шум и сохранить тепло, следовательно, сэкономить больше энергии.53 Теплопроводность пенополистирола уменьшается с увеличением его плотности. Парк и др. ,54 провели исследование виброакустического применения пенополистирола с графитом, зажатого между этажами. Добавление хлопьев графита в матрицу полистирола увеличивает теплоизоляцию, поскольку частицы графита отражают лучистую энергию. Пена становится более жесткой в ​​результате изменения морфологии, ограничивающего расширение пены. Эти улучшения привели к производству более тонких и прочных изоляционных панелей, которые уменьшают низкочастотные (ниже 100 Гц) звуки удара пола.Несмотря на виброакустические свойства графитового пенополистирола, размягчение сердцевины приводит к разделенному поведению в многослойном полу, что влияет на изоляционные свойства на определенных частотах.55 Снижение динамической жесткости графитового пенополистирола вызывает уменьшение степени сцепления между слоем раствора. и базовая плита, а также сдвиг как связанной, так и развязанной моды на более низкие частоты.

Композитный SIP

Традиционная SIP состоит из пенопласта и облицовки на древесной основе.В него легко проникают обломки, переносимые ветром, и он подвержен биологическому разложению, например, термитной атаке и образованию плесени. Поиск более эффективной альтернативы преодолению этой проблемы привел к использованию композитных панелей. Чен и Хао56 предлагают применять композитный SIP (CSIP) с пенопластом EPS в качестве несущих элементов в здании, например, на крыше, полу и стене, чтобы защитить ограждающую конструкцию здания от разрушения ветром обломками во время аварии. природная катастрофа.CSIP изготавливается путем замены лицевых листов OSB из SIP на термопластичные композитные лицевые панели для получения более легких и устойчивых панелей, которые более устойчивы к переносимым ветром обломкам и образованию плесени.57 CSIP можно использовать в качестве внешней стены, учитывая экспериментальные результаты полученные Vaidya и др. ,57 показывают, что стена CSIP может выдерживать нагрузки на стену и противостоять ударам ракет, переносимых ветром, до 2600 Дж.

Муса и Уддин58 изучали структурное поведение и моделирование полномасштабных композитных структурных изолированных стеновых панелей.В этой статье делается попытка показать, что CSIP — отличный кандидат на замену традиционному SIP для жилищных приложений. Толстая и легкая сердцевина из пенополистирола зажата между более тонкими лицевыми панелями из полипропиленового (стеклопластика) ламината. Такая компоновка позволяет лучше передавать изгибающее напряжение и сдвиговые нагрузки лицевым листам и сердечнику соответственно. Сердцевина помогает сохранить лица от складок и набухания.59 Кроме того, лицевые листы разделяются сердцевиной, что укрепляет структуру.

При проектировании CSIP тщательно оцениваются такие факторы, как прогиб и расслоение, в дополнение к высокой прочности, обусловленной сочетанием лицевых панелей и сердечника.Mousa и Uddin58 провели полномасштабные экспериментальные испытания для изучения поведения стенок CSIP при эксцентрической нагрузке. Испытание на прочность на отрыв показало, что основной причиной разрушения было отслоение лицевых листов от сердечника. В этом исследовании межфазное растягивающее напряжение между лицевыми панелями и сердечником и реакция стенки CSIP при нагрузке в плоскости были спрогнозированы на основе аналитической модели и модели конечных элементов, соответственно. Результаты обеих моделей соответствовали экспериментальным результатам.Более того, параметрическое исследование методом конечных элементов показало, что на структурную целостность стеновых панелей CSIP влияли отношение пролета к глубине и плотность сердцевины.

Многие исследователи проанализировали разработку композитных панелей для строительных приложений с использованием жестких и мягких сердечников с термореактивными и термопластичными лицевыми панелями. 60-65 По сравнению с CSIP, построенным с использованием типичного сэндвич-метода, разработанный CSIP повышает прочность и сопротивление ползучести за счет 12.Соотношение модулей лицевых панелей к сердцевине в 5 раз больше.59 CSIP реализуется как компоненты как в конструктивных (например, несущие стены, полы и крыши), так и в неконструкциях (например, ненесущие стены, перемычки и перегородки) благодаря своей низкая стоимость, высокое соотношение прочности и веса, простота сборки.

Кроме того, Смакош и Тейчман46 исследовали прочность, деформируемость и режим разрушения CSIP. В этой статье оценивались механические характеристики CSIP, изготовленного с использованием сердечника и лицевых панелей из пенополистирола, которые были изготовлены из армированных стекловолокном магнезиальных цементных плит на основе квазистатических натурных и модельных испытаний при монотонной нагрузке.Общие результаты показывают, что CSIP лучше, чем SIP с точки зрения механических и изоляционных свойств. CSIP имеет более высокую прочность, что позволяет применять его в качестве несущих элементов в строительстве. Более того, навесная стена или ограждающая конструкция здания, построенная с использованием SIP, более энергоэффективна по сравнению с деревянным каркасом.66 Изоляционные свойства SIP можно изменить, изменив тип и толщину пенопласта. Несмотря на свои преимущества, добавление SIP в конструкцию требует тщательного планирования и использования дорогостоящего строительного крана или автопогрузчика для работы с крупногабаритными панелями.

Панель с вакуумной изоляцией

Панель с вакуумной изоляцией (VIP) представляет собой вакуумированный открытый пористый материал, помещенный в многослойную оболочку. VIP состоит из внутреннего сердечника, барьерной оболочки и влагопоглотителя, как показано на рис. 9.67. Оболочка защищает панель от внешнего воздействия. VIP классифицируется в зависимости от типа материала, используемого в качестве конверта; либо толстый металлический лист, либо металлизированная полимерная пленка. Пенополистирол используется в качестве основы для поддержания вакуума, а также для поддержки оболочки.Осушитель помещается в ядро ​​в качестве адсорбента, чтобы избежать проникновения внешнего газа или водяного пара. Поэтому VIP является альтернативой обычному строительному утеплителю. Он создает вакуум внутри сердечника, который эффективно препятствует передаче тепла. Кроме того, теплопроводность VIP может быть уменьшена за счет уменьшения пор пенопласта с открытыми порами, такого как EPS.

Схема VIP.67 (Воспроизведено из работы 67 с разрешения Elsevier.) [Цветной рисунок можно посмотреть на сайте wileyonlinelibrary.com]

Засыпка

Строительство насыпи с использованием тяжелого засыпного материала привело к ряду проблем, таких как выход из строя опоры и нестабильность откоса. Обычно геопена EPS используется в качестве засыпки для уменьшения веса насыпи, особенно когда она возводится поверх мягкой почвы.68

Геопена

EPS также используется в качестве материала обратной засыпки для опоры моста и уширения дороги.69 В качестве легкого заполнителя EPS подходит для строительства грунтовых насыпей с низкой несущей способностью. Кроме того, он снижает боковые силы на задней части конструкции опоры мостовидного протеза. В тематическом исследовании, проведенном в городе Танет-Уэй, Англия, были использованы легкие блоки из пенополистирола, чтобы устранить боковую нагрузку на опору моста и стабилизировать слабый фундамент, сформированный на меловой земле. Легкость блока EPS позволяет легко переносить и размещать его, не требуя подъемного оборудования, что снижает транспортные расходы.Блоки были расположены в шахматном порядке, а стальные стержни были встроены для дальнейшего укрепления конструкции. На Рисунке 10 показана конструкция моста Гримсёйвеген, в котором в качестве опоры моста используется EPS.

EPS в качестве опоры моста при строительстве моста Гримсёйвеген, Норвегия.70 (Воспроизведено из ссылки 70 с разрешения г-на Роальда Аабё.) [Цветной рисунок можно увидеть на сайте wileyonlinelibrary.com]

EPS легок, водонепроницаем и обладает хорошими амортизирующими свойствами, а также прост в применении.В Норвегии использование геопены EPS в качестве засыпки предотвратило постепенное опускание настила моста за счет снижения нагрузки, прикладываемой к слабому фундаменту.71 Более того, дорога, построенная с использованием облегченной засыпки, стоит меньше, чем при использовании традиционной засыпки, несмотря на их сопоставимые характеристики.72 Beju и Mandal73 обнаружил, что геопена EPS с более высокой плотностью имеет более высокие значения прочности на сжатие и модуля упругости, но более низкую абсорбционную способность по сравнению с геопеной меньшей плотности.

Помимо использования на насыпях, геопена EPS также применяется для стабилизации склонов горной местности, как это практикуется в таких странах, как Норвегия и Япония.70, 74 Исследование, проведенное Ареллано и др. ,75, показывает, что легкая насыпка стабилизирует склон за счет снижения веса и движущей силы скользящей массы. Это увеличивает прочность конструкции, поскольку блок более устойчив к силе оползневого материала. Кроме того, Özer и др. ,76 предлагают, чтобы все приложения по стабилизации откосов, которые включают геопену EPS в качестве обратной засыпки, должны включать постоянную дренажную систему для предотвращения нестабильности пены из-за гидростатического давления и давления фильтрации.

Как упоминалось ранее, EPS подходит в качестве материала для засыпки, поскольку он легкий, прочный и обладает хорошей химической, механической и водостойкостью. Однако более дешевая альтернатива геопеной на основе пенополистирола предложена Миао и др. ,68, которая включает смесь шариков пенополистирола, грунта и вяжущего для засыпки насыпи. Основываясь на испытании песчаного конуса и испытании на коэффициент несущей способности в Калифорнии, легкий наполнитель прошел спецификацию для использования в устоях моста и насыпи шоссе.

Кроме того, EPS используется в качестве основного материала в комбинированном оптоволоконном преобразователе для мониторинга оползней, особенно когда речь идет о песчаных глинистых склонах.77

Свойства EPS

Противопожарные и теплоизоляционные свойства EPS

Пенополистирол имеет огнестойкость, аналогичную большинству органических материалов, оба из которых легко воспламеняются. Таким образом, небольшое количество (<1%) огнестойкого материала добавляется в изоляционный материал из пенополистирола, чтобы повысить огнестойкость пенополистирола.Помимо наполнителей, таких как SiO 2 , Fe 2 O 3 и глины, отходы, такие как летучая зола, также могут использоваться в качестве более дешевой альтернативы для повышения огнестойкости пенополистирола. Ван и др. ,78 вводили летучую золу в связующее на основе гидратированного гидроксида алюминия на основе фенольной смолы, которое вводится в пенополистирол. Сообщается, что этот изоляционный материал увеличивает потери при возгорании (LOI) пенополистирола до 29,6% и получил рейтинг V-0. На рисунке 11 показано, что образец пенополистирола, обработанный гидратированным гидроксидом алюминия и термореактивной фенольной смолой, имеет большую огнестойкость во время теста LOI по сравнению с другими необработанными образцами.Выщелачивание огнезащитного материала в окружающую среду предотвращается, поскольку он полимеризуется в молекулярной структуре EPS.

Фотографии образцов EPS до и после теста LOI. Образцы с огнестойкими добавками (в центре и справа) имеют более высокую огнестойкость, поэтому горят меньше по сравнению с чистым пенополистиролом (слева) .78 (Воспроизведено из ссылки 78 с разрешения Elsevier.) [Цветную диаграмму можно посмотреть на wileyonlinelibrary.com ]

Огнестойкость пенополистирола с огнестойкостью значительно отличается от огнестойкого пенополистирола.Под воздействием тепла огнестойкий пенополистирол сжимается от источника тепла. Вероятность воспламенения материала снижается, и сварочные искры или сигареты обычно не воспламеняют его. Однако в строительной отрасли обязательно использовать огнестойкий пенополистирол, чтобы снизить воспламеняемость и распространение пламени по поверхности изделий из пенополистирола. Применение пенополистирола при разделении на отсеки или противопожарной защите конструкции ограничено без включения других огнестойких материалов.Этот случай наблюдался в предыдущих исследованиях, когда пенополистирол был покрыт гипсом и сталью, чтобы уменьшить его огнестойкость.79 EPS был оценен в соответствии с EN 13501-1 и отнесен к категории «трудновоспламеняемых». Тест также показал, что EPS выделяет минимальное дымообразование.

Согласно Yucel et al ., Было проведено 80 исследований теплоизоляционных свойств пенополистирола как строительных и изоляционных материалов. Испытание на теплопроводность предоставляет информацию, которая определяет характеристики и подходящее применение изоляционного материала.В качестве строительного оборудования изоляционный материал должен соответствовать таким параметрам, как температура, влажность и общее состояние сборки. Результаты лабораторных испытаний являются жизненно важным фактором для определения характеристик конструкции и выбора всей теплоизоляционной сборки здания. Каркас изоляционного материала оценивается по его классу, теплопроводности, плотности и механическим свойствам. Используя пластинчатый метод с обнаружением теплопроводности от 0,036 до 0,046 Вт · м · К -1 , EPS с плотностью от 10 до 30 кг · м -3 были испытаны на его изоляционные характеристики строительного класса.Результаты показывают, что на изоляционные характеристики пенополистирола влияет состав материала в ячейке, то есть гомогенный, пористый или многослойный.

Производство дыма

Дым описывается как видимая суспензия твердых или жидких частиц в газе, являющаяся продуктом сгорания и пиролиза.81 Образование дыма можно подавить, ограничив способность материала к воспламенению и уменьшив распространение пламени и выделяемое тепло.82

Поверхность изоляции из пенополистирола должна быть защищена негорючим материалом, чтобы свести к минимуму образование дыма во время пожара. 83 EPS начинает размягчаться при температуре выше 100 ° C, и при дальнейшем тепловом воздействии он сжимается, плавится и разлагается. выделяют горючие газы, воспламеняющиеся от искры или пламени при определенных условиях и температуре.

Механическая прочность EPS

Были проведены исследования, чтобы понять, как размер зерен пенополистирола и таких добавок, как летучая зола и микрокремнезем, могут улучшить механические свойства бетона, заполненного пенополистиролом.24, 84, 85 Феррандис-Мас и Гарсия-Алкоцель86 провели исследование долговечности строительного раствора из пенополистирола. В этой статье было использовано несколько методов для наблюдения за микроструктурой, чтобы проанализировать влияние типа и концентрации пенополистирола на прочность портландцементных растворов. Применяемые методы включают капиллярное поглощение воды, ртутную порозиметрию, имплантационную спектроскопию и открытую пористость. Первый метод показал, что EPS снижает коэффициент капиллярного поглощения, в то время как остальные методы демонстрируют неадекватность в выяснении микроструктуры EPS в строительном растворе из-за полимерной и губчатой ​​природы EPS.Кроме того, циклы нагрева и циклы замораживания-оттаивания показали, что изоляционные свойства EPS увеличивают прочность раствора на сжатие. Удобоукладываемость раствора повышается за счет добавления воздухововлекающего агента, водоудерживающего агента и добавки суперпластификатора. Таким образом, в документе делается вывод о том, что строительный раствор из пенополистирола имеет повышенную долговечность и пригоден для более устойчивого использования в кирпичной кладке, штукатурке и штукатурных растворах.

Было проведено несколько исследований по определению характеристик бетона из пенополистирола с использованием одновременной оптимизации как механических, так и термических свойств в отношении параметров пенополистирола.86 Недавние статьи продемонстрировали способность самоуплотняющейся легкой структуры, полученной из нано-SiO 2 и EPS. 87 В других исследованиях была предпринята попытка объединить шарики EPS в качестве наполнителя с матрицей из вспененной цементной пасты с целью синтеза теплоизолирующего композитного материала. Добавки добавляются для увеличения адгезии и уменьшения отделения шариков пенополистирола от бетонной матрицы.88 EPS используется в производстве гипсовых и гипсовых плит и панелей.89 Наполнители, такие как полипропиленовое волокно и смесь летучей золы и метакаолинита, добавляются для упрочнения пластика. матрица, используемая при производстве промышленных компонентов и легких неорганических полимеров.90, 91

Продукция из пенополистирола классифицируется по прочности на сжатие и напряжению сжатия. Прочность на сжатие — это максимальное одноосное сжимающее напряжение, которое материал может выдержать до разрушения. Номер присваивается продукту из пенополистирола на основе его сжимающего напряжения при сжатии 10%, как показано в таблице 1. Jablite — одна из многих марок пенополистирола.

Таблица 1. Механические свойства по типу пенополистирола (адаптировано из справ.)

Номер зоны 1, 21 2, 4, 6, 8, 14, 16, 18, 20 3, 7, 15, 19 5, 17 9, 13 10, 12 11

(мм) 14 × 248 18,5 × 247 18,5 × 248 4 × 248 4 × 248 4 × 248 18.5 × 248 4 × 248
0,938 3,317 2,976 2,074 1,568 3,082 1,767
Механическая прочность (кПа) EPS 70 EPS 100 EPS 150 EPS 200 EPS 250
Прочность на сжатие при сжатии 10% 70 100 150 200 250
Прочность на сжатие при 10% номинальной деформации 20 45 70 90 100
Прочность на изгиб 115 150 200 250 350
Поглощение воды и влаги

EPS имеет очень плохое водопоглощение, которое уменьшается с увеличением плотности, как показано в таблице 2.EPS со сроком эксплуатации 9–12 лет имеет 8–9% своего объема, заполненного под слоем грунтовых вод.93 Ячеистая структура EPS является водостойкой, паропроницаемой и обладает нулевой капиллярностью, хотя ни жидкая вода, ни водяной пар не влияют на ее механические свойства. . Тем не менее, поглощение влаги возможно даже после полного погружения EPS из-за тонких межузельных каналов между формованными шариками.

Таблица 2. Процент (%) объема водопоглощения, адаптированный из справ.
Плотность (кг · м −3 ) Через 7 дней Через 1 год
15 3,0 5.0
20 2,3 4,0
25 2,2 3,8
30 2.0 3,5
35 1,9 3,3
Геопена

EPS склонна к поглощению влаги, что приводит к ухудшению тепловых свойств.Менее 10% объема геопенопласта с легким наполнителем поглощается в течение всего срока службы.94 Кроме того, пенополистирол высокой плотности обладает высоким коэффициентом сопротивления диффузии водяного пара благодаря лучшим характеристикам влажности. В таблице 3 приведены влагостойкость пенополистирола различных чисел.

Таблица 3. Влагостойкость Jablite EPS (по материалам ссылки)
Влагостойкость EPS 70 EPS 100 EPS 150 EPS 200 EPS 250
Коэффициент сопротивления диффузии водяного пара, μ 20–40 30–70 30–70 40–100 40–100
Паропроницаемость, δ мг Па -1 ч -1 м -1 0.015–0.030 0,009–0,020 0,009–0,020 0,006–0,015 0,006–0,015
Сопротивление пара (МНС / г) 145 200 238 238 238
Химическая стойкость

Химическая стойкость пенополистирола зависит от времени реакции, температуры и приложенного напряжения.Он имеет такое же сопротивление, как и обычный полистирол. EPS чувствителен к воздействию растворителей, что приводит к размягчению и растрескиванию самого себя из-за его тонких стенок ячеек и большой открытой поверхности. В таблице 4 представлена ​​химическая стойкость пенополистирола по отношению к обычным реагентам и растворителям.

Таблица 4. Выбранное поведение устойчивости к EPS (адаптировано из ссылки)
Источник атаки Устойчивое поведение
Соленая вода (морская вода) Устойчивый
Щелочные растворы Устойчивый
Мыло Устойчивый
Растворы каустической соды Устойчивый
Битум (продувка воздухом) Устойчивый
Кремниевые масла Устойчивый
Спирт Устойчивый
Микроорганизмы Устойчивый
Парафиновое масло, вазелин, дизельное топливо Ограниченное сопротивление
Бензин (супер) Неустойчивый
Сильные окисляющие кислоты Неустойчивый
Дымящая серная кислота Неустойчивый
Органические растворители Неустойчивый
Насыщенный алифатический углеводород Неустойчивый

EPS не реагирует с водой, солями или щелочными растворами.Нерастворимость пенополистирола в большинстве органических растворителей влияет на выбор клея, этикетки и покрытия продукта из пенополистирола. Обычно вещество проверяется на совместимость с пенополистиролом, подвергая его воздействию формованного полистирола при температуре 120–140 ° F. Несмотря на то, что ультрафиолетовое излучение привело к поверхностному пожелтению и рыхлости формованного полистирола, его физические свойства остаются неизменными.

Токсичность и воздействие на окружающую среду

EPS представляет собой полимер, полученный из мономера стирола, углеводорода с молекулярным соединением C 8 H 8 , который полностью сгорает в присутствии избытка кислорода с образованием диоксида углерода, CO 2 и воды, как показано в уравнении.(1). (1) Как сообщили Дорудиани и Омидиан 2, количество кислорода, доступного во время горения, влияет на объем выделяющейся сажи и оксида углерода, CO. Теоретически для полного сгорания 1 г полистирола требуется примерно 2150 см 3 кислорода. Поскольку это огромное количество кислорода обычно недоступно во время горения, полистирол частично сгорает с образованием большего количества сажи и CO, как показано в уравнении. (2). (2)

Объем дыма и токсичных газов, выделяемых изоляционным материалом EPS, определяется количеством и плотностью материала.Обычно поверхность изоляции из пенополистирола защищается от огня гипсом, камнем, деревом или сталью, чтобы предотвратить распространение пламени на пенополистирол. При нормальном пожаре пенополистирол плавится из-за теплового потока. Однако пенополистирол может загореться, когда материал для защиты поверхности полностью сгорел, подвергая его воздействию прямого огня с последующим выбросом дыма и дымовых газов. Влияние огнезащитного материала на токсичность EPS незначительно, поскольку требуется лишь небольшая добавка (0,5–0,1%) материала.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *