Точка росы в стене: Точка росы: что это такое

Содержание

Точка росы: что это такое

Интернет переполнен вопросами о точке росы в строительстве. Что это такое? Где находится точка росы? Как не допустить её появление в наружных стенах? Как устранить её? Как вывести точку росы за пределы стен? Точка росы кажется чем-то страшным, с чем обязательно нужно бороться… Наша статья для тех, кто хочет раз и навсегда победить этого «страшного зверя». Рассмотрим проблему точки росы применительно к стенам из газобетона в загородном домостроении. 

Точка росы: что это такое?

В воздухе всегда в той или иной степени содержатся пары воды. Когда температура воздуха опускается до определённого значения, водяной пар переходит из газообразного состояния в жидкое. То есть превращается в воду, конденсируясь на поверхности, которая холоднее его собственной температуры. Это физическое явление можно наблюдать повсюду:

  • Утренняя роса на траве
  • Запотевшие окна зимой
  • Запотевшая бутылка, взятая из холодильника
  • Капельки воды на холодных стенах подвального помещения в отопительный период

Точка росы – это температура, при которой водяной пар превращается в конденсат. Строго говоря, понятие «точка» некорректное. В технической литературе используют термин «плоскость максимального увлажнения». Потому что конденсат образуется не в точке, а в некоторой зоне, области.

Появление конденсата зависит от двух факторов:

  • Количества водяного пара в воздухе
  • Температуры воздуха

Точка росы в газобетонной стене

Расстроим тех, кто боится точки росы в наружных стенах загородного дома. В регионах с холодными зимами не существует однослойных стен из любого каменного материала (кирпич, поризованная керамика, пено-, газобетон и пр.), внутри которых зимой не было бы точки росы. Даже в таком энергоэффективном каменном материале, как газобетон, не может быть плюсовой температуры по всей толщине. А значит, в определённом месте кладки (в первой трети стены со стороны улицы) плюс переходит в минус, и водяной пар, стремящийся из внутренних помещений дома на улицу, превращается в конденсат.

Что же делать? Ничего. На протяжении многих веков человечество строит каменные дома с точками росы, и ничего плохого не происходит. Стоят себе и стоят. Конечно, со временем они стареют и разрушаются, но на это уходят сотни лет. Достаточно посмотреть на сохранившиеся средневековые кирпичные церкви: их стены до сих пор не утратили своих эксплуатационных свойств. Точно также и точка росы в газобетонное стене не представляет никакой опасности.

Многие боятся, что точка росы снизит морозостойкость кладки. Ведь известно, что влага, которая зимой накапливается в толще пористых стеновых материалов, циклически замерзает и оттаивает, тем самым разрушая стены. Но в случае газобетона бояться этого не стоит, учитывая два момента:

  • Газобетон – паропроницаемый материал, он не накапливает влагу. И даже если за зиму в его толще образуется небольшое количество влаги, вся она испаряется за лето.
  • Той влаги, которая появляется в стене зимой, недостаточно для того, чтобы в результате циклов замораживания и оттаивания разрушать кладку. Неслучайно газобетон YTONG имеет очень высокую марку по морозостойкости – F100 (по результатам независимых испытаний).
    Это означает, что срок его службы – не менее 100 лет, согласно СП 15.13330.2012*.

Чтобы гарантировать долговечность газобетонного дома, нужно лишь соблюдать технологию его сооружения, в частности:

  • Отделывать газобетонную кладку снаружи можно через 2-6 месяцев после строительства дома. На выходе с производственной линии газобетонные блоки имеют повышенную влажность, и нужно время, чтобы они высохли.
  • Лучше использовать паропроницаемые отделочные материалы, которые не станут препятствием для выхода пара из стен.
  • Если необходимо закрыть фасад материалом паронепроницаемым или с меньшей паропроницаемостью, чем у газобетона, предусматривайте вентилируемый воздушный зазор между кладкой и отделкой. Так делают, например, фасады с облицовкой из керамического кирпича. А облицовку из декоративного бетонного камня или клинкерной плитки закрепляют с помощью системы вентфасада (при условии, что подобная облицовка закрывает более 25% площади фасада).

Подробную информацию о возведении дома из газобетона можно получить на курсе по строительству из YTONG

Так в чём же проблема?

О том, что точка росы может представлять опасность, стали говорить тогда, когда началась мода на повсеместное утепление наружных стен. Увы, утеплитель не спасает от точки росы, она остаётся в конструкции стены. Но теперь она действительно может оказаться проблемой, если нарушена технология выполнения фасадных работ. Притом конструкция утеплённых (многослойных) стен намного сложнее, чем однослойных, и при её устройстве намного проще допустить ошибки.

Минеральная вата

Согласно современным нормам, в средней полосе России однослойные стены толщиной 375 мм из газобетонных блоков плотностью D400 утеплять, как правило, не требуется**. Они достаточно «тёплые», чтобы можно было тратить небольшие суммы на обогрев дома. Но бывают ситуации, когда наружные стены из газобетона приходится утеплять:

  • В регионах с суровыми зимами, где газобетонная стена при разумной толщине не может обеспечить необходимую теплозащиту.
  • В зданиях с неоптимизированной системой отопления или с очень большой площадью остекления в сочетании с не энергоэффективными стеклопакетами. Утеплитель компенсирует потери тепла.
  • Для исправления ошибок, допущенных при строительстве дома из газобетона.
    Например, когда у здания толстые растворные швы, железобетонные перекрытия, не имеющие терморазрывов в местах опирания на ограждающие стены и т.п.
  • Некоторые заказчики из различных соображений строят многослойные наружные стены такого типа: несущую часть делают тоньше (обычно 200-250 мм), из более плотных и, как следствие, более «холодных» блоков D500, а необходимое сопротивление теплопередаче добирают за счёт теплоизоляции.

При этом возникает вопрос: какой утеплитель выбрать? Минеральную вату или пенополистирол (обычный, экструдированный)? Производители газобетона рекомендуют материалы на основе каменного или стеклянного волокна (минеральную вату). Структура этих материалов схожа со структурой самого газобетона: поры, через которые беспрепятственно движется воздух. Поэтому утеплитель не затрудняет выход водяного пара из кладки, и стена работает в правильном режиме.

Точка росы в такой конструкции смещается в толщу утеплителя или на границу утеплителя и наружной отделки.

Никакой опасности точка росы, как правило, не представляет. Конденсат выпадает в очень малых количествах и «выносится» благодаря постоянному движению воздуха из помещения на улицу. При этом толщина слоя минваты ни на что не влияет.

Единственная проблема – нельзя допускать накопления влаги в утеплителе. Минеральная вата отлично сберегает тепло, но только в сухом состоянии. Если же она увлажняется, то резко теряет изоляционные свойства. А «пирог», где сочетаются намокшая минвата и тонкая стена из газобетона высокой плотности, – это колоссальные затраты на отопление дома.

Как избежать увлажнения утеплителя из минеральной ваты?

Итак, точка росы сама по себе не опасна. Проблемы возникают тогда, когда она появляется в стене, где зимой накапливается влага. Поэтому надо заранее сделать расчёт влагонакопления многослойной ограждающей конструкции в отопительный период, используя, например, один из онлайн-калькуляторов. Как правило, влагонакопление оказывается в допустимых пределах, при условии, что в утеплённой стене нет препятствий для выхода пара на улицу.

Несколько рекомендаций, как не допустить намокание волокнистого утеплителя. Они во многом совпадают с рекомендациями по устройству неутеплённых газобетонных стен:

  • Нельзя монтировать вплотную к таким утеплителям отделочные материалы с низкой паропроницаемостью, например, декоративные бетонные камни, клинкерную плитку, облицовочный керамический кирпич и пр. Они «запирают» влагу в стене. Используйте фасадные системы, где предусмотрен вентзазор.
  • В конструкциях с вентиляционным зазором закрывайте утеплитель только паропроницаемыми ветрозащитными мембранами (ни в коем случае не обычными плёнками, у них низкая паропроницаемость).
  • Применяйте только те системы штукатурных фасадов «мокрого» типа, которые рекомендованы для газобетона (то есть обладают высокой паропроницаемостью всех слоёв). В частности, нельзя отделывать фасад высокоплотными цементными штукатурками (более 1600 кг/м3).
  • Монтируйте теплоизоляцию и отделку после того, как из газобетонной стены вышла избыточная начальная влага.

Пенополистирол

В большинстве случаев проблемы, связанные с точкой росы, появляются при утеплении газобетона тонким слоем пенополистирола – обычного или экструдированного. Это обусловлено двумя факторами:

  1. Пенополистирол является паробарьером. Он не даёт влаге выходить из стены.
  2. При утеплении тонким слоем пенополистирола (50 мм) происходит влагонакопление в стене в отопительный период.

Плоскость максимального увлажнения образуется на границе стены и теплоизоляции, зимой здесь накапливается влага, газобетон увлажняется, а это, в свою очередь, оборачивается потерями тепла через стены и снижением срока их службы. Притом потери тепла будут вполне ощутимыми, учитывая, что пенополистиролом обычно закрывают тонкие стены из высокоплотного газобетона. В результате вместо выгоды (экономии на толщине стенового материала) домовладелец получает большие счета за отопление, ведь эффекта от утепления нет.

Более того, увлажнённый газобетон всё равно будет высыхать, но только отдавая влагу обратно в помещение. А значит, неизбежна повышенная влажность в доме.

Что же делать? Если в силу каких-то причин невозможно увеличить толщину слоя утепления (сделать её 100 мм и более), тогда придётся:

  1. Монтировать поверх стен со стороны помещения паробарьер. В качестве него могут выступать, например, паронепроницаемые виниловые обои, высокоплотная цементная штукатурка и пр.
  2. Предусматривать принудительную приточно-вытяжную вентиляцию, чтобы удалять из дома водяной пар. В крайнем случае очень часто проветривать жилые помещения.

Как избежать проблем при утеплении пенополистиролом?

Накопления влаги не будет, если соблюдать главное правило: при наружном утеплении материалами с низкой паропроницаемостью термическое сопротивление (R0) утеплителя должно быть больше половины термического сопротивления стены (0,5хR0). Расчёт с помощью онлайн-калькулятора поможет понять ситуацию с влагонакоплением конкретной конструкции.

В общих чертах можно сказать, что газобетонные стены из блоков D500 толщиной 250 мм и меньше допустимо утеплять пенополистиролом толщиной не менее 100 мм. В такой конструкции точка росы выносится в теплоизоляцию, а вся газобетонная кладка находится в зоне плюсовой температуры – в силу высокой энергоэффективности пенополистирола. Поскольку нет перепадов температуры в толще кладки, движения воздуха в сторону улицы также нет, и накопления влаги в стене не происходит.

Правда, есть нюансы:

  • Водяной пар не «уходит» через стены и потому его нужно принудительно удалять из жилых помещений, чтобы обитателям дома было комфортно. А значит, требуется приточно-вытяжная вентиляция.
  • Монтировать пенополистирол можно только после полного высыхания «свежепостроенных» газобетонных стен (избавления от производственной влажности).

 Ещё больше информации о возведении дома из газобетона можно получить на курсе по строительству из YTONG

* СП 15.13330.2012 «Каменные и армокаменные конструкции»

** Согласно СП 50.13330.2012 «Тепловая защита зданий»

Точка росы, пароизоляция и вентилируемый зазор в стене

РЕКЛАМА

Водяной пар в стене — откуда он?

Для того чтобы понять, к каким последствиям приведёт отсутствие вентилируемого зазора в стенах, выполненных из двух и более слоев разных материалов, и всегда ли нужны зазоры в стенах, необходимо напомнить о физических процессах, происходящих в наружной стене в случае разности температур на её внутренней и наружной поверхностях.

Как известно в воздухе всегда содержатся водяные пары. Парциальное давление пара зависит от температуры воздуха. С повышением температуры парциальное давление водяных паров увеличивается.

РЕКЛАМА

В холодное время года парциальное давление паров внутри помещения значительно выше, чем снаружи. Под действием разницы давлений водяные пары стремятся попасть изнутри дома в область меньшего давления, т.е. на сторону слоя материала с меньшей температурой — на наружную поверхность стены.

Также известно, что при охлаждении воздуха водяной пар, содержащийся в нём, достигает предельного насыщения, после чего конденсируется в росу.

Точка росы – это температура, до которой должен охладиться воздух, чтобы содержащийся в нём пар достиг состояния насыщения и начал конденсироваться в росу.

На приведённой диаграмме, Рис.1., представлено максимально возможное содержание водяного пара в воздухе в зависимости от температуры.

Рис. 1. График температуры точки росы.
Максимально возможное содержание
пара в воздухе в зависимости от
температуры.

Отношение массовой доли водяного пара в воздухе к максимально возможной доле при данной температуре называется относительной влажностью, измеряемой в процентах.

Например, если температура воздуха составляет 20 °С, а влажность – 50%, это означает, что в воздухе содержится 50% того максимального количества воды, которое может там находится.

Как известно строительные материалы обладают разной способностью пропускать содержащиеся в воздухе водяные пары, под действием разности их парциальных давлений. Это свойство материалов называется сопротивление паропроницанию, измеряется в м2*час*Па/мг.

Кратко резюмируя вышесказанное, в зимний период воздушные массы, в состав которых входят водяные пары, будут проходить сквозь паропроницаемую конструкцию внешней стены изнутри наружу.

Температура воздушной массы будет уменьшаться по мере приближения к внешней поверхности стены.  

В сухой стене — пароизоляция и вентилируемый зазор

Рис.2. Пример распределения температуры в толще наружной стены.

 а — при большом, б — при

малом теплосопротивлении материала стены;

Точка росы в правильно спроектированной стене без утеплителя окажется в толще стены, ближе к наружной поверхности, где пар будет конденсироваться и увлажнять стену.

Зимой, в результате превращения пара в воду на границе конденсации, наружная поверхность стены будет накапливать влагу.

В теплое время года эта накопленная влага должна иметь возможность испариться.

Необходимо обеспечивать смещение баланса между количеством поступающих в стену паров изнутри помещения и испарением из стены накопившейся влаги в сторону испарения.

Баланс влагонакопления в стене можно смещать в сторону удаления влаги двумя путями:

  1. Уменьшать паропроницаемость внутренних слоев стены, сокращая тем самым количество пара в стене.
  2. И (или) увеличивать испарительную способность наружной поверхности на границе конденсации.

Однослойные стены имеют одинаковое сопротивление паропроницанию по всей толщине, а также равномерное изменение температуры по толщине стены. Граница конденсации водяных паров в правильно спроектированной стене без утеплителя находится в толще стены, ближе к наружной поверхности. Это обеспечивает таким стенам положительный баланс удаления влаги из толщи стены во всех случаях, кроме помещений с повышенной влажностью.

В многослойных стенах с утеплителем используются материалы с разным сопротивлением  паропроницанию. Кроме того, распределение температуры в толще многослойной стены не равномерное. На границе слоев в толще стены имеем резкие перепады температуры.

Чтобы обеспечить требуемый баланс перемещения влаги в многослойной стене необходимо, чтобы сопротивление паропроницанию материала в стене уменьшалось по направлению от внутренней поверхности к наружной.

В противном случае, если наружный слой будет иметь большее сопротивление паропроницанию, баланс влагоперемещения сместится в сторону накопления влаги в стене.

Например.

Сопротивление паропроницанию газобетона значительно меньше, чем у керамики. При фасадной отделке дома из газобетона керамическим кирпичом обязателен вентилируемый зазор между слоями. При отсутствии зазора блоки будут накапливать влагу.

Вентилируемый зазор между лицевой кладкой из керамического кирпича и несущей стеной из керамзитобетонных блоков не нужен, т.к. сопротивление паропроницанию кирпичной облицовки меньше, чем у стены из керамзитобетонных блоков.

При неправильном устройстве стены, влага в утеплителе будет накапливаться постепенно.

Уже на второй, максимум третий-пятый отопительный период, можно будет ощутить существенное увеличение расходов на отопление. Связано это, естественно, с тем, что увеличилась влажность теплоизоляционного слоя и всей конструкции в целом, а соответственно существенно снизился показатель термического сопротивления стены.

Влага из утеплителя будет передаваться и в соседние слои стены. На внутренней поверхности наружных стен может образовываться грибок и плесень.

Кроме накопления влаги, в утеплителе стены происходит еще один процесс — замерзание сконденсировавшейся влаги. Известно, что периодическое замерзание и оттаивание большого количества воды в толще материала разрушает его.

Увлажнение конденсатом утеплителя, например эковаты, также ведет к вымыванию антисептиков и антипиренов. Чаще всего, это борная кислота. Концентрация которой со временем будет снижаться.

Любой утеплитель постепенно, с годами, теряет свои теплосберегающие свойства. Когда надо менять утеплитель читайте здесь.

Стеновые материалы различаются по своей способности противостоять замерзанию конденсата. Поэтому, в зависимости от паропроницаемости и морозостойкости утеплителя, необходимо ограничивать общее количество конденсата, накапливающегося в утеплителе за зимний период.

Например, минераловатный утеплитель имеет высокую паропроницаемость и очень низкую морозостойкость. В конструкциях с минераловатным утеплителем (стены, чердачные и цокольные перекрытия, мансардные крыши) для уменьшения поступления пара в конструкцию со стороны помещения всегда укладывают паронепроницаемую пленку.

Без пленки стена имела бы слишком малое сопротивление паропроницанию и, как следствие, в толще утеплителя выделялось и замерзало бы большое количество воды.  Утеплитель в такой стене через 5-7 лет эксплуатации здания превратился бы в труху и осыпался.

Толщина теплоизоляции должна быть достаточной для того, чтобы удерживать точку росы в толще утеплителя, рис.2а.

При малой толщине утеплителя температура точки росы окажется на внутренней поверхности стены и пары будут конденсироваться уже на внутренней поверхности наружной стены, рис.2б.

Понятно, что количество влаги, сконденсировавшейся в утеплителе, будет увеличиваться с ростом влажности воздуха в помещении и с увеличением суровости зимнего климата в месте строительства.

Количество испаряемой из стены влаги в летнее время также зависит от климатических факторов — температуры и влажности воздуха в зоне строительства.

Рис.3. Результат расчета влажностного режима
трехслойной стены: керамзитобетон — 250 мм., утеплитель
минераловатный — 100 мм., кирпич керамический — 120 мм.
жилой дом в г. С.-Петербург.
Накопления влаги в годичном цикле нет.

Как видим, процес перемещения влаги в толще стены зависит от многих факторов. Влажностный режим стен и других ограждений дома можно рассчитать, Рис. 3.

По результатам расчета определяют необходимость уменьшения паропроницаемости внутренних слоев стены  или необходимость вентилируемого зазора на границе конденсации.

Результаты проведенных расчетов влажностного режима различных вариантов утепленных стен (кирпичные, ячеистобетонные, керамзитобетонные, деревянные) показывают, что в конструкциях с вентилируемым зазором на границе конденсации накопления влаги в ограждениях жилых зданий не происходит во всех климатических зонах России.  

Многослойные стены без вентилируемого зазора необходимо применять, основываясь на расчете влагонакопления. Для принятия решения, следует обратиться за консультацией к местным специалистам, профессионально занимающимся проектированием и строительством жилых зданий. Результаты расчета влагонакопления типовых конструкций стен в месте строительства, местным строителям давно известны.

«Стена каменная трехслойная с облицовкой из кирпича» — это статья об особенностях влагонакопления и утепления стен из кирпича или каменных блоков.

Особенности влагонакопления в стенах с фасадным утеплением пенопластом, пенополистиролом

Утеплители из вспененных полимеров — пенопласта, пенополистирола, пенополиуретана, обладают очень низкой паропроницаемостью. Слой плит утеплителя из этих материалов на фасаде служит барьером для пара. Конденсация пара может происходить только на границе утеплителя и стены. Слой утеплителя препятствует высыханию конденсата в стене.

Для предотвращения накопления влаги в стене с полимерным утеплителем необходимо исключить конденсацию пара на границе стены и утеплителя. Как это сделать? Для этого необходимо сделать так, чтобы на границе стены и утеплителя температура всегда, в любые морозы, была бы выше температуры точки росы.

Указанное выше условие распределения температур в стене обычно легко выполняется, если сопротивление теплопередаче слоя утеплителя будет заметно больше, чем у утепляемой стены. Например, утепление «холодной» кирпичной стены дома пенопластом толщиной 100 мм. в климатических условиях средней полосы России обычно не приводит к накоплению влаги в стене.

Совсем другое дело, если пенопластом утепляется стена из «теплого» бруса, бревна, газобетона или поризованной керамики. А также, если для кирпичной стены выбрать очень тонкий полимерный утеплитель. В этих случаях температура на границе слоев может легко оказаться ниже точки росы и, чтобы убедиться в отсутствии влагонакопления, лучше выполнить соответствующий расчет.

Выше на рисунке показан график распределения температуры в утепленной стене для случая, когда сопротивление теплопередаче стены больше, чем слоя утеплителя. Например, если стену из газобетона с толщиной кладки 400 мм. утеплить пенопластом толщиной 50 мм., то температура на границе с утеплителем зимой будет отрицательной. В результате будет происходить конденсация пара и накопление влаги в стене.

Толщину полимерного утеплителя выбирают в два этапа:

  1. Выбирают, исходя из необходимости обеспечить требуемое сопротивление теплопередаче наружной стены.
  2. Затем выполняют проверку на отсутствие конденсации пара в толще стены.

Если проверка по п.2. показывает обратное, то приходится увеличивать толщину утеплителя. Чем толще полимерный утеплитель — тем меньше риск конденсации пара и влагонакопления в материале стены. Но, это приводит к увеличению расходов на строительство.

Особенно большая разница в толщине утеплителя, выбранного по двум вышеуказанным условиям, имеет место при  утеплении стен с высокой паропроницаемостью и низкой теплопроводностью. Толщина утеплителя для обеспечения энергосбережения получается для таких стен сравнительно маленькой, а для отсутствия конденсации — толщина плит должна быть неоправданно большой.

Поэтому, для утепления стен из материалов с высокой паропроницаемостью и низкой теплопроводностью выгоднее использовать минераловатные утеплители. Это относится прежде всего к стенам из дерева, газобетона, газосиликата, крупнопористого керамзитобетона.

Устройство пароизоляции изнутри обязательно для стен из материалов с высокой паропроницаемостью при любом варианте утепления и облицовки фасада.

Для устройства пароизоляции внутреннюю отделку выполняют из материалов с высоким сопротивлением паропроницанию — на стену наносят грунтовку глубокого проникновения в несколько слоев, цементную штукатурку, виниловые обои или используют паронепроницаемую пленку.

Все описанное выше относится не только к стенам, но и к другим конструкциям, ограждающим тепловой контур здания — чердачным и цокольным перекрытиям, мансардным крышам.

Посмотрите видео, в котором наглядно показаны теплофизические процессы в утепленных скатах крыши. Аналогичные процессы происходят и в наружных стенах зданий.

Прочитав эту статью, Вы узнали, как сделать стену сухой.

Стена должна быть еще и теплой. Об этом читайте в следующей статье.

Следующая статья:

Расходы на отопление и сопротивление теплопередаче.

Предыдущая статья:

Стены несущие, самонесущие и не несущие — какая разница?

Помогите мне определить точку росы моей стены

Я потратил несколько часов на изучение этого сайта (кстати, отличного), чтобы попытаться определить, какой будет точка росы в предложенной сборке стены (вспышка и заливка). Я читал блог, в котором упоминается подход Джо Лстибурека, который, похоже, больше основан на стеновой системе с внешней изоляционной плитой. Я также нашел таблицу, в которой указано, что требуется 2 дюйма инсулина с закрытыми порами. Так что я немного запутался.

Вот моя предполагаемая система наружных стен: Зона 6B; внутренняя 5/8-дюймовая сухая стена (без пароизоляции), 2×6 шпилек 16 дюймов, изоляция из стекловолокна 3 ½ дюйма, 2-дюймовая изоляция из напыляемой пены с закрытыми порами, фанерная обшивка ½ дюйма, дренажная пленка Tyvek, сайдинг из цементных плит . (я знаю о тепловых мостах).

Я хотел бы знать, адекватна ли эта система, исходя из средней температуры 19 градусов (декабрь-февраль), для предотвращения образования влаги в полости стены (при условии, что внутренняя температура 70 градусов и относительная влажность 35 %)?

Если нет; какой должна быть максимальная внутренняя температура и относительная влажность, чтобы быть в безопасности?

Спасибо!

Подробная библиотека GBA

Коллекция из тысячи строительных деталей, упорядоченных по климату и части дома.

Поиск и загрузка деталей конструкции

Присоединяйтесь к ведущему сообществу экспертов в области строительства

Станьте участником GBA Prime и получите мгновенный доступ к последним разработкам в области зеленого строительства, исследованиям и отчетам с мест.

Начать бесплатную пробную версию

Избранные блоги

Размышления энергетического ботаника Посмотреть больше

Рассмотрение вопроса об использовании энергии в жилых помещениях

Руководство по продукту Посмотреть больше

  • Спонсор

  • Спонсор

Эта функция была временно отключена во время предварительного просмотра бета-версии сайта.

Для доступа к этой функции вы должны быть подписчиком журнала.

Подпишитесь сегодня и сэкономьте до 44%

Подпишитесь

Или узнайте больше

Уже подписчик?

Войти

Понимание точки росы — GreenBuildingAdvisor

Эта стеновая обшивка была ниже точки росы внутреннего воздуха. Когда теплый влажный воздух контактировал с обшивкой стен, температура которой была ниже точки росы, обшивка намокала.
Изображение предоставлено: Изображение № 1: Эндрю Росс на советнике по экологическому строительству

Еще размышления энергетического ботаника

Точка росы – это температура. В своей статье о психрометрической диаграмме я определил точку росы как «температуру, при которой влага из воздуха начинает конденсироваться на твердых поверхностях». Точка росы может быть измерена или рассчитана для определенного момента времени в определенном месте, в помещении или на открытом воздухе. Независимо от того, где она измеряется, точка росы никогда не может быть выше температуры воздуха.

Вот несколько других определений «точки росы»:

  • Точка росы — это температура, до которой необходимо охладить воздух, чтобы он стал насыщенным водяным паром.
  • Точка росы – это температура, при которой водяной пар в образце воздуха при постоянном атмосферном давлении конденсируется в жидкую воду с той же скоростью, с которой он испаряется.
  • Точка росы – это температура, до которой необходимо охладить воздух (при постоянном давлении), чтобы достичь относительной влажности (RH) 100 %.

Предотвращение накопления влаги в обшивке

Если вы проектировщик или строитель, который заботится о влагостойкости своих стен, вы, вероятно, столкнетесь с термином «точка росы» при любом обсуждении зимнего накопления влаги в обшивке стен. Если мы знаем точку росы воздуха внутри дома и температуру обшивки стен, мы знаем, что произойдет, если какая-либо часть этого теплого внутреннего воздуха соприкоснется с обшивкой стен. Например, если точка росы воздуха в помещении составляет 40°F, а обшивка стен — 32°F, мы знаем, что обшивка достаточно холодная, чтобы накапливать влагу, когда воздух в помещении соприкасается с холодной обшивкой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *