| |
doctorlom.com
Расчет плиты перекрытия по формулам
Расчет железобетонной монолитной плиты перекрытия
Железобетонные монолитные плиты перекрытия, несмотря на то, что имеется достаточно большое количество готовых плит, по-прежнему востребованы. Особенно если это собственный частный дом с неповторимой планировкой, в котором абсолютно все комнаты имеют разные размеры либо процесс строительства ведется без использования подъемных кранов.
Монолитные плиты достаточно востребованы, особенно в строительстве загородных домов с индивидуальным дизайном.
В подобном случае устройство монолитной железобетонной плиты перекрытия дает возможность значительно сократить затраты денежных средств на приобретение всех необходимых материалов, их доставку либо монтаж. Однако в данном случае большее количество времени может уйти на выполнение подготовительных работ, в числе которых будет и устройство опалубки. Стоит знать, что людей, которые затевают бетонирование перекрытия, отпугивает вовсе не это.
Заказать арматуру, бетон и сделать опалубку на сегодняшний день несложно. Проблема заключается в том, что не каждый человек может определить, какая именно арматура и бетон понадобятся для того, чтобы выполнить подобные работы.
Данный материал не является руководством к действию, а несет чисто информационный характер и содержит исключительно пример расчета. Все тонкости расчетов конструкций из железобетона строго нормированы в СНиП 52-01-2003 «Железобетонные и бетонные конструкции. Основные положения», а также в своде правил СП 52-1001-2003 «Железобетонные и бетонные конструкции без предварительного напряжения арматуры».
Монолитная плита перекрытия представляет собой армированную по всей площади опалубку, которая заливается бетоном.
Касательно всех вопросов, которые могут возникать в процессе расчета железобетонных конструкций, следует обращаться именно к данным документам. В данном материале будет содержаться пример расчета монолитного железобетонного перекрытия согласно тем рекомендациям, которые содержатся в данных правилах и нормах.
Пример расчета железобетонной плиты и любой строительной конструкции в целом будет состоять из нескольких этапов. Их суть — подбор геометрических параметров нормального (поперечного) сечения, класса арматуры и класса бетона, чтобы плита, которая проектируется, не разрушилась под воздействием максимально возможной нагрузки.
Пример расчета будет производиться для сечения, которое перпендикулярно оси х. На местное сжатие, на действие поперечных сил, продавливание, на кручение (предельные состояния 1 группы), на раскрытие трещин и расчет по деформациям (предельные состояния 2 группы) производиться не будут. Заранее стоит предположить, что для обыкновенной плоской плиты перекрытия в жилом частном доме подобных расчетов не требуется. Как правило, так оно и есть на самом деле.
Следует ограничиться лишь расчетом нормального (поперечного) сечения на действия изгибающего момента. Те люди, которым не нужно давать пояснения касательно определения геометрических параметров, выбора расчетных схем, сбор нагрузок и расчетных предпосылок, могут сразу перейти к разделу, в котором содержится пример расчета.
Вернуться к оглавлению
Первый этап: определение расчетной длины плиты
Плита перекрытия может быть абсолютно любой длины, а вот длину пролета балки уже необходимо высчитывать отдельно.
Реальная длина может быть абсолютно любой, а вот расчетная длина, выражаясь другими словами, пролет балки (в данном случае плиты перекрытия) — совсем другое дело. Пролетом является расстояние между несущими стенами в свету. Это длина и ширина помещения от стенки до стенки, следовательно, определить пролет железобетонного монолитного перекрытия довольно просто. Следует измерить рулеткой либо другими подручными средствами данное расстояние. Реальная длина во всех случаях будет большей.
Железобетонная монолитная плита перекрытия может опираться на несущие стенки, которые выкладываются из кирпича, камня, шлакоблоков, керамзитобетона, пено- либо газобетона. В подобном случае это не очень важно, однако в случае, если несущие стенки выкладываются из материалов, которые имеют недостаточную прочность (газобетон, пенобетон, шлакоблок, керамзитобетон), также необходимо будет выполнить сбор некоторых дополнительных нагрузок.
Данный пример содержит расчет для однопролетной плиты перекрытия, которая опирается на 2 несущих стенки. Расчет плиты из железобетона, которая опирается по контуру, то есть на 4 несущих стенки, или для многопролетных плит рассматриваться в данном материале не будет.
Чтобы то, что было сказано выше, усваивалось лучше, следует принять значение расчетной длины плиты l = 4 м.
Вернуться к оглавлению
Определение геометрических параметров железобетонного монолитного перекрытия
Расчет нагрузок на плиту перекрытия считается отдельно для каждого конкретного случая строительства.
Данные параметры пока не известны, однако есть смысл их задать для того, чтобы была возможность произвести расчет.
Высота плиты задается как h = 10 см, условная ширина — b = 100 см. Условность в подобном случае означает то, что плита бетонного перекрытия будет рассматриваться как балка, которая имеет высоту 10 см и ширину 100 см. Следовательно, результаты, которые будут получены, могут применяться для всех оставшихся сантиметров ширины плиты. То есть, если планируется изготавливать плиту перекрытия, которая имеет расчетную длину 4 м и ширину 6 м, для каждого из данных 6 м необходимо применять параметры, определенные для расчетного 1 м.
Класс бетона будет принят B20, а класс арматуры — A400.
Далее происходит определение опор. В зависимости от ширины опирания плит перекрытия на стенки, от материала и веса несущих стенок плита перекрытия может рассматриваться как шарнирно опертая бесконсольная балка. Это является наиболее распространенным случаем.
Далее происходит сбор нагрузки на плиту. Они могут быть самыми разнообразными. Если смотреть с точки зрения строительной механики, все, что будет неподвижно лежать на балке, приклеено, прибито либо подвешено на плиту перекрытия — это статистическая и достаточно часто постоянная нагрузка. Все что ползает, ходит, ездит, бегает и падает на балку — динамические нагрузки. Подобные нагрузки чаще всего являются временными. Однако в рассматриваемом примере никакой разницы между постоянными и временными нагрузками делаться не будет.
Вернуться к оглавлению
Существующие виды нагрузок, сбор которых следует выполнить
Сбор нагрузок сосредоточен на том, что нагрузка может быть равномерно распределенной, сосредоточенной, неравномерно распределенной и другой. Однако нет смысла так сильно углубляться во все существующие варианты сочетания нагрузки, сбор которой производится. В данном примере будет равномерно распределенная нагрузка, потому как подобный случай загрузки для плит перекрытия в жилых частных домах является наиболее распространенным.
Сосредоточенная нагрузка должна измеряться в кг-силах (КГС) или в Ньютонах. Распределенная же нагрузка — в кгс/м.
Нагрузки на плиту перекрытия могут быть самыми разными, сосредоточенными, равномерно распределенными, неравномерно распределенными и т. д.
Чаще всего плиты перекрытия в частных домах рассчитываются на определенную нагрузку: q1 = 400 кг на 1 кв.м. При высоте плиты, которая равняется 10 см, вес плиты добавит к данной нагрузки еще порядка 250 кг на 1 кв.м. Керамическая плитка и стяжка — еще до 100 кг на 1 кв.м.
Подобная распределенная нагрузка будет учитывать практически все сочетания нагрузок на перекрытия в жилом доме, которые возможны. Однако стоит знать, что никто не запрещает рассчитывать конструкцию на большие нагрузки. В данном материале будет принято такое значение и, на всякий случай, следует умножить его на коэффициент надежности: y = 1.2.
q = (400 + 250 + 100) * 1.2 = 900 кг на 1 кв.м.
Будут рассчитываться параметры плиты, которая имеет ширину 100 см. Следовательно, данная распределенная нагрузка будет рассматриваться как плоская, которая действует по оси y на плиту перекрытия. Измеряется в кг/м.
Вернуться к оглавлению
Определения максимального изгибающего момента для нормального (поперечного) сечения балки
Для бесконсольной балки на двух шарнирных опорах (в данном случае — плита перекрытия, опирающаяся на стены, на которую действуют равномерно распределенные нагрузки) максимальный изгибающий момент будет посредине балки. Mmax = (q * l^2) / 8 (149:5.1)
Для пролета l = 4 м, Mmax = (900 * 4^2) / 8 = 1800 кг/м.
Необходимо знать, что расчет железобетонной арматуры по предельным усилиям согласно СП 52-101-2003 и СНиП 52-01-2003 основывается на следующих расчетных предпосылках:
Схема пустотелой армированной плиты перекрытия
- Сопротивление бетона растяжению следует принять равным 0. Подобное допущение производится на том основании, что сопротивление бетона растяжению гораздо меньше сопротивления растяжению арматуры (ориентировочно в 100 раз), следовательно, в растянутой зоне конструкции из железобетона могут образовываться трещины из-за разрыва бетона. Таким образом на растяжение в нормальном сечении работает только арматура.
- Сопротивление бетона сжатию следует принять равномерно распределенным по зоне сжатия. Оно принимается не более расчетного сопротивления Rb.
- Растягивающие максимальные напряжения арматуры следует принимать не более, чем расчетное сопротивление Rs.
Чтобы не допускать эффект образования пластического шарнира и обрушения конструкции, которое возможно при этом, соотношение E высоты сжатой зоны бетона у к расстоянию от центра тяжести арматуры к верху балки h0, E = y/h0, должно быть не более, чем предельное значение ER. Предельное значение должно определяться по следующей формуле:
ER = 0.8 / (1 + Rs / 700).
Это эмпирическая формула, которая основывается на опыте проектирования конструкций из железобетона. Rs — расчетное сопротивление арматуры в МПа. Однако стоит знать, что на данном этапе с легкостью можно обойтись и таблицей граничных значений относительной высоты сжатой зоны бетона.
Вернуться к оглавлению
Некоторые нюансы
Есть примечание к значениям в таблице, пример которой содержится в материале. Если сбор нагрузок для расчета выполняется не профессиональными проектировщиками, рекомендуется занижать значения сжатой зоны ER приблизительно в 1,5 раза.
Дальнейший расчет будет производиться с учетом a = 2 см, где a — расстояние от низа балки до центра поперечного сечения арматуры.
При E меньше/равно ER и отсутствии арматуры в сжатой зоне бетонную прочность следует проверять согласно следующей формуле:
B < Rb*b*y (h0 — 0.5y).
Физический смысл данной формулы несложен. Любой момент может быть представлен в виде действующей силы с некоторым плечом, следовательно, для бетона понадобится соблюдать вышеприведенное условие.
Проверка прочности прямоугольных сечений с одиночной арматурой с учетом E меньше/равно ER производится согласно формуле: M < RsAs (h0 — 0.5y).
Суть данной формулы следующая: по расчетам арматура должна выдержать нагрузку такую же, как и бетон, потому как на арматуру будет действовать такая же сила с таким же плечом, как и на бетон.
Плиты перекрытия с разными несущими способностями, от 400 кг/м2 до 2300 кг/м2.
Примечание по этому поводу. Подобная расчетная схема, которая предполагает плечо действия силы (h0 — 0.5y), дает возможность довольно легко и просто определить основные параметры поперечного сечения согласно формулам, которые будут приведены ниже. Однако стоит понимать, что подобная расчетная схема вовсе не единственная.
Расчет может быть произведен относительно центра тяжести сечения, которое было приведено. В отличие от металлических и деревянных балок, рассчитывать железобетон по предельным растягивающим либо сжимающим напряжениям, которые возникают в нормальном (поперечном) сечении балки из железобетона несколько сложно.
Железобетон является композитным и очень неоднородным материалом. Однако и это еще не все. Многочисленные экспериментальные данные сообщают о том, что предел прочности, текучести, модуль упругости и другие различные механические характеристики имеют несколько значительный разброс. К примеру, при определении бетонного предела прочности на сжатие одинаковые результаты не будут получаться даже тогда, когда образцы изготавливаются из смеси бетона одного замеса.
Связано это с тем, что прочность бетона будет зависеть от большого количества различных факторов: качества (степени загрязненности в том числе) и крупности заполнителя, способа уплотнения смеси, активности цемента, различных технологических факторов и так далее. Обращая внимание на случайную природу данных факторов, естественно считать предел бетонной прочности случайной величиной.
Высота сжатой зоны бетона при отсутствии в ней арматуры может определяться по следующей формуле:
y = Rs*As / Rb*b.
Для того, чтобы определить сечение арматуры, прежде всего необходимо определить коэффициент am:
am = M / Rb*b*h0^2.
Арматура в сжатой зоне не требуется при am < aR. Значение aR определяется по таблице.
В случае, если арматура в сжатой зоне отсутствует, сечение арматуры необходимо определять согласно следующей формуле:
As = Rb * b * h0 (1 — корень кв.(1 — 2am)) * l * Rs.
Вернуться к оглавлению
Подбор сечения арматуры
Расчетное сопротивление растяжению для арматуры A400 будет: Rs = 3600 кгс/см кв. (355 МПа). Расчетное сопротивление бетонному сжатию (класс B20) будет: Rb = 117 кгс/см кв. (11.5 МПа). Все остальные нагрузки и параметры для имеющейся плиты были определены ранее. Прежде всего с помощью формулы будет определено значение коэффициента am:
am = 1800 / (1 * 0.08^2 * 1170000) = 0.24038.
Арматуры имеет два размера, условный и реальный размеры.
В связи с тем, что момент был определен в кг/м и размер поперечного сечения удобно подставлять в метрах тоже, значение расчетного сопротивления будет приведено кг/м кв. для того, чтобы соблюдалась размерность.
Подобное значение меньше предельного для такого класса арматуры согласно таблице (0.24038 < 0.39). Соответственно, арматура в сжатой зоне по расчетам не нужна. Следовательно, по формуле площадь сечения арматуры, которая требуется:
As = 117 * 100 * 8 (1 — корень кв. (1 — 2 * 0.24038)) / 3600 = 7.265 кв.см.
В подобном случае использовались размеры поперечного сечения в сантиметрах. Значение расчетных сопротивлений при этом было в кг/см кв. для того, чтобы упростить вычисления.
Для армирования 1 п.м имеющейся плиты перекрытия следует использовать 5 стержней, которые имеют диаметр 14 мм с шагом 200 мм. Площадь сечения арматуры будет 7.69 кв.см. Подбор арматуры достаточно удобно производится согласно следующей таблице.
Вернуться к оглавлению
Количество стержней для армирования монолитной железобетонной плиты перекрытия
Для того чтобы армировать плиту, есть возможность использовать 7 стержней, которые имеют диаметр 12 мм с шагом 140 мм. Есть и другой вариант — 10 стержней, которые имеют диаметр 10 мм и шаг 100 мм.
Прочность бетона проверяется согласно следующей формуле:
y = 3600 * 7.69 / (117 * 100) = 2.366 см.
E = 2.366 / 8 = 0.29575. Данное значение меньше, чем граничное 0.531 согласно формулам и таблице, помимо того, оно меньше рекомендуемого 0.531/1.5 = 0.354, то есть удовлетворяет всем имеющимся требованиям.
117 * 100 * 2.366 (8 — 0.5 * 2.366) = 188709 кг на см > M = 180000 кг на см, согласно формуле. 36
3600 * 7.69 (8 — 0.5 * 2.366) = 188721 кг на см > M = 180000 кг на см, согласно формуле.
Устройство пола поверх монолитной армированной плиты перекрытия
Все необходимые требования таким образом соблюдаются.
В случае, если класс бетона будет увеличен до B25, арматуры при этом будет необходимо меньшее количество, потому как для B25 Rb = 148 кгс/см кв. (14.5 МПа).
am = 1800 / (1 * 0.08^2 * 1480000) = 0.19003.
As = 148 * 100 * 10 (1 — корень кв. (1 — 2 * 0.19)) / 3600 = 6.99 кв.см.
Таким образом, для того, чтобы армировать 1 п.м имеющейся плиты перекрытия, все равно понадобится использовать 5 стержней, которые имеют диаметр 14 мм с шагом 200 мм либо продолжать подбирать сечение.
Стоит сделать вывод, что сами расчеты достаточно просты, помимо того, они не займут большое количество времени. Однако при этом формулы понятнее не становятся. Совершенно любую железобетонную конструкцию теоретически можно рассчитать, исходя из классических, то есть предельно простых и наглядных формул.
Вернуться к оглавлению
Сбор нагрузок — некоторый дополнительный расчет
Сбор нагрузок и расчет прочности монолитных плит перекрытия часто сводится к сравнению двух факторов между собой:
- усилий, которые действуют в плитах;
- прочностью армированных ее сечений.
Первое в обязательном порядке должно быть меньше, чем второе.
Определение в нагруженных сечениях моментных усилий. Моментных, потому что изгибающие моменты будут определять на 95% армирование изгибных плит. Нагруженные сечения — середина пролета или, выражаясь другими словами, центр плиты.
Изгибающие моменты в квадратной плите, которая не защемлена по контуру (пример — на кирпичные стены) по каждому направлению X и Y могут определяться: Mx = My = ql^2 / 23.
Для частных случаев можно получить некоторые определенные значения:
- Плита в плане 6х6 м — Mx = My = 1.9тм.
- Плита в плане 5х5 м — Mx = My = 1.3тм.
- Плита в плане 4х4 м — Mx = My = 0.8тм.
При проверке прочности считается, что в сечении имеется сжатый бетон сверху, а также растянутая арматура снизу. Они способны образовать силовую пару, которая воспринимает моментное усилие, приходящее на нее.
1popotolku.ru
Расчет индивидуальной железобетонной балки
Что касается строительства с применением несъемной опалубки, то индивидуальные балки являются его неотъемлемой структурной частью. При наличии конструкторской проектной документации вопросов по их устройству не возникает.
Но на площадках индивидуальных застройщиков весьма распространена практика строительства по архитектурным проектам, так называемым эскизникам, и расчеты монолитных балок приходится выполнять по ходу строительства.
Разберем, как можно выполнить расчет железобетонной балки самостоятельно.
Что принять за основу расчета (общие рекомендации)
Основными нормативами для расчетов железобетонных конструкций являются методики, изложенные в Пособиях к СНиП 2.03.01-84 и СП 52-101-2003.
Конечно, правильнее применять более «свежие» методики, но, судя по отзывам специалистов, для людей, решивших самостоятельно разобраться и рассчитать вручную железобетонную конструкцию, не имея предварительного опыта и специального образования, проще воспользоваться старой методикой.
При этом нужно учесть, что весь расчет следует выполнять в рамках одних нормативов. Если уж начали рассчитывать по новому, значит, во всем применяйте данные нового СП.
Для примера, как они могут различаться, приведем таблицы расчетных значений сопротивления бетона сжатию:
Расчетные значения сопротивления бетона сжатию (СНиП 2.03.01-84*(1996))
Расчетные значения сопротивления бетона сжатию (СП 52-101-2003)
Разница очевидна и по выбору типа бетона, и по количеству расчетных значений.
В дополнение приведем соответствие классов бетона по СНиП 2.03.01-84 маркам бетона по СНиП II-21-75, все еще используемым в обиходе (соответствие — по столбцам):
Марки бетона (СНиП II-21-75)
М50 | М75М100 | — | М150 | — | М200М250 | М300 | М350 | М400М450 | М500 | М600 | М700 | — | М800 |
Классы бетона (СНиП 2.03.01-84)
В3,5 | В5 | В7,5 | В10 | В12,5 | В15 | В20 | В25 | В30 | В35 | В40 | В45 | В50 | В55 | В60 |
Железобетон – материал, включающий в себя несколько составляющих, поэтому учесть работу каждого элемента в общей структуре балки (под влиянием всех факторов на ее несущую способность) весьма затруднительно и под силу лишь профессионалам, которые имеют опыт практических расчетов на основе сопромата.
Конечно, существуют специальные расчетные программы, но они весьма не дёшевы и имеют их крупные проектные организации. Для единичного же расчета углубляться в изучение этих программных комплексов нет особой целесообразности.
На помощь может прийти универсальная программа расчета железобетонной балки. Ее работа основана на автоматическом расчете основных параметров при введении исходных данных, таких как: длина перекрываемого пролета, тип железобетонной опоры, значения нагрузок и прочее.
Область применения бетонных блоков для стен подвалов довольно обширна. Кроме возведения ленточного фундамента, они применяются при строительстве технических подпольев и стен цокольных этажей, используются для обнесения опасных участков дорог, а также при постройке гаражей.
При строительстве любых сооружений и зданий основным из требований к конструкции является надежность, должное сопротивление деформированию во время воздействия различных нагрузок. О железобетонных балках перекрытия читайте здесь.
Встроенный в программу калькулятор бетонной балки определит количество арматуры, в зависимости от заданного диаметра стержней и сечения.
Ориентирами же могут служить следующие базовые положения:
- Вся арматура в железобетонной конструкции должна располагаться внутри бетона не ближе 2см от его поверхности
- Арматура должна работать на растяжение, поэтому устанавливать её следует в нижней части конструкции. В верхнем поясе рабочие арматурные стержни устанавливают в случаях, отдельного изготовления балки на строительной площадке с последующим подъемом краном для установки её в проектное положение
- Диаметр сечения рабочей (продольной) арматуры принимается не менее 12мм и класс её – АIII
- Высота сечения не менее(!) 1/20 части перекрываемого пролета (6м/20 = 0,3м)
- Значение отношения высоты к ширине от 2 до 4 (h/b = 2~4)
Также калькулятор железобетонной балки способен выполнить расчет на прочность и рассчитать прогиб.
Определение типа опирания балки
В зависимости от типа опирания (см. Устройство буронабивных свай) выбирается метод расчета. Рассмотрим основные типы опор железобетонных балок на несущие конструкции.
Шарнирный тип опирания.
Таковым считается случай, когда в проектное положение устанавливают предварительно изготовленную железобетонную балку.
Причем конструкцией не предусмотрены никакие закладные детали для последующего жесткого соединения с конструктивными элементами здания. Как правило при таком типе опирания ширина плоскости опирания на несущие конструкции (стены, колонны) не превышает 20см.
Жестко защемленная балка.
Чтобы считать балку жестко защемленной на концах, условия должны быть следующими: балка бетонируется одновременно с прилегающими конструкциями в составе монолитной стены, в ее конструкции имеются закладные детали для последующего жесткого соединения с остальными конструктивными элементами.
При бетонировании создает монолитные узлы соединений конструкций.
Многопролетное опирание.
При необходимости перекрыть несколько последовательно расположенных пролетов опирание балки выполняется на несколько опорных конструкций (колонны, простенки между окон).
Такое опирание рассчитывается как многопролетное в случае, если опоры шарнирные). Если опоры жесткие, то расчет ведется по каждому отдельному пролету, как по самостоятельной балке.
Консольное опирание.
Речь о таком типе опирания ведется, когда один или оба конца балки не имеют опор, а так же при отступе опор от концов на некоторое расстояние (свес с опоры).
Например: часть плиты перекрытия выпущена за пределы стены в виде козырька. Такую плиту можно рассматривать балкой с консольной опорой.
Нагрузки на балку
Еще из курса физики известно: все, что неподвижно закреплено (прибито, приклеено и пр.) на чём-либо – это статическая нагрузка.
Соответственно, движущиеся (прыгающие, сотрясающие и т.п.) объекты создают динамические нагрузки.
Но в свою очередь эти нагрузки в случае строительной физики подразделяются на сосредоточенные и равномерные. К сосредоточенным нагрузкам можно отнести, к примеру, бетонную скульптуру, установленную на перемычке (балке) арки.
С равномерными нагрузками несколько сложнее, так как они подразделяются еще на подгруппы: равномерно распределенные по всей поверхности, равномерно изменяющиеся по длине или ширине и неравномерно изменяющейся, соответственно.
Для сосредоточенной нагрузки единицей измерения принят килограмм (килограмм-сила (кгс), ньютон (Н)).
Единицей измерения для распределенной нагрузки принято отношение кгс/м?, однако, при расчетах сборных железобетонных балок для перекрытия значение распределенной нагрузки принимается на метр погонный (м.п.). Для построения эпюр изгибающих моментов к расчету принимается только длина, а высота и ширина игнорируются.
Чтобы перейти от метров квадратных к погонным, когда идет расчёт балки перекрытия, значение распределенной нагрузки умножим на показатель расстояния между балками перекрытия (их осями).
А если определяем нагрузку на перемычку, то плотность лежащего на перемычке материала конструкции, умножаем на ширину и высоту этой конструкции.
Арматура для изготовления стропильных и подстропильных железобетонных балок должна быть предварительно напряженной, для отдельных типов допускаются исключения предусмотренные ГОСТом.
При изготовлении железобетонных конструкций, плотность укладки бетона контролируют по коэффициенту уплотнения (отношение действительной плотности бетона к ее расчетному значению). О данном виде изделий читайте в этой статье.
От тщательности сбора и расчета нагрузок на балку зависит конструктивная надежность сооружения.
Но если со статическими нагрузками все более-менее ясно, то рассчитать возможные динамические нагрузки на все случаи жизни – занятие неблагодарное и приведет к малообоснованному удорожанию строительства.
Поэтому динамические нагрузки принимаются с различными коэффициентами, приближающими к реалиям возможности возникновения одномоментно различных динамических воздействий в данном конкретном месте.
Приведем некоторые значения, наиболее часто учитываемых при расчетах, нагрузок:
- Вес сборных железобетонных плит заводского изготовления (h=220 мм) 310 ~ 350кг/м2;
Объемный вес бетона М200 — 2450 кг/м3; - Полезная нагрузка на перекрытие с учетом различных коэффициентов:
жилые помещения ~200 кг/м2
офисные помещения ~ 250 кг/м2 - Вес покрытия пола из керамической плитки с цементно-песчаной стяжкой толщиной 25-30мм ~ 100 кг/м2
- Снеговые, дождевые, сейсмические и прочие нагрузки от природных факторов нужно принимать по СНиП 23-01-99*(«Строительная климатология») с учетом климатического района строительства.
Таким образом, выполнить расчет железобетонной балки вручную вполне возможно, но, на наш взгляд, гораздо рациональнее будет потрачено время, если воспользоваться какой-либо программой для расчета.
imbuilder.ru
Расчёт железобетонных конструкций в Excel
Уроки по LIRA SAPR. Жмите>>>
Расчёт железобетонных конструкций в Excel
Ширина раскрытия трещин в ЖБК
Как я приобретал опыт в проектировании ЖБК
Расчёт монолитного ребристого перекрытия
Последовательность работ при расчёте монолитного железобетонного каркаса
Общая расчётная схема:
- Получено задание АР
- Определение конструктивной схемы здания, определение состава ограждающих конструкций, выявление основных несущих элементов
- Сбор нагрузок на основные несущие конструкции (ветровая, снеговая, постоянная, полезная)
- Построение расчётной модели в программе
- Назначение типов жёсткости элементам, приложение нагрузок
- Расчёт
- Составление расчётных сочетаний нагрузок (РСН)
- Составление таблицы РСН и выполнение расчёта
- Извлечение данных из расчётной программы
- Определение усилий в элементах при наиболее невыгодных сочетаниях нагрузок
- Подбор сечений элементов, проверка прочности и деформативности
Расчёт отдельных конструкций
- Определение расчётной схемы отдельного несущего элемента
- Построение расчётной модели в программе
- Назначение типов жёсткости составляющих элемента и приложение нагрузок
- Расчёт
- Составление РСН и выполнение расчёта
- Извлечение данных из расчётной программы
- Подбор сечений, проверка прочности и деформативности
Для ускорения расчётов по прочности, и трещиностойкости, да и вообще для возможности проверки подобранной арматуры, нами был разработан специальный файл в формате excel. В данном файле производятся расчёты железобетонных конструкций на изгиб, внецентренное сжатие и косое сжатие по I и II группам предельных состояний по формулам СП 63.13330.2012.
Исходные параметры для расчёта вводим в Блок ввода данных
Таблицы автоматически всё пересчитывают и Вы получаете готовый отчёт, оформленный на листах формата А4.
Скачать файл можно здесь.
Поделиться с друзьями этой статьейДругие уроки по теме
Перекрытия в автокадеУроки по LIRA SAPR. Жмите>>> Многопустотные плиты перекрытия длиной 4.8–6.3 м (марки ПК) с шагом 0.3 м, шириной 1, 1,2 и 1,5 м и высотой 220 мм изготавливаются из тяжёлого бетона. Класс бетона по прочности определяется заводом–изготовителем. Армирование плиты в нижней (растянутой) зоне выполняется из высокопрочной проволоки периодического профиля диаметром 5 мм с выраженными анкерными головками, по граням контура […]
Вопросы и ответы по авторскому надзоруУроки по LIRA SAPR. Жмите>>> Узнай ещё: Авторский надзор опыт работы Может ли авторский надзор осуществлять другая организация (не выполнявшая проект)? В соответствии с СП 11-110-99 3.5 Проектировщик – физическое или юридическое лицо, разработавшее, как правило, рабочую документацию на строительство объекта и осуществляющее авторский надзор. Работы по авторскому надзору могут выполняться сторонней организация, т. е. следить […]
autocad-prosto.ru
Железобетонные конструкции. Примеры расчета
ВведениеОДНОЭТАЖНЫЕ ПРОМЫШЛЕННЫЕ ЗДАНИЯ
Компоновка конструктивной схемы промышленного здания и исходные данные для проектирования
Общие положения
Конструктивные решения
Вертикальные и горизонтальные связи в каркасных промышленных зданиях
Примеры расчета конструкций трехпролетного здания с шагом колонн по крайнему ряду — 6 м, по среднему — 12 м
Панели покрытий
Расчет предварительно напряженной панели покрытия 1,5×6 м
Балки покрытий
Расчет предварительно напряженной двускатной балки покрытия пролетом 18 м
Подстропильные конструкции
Расчет предварительно напряженной подстропильной балки пролетом 12 м
Подкрановые балки
Расчет предварительно напряженной подкрановой балки проле
том 12 м
Стеновые панели
Расчет стеновой панели 1,2×6 м
Фундаментные балки
Расчет фундаментной балки пролетом 6 м
Рамы одноэтажных промышленных зданий
Статический расчет поперечной рамы
Колонны
Расчет колонны крайнего ряда
Фундаменты под колонны
Расчет внецентренно загруженного фундамента с повышенным стаканом под колонну крайнего ряда
Здание с шагом рам 12 м
Покрытие при шаге стропильных конструкций 12 м
Расчет предварительно напряженной панели покрытия 3X12 м
Фермы
Расчет предварительно напряженной железобетонной сегментной фермы пролетом 18 м
Здание пролетом 36 м
Конструкции здания пролетом 36 м
Расчет сборной предварительно напряженной арки пролетом 36 м
Расчет двухветвевой колонны среднего ряда
Многоэтажные здания
Междуэтажное монолитное перекрытие
Конструктивная схема перекрытия
Расчет плиты
Расчет второстепенной балки
Расчет главной балки
Расчет колонны I этажа
Расчет фундамента
Сборное балочное перекрытие
Конструктивная схема перекрытия
Расчет панели перекрытия с вертикальными пустотами
Расчет сборного ригеля перекрытия
Расчет колонны I этажа
Приложение 1
Приложение 2
Приложение 3
Приложение 4
Приложение 5
Литература
dwg.ru
Расчет монолитной железобетонной плиты перекрытия
Железобетонное монолитное перекрытие по-прежнему пользуется широкой популярностью, несмотря на то что на данный момент на строительном рынке представлено огромное множество готовых плит. Особенно, если ваш дом имеет неповторимую планировку (комнаты имеют различные размеры) или строительство не подразумевает наличие подъемных кранов. В данном случае устройство железобетонной плиты перекрытия дает возможность значительно снизить расходы на материалы и их доставку, более того, на их монтаж.
Схема размеров плиты перекрытия.
При этом на подготовительные работы уйдет большее количество времени, особенно на устройство опалубки. Но людей, которые планируют делать перекрытия, отпугивает совсем не этот факт, ведь сделать хорошую опалубку, купить бетон и арматуру — это не проблема. Намного сложнее определить марку бетона и арматуры, которые понадобятся в конкретном случае, и рассчитать объем необходимых материалов.
Расчет монолитной железобетонной плиты
Расчет любого строительного объекта, в том числе и плиты перекрытия, состоит из этапов.
В эти этапы входит подбор геометрических параметров поперечного сечения, класс арматуры и бетона. Это необходимо для того, чтобы плита в дальнейшем не разрушилась при максимальных нагрузках. Более того, для произведения работ понадобится чертеж, который будет включать все этапы строительства, материалы, которые понадобятся в процессе работы. Для того чтобы составить грамотный чертеж, необходимо не только произвести верный расчет, но и правильно сконструировать перекрытие и само здание. Иными словами, чертеж необходим как для правильных расчетов, так и для обозначения фронта работ.
I этап. Расчетное определение длины плиты
Схема железобетонной плиты перекрытия: B — Ширина, L — Длина, H — Высота.
Ребристая плита может иметь различную длину, однако расчетная длина (пролет балки или плиты перекрытия) — совершенно другое дело. Пролетом называется расстояние между стенами несущего типа. Иными словами, это ширина или длина помещения. Вследствие этого вычислить пролет, который имеет ребристая плита, достаточно просто, ведь это расстояние можно измерить при помощи рулетки или других подручных средств. Ребристая монолитная плита в реальности имеет большую длину перекрытия, так как она будет опираться на стены, выложенные из шлакоблока, керамзитобетона, кирпича, камня, пено- или газобетона. Если несущая стена выложена из материалов с недостаточной прочностью, к примеру, из керамзитобетона, пенобетона или газобетона, то следует рассчитать нагрузки на остальные стены.
В примере будет рассматриваться расчет однопролетного монолитного перекрытия, которое опирается на 2 несущие стены.Возьмем значение расчетной длины монолитного перекрытия, равное 4 м.
II этап. Определение параметров плиты, класса бетона и арматуры
Данные параметры неизвестны, однако их можно задать, чтобы было из чего считать. Пусть ребристая плита имеет высоту 10 см и ширину 100 см. То есть это плита железобетонного перекрытия. Соответственно, полученные результаты нужно применить для оставшихся сантиметров ширины монолитного перекрытия.
Итак,высота равно 10 см, ширина — 100 см, арматура класса А400, бетон класса В20.
III этап. Определение опор
Опоры определяются в зависимости от ширины монолита, материала и от веса несущих стен. Монолит может выступать в качестве шарнирно опертой бесконсольной балки, шарнирно опертой консольной балки, балки с жесткими защемлениями на опорах. Самым распространенным вариантом является шарнирно опертые бесконсольной балки.
IV этап. Монолитная ребристая плита перекрытия: расчет нагрузки
Схема укладки железобетонной плиты перекрытия.
Нагрузка может быть самой разнообразной: постоянной, временной, равномерно и неравномерно распределенной, сосредоточенной и так далее. Однако ограничимся только равномерно распределенной нагрузкой, ведь она является наиболее распространенной. Измеряется равномерная нагрузка в кг/м2.
В основном ребристая плита перекрытия в жилом доме рассчитается на нагрузку 400 кг/м2. При высоте железобетонного перекрытия 10 см его вес даст еще 250 кг/м2 нагрузки, а стяжка и напольное покрытие могут добавить до 100 кг/м2. Данная нагрузка учитывает все сочетания возможных нагрузок на перекрытие в жилом доме. Но никто не запрещает производить расчет конструкции на более высокие нагрузки, однако в примере можно взять это значение, но для перестраховки умножить на коэффициент надежности, равный 1,2.
Иными словами, равномерно распределенная нагрузка будет равна (400+250+100)*1,2=900 кг/м2.
Ребристая плита имеет ширину 100 см, поэтому полученный результат будет рассматриваться в качестве плоской нагрузки, которая действует на перекрытие по оси У и измеряется в кг/м2.
V этап. Расчет изгибающего момента, который действует на поперечное сечение балки
Расчет производится таким образом:
Максимальный изгибающий момент равен распределенной нагрузке в квадрате, разделенной на 8.
То есть, максимальная нагрузка равна=(900 х 42)/8=1800 кг/м2.
VI этап. Расчетные предпосылки
Правильный расчет железобетонной конструкции и элементов основывается на таких расчетных предпосылках:
Схема монтажа плит перекрытия.
- бетон имеет сопротивление растяжению, равное 0;
- бетон имеет сопротивление сжатию. Оно равномерно распределено по зоне сжатия. Этот показатель не должен быть больше расчетного сопротивления;
- максимальное растягивающее напряжение арматуры должно быть не больше расчетного.
Иными словами, расчет железобетонной конструкции подразумевает такие этапы:
- Компоновка схемы перекрытий, то есть чертеж (составление общей схемы). Для многоэтажных зданий принимаются расстояния между колоннами, кратные 300 см и равные 6-12 м. Высота этажей должна быть кратна 60 см и равна 3,6-7,2 м. Для того чтобы обеспечить более автоматический расчет, применяются готовые таблицы и формулы.
- Конструирование и расчет монолита. Конструирование подразумевает подробный чертеж, его наличие или составление. Чертеж можно спроектировать самостоятельно или доверить это дело специалистам. Если же вы хотите сделать все своими руками, то и чертеж лучше делать самостоятельно. Далее идет расчет элементов перекрытия: ребристая поверхность, второстепенная и главная балки рассчитываются отдельно. Расчет производится по строительным нормам и стандартам. Класс бетона на сжатие по прочности при проектировании принимается согласно имеющихся таблиц и норм. Ребристая плита должна соответствовать условиям эксплуатации сооружения. Монолит и балки проектируются из бетона, имеющего один класс. А класс арматуры выбирают в основном S500 и S400.
- Расчеты второстепенной балки или ригеля. При вычислении нагрузок конструкции ребристая поверхность рассматривается в разрезе. Размер ребра второстепенной балки определяется в зависимости от пролета.
- Конструирование и расчет железобетонной колонны. В монолитных конструкциях сжатые элементы, в том числе и ребристая поверхность, рассчитываются в качестве внецентренно сжатых. Конечно, для этого вам также потребуется чертеж, в котором будет все предельно ясно расписано. Если чертеж составлен грамотно и правильно, то трудностей возникнуть не должно.
- Вычисление центрального железобетонного монолитного фундамента. Фундамент — это подземная конструкция, которая предназначена для передачи нагрузки от здания на грунт, вернее на почвенное основание. Чертеж должен отображать не только конструкцию здания и железобетонных перекрытий, но и строение фундамента. Чертеж должен быть составлен с учетом несущей способности основания, а это зависит от этажности сооружаемого здания.
Схема установки монолитной плиты перекрытия.
Именно поэтому, прежде чем приступить к строительству, необходимо все грамотно спланировать, спроектировать и произвести все расчеты. Причем не только вычислить нагрузку железобетонного перекрытия на здание, стены и фундамент, но и количество строительных материалов, которые понадобятся в процессе работы.Следовательно, к данному вопросу нужно подойти тщательно, внимательно и обосновано.
Конечно, с первого взгляда кажется, что осуществить все расчеты невозможно, однако не все так сложно. При обнаружении каких-то неточностей, не нужно искать ошибку, лучше все считать заново, так как в поисках ошибки можно запутаться, процесс может затянуться еще на неопределенное количество времени.
После расчета всех нагрузок можно приступать к вычислению количества материала. Сколько арматуры и бетона понадобится для железобетона, в каких пропорциях замешивать раствор и др. На чертежах у вас будут отражены необходимые размеры, в соответствии с которыми следует производить вычисления. Потом можно будет приступать к покупке материала и строительству. Закупать материал и оборудование необходимо в специализированных магазинах и базах. Компетентные продавцы дадут вам исчерпывающую консультацию при возникновении вопросов. Также необходимо обращать внимание на информацию, которая содержится на этикетке. Это поможет избежать ненужных возвратов.
Перед тем как приступить к подготовке площадки для строительства, нужно еще раз проверить все расчеты, так как корректировка их в ходе работы может быть финансово невыгодна.
1pobetonu.ru
Расчет железобетонной балки таврового сечения
Теоретические основы расчета
Согласно СНиП 2.03.01-84 и СП 52-101-2003 расчет тавровых поперечных сечений без арматуры в сжатой зоне рекомендуется выполнять с использованием следующих положений:
1. а) Если нейтральная плоскость (граница между сжимаемой и растягиваемой зонами сечения) проходит в полке (рисунок 326.1.а), т.е. соблюдаются условия:
RsAs < Rbb’fh’f(326.1.1)
M ≤ Rbb’fh’f(ho — 0.5h’f) (326.1.2)
и
ξ = у/ho < ξR (220.6.1)
то расчет производится, как для балки прямоугольного сечения с шириной b’f. Подробности расчета по такому алгоритму подробно расписаны в статье «Расчет железобетонной плиты перекрытия». Здесь же приведу только основные формулы:
ξR — предельно допустимое значение относительной высоты сжатой зоны бетона, определяемое по следующей формуле:
(220.6.2)
где Rs — расчетное сопротивление арматуры в МПа. Также предельное значение относительной высоты сжатой зоны бетона можно определить по таблице:
Таблица 220.1. Граничные значения относительной высоты сжатой зоны бетона
Примечание: При выполнении расчетов не профессиональными проектировщиками, ограничивающимися только расчетами по первой группе предельных состояний, я рекомендую занижать предельное значение относительной высоты сжатой зоны ξR (и значение аR) в 1.3-1.5 раза. В связи с этим возможный вариант расчета, когда y > ξRho, далее не рассматривается.
При определении сечения арматуры сначала определяется коэффициент am:
(220.6.6)
при аm < aR арматура в сжатой зоне не требуется, значение аR определяется по таблице 220.1.
При отсутствии арматуры в сжатой зоне сечение арматуры определяется по следующей формуле:
(220.6.7)
В формулах (220.6.6) и (220.6.7) значения b заменяются на b’f.
Рисунок 326.1
1. б) Если нейтральная плоскость проходит в ребре балки (рисунок 326.1.б), то расчет выполняется, исходя из следующего условия:
M < Rbbу (h0 — 0,5у) + Rbh’f(b’f — b)(h0 — 0.5h’f) (326.2)
где (b’f — b)h’f = Aov — площадь сечения свесов полки.
При этом высота сжатой зоны у определяется, исходя из следующих формул:
RsAs = Rbby + Rbh’f(b’f — b) (326.3.1)
y = (RsAs — RbAov)/Rbb (326.3.2)
при этом высота сжатой зоны принимается у ≤ ξRho.
При определении сечения арматуры сначала определяется коэффициент am:
(326.4.1)
при аm < aR арматура в сжатой зоне не требуется, значение аR определяется по таблице 220.1 (см. выше).
При отсутствии арматуры в сжатой зоне сечение арматуры определяется по следующей формуле:
(326.4.2)
2.Так как ширина полки таврового сечения может быть достаточно большой, например для балок, входящих в состав балочного монолитного перекрытия, то ширина полки балки b’f принимается с учетом следующих условий:
2.1. Ширина свеса полки в каждую сторону от ребра балки bсв = (b’f — b)/2 (на рисунке 326 не показана) должна быть не более 1/6 длины пролета рассчитываемого элемента, а также не более:
2.2. При наличии поперечных ребер (второстепенных балок при расчете главных балок или главных балок при расчете второстепенных балок, при этом ребро рассматриваемой балки считается продольным) или при h’f ≥ 0.1h расчетная ширина полки b’f принимается равной 1/2 расстояния между продольными ребрами в свету.
2.3. При отсутствии поперечных ребер или при расстоянии между поперечными ребрами большем, чем расстояния между продольными ребрами и при h’f < 0.1h расчетная ширина полки b’f = 6h’f.
2.4. При консольных свесах полки (при расчете отдельных балок таврового сечения, не входящих в состав разного рода перекрытий):
а) при h’f ≥ 0.1h расчетная ширина полки b’f = 6h’f;
б) при 0.05h ≤ h’f < 0.1h расчетная ширина полки b’f = 3h’f;
в) при h’f < 0.05h свесы полок в расчетах не учитываются.
2.5. При изменяющейся высоте свесов полки в расчетах допускается использовать среднее значение высоты h’f.
Все это, так сказать, теоретические, а потому не совсем понятные положения, давайте посмотрим, как их можно применить на практике.
Пример расчета на прочность балки таврового сечения
Планируется монолитное перекрытие в жилом помещении размерами 5х8 метров с 4 главными балками. Предварительно принятая высота основной плиты 8 см, предварительные размеры балок 10х15 см:
Рисунок 326.2
Примечание: На общей расчетной схеме (рис.326.2.а) размеры даны в миллиметрах, а размеры поперечного сечения балки (рис.326.2.б) даны в сантиметрах для упрощения дальнейших расчетов. Конструктивная арматура основной плиты для упрощения расчетов не учитывается.
1. Если и основная плита и балки будут бетонироваться одновременно, то высота основной плиты будет высотой полки h’f, а общая высота тавровой балки h = 8 + 15 = 23 см, а = 2.5 см, ho = 20.5 см. Для перекрытия будет использоваться бетон класса В20, с расчетным сопротивлением сжатию Rb = 11.5 МПа (117 кгс/см2) и арматура класса AIII (А400), имеющая расчетное сопротивление растяжению Rs = 355 МПа (3600 кгс/см2). В случае если бетонная смесь будет приготавливаться в домашних условиях (т.е. без должного контроля прочности образцов) и бетонирование будет выполняться не специалистами расчетное сопротивление бетона следует понизить. СНиПом СНиП 2.03.01-84 понижающий коэффициент, учитывающий качество выполнения работ, для подобных случаев не предусмотрен, да и тяжело предугадать, насколько сильно вышеуказанные причины могут повлиять на расчетное сопротивление бетона. Ориентировочно значение этого коэффициента может составлять от 0.5, если нет уверенности в своих силах, до 0.9, если уверенность в своих силах высокая. Дальнейший расчет будет производиться с использованием коэффициента качества работ γк = 0.9. Тогда расчетное значение сопротивления бетона сжатию составит:
Rb = 117·0.9 = 105.3 кг/см2
2. Пролет балок составляет 5 м, при этом bсв ≤ 500/6 = 83 см, первое условие соблюдается. Рассматриваемая балка входит в состав монолитного перекрытия, при этом высота плиты 8 см > 0.1h = 2.3 см, согласно п.2.2 расчетная ширина полки составит:
b’f = 152/2 = 76 см
3. Для определения высоты сжатой зоны сечения сначала необходимо определить максимальный изгибающий момент, действующий в рассматриваемом поперечном сечении тавровой балки. А для этого нужно знать нагрузки, действующие на перекрытие.
При расчете перекрытий жилых зданий в качестве расчетной временной нагрузки можно использовать следующее значение qвр = 400 кг/м2. Для балок с шагом 162 см расчетная временная нагрузка на погонный метр составит
qвр = 400·1.62 = 648 кг/м
Примечание: Более точное значение расчетной нагрузки следует определять по СНиП 2.01.07-85 «Нагрузки и воздействия», где приводятся значения нормативных нагрузок. Согласно указанного СНиП для плит перекрытий в квартирах жилых зданий нормативное значение распределенной нагрузки составляет 150 кг/м2. Затем это значение нужно умножить на коэффициент надежности по нагрузке, при таком значении нормативной нагрузки составляющий γн = 1.3 (1.4 по старым нормам). Таким образом расчетное значение временной нагрузки без учета стяжки, напольного покрытия и возможных других временных нагрузок составит
qсв = 150·1.3 = 195 кг/м2
Как показывает практика, если к определенной таким образом временной распределенной нагрузке прибавить временные нагрузки от выравнивающей стяжки, напольного покрытия и др., умноженные на соответствующие коэффициенты надежности по нагрузке, то суммарная временная нагрузка будет немного меньше указанных 400 кг/м2. Если до начала расчетов известна толщина будущей стяжки, вид напольного покрытия, расположение мебели и инженерного оборудования, то значение суммарной временной нагрузки можно рассчитать более точно. При этом значение расчетной временной нагрузки может снизиться на 30-70 кг/м2. Тем не менее дальнейший расчет будет выполняться по указанной выше временной нагрузке 400 кг/м2.
Примечание: Устройство каких-либо перегородок данным расчетом не предусматривается. Если по перекрытию планируется устройство перегородок, то следует предусмотреть отдельные балки под перегородки и рассчитать их с учетом возможных нагрузок. Исключение могут составлять легкие перегородки из ГКЛ, возле которых не будет устанавливаться мебель.
Постоянная нагрузка от собственного веса монолитного перекрытия на одну балку будет составлять qп = (0.08·1.62 + 0.1·0.15)2500 = 361.5 кг/м. Коэффициент надежности по нагрузке для бетонных и железобетонных конструкций составляет γн = 1.1. Тогда расчетное значение постоянной нагрузки составит qпр = 361.5·1.1 = 397.65 кг/м. Таким образом суммарная распределенная нагрузка на балку составит:
qр = qп + qв = 397.65 +648 = 1045.65 кг/м
Тогда максимальный изгибающий момент для бесконсольной балки на двух шарнирных опорах:
Мmax = ql2/8 = 1045.65·52/8 = 3267.656 кг·м = 326765.6 кг·см
Почему это так, достаточно подробно рассказывается в другой статье.
4. Проверяем выполнение условия (326.1.2):
M = 326765.6 < Rbb’fh’f(ho — 0.5h’f) = 105.3·76·8(20.5 — 4) = 1056369.6
5. Условие выполняется, расчет сечения арматуры в сжатой зоне можно производить по формулам (220.6.6) и (220.6.7), тогда:
аm = 326765.6/(105.3·76·20.52) = 0.09716
6. am = 0.09716 < aR = 0.39/1.5 = 0.26, значит арматура в сжатой зоне не требуется, тогда требуемая площадь сечения арматуры в растянутой зоне составит:
Аs = 105.3·76·20.5(1 — √1 — 2·0.09716)/3600 = 4.67 см2
Диаметр арматуры можно подобрать по следующей таблице:
Таблица 2. Площади поперечных сечений и масса арматурных стержней.
7. Для армирования балки можно использовать 2 стержня диаметром 18 мм, площадь сечения стержней составит 5.09 см2.
8. Проверяем соблюдение необходимой толщины защитного слоя бетона при выбранной арматуре. Толщина защитного слоя согласно п.5.5 СНиП 2.03.01-84 должна быть не менее диаметра арматуры и ≥ 15 мм. В нашем случае толщина защитного слоя бетона составит:
hз = а — d/2 = 25 — 18/2 = 16 мм
Условие не выполнено, поэтому для расчетов следует принять большее значение а. Например, при а = 27 мм ho = 20.3 см.
аm = 326765.6/(105.3·76·20.32) = 0.0991
Аs = 105.3·76·20.3(1 — √1 — 2·0.0991)/3600 = 4.71 см2
9. Расстояние в свету между стержнями арматуры составит 100 — 2а — d = 100 — 54 — 18 = 28 мм. Это означает, что для для бетонирования балки следует использовать бетонную смесь с максимальным размером зерен щебня 28 мм. Если предполагается использование крупного заполнителя больших размеров, то следует или увеличить ширину балки, или увеличить высоту балки, что позволит уменьшить диаметр используемой арматуры.
Примечание: если балки и плита будут бетонироваться отдельно, то тогда балки следует рассчитывать как элементы прямоугольного сечения с высотой, равной высоте балок.
Пример расчета балки таврового сечения с учетом прогиба
Выполненный выше расчет на прочность (расчет по первой группе предельных состояний) как правило для шарнирно опертых однопролетных балок недостаточен и требует дополнительного расчета по деформациям. Методик определения прогиба ж/б конструкций существует несколько. На мой взгляд проще всего определить приблизительное значение прогиба при расчете по допускаемым нагрузкам.
Расчет по допускаемым нагрузкам, предполагающий упругую работу материала и не предусматривающий пластические деформации в сжатой зоне бетона, дает следующие результаты:
При определенных выше параметрах высота сжатой зоны бетона составит:
y = √3M/2b’fRb = √3·326765.6/2·76·105.3 = 7.826 см
При этом требуемая высота сжатой зоны при расчете по деформациям определяется решением следующего кубического уравнения:
у3 = 3As(ho — y)2Es/b’fEb (321.2.4)
и при Еb = 270000 кгс/см2, Es = 2000000 кгс/см2, составит примерно уf = 6.53 см (ур = 5.234 см).
Тогда при Ip = b’f(2yp)3/12 = 76(2·5.234)3/12 = 7264.8 см4 примерный прогиб балки составит:
f = 0.83·5·10.456·5004/(384·270000·7264.8) = 3.6 см > fu = 500/250 = 2 см (согласно СНиП 2.01.07-85)
Это достаточно большой прогиб и для его уменьшения можно увеличить количество балок, но можно и увеличить высоту и ширину сечения принятого количества балок, тем более, если это необходимо сделать для использования бетонной смеси с крупным щебнем. Например, при увеличении высоты балки всего на 2 см — до 17 см и ширины балки до 11 см и при той же арматуре ho = 22.3 см:
уf = 7 см (yp = 6.174 см), Ip = 76(2·6.174)3/12 = 11924 см4, приблизительный прогиб
f = 0.83·5·10.456·5004/(384·270000·11924) = 2.194 см ≈ fu = 2 см.
Примечание: приведенная методика определения прогиба не является рекомендованной нормативными документами, к тому же для упрощения расчетов не учитывалось то, что немного увеличится нагрузка от собственного веса балки. Тем не менее такая методика позволяет достаточно быстро определить приблизительное значение прогиба и оценить его влияние на работу конструкции.
Пример расчета на прочность балки таврового сечения с учетом изменения высоты полки
Так как при расчетах плиты принята новая высота плиты h = 6 см, то это вносит ощутимые изменения в значение постоянной нагрузки и в параметры тавровой балки.
В этом случае при общей высоте балки h = 25 см постоянная нагрузка от собственного веса монолитного перекрытия на одну балку будет составлять qп = (0.06·1.62 + 0.11·0.19)2500 = 295.25 кг/м. Тогда расчетное значение постоянной нагрузки составит qпр = 295.25·1.1 = 324.8 кг/м. Таким образом суммарная распределенная нагрузка на балку составит:
qр = qп + qв = 324.8 +648 = 972.8 кг/м
Мmax = ql2/8 = 972.8·52/8 = 3040 кг·м = 304000 кг·см
4. Проверяем выполнение условия (326.1.2):
M = 304000 < Rbb’fh’f(ho — 0.5h’f) = 105.3·76·6(22.3 — 3) = 926724.2
5. Условие выполняется, расчет сечения арматуры в сжатой зоне можно производить по формулам (220.6.6) и (220.6.7), тогда:
аm = 304000/(105.3·76·22.32) = 0.07638
Аs = 105.3·76·22.3(1 — √1 — 2·0.07638)/3600 = 3.943 см2
Как видим требуемая площадь сечения уменьшилась, но так как мы принимали сечение арматуры с учетом прогибов, то диаметр арматуры оставляем без изменения 2 стержня d = 18 мм.
При этом высота сжатой зоны бетона составит:
y = √3M/2b’fRb = √3·304000/2·76·105.3 = 7.55 см
Требуемая высота сжатой зоны при расчете по деформациям составит примерно уf = 7.07 см
Однако такая высота сжатой зоны означает, что нейтральная линия будет проходить не в полке а в ребре балки, и значение у также будет другим.
По более точной формуле значение моментов инерции полусечений составит:
Iв = b’fhf(y/2)2 +b’fhf3/12 + b(y — hf)((y — hf)/2)2 + b(y — hf)3/12 = Iн = As(ho — y)2Es/Eb (321.2.3.2)
тогда, подставив имеющиеся значения, получим:
76·6(у/2)2 + 76·63/12 + 11(у — 6)(y/2 — 3)2 + 11(y — 6)3/12 = 5.09(22.3 — y)22000000/270000;
114y2 + 1368 + 2.75(y — 6)3 + 0.917(y — 6)3 = 43.704(22.3 — y)2;
у ≈ 8.08 см
Так как требуемая высота сжатой зоны при расчете на прочность больше, чем высота сжатой зоны при расчете по деформациям (разница составит примерно 7.55-7.05 = 0.5 см), то при приближенном расчете (без учета области пластических деформаций) расчетное значение высоты полки составит 6 — 0.5 = 5.5 см, тогда
Ip = 76·5.5·3.792 + 76·5.53/12 + 3.667·2.083 = 6004.2 + 1053.71 +33 = 7090.9 см4, тогда примерный прогиб балки составит:
f = 0.83·5·9.73·5004/(384·270000·7090.9) = 3.43 см > fu = 2 см, а значит высоту балок желательно увеличить еще.
Например, при общей высоте h = 30 см
у ≈ 10.02 см
Ip = 76·5.5·4.762 + 76·5.53/12 + 3.667·4.023 = 9470.9 + 1053.71 + 238.2 = 10762.8 см4, тогда примерный прогиб балки составит:
f = 0.83·5·9.73·5004/(384·270000·7090.9) = 1.9 см < fu = 2 см
Если произвести расчет с учетом изменяющего модуля упругости бетона, то при Еb1 = 270000/(1 + 2.8) = 71052.6 кг/см2.
76·6(у/2)2 + 76·63/12 + 11(у — 6)(y/2 — 3)2 + 11(y — 6)3/12 = 5.09(27.3 — y)22000000/71052.6;
114y2 + 1368 + 2.75(y — 6)3 + 0.917(y — 6)3 = 166.0752(27.3 — y)2;
у ≈ 14.45 см и в этом случае высота сжатой области сечения принимается без изменений, тогда
Ip = 2·27410 = 54820 см4, тогда примерный прогиб балки составит:
f = 0.96·5·9.73·5004/(384·71052.6·54820) = 1.95 см < fu = 2 см
doctorlom.com