Якорь электродвигателя: Ремонт якоря электродвигателя

Содержание

Ремонт якоря электродвигателя

Причин поломки взрывозащищенного электродвигателя может быть действительно много. Иногда это случается из-за человеческой халатности и неаккуратным обращением с техникой, иногда некоторые детали просто выходят из строя в силу тех или иных причин. Если причина поломки — якорь электродвигателя, то починить его не будет стоить много денег или времени.

Неисправности якоря могут быть вызваны многими причинами. К примеру, разрыв обмотки или короткозамкнутые витки в ней. Также случается увеличенное сопротивление изоляции между обмоткой и валом якоря. Более того, существует множество механических неполадок, как неполный прижим щеток к коллектору или неправильный наклон укладки обмоток.

В любом случае, профессиональный механик всегда найдет причину поломки и устранит ее в кратчайшие сроки.

Ниже представлены основные этапы работы при ремонте якоря:

  1. Разборка двигателя, его детальный осмотр.
  2. Замер изоляционного сопротивления и установление количества обмоточных витков.
  3. Удаление обмотки и снятие коллектора для их очистки.
  4. Проделывание пазов в якоря, с которых будут установлены концы катушки. В такой паз далее устанавливают гильзу (выполнена из картона).
  5. Изоляция обмотки.
  6. Тестирование якоря амперметром.
  7. Фрезеровка межламельного пространства.
  8. Балансировка якоря, дополнительная чистка и шлифовка.
  9. Дополнительная проверка якоря.
  10. Сборка электродвигателя.
  11. Проверка двигателя на замыкание и правильное функционирование.

Во время  ремонта двигателей проделывается огромная работа, так как на кону может стоять даже безопасность пользователя. Именно поэтому мастера проводят несколько проверок каждого механизма, исключают возможность замыкания и других поломок. Поэтому вы можете быть уверены, что опытный ремонтник справится с любой задачей и точно не разочарует вас результатом своей работы.

Ремонт ротора

Возврат к списку

Ротор электродвигателя » Гиброид.ру

Ротор электродвигателя — это подвижная часть, в машинах переменного тока его роль исполняет якорь. Электродвигатель – это машина, которая преобразует электрическую энергию в механическую. Электрическая машина состоит из неподвижной и подвижной частей – статора и ротора. Ротор электродвигателя постоянного тока часто называют якорем.

Различают короткозамкнутые и фазные роторы. Фазные используются с обмоткой и применяются в тех случаях, когда необходимо уменьшить пусковой ток, а также регулировать частоту вращения асинхронного электродвигателя. Такие двигатели раньше использовались в крановых установках, теперь же на смену фазным роторам пришли преобразователи частоты.

При включении машины в электрическую сеть в статоре возникает магнитное поле, которое пронизывает обмотку ротора, тем самым, наводя в ней ток индукции и приводя его во вращение. Если используется преобразователь частоты вращения, то часто вращение ротора устанавливается вручную. Если же такое устройство не применяется, то частота вращения зависит от числа пар полюсов и частоты питающего напряжения. Разность между частотами вращения магнитного поля подвижной и неподвижной частей характеризуется скольжением. Если эти частоты не совпадают между собой, то двигатель называется асинхронным. Конструкция подвижной части синхронного двигателя отличается. Она выполнена либо с постоянным магнитом, либо с электромагнитом, который имеет в себе часть беличьей клетки для запуска. В синхронных двигателях частоты вращения магнитных полей статора и ротора совпадают.

Ротор асинхронного электродвигателя состоит из листов электромеханической стали, и может быть выполнен с контактными кольцами либо короткозамкнутым с беличьей клеткой. При короткозамкнутой конструкции обмотка состоит из металлических стержней (чаще всего бронза, медь или алюминий), которые располагаются в пазах и соединены на концах кольцами. Соединение колец осуществляется с помощью припоя или сварки. Если же стержни изготавливаются из алюминия или алюминиевых сплавов, то припой и сварку провести нельзя. В таком случае необходимо выполнять кольца, вместе с расположенными на них лопастями, в виде литой детали или же штамповкой под давлением.

Ротор электродвигателя с контактными кольцами в пазах имеет трехфазную обмотку, которая очень похожа на обмотку статора, включенную в цепь соединением типа «Звезда». Начала фаз соединяются с контактными кольцами, которые закреплены на концах валов. Для регулирования частоты вращения и для плавного пуска двигателя можно к фазам обмотки через кольца и щетки подключить реостаты. После того, как подвижная часть двигателя успешно разгонится, контактные кольца накоротко замыкаются.

В шаговых электродвигателях ротор устанавливается с дискретным угловым перемещением. Заданное положение вала фиксируется с помощью подачи питания на соответствующую обмотку. Для того чтобы перейти в другое положение необходимо снять напряжение с одной обмотки и подать на другую. В вентильных электродвигателях питание обмоток осуществляется с помощью полупроводниковых элементов.

Ротор и статор электродвигателя: определение, виды, назначение

Рано или поздно человек, интересующийся электротехникой, слышит упоминания о роторе и статоре, и задается вопросом: «Что это такое, и в чем отличие этих устройств?» Простыми словами, ротор и статор – это две основные части, расположенные в электродвигателе (устройстве по преобразованию электрической энергии в механическую). Без них существование современных двигателей, а значит и большинства электрических приборов на их основе, было бы невозможным. Статор является неподвижной частью устройства, а ротор – подвижной, они вращаются в разные стороны относительно друг друга. В этой статье мы подробно разберем конструкцию этих деталей и их принцип действия, чтобы после прочтения статьи у читателей сайта Сам Электрик больше не осталось вопросов по данному поводу.

Что такое ротор

Ротор, еще его иногда называют якорь, это подвижная, то есть вращающаяся часть в генераторе или электродвигателях, которые повсеместно применяются в бытовой и промышленной технике.

Если рассматривать ротор двигателя постоянного тока или универсального коллекторного двигателя, то он состоит из нескольких основных узлов, а именно:

  1. Сердечник. Он выполнен из множества штампованных тонких металлических пластин, изолированных друг от друга специальным диэлектриком или же просто оксидной пленкой, которая проводит ток гораздо хуже, чем чистый металл. Сердечник набирается из них и представляет собой «слоеный пирог». В результате электроны не успевают разогнаться из-за маленькой толщины металла, и нагрев ротора гораздо меньше, а эффективность всего устройства выше за счет уменьшения потерь. Данное конструктивное решение принято для уменьшения вихревых токов Фуко, которые неизбежно возникают при работе двигателя из-за перемагничивания сердечника. Этот же метод борьбы с ними используется и в трансформаторах переменного тока.
  2. Обмотки. Вокруг сердечника особым образом намотана медная проволока, покрытая лаковой изоляцией для предотвращения появления короткозамкнутых витков, которые недопустимы. Вся обмотка дополнительно пропитана эпоксидной смолой или лаком для фиксации обмоток, чтобы они не повреждались при вибрациях от вращения.
  3. Обмотки ротора могут подключаться к коллектору – специальному блоку с контактами, надежно закрепленному на валу. Эти контакты называются ламелями, они выполнены из меди или ее сплава для лучшей передачи электрического тока. По нему скользят щетки, обычно выполненные из графита, и в нужный момент на обмотки подается электрический ток. Это называется скользящий контакт.
  4. Сам вал является металлическим стержнем, на его концах расположены посадочные места под подшипники качения, он может иметь резьбу или выемки, пазы под шпонку для крепления шестерен, шкивов или других деталей, приводимых в движение электродвигателем.
  5. На валу также размещается крыльчатка вентилятора, чтобы двигатель охлаждал сам себя и не приходилось бы устанавливать дополнительное устройство для отвода тепла.

Стоит отметить, что не у всякого ротора есть обмотки, которые, в сущности, представляют собой электромагнит. Вместо них могут применяться постоянные магниты, как в бесщеточных двигателях постоянного тока. А у асинхронного двигателя с короткозамкнутым ротором обмоток в привычном виде вовсе нет, вместо них используются короткозамкнутые металлические стержни, но об этом ниже.

Что такое статор

Статор – это неподвижная часть в электродвигателе. Обычно он совмещен с корпусом устройства и представляет собой цилиндрическую деталь. Он так же состоит из множества пластин для уменьшения нагрева из-за токов Фуко, в обязательном порядке покрытых лаком. На торцах располагаются посадочные места под подшипники скольжения или качения.

Конструкция называется пакет статора, она впрессовывается в чугунный корпус устройства. Внутри этого цилиндра вытачиваются пазы под обмотки, которые, так же как и для ротора, пропитываются специальными составами, чтобы тепло равномернее распределялось по устройству, и обмотки не терлись друг об друга от вибрации.

Обмотки статора могут подключаться разными способами в зависимости от назначения и типа электрической машины. Для трехфазных электродвигателей применимы типы подключения звезда и треугольник. Они представлены на схеме:

Для выполнения подключений на корпусе устройства предусмотрена специальная распределительная коробка («борно»). В эту коробку выведены начала и концы трех обмоток и предусмотрены специальные клеммники различных конструкций, в зависимости от мощности и назначения машины.

Существуют серьезные отличия в работе двигателей при разном соединении обмоток. Например, при подключении звездой двигатель будет стартовать плавнее, однако нельзя будет развить максимальную мощность. При присоединении треугольником, электродвигатель будет выдавать весь крутящий момент, заявленный производителем, но пусковые токи в таком случае достигают высоких значений. Электросеть может быть просто не рассчитана на такие нагрузки. Использование устройства в этом режиме чревато нагревом проводов, и в слабом месте (это места соединения и разъемы) провод может отгореть и привести к пожару. Главным преимуществом асинхронных двигателей является удобство в смене направления их вращения, нужно просто поменять местами подключения двух любых обмоток.

Статор и ротор в асинхронных двигателях

Трехфазные асинхронные двигатели имеют свои особенности, ротор и статор в них отличаются от использованных в других типах электродвигателей. Например, ротор может иметь две конструкции: короткозамкнутый и фазный. Рассмотрим особенности строения каждого из них по подробнее. Однако для начала давайте вкратце разберемся, как работает асинхронный двигатель.

В статоре создается вращающееся магнитное поле. Оно наводит на роторе индуцируемый ток и тем самым приводит его в движение. Таким образом ротор всегда пытается «догнать» вращающееся магнитное поле.

Необходимо также упомянуть о такой важной особенности асинхронного двигателя, как скольжение ротора. Это явление заключается в разности частот вращения ротора и магнитного поля, создаваемого статором. Объясняется это как раз тем, что ток индуцируется в роторе только при его движении относительно магнитного поля. И если бы частоты вращения были одинаковы, то этого движения бы просто не происходило. В результате ротор пытается «догнать» по оборотам магнитное поле, и если это происходит, то ток в обмотках перестает индуцироваться и ротор замедляется. В этот момент сила, действующая на него, растет, он начинает опять ускоряться. Так и получается эффект стабилизации частоты вращения, за что эти электродвигатели и пользуются большой востребованностью.

Короткозамкнутый ротор

Он также представляет собой конструкцию, состоящую из металлических пластин, выполняющих функцию сердечника. Однако вместо медной обмотки там установлены стержни или пруты, не касающиеся друг друга и накоротко замкнутые между собой металлическими пластинами на торцах. При этом стержни не перпендикулярны пластинам, а направлены под углом. Это делается для уменьшения пульсаций магнитного поля и момента. Таким образом получаются витки, замкнутые накоротко, от сюда и название.

 

Фазный ротор

Главное отличие фазного ротора от короткозамкнутого заключается в наличии трехфазной обмотки, уложенной в проточки сердечника и соединяющейся в особом коллекторе с тремя кольцами вместо ламелей. Эти обмотки обычно соединяются «звездой». Такие электродвигатели более трудоемки в производстве за счет усложнения конструкции, однако их пусковые токи ниже, чем у двигателей с короткозамкнутым ротором, а также они лучше поддаются регулировке.

Надеемся, что после прочтения данной статьи у вас больше не осталось вопросов о том, что такое ротор и статор электродвигателя и какой у них принцип работы. Напоследок рекомендуем просмотреть видео, в котором наглядно рассмотрен данный вопрос:

Материалы по теме:

Ремонт якоря электродвигателя любой мощности и частоты вращения

Перемотка якоря электродвигателя – это один из видов ремонта коллекторных промышленных и бытовых двигателей постоянного и переменного тока, осуществляемого нашей компанией. Необходимость отремонтировать электросиловой агрегат такого типа возникает в процессе его длительной эксплуатации. В отличие от асинхронных, в коллекторных двигателях присутствуют трущиеся части – токоподводящие щётки и коллектор. Эта их конструктивная особенность определяет периодичность текущего и капитального ремонта двигателя согласно плану ППР.

В ряде случаев перед тем, как отремонтировать якорь электродвигателя, приходится выявить причины отказа с помощью инструментальных методов. Это могут быть межвитковое замыкание или обрыв в нижних слоях обмотки якоря. С помощью проверки сопротивления удаётся определить такую причину. Единственный способ восстановления функциональности при этом – перемотка якоря эл двигателя.

Ремонт якоря электродвигателя

Планово-предупредительный ремонт якоря электродвигателя проводят по истечению определённого срока его эксплуатации. Как правило он включает восстановление подвижной контактной группы (коллектора). В случаях внезапных отказов или значительных отклонений в работе электродвигателя может быть проведен срочный ремонт якоря электродвигателя. Основанием для такого ремонта может послужить одна из причин или их сочетание:

  • сильное искрение в месте контакта щёток с коллектором;
  • снижение мощности двигателя;
  • повышенный нагрев корпуса.

Чтобы отремонтировать якорь электродвигателя, его необходимо предварительно демонтировать. После этого снятый с двигателя якорь внимательно осматривают на предмет выявления выгораний, оплавлений, обрывов, других видимых дефектов. При визуальном осмотре обращают внимание на целостность обмоток (локальное почернение), на степень загрязнения поверхностей графитовой пылью, на посторонние (характерные) запахи подгорания изоляции.

Где перемотать якорь электродвигателя

Качественно перемотать якорь электродвигателя можно только с использованием специального оборудования. Эта технологическая операция по степени сложности аналогичная перемотке статора. Наш цех имеет необходимую оснастку и оборудование для перемотки якорей коллекторных электродвигателей.

Якорь – это подвижный конструктивный элемент, вращающийся с высокой угловой скоростью. В этой связи на него воздействуют значительные центробежные силы. Поэтому перемотка якоря электродвигателя должна дополняться его качественной балансировкой. После перемотки эл двигателя, пропитки и сушки необходимо провести заключительную операцию – динамическую балансировку якоря на специальном балансировочном станке. Пренебрежение этим приведёт к значительной вибрации, разрушению подшипников и якоря.

На работы по перемотке якоря электродвигателя цена будет всегда ниже, чем на приобретение нового электросилового агрегата. Во многих случаях восстановление якоря электродвигателя – это единственный способ отремонтировать электропривод, так как подбор нового коллекторного двигателя может быть затруднителен по причине особенностей установочного места.

Стоимость ремонта якоря электродвигателя в Москве на производственных мощностях нашей компании зависит от типа двигателя, характера повреждений и срочности работ. С примерными ценами можно ознакомиться в прайс-листе на странице сайта.

Цены на ремонт якоря электродвигателя

Мощность, (кВт)Частота вращения,об/мин
300015001000750
До 1,52740280634174057
2.23090324541544897
33642390149735179
45012465254136804
5.55296530159787511
7.566306919731211021
1181398147993713182
1512088120491173714803
18,513001133451521724450
2215057158052340825522
3017648182022585729275
3723803259493067740080
4529055287373838948070
5534546328114148160759
7544670488126447282899
9047893510787816699898
110672027305295759122517
1328084887962114110147423
16098012106439138740179116
200123101132548173924———-
250154120167435———-———
320237156————————-————
кВт3000 об/мин1500 об/мин1000 об/мин750 об/мин

 

КОЭФФИЦИЕНТЫ ПРИМЕНЯЕМЫЕ ПРИ РАСЧЕТЕ:

  • Однофазные-1.5;
  • Иностранного производства -1.5;
  • Взрывобезопасные – 1.3;
  • Срочный – 1.5;
  • Двухскоростные – 1.5; Двухскоростные с независимыми обмотками – 2.
  • Старого образца типа АО, А, ВАО -1,5

Якорь — электродвигатель — Большая Энциклопедия Нефти и Газа, статья, страница 1

Якорь — электродвигатель

Cтраница 1

Якорь электродвигателя состоит из вала, на который напрессовывается сердечник, набранный из лакированной электротехнической стали толщиной 0 5 мм, с пазами для обмотки, и коллектор. Обмотка якоря двухслойная с диаметральным шагом из провода марки ПЭЛШКО. Коллектор набирается из пластин красной меди, изолированных друг от друга миканитовыми прокладками. Армирование коллектора выполняется на пластмассе и осуществляется при помощи стальных колец, укладываемых перед опрессовкой коллектора в выточки, имеющие форму ласточкиного хвоста. Для предотвращения замыкания коллекторных пластин кольца перед укладкой изолируются лентой из стекловолокна. В результате армирования прочность коллектора увеличивается. Присоединение обмотки к коллектору производится так же, как и в двигателях постоянного тока.  [1]

Якорь электродвигателя разбирают в такой последовательности: отвертывают конусный ролик 4 ( см. рис. 82) с вала якоря; при помощи съемника спрессовывают подшипник 5 и вентилятор 8; снимают маслоотбойные кольца 2; заменяют негодные подшипники, снимают обмотку, наматывают новую, собирают якорь и электродвигатель. Центровку якоря по горизонтали производят крышкой ( заглушкой) 19 подшипника.  [2]

Якорь электродвигателя состоит из пакета пластин трансформаторной стали, якорной обмотки, вентилятора ( крыльчатки) и коллектора. Коллектор якоря имеет медные пластины ( ламели), между которыми положены прокладки из миканита.  [3]

Якорь электродвигателя состоит из пакета пластин трансфор-матерной стали, якорной обмотки, вентилятора ( крыльчатки) и коллектора.  [5]

Якорь электродвигателя вращается на двух подшипниках, расположенных в подшипниковых щитах. На валу якоря для охлаждения электродвигателя имеется центробежный вентилятор. Воздух засасывается через жалюзи крышек подшипникового щита со стороны коллектора, проходит через машину и выбрасывается вентилятором через решетки верхнего подшипникового щита.  [6]

Якорь электродвигателя вращается в двух самоустанавливающихся бронзографитовых втулках, пропитанных турбинным маслом.  [7]

Якорь электродвигателя собран из листов 7 такой же формы, как и якорь двигателя ДП-4. Катушки 6 обмотки якоря намотаны на зубцы сердечника и изолированы от них полосками электрокартона. Три выводных конца катушек якоря соединены между собой, а три другие припаяны к трем коллекторным пластинам, запрессованным в пластмассу.  [9]

Якорь электродвигателя и сердечник трансформатора по условиям своей работы находятся в переменном магнитном поле, поэтому в них должны циркулировать вихревые токи. Поскольку их изготовляют из ферромагнетиков, то, кроме потерь энергии на нагревание вихревыми токами, в них возникают еще и потери, обусловленные гистерезисом.  [11]

Якорь электродвигателя состоит из штампованных листов электротехнической стали, запрессованных на валу в виде пакета.  [12]

Якорь электродвигателя, спрессованный пластмассой в литьевой форме.  [14]

Страницы:      1    2    3    4    5

Перемотка и ремонт якоря электродвигателя в Москве и Санкт-Петербурге, цены: перемотать якорь электродвигателя недорого

Якорь – составная часть электрического двигателя, включающая в себя обмотку и контактные пластины, расположенные на барабане. Так как именно на этот узел при работе мотора приходится основная нагрузка, его неисправности – наиболее частая причина сбоев в работе всей электромашины. Из-за постоянного движения якорь изнашивается быстрее других частей, поэтому требует регулярного обслуживания и своевременного ремонта или перемотки. Игнорирование проблем приведет к необходимости замены двигателя, что является куда более дорогостоящей и хлопотной процедурой.

Частые неполадки якоря двигателя

В целом наиболее часто из строя выходят следующие детали:

  • контактные пластины. Со временем они могут истереться или поцарапаться, нарушится геометрия их поверхности. Изолятор, залитый между ними, может начать выступать наружу и задевать другие составные части двигателя при движении, что приводит уже к их износу и разрушению. Также пластина может просто вылететь при нарушении условий использования или сильной изношенности;
  • обмотка. Провода перегорают при большинстве серьезных поломок двигателя, также они могут износиться, перетереться, что станет причиной пробоя, или обуглиться. В случае неисправности проводов проводится перемотка якоря электродвигателя, при которой они заменяются на аналогичные по свойствам, сечению и составу.

Проблемы с якорем можно отследить по характерным симптомам: искрение, отказы, падение производительности или нагрев корпуса. При наличии биений есть смысл проверить узел на наличие люфтов и проблем с фиксацией.

Каким образом происходит ремонт

Перед ремонтными работами проводится тщательная диагностика, позволяющая определить какая деталь вышла из строя. Если речь о плановом ремонте, в первую очередь осматриваются и при необходимости заменяются наиболее подверженные износу узлы. Если же работы экстренные или ситуационные, предварительно происходят прозвон и измерение сопротивления с целью понять, где именно возникла неполадка. После чего двигатель разбирается, поврежденная деталь ремонтируется либо заменяется на аналогичную. Мастера также проводят чистку якоря от возможного нагара или пыли, возникшей из-за истирания деталей. Это позволяет повысить безопасность оборудования и восстановить его КПД.

Наше предложение

Если Вам интересен ремонт якоря электродвигателя, замена обмотки в Москве, Санкт-Петербурге и других городах, свяжитесь с представителями ООО ПО «Электромашина». Мы работаем на собственных мощностях, делаем упор на качество и профессионализм, ремонтируем и восстанавливаем разные типы электрических машин.

Этапы работ

Ремонт электрических машин в ООО ПО «Электромашина» предусматривает:

  • Приемку оборудования и его доставку в ремонтный цех.
  • Присвоение каждому заказу порядкового номера.
  • Диагностику состояния полученного электродвигателя или генератора.
  • Окончательный расчет стоимости ремонта, определяемый по результатам диагностирования.
  • Если требуется – согласование рассчитанной суммы с заказчиком до выставления счета.
  • Если клиент согласен с ценой – выставление счета.
  • Проведение полного объема ремонтных работ.
  • Оплату заказчиком стоимости услуги.
  • Возможность для клиента уточнять степень готовности оборудования и иметь представление о том, на каком этапе находится ремонт.
  • Самовывоз отремонтированного электродвигателя либо генератора или заказ доставки отремонтированной техники по указанному адресу в любой регион России. Чтобы забрать заказ, нужно предъявить акт приема оборудования в ремонт, доверенность и реквизиты предприятия-заказчика.

Наши преимущества

Снижение затрат за счет сокращения времени простоя оборудования Опыт работы со сложными, специализированными и крупногабаритными электродвигателями Ответственный подход к диагностике и ремонту в реальные сроки и за разумную стоимость Разработка и расчет Проектирование ключевых узлов электродвигателя

ЯКОРЬ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ — это… Что такое ЯКОРЬ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ?

ЯКОРЬ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
ЯКОРЬ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ

основная часть машины, несущая на себе обмотку, в к-рой при работе машины в качестве генератора (см. Генератор электрический) индуктируется электродвижущая сила, а при работе ее в качестве мотора (см. Электродвигатель) циркулирует ток от сети.

статор) и укрепляется обычно в станине машины.» />

Взаимодействие к-рого с магнитным полем машины вызывает ее вращение. В машинах постоянного тока и в коллекторных моторах переменного тока якорь является вращающейся частью машины (ротором) и представляет собой барабан, собранный с целью уменьшения вредного действия вихревых токов из отдельных железных листов толщиной примерно 0,5 мм, разделенных между собой тонкой бумагой или покрытых лаком для изоляции друг от друга; в продольных пазах на боковой поверхности барабана укладывается обмотка. В большинстве современных машин переменного тока якорь неподвижен (статор) и укрепляется обычно в станине машины.

Технический железнодорожный словарь. — М.: Государственное транспортное железнодорожное издательство. Н. Н. Васильев, О. Н. Исаакян, Н. О. Рогинский, Я. Б. Смолянский, В. А. Сокович, Т. С. Хачатуров. 1941.

.

  • ЯДРО НАСЫПИ
  • ЯНУШЕВСКОГО ВКЛАДЫШ

Полезное


Смотреть что такое «ЯКОРЬ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ» в других словарях:

  • якорь электрической машины — в США та часть коллекторной или синхронной машины, в которой индуцируется эдс и протекает ток нагрузки в Великобритании ротор с обмоткой, соединенной с коллектором — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по… …   Справочник технического переводчика

  • якорь (электрической машины) — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN armatureA …   Справочник технического переводчика

  • ОБМОТКА ЭЛЕКТРИЧЕСКОЙ МАШИНЫ — система проводников или витков, соединённых между собой и расположенных на неподвижной (статор) или вращающейся части машины (ротор, якорь), для создания магнитного поля млн. для индуцирования электрического тока. О. э. м. разделяются на обмотки… …   Большая политехническая энциклопедия

  • ЯКОРЬ — (1) судовой стальной стержень с лапами, укреплённый на цепи и опускаемый на дно для удержания на месте судна при его стоянке, а также бакена, плавучего маяка и др. По конструкции они бывают с неподвижными двумя и более лапами и с вращающимися… …   Большая политехническая энциклопедия

  • ЯКОРЬ — электрической машины подвижная часть электрич. машины (обычно пост. тока). На валу Я. набирается сердечник из листов электро технич. стали с пазами (см. рис.) для укладки обмоток, в к рых при вращении индуктируется эдс. Концы обмоток соединяются… …   Большой энциклопедический политехнический словарь

  • ЯКОРЬ (электрич.) — (Armature) та часть электрической машины, в которой возбуждается электрическое напряжение благодаря вращению в магнитном поле индукторов. В машинах переменного тока в зависимости от типа машины и ее конструкции Я. может быть и статор, и ротор.… …   Морской словарь

  • ЯКОРЬ — ЯКОРЬ, я, мн. я, ей, муж. 1. Металлический стержень с лапами, укреплённый на цепи и опускаемый на дно для удержания на месте судна, бакена, плавучего маяка. Стать на я. Стоять на якоре. Отдать я. (опустить). Выбирать якоря (поднимать). Бросить я …   Толковый словарь Ожегова

  • Якорь (электромашины) — Якорь электромашины, вращающаяся часть электрической машины. Термин «Я.» обычно употребляют применительно к постоянного тока машинам (в отличие от ротора). Я. представляет собой магнитный сердечник, набранный из листов электротехнической стали,… …   Большая советская энциклопедия

  • якорь — я; мн. якоря, ей; м. 1. Приспособление для удержания на месте судов, плавучих маяков и т.п. в виде металлического стержня с лапами, которые зацепляются за грунт. Стоять на якоре. Поднять я. Отдать я. (опустить). Выбирать якоря (поднимать).… …   Энциклопедический словарь

  • Якорь (значения) — Якорь: В Викисловаре есть статья «якорь» Корабельный якорь  одна из конструкций для удержания судна на одном месте. Якорь …   Википедия

Принцип работы якоря в двигателях — Kinmore Motor

Определение арматуры

В электротехнике якорь — это компонент электродвигателя, который проводит переменный ток. Обмотки якоря проводят переменный ток даже в машинах постоянного тока из-за действия коммутатора (который периодически меняет направление тока) или из-за электронной коммутации, как в бесщеточных двигателях постоянного тока. Якорь может находиться как на роторе (вращающаяся часть), так и на статоре (неподвижная часть), в зависимости от типа электрической машины.

Обмотки якоря взаимодействуют с магнитным полем (магнитным потоком) в воздушном зазоре; магнитное поле создается либо постоянными магнитами, либо электромагнитами, образованными проводящей катушкой.

Якорь должен проводить ток, поэтому это всегда проводник или проводящая катушка, ориентированная перпендикулярно как полю, так и направлению движения, крутящему моменту (вращающаяся машина) или силе (линейная машина). Арматура играет двоякую роль. Первый — проводить ток по полю, создавая крутящий момент на валу вращающейся машины или силу в линейной машине.Вторая роль — генерировать электродвижущую силу (ЭДС).

В якоре электродвижущая сила создается за счет относительного движения якоря и поля. Когда машина или двигатель используются в качестве двигателя, эта ЭДС противодействует току якоря, и якорь преобразует электрическую мощность в механическую энергию в форме крутящего момента и передает ее через вал. Когда двигатель используется в качестве генератора, ЭДС якоря управляет током якоря, и движение вала преобразуется в электрическую энергию.В индукционном генераторе генерируемая мощность берется из статора.

арматура

Гроулер используется для проверки якоря на наличие короткого замыкания и обрыва, а также утечки на землю.

Реакция якоря в двигателе постоянного тока

В двигателе постоянного тока присутствуют два источника магнитных потоков: поток якоря и поток основного поля. Влияние потока якоря на поток основного поля называется «реакцией якоря». Реакция якоря изменяет распределение магнитного поля, что влияет на работу машины.Влияние магнитного потока якоря можно компенсировать добавлением компенсирующей обмотки к основным полюсам или, в некоторых двигателях, добавлением промежуточных магнитных полюсов, включенных в цепь якоря.

Обмоточные цепи

В «круговой» обмотке существует столько путей тока между соединениями щетки (или линии), сколько полюсов в обмотке возбуждения. В «волновой» обмотке всего два пути, а количество катушек, соединенных последовательно, равно половине числа полюсов.Итак, для данного номинала машины волновая обмотка больше подходит для больших токов и низких напряжений.

Что такое арматура? (В электродвигателе и генераторе)

Что такое якорь?

Якорь определяется как компонент электрической машины (т. Е. Двигателя или генератора), которая проводит переменный ток (AC). Якорь проводит переменный ток даже в машинах с постоянным током через коммутатор (который периодически меняет направление тока) или за счет электронной коммутации (например.грамм. в бесщеточном двигателе постоянного тока).

Якорь служит корпусом и опорой для обмотки якоря. В электрических машинах магнитное поле создается постоянным магнитом или электромагнитом. Обмотка якоря взаимодействует с магнитным полем, создаваемым в воздушном зазоре. Статор может быть вращающейся частью (ротор) или неподвижной частью (статор).

Типичный якорь электродвигателя

В 19 годах слово «арматура» было введено как технический аспект и означало « хранитель магнита ».

Как работает арматура?

Якорь используется как электродвигатель или генератор. Якорь используется для связи между двумя магнитными потоками.

Когда якорь используется в качестве электродвигателя, из-за относительного движения между потоком, создаваемым обмоткой возбуждения, и потоком, создаваемым обмоткой якоря, индуцируется ЭДС.

Эта ЭДС противодействует току якоря и крутящему моменту, создаваемому в роторе. Таким образом, электрическая энергия преобразуется в механическую.Крутящий момент, возникающий в роторе, передается для вращения других устройств через вал.

Когда якорь используется как электрический генератор, в большинстве случаев якорь используется как ротор. При этом якорь приводился в движение механически с помощью дизельного двигателя или тягача.

Обмотка возбуждения возбуждается для создания магнитного поля. ЭДС якоря управляет током якоря и, следовательно, механическая мощность вала преобразуется в электрическую.

Детали и схема якоря

Якорь состоит из сердечника, обмотки, коллектора и вала.Схема якоря представлена ​​ниже.

Схема, иллюстрирующая части якоря

Детали якоря подробно обсуждаются ниже.

Сердечник якоря

Сердечник якоря состоит из ламинированных тонких металлических пластин, а не из цельной детали. Толщина пластин зависит от частоты питания. Его толщина составляет примерно 0,5 мм. Для сердечника якоря используется многослойная кремнистая сталь, которая снижает вихревые токи и гистерезисные потери.

Обычно сердечник якоря имеет полую цилиндрическую форму.А вал помещен внутрь сердечника якоря.

Ядро состоит из количества слотов. Обмотка якоря размещается в пазах на внешней поверхности сердечника якоря. Прорези в сердечнике якоря наклонены под некоторым углом, чтобы избежать магнитного запирания и обеспечить плавное вращение.

Обмотка якоря

Обмотка якоря вставляется в пазы сердечника якоря. Обмотка якоря изолирована, чтобы избежать прямого контакта катушки с сердечником.Обычно обмотка состоит из меди. Но в некоторых случаях он сделан из алюминия, чтобы снизить стоимость машины. По конструкции обмотки якоря она может быть намотанной внахлест или волнообразной намоткой.

В схеме намотки внахлест количество путей тока равно количеству полюсов и щеток. В этом типе обмотки конечный конец одной катушки подключается к сегменту коммутатора, а начальный конец следующей катушки подключается к тому же полюсу и сегменту коммутатора.

В схеме волновой обмотки количество путей тока всего два. В этом типе обмотки оба конца каждой катушки подключены к сегменту коммутатора с расстоянием между полюсами. Это обеспечивает последовательное соединение катушек и добавление напряжений в обмотке между щетками.

Чтобы узнать больше об этих схемах обмотки якоря, узнайте больше о шаге полюсов и размахе катушки.

Вал

Вал машины используется для передачи механической энергии.Это жесткий стержень, установленный между двумя подшипниками. Длина, скорость и точки опоры решены для минимизации гармонических искажений. Толщина вала выбрана достаточной для передачи крутящего момента, необходимого машине. и он должен быть достаточно жестким, чтобы контролировать любые дисбалансные силы.

Коммутатор

Коммутатор состоит из медных стержней, каждая из которых отделена друг от друга с помощью изоляционных материалов, таких как слюда или пластик.

Он прижимается к валу, и провода от каждой катушки выходят из пазов и подключаются к стержням коммутатора.Когда коммутатор прижимается к валу, он должен быть точно совмещен с пазом.

Якорь должен быть размещен с точным угловым смещением от стержня коллектора, чтобы обеспечить эффективную работу магнитной цепи.

Что заставляет якорь электродвигателя вращаться?

Электродвигатели используются для преобразования электрической энергии в механическую. Обычно якорь — это вращающаяся часть машины.

Проводник с током испытывает силу, когда он помещен в магнитное поле, а направление силы задается правилом левой руки Флеминга.

Когда питание подается на статор, в двигателе индуцируется вращающееся магнитное поле. Это вращающееся магнитное поле оказывает давление на якорь (ротор), и якорь вращается. Иногда это называют реакцией якоря синхронного двигателя.

Как проверить якорь?

Если якорь поврежден, двигатель не запустится. Итак, нам нужно протестировать арматуру. Для проверки якоря снимите его с двигателя.

Тест якоря 1

Сначала проверим обмотку якоря.С помощью этого теста мы можем определить, разомкнута ли обмотка якоря или короткозамкнута.

В этом тесте мы будем измерять сопротивление двух шин коммутатора каждой катушки под углом 180 ° друг к другу с помощью омметра. Показания омметра зависят от размера двигателя. Но в этом состоянии нас не интересуют точные показания.

После проверки одного показания поверните якорь и проверьте сопротивление между каждой парой стержней на коммутаторе.

Если показания одинаковы для всех пар, обмотка якоря в порядке.А если показание уменьшается до нуля, обмотка якоря замкнута накоротко. Точно так же, если показание увеличивается до бесконечности, обмотка якоря разорвана или разомкнута.

Тест якоря 2

Нам нужно найти; какая обмотка повреждена. Итак, для этого нам нужно измерить сопротивление каждого бара. Как и в тесте-1, если показания одинаковые для всех стержней, намотка исправна. А если вы обнаружите резкое изменение сопротивления, обмотка будет повреждена.

Тест якоря 3

В этом тесте мы измеряем сопротивление каждого стержня коммутатора с блоком якоря. В этом испытании штанги коммутатора не должны иметь электрического соединения с блоком якоря.

Компоненты, работа и их применение

Первый якорь использовался хранителями магнитов в 19 веке. Связанные части оборудования выражаются как электрические, так и механические. Хотя эти два набора терминов определенно разделены, они обычно используются одинаково, включая один электрический термин, а также один механический термин.Это может быть причиной путаницы при работе со сложными машинами, такими как бесщеточные генераторы . В большинстве генераторов частью ротора является полевой магнит, который будет активен, что означает вращение, тогда как часть статора — это якорь, который будет неактивен. Как генераторы, так и двигатели могут быть спроектированы с неактивным якорем и активным (вращающимся) полем, в противном случае активный якорь является неактивным полем. Вал стабильного магнита, иначе электромагнита, а также подвижный металлический элемент соленоида, особенно если последний работает как переключатель или реле, можно называть якорями.В этой статье обсуждается обзор арматуры и ее работа с приложениями.


Что такое арматура?

Якорь можно определить как элемент, генерирующий энергию в электрической машине, где якорь может быть вращающейся частью, в противном случае — неподвижной частью машины. Взаимодействие якоря с магнитным потоком может осуществляться в воздушном зазоре, полевой элемент может включать в себя любые стабильные магниты, в противном случае электромагниты, которые имеют форму проводящей катушки, как другой якорь, известный как электрическая машина с двойным питанием.Якорь всегда работает как проводник, наклоняясь перпендикулярно как полю, так и направлению движения, в противном случае — к силе. Схема якоря приведена ниже.

Арматура

Основная роль арматуры универсальна. Основная роль заключается в передаче тока через поле, таким образом создавая крутящий момент на валу в активной машине, в противном случае — в линейной машине. Вторая роль якоря — производить ЭДС (электродвижущая сила) .При этом ЭДС может возникать как при относительном движении якоря, так и в поле. Поскольку машина используется в качестве двигателя, ЭДС противодействует току якоря и преобразует электрическую энергию в механическую, которая имеет форму крутящего момента, и, наконец, передает ее через вал.

Всякий раз, когда машина используется как генератор, электродвижущая сила якоря управляет током якоря, а также движение вала изменяется на электрическую энергию.В генераторе вырабатываемая мощность будет поступать от статора. Гроулер в основном используется для обеспечения арматуры, предназначенной для открытий, площадок, а также шорт.

Компоненты якоря

Якорь может иметь ряд компонентов, а именно сердечник, обмотку, коммутатор и вал.

Детали якоря
Сердечник

Сердечник якоря может быть сконструирован с множеством тонких металлических пластин, которые называются пластинами.Толщина пластин составляет примерно 0,5 мм и зависит от частоты, с которой будет работать якорь. Металлические пластины штампуются при нажатии.

Они имеют круглую форму с отверстием, выбитым в сердечнике, когда вал запрессован, а также с пазами, которые выбиты в области кромки, где катушки окончательно сядут. Металлические пластины соединяются вместе, образуя сердечник. Ядро может быть построено из уложенных друг на друга металлических пластин вместо использования стальной детали для получения суммы потерянной энергии при нагреве сердечника.

Потеря энергии известна как потери в железе из-за вихревых токов. Это мельчайшие вращающиеся магнитные поля, образующиеся в металле из-за вращающихся магнитных полей, которые могут быть обнаружены всякий раз, когда устройство работает. Если в металлических пластинах используются вихревые токи, они могут формироваться в одной плоскости, что значительно снижает потери.

Обмотка

Перед тем, как начнется процесс намотки, прорези сердечника будут защищены от медной проволоки в прорезях, контактирующих с ламинированным сердечником.Катушки размещаются в пазах якоря, а также прикрепляются к коммутатору поочередно. Это можно сделать разными способами в зависимости от конструкции арматуры.

Якоря

подразделяются на два типа, а именно якоря с коленчатой ​​обмоткой и якорь с волновой обмоткой . При намотке внахлест последний конец одной катушки присоединяется к сегменту коммутатора, а также к первичному концу соседней катушки. В волновой намотке два конца катушки будут связаны с сегментами коммутатора, которые разделены на некоторое расстояние между полюсами.

Позволяет последовательно складывать напряжения в обмотках между щетками. для такой намотки требуется всего одна пара щеток. В первой арматуре количество дорожек равно количеству полюсов и щеток. В некоторых конструкциях якоря они будут иметь две или более разных катушек в одном слоте, прикрепленных к соседним сегментам коммутатора. Это можно сделать, если требуемое напряжение на катушке будет считаться высоким.

При распределении напряжения по трем отдельным сегментам, так как катушки будут находиться в одном слоте, напряженность поля в слоте будет высокой, однако это уменьшит искрение на коммутаторе, а также сделает устройство более компетентным. .В некоторых арматурах щели также перекручены, это достигается за счет того, что каждая пластина несколько не совпадает. Это может быть сделано для уменьшения зубчатого зацепления, а также для обеспечения перехода уровня от одного полюса к другому.

Коммутатор

Коммутатор установлен сверху вала, а также удерживается крупной накаткой, похожей на сердечник. Конструкция коммутатора может быть выполнена с использованием медных шин, а изоляционный материал будет разделять шины.Обычно этот материал представляет собой термореактивный пластик, однако в старых арматурах использовалась листовая слюда.

Коммутатор должен быть точно связан с пазами сердечника всякий раз, когда его нажимают на верхнюю часть вала, потому что провода от каждой катушки будут выходить из пазов, а также присоединяться к стержням коммутатора. Для эффективной работы магнитной цепи важно, чтобы катушка якоря имела точное угловое смещение от стержня коллектора, к которому она прикреплена.

Вал

Вал якоря — это один из видов жестких стержней, установленных между двумя подшипниками, которые описывают оси компонентов, размещенных на нем. Он должен быть достаточно широким, чтобы передавать крутящий момент, необходимым для двигателя, и жестким, чтобы контролировать некоторые силы, которые не сбалансированы. Для гармонических искажений выбираются длина, скорость и точки опоры. Якорь может быть спроектирован с рядом основных компонентов , а именно сердечником, обмоткой, валом и коммутатором.

Функция якоря или работа якоря

Вращение якоря может быть вызвано взаимодействием двух магнитных полей . Одно магнитное поле может быть создано обмоткой возбуждения, а второе может быть создано с помощью якоря, в то время как напряжение прикладывается к щеткам, чтобы войти в контакт с коммутатором. Когда ток проходит через обмотку якоря, он создает магнитное поле. Это не соответствует полю, создаваемому катушкой возбуждения.

Это вызовет силу притяжения к одному полюсу, а также отвращение к другому. Когда коммутатор подключен к валу, он также будет перемещаться с такой же степенью, как и полюс. Якорь будет продолжать преследовать полюс, чтобы вращаться.

Если на щетки не подается напряжение, то поле будет возбуждено, а якорь будет приводиться в движение механически. Приложенное напряжение переменное, поскольку оно приближается и течет от полюса.Однако коммутатор связан с валом и часто активирует полярность, потому что он вращается, подобно тому, как реальный выходной сигнал может наблюдаться через щетки в постоянном токе.

Обмотка якоря и реакция якоря

Обмотка якоря — это обмотка, на которую может наводиться напряжение. Точно так же обмотка возбуждения — это обмотка, в которой основной поток поля может генерироваться всякий раз, когда через обмотку протекает ток. Обмотка якоря имеет некоторые из основных терминов, а именно виток, катушку и обмотку.

Реакция якоря является результатом потока якоря поверх потока основного поля. Обычно двигатель постоянного тока включает в себя две обмотки, такие как обмотка якоря, а также обмотка возбуждения. Всякий раз, когда мы стимулируем обмотку возбуждения, она генерирует поток, который соединяется через якорь, и это вызывает ЭДС и, следовательно, поток тока в якоре.

Применение арматуры

Применение арматуры включает следующее.

  • Якорь используется в электрической машине для выработки энергии.
  • Якорь можно использовать как ротор, иначе статор.
  • Используется для контроля тока в двигателях постоянного тока.

Таким образом, это все около обзора якоря , который включает в себя, что такое якорь, компоненты, работа и приложения. Наконец, исходя из приведенной выше информации, мы можем сделать вывод, что якорь является важным компонентом, используемым в электрической машине для выработки энергии. Он может быть как на вращающейся части, так и на неподвижной части машины.Вот вам вопрос, как работает арматура ?

Якорь двигателя в электродвигателе, Производитель якоря стартера

Якорь стартера — это внутренний компонент стартера. Несмотря на то, что он скрыт от глаз, он играет большую роль в работе систем запуска автомобиля. Эта статья представляет собой обзор арматуры статера автомобиля. Он включает информацию о его значении, дизайне и работе. Также есть раздел часто задаваемых вопросов, в котором можно найти ответы на общие вопросы, связанные с компонентом.

Определение якоря стартера

Якорь стартера — это вращающаяся часть. Он состоит из обмоток, железного сердечника, опирающегося на вал, и коммутатора. Якорь не увидеть, не разобрав мотор. Однако вы можете почувствовать его работу, когда двигатель вращается, чтобы запустить двигатель вашего автомобиля.

Якорь — одна из основных частей стартера, и в этом отношении очень важная. Он содержит детали, которые приводят в движение ведущие шестерни стартера или любой другой механизм.Таким образом, он составляет важную часть процесса запуска двигателя.

Давайте теперь посмотрим, как работает якорь стартера, приводя во вращение. Также почему мотор не может работать без исправного якоря.

Какова функция якоря стартера?

Стартерные двигатели транспортных средств содержат подвижную катушку и другую неподвижную катушку. Стационарная катушка часто технически называется статором и состоит из электромагнита или постоянного магнита.В большинстве современных пускателей используются двигатели с постоянными магнитами, которые являются более мощными и энергоэффективными.

Подвижная или поворотная катушка является якорем стартера. Он становится магнитом только тогда, когда двигатель получает электрический ток. Якорь в сборе, будучи подвижной частью, обеспечивает вращение вала двигателя. Это составляет вращение двигателя, которое выполняет полезную работу по запуску двигателя.

Таким образом, мы можем определить якорь стартера как часть, которая преобразует электрический ток в необходимое вращательное движение.Это позволяет двигателю преодолевать внешнюю силу и проворачивать двигатель.

Происходит гораздо больше, чем простое объяснение, данное здесь, как вы узнаете далее.

Как работает якорь стартера

Якоря стартера существуют в широком диапазоне размеров. Это зависит от предполагаемого применения, которое может быть маломощным или сверхмощным. Однако все они работают одинаково, используя электрический ток для вращения.

Якорь стартера содержит железный сердечник с прорезями, вокруг которого намотано множество витков проводов.Когда через эти обмотки протекает ток, создается магнитный поток.

Катушки на якоре заканчиваются в части, называемой коммутатором. Сам коммутатор состоит из сегментов. Каждый сегмент представляет собой проводящую поверхность и изолирован от других. Сегменты позволяют различным секциям катушки получать ток в разное время во время вращения.

Якорь стартера окружает магнитное поле статора. Статор двигателя может быть катушечной обмоткой на магнитопроводе или постоянном магните.Когда поле исходит от электромагнита, провода подключаются к батарее.

Вот что происходит при повороте ключа зажигания и что завершается вращением якоря стартера.

  • Поворот ключа зажигания или нажатие кнопки для запуска двигателя приводит к протеканию тока на соленоид стартера. В некоторых автомобилях дистанционное реле замыкает цепь соленоида. Активированный соленоид, в свою очередь, приводит в действие цепь стартера, переключая его связь с аккумулятором.
  • Ток течет через щетки стартера к обмоткам коллектора и якоря стартера. Часть катушки, принимающая ток, возбуждается, создавая вокруг себя магнитное поле.
  • Этот магнитный поток взаимодействует с магнитным потоком статора или катушек возбуждения, что приводит к двухтактной реакции или так называемой реакции обмотки якоря стартера. Якорь движется в магнитном поле, обычно от более высокой до более низкой напряженности поля.
  • Когда якорь вращается, коллектор также вращается вместе с ним, в результате чего секции, контактирующие со щеткой, изменяются.В результате в следующей секции ток передается на обмотки якоря. Соседняя часть катушки запитывается, и процесс повторяется.
  • Изменяющийся контакт коммутатора вызывает непрерывное вращение якоря до тех пор, пока он не пройдет мимо оси коллектора.
  • Через пол-оборота другая часть коммутатора подает ток на обмотки якоря. Это вызывает изменение полярности, обеспечивая непрерывность вращения. Поэтому якорь вращается без остановки до тех пор, пока в двигатель течет ток.
  • Множество сегментов или контактных планок коммутатора имеют два преимущества. Во-первых, они помогают производить плавное вращение якоря. Во-вторых, сегменты увеличивают силу вращения, обеспечивая магнитную силу для каждого небольшого поворота якоря в сборе.

События, описанные здесь, стали возможными благодаря различным компонентам якоря. Вот посмотрите на каждую часть и ту роль, которую она играет.

Детали якоря стартера и их функции

Глядя на якорь стартера в сборе, легко выделить четыре части: цилиндрическую секцию с прорезями, проволочные обмотки, сегментированное кольцо и центральный вал.

Сердечник якоря стартера

Сердцевиной якоря стартера является его самая большая часть. Он состоит из тонких круглых и щелевых слоев железа, также называемых пластинами. Детали изолированы друг от друга для уменьшения вихревых токов. Если бы это был сплошной металлический блок, возникли бы вихревые токи и потеря электроэнергии в виде тепла.

Железо используется для сердечника якоря из-за его превосходных магнитных свойств. Он производит сильный магнит, необходимый для крутящего момента, необходимого для запуска двигателя.По всему сердечнику есть пазы для крепления обмоток катушки. Пазы проходят по всей длине якоря в сборе.

Обмотки катушки якоря стартера

Обмотка якоря стартера обмотана петлей вокруг сердечника. Это довольно толстые медные провода, которые проводят ток с наименьшим сопротивлением. Во избежание короткого замыкания и других проблем провода катушки якоря стартера имеют тонкий слой изоляции.

Обмотки катушки якоря стартера заканчиваются в коммутаторе, где они прикрепляются к определенным сегментам.Это позволяет изменять электрические соединения с обмотками. Это также позволяет изменять полярность и, следовательно, непрерывность вращения якоря.

Как мы видели, катушки вместе с железным сердечником должны создавать сильную вращающую силу. По этой причине используются несколько различных петель, которых может быть до 30 в одном ядре. Каждая катушка также имеет множество витков провода, чтобы помочь увеличить силу магнитного поля и, следовательно, крутящий момент.

Коммутатор якоря стартера

Коммутатор находится в задней части корпуса двигателя и является частью якоря в сборе. Обычно круглый и сегментный, его основная функция — передача тока на якорь в необходимой последовательности. Это стало возможным благодаря сегментам или медным стержням, по которым скользят щетки двигателя.

Каждый сегмент или полоса на коммутаторе передает ток определенной катушке. Для повышения эффективности контактные поверхности изготовлены из проводящего материала, обычно меди.Прутки также отделены друг от друга непроводящим материалом, например слюдой. Это помогает предотвратить короткое замыкание.

Щетки подают ток на коммутатор. Щетки подпружинены, что обеспечивает постоянный контакт с коммутатором и сводит к минимуму возможность выхода из строя. Расположение щеток может варьироваться от одного двигателя к другому. В некоторых двигателях они находятся по бокам вала, а в других — на концевой пластине.

Вал якоря стартера

Это центральный стержень, который проходит через якорь стартера в сборе.Он удерживает детали, из которых состоит якорь, от сердечника, обмоток до коммутатора. Подшипники на обоих концах поддерживают вал, позволяя ему свободно вращаться.

Для запуска двигателя вал прямо или косвенно раскручивает приводной механизм стартера. Это может быть ведущая шестерня на конце вала или набор редукторов и других деталей. Для прочности вал обычно стальной. Обычно он изолирован от медных шин коллектора.

Крутящий момент якоря стартера

Якорь стартера в сборе преобразует электрическую энергию во вращательное движение.Сила вращения должна быть достаточно большой, чтобы двигатель ожил. Для этого необходимо несколько конструктивных характеристик. К ним относятся увеличение количества обмоток якоря или возбуждения, использование постоянных магнитов и использование определенной схемы подключения.

Якорь большинства стартеров содержит до 30 сегментов катушки. Обычно этого достаточно, чтобы обеспечить плавное вращение и высокий крутящий момент. Многие двигатели также используют постоянные магниты, которых может быть несколько для дальнейшего улучшения крутящего момента.Электромагниты зависят от батареи по току. Помимо разряда батареи, это также означает снижение мощности.

Другой способ увеличения крутящего момента — использование катушек определенной конфигурации. Для обмоток цепи или якоря стартера можно использовать разные схемы. У каждого есть свои плюсы и минусы. Следующая часть представляет собой описание каждого из них, включая преимущества и недостатки.

Схема расположения обмоток якоря стартера

Производители электродвигателей используют три различных способа намотки проводов якоря: шунтирующий, последовательный и составной.

Серия Рана

Катушки возбуждения или статора включены последовательно с катушками якоря. Ток идет по непрерывному пути от полевых проводов, щетки, коммутатора к обмоткам якоря и обратно к щетке на другой стороне.

Двигатели серии

создают большое вращательное усилие сразу после запуска. Это значительно снижается по мере увеличения скорости вращения. Такое расположение соответствует требованиям систем запуска автомобилей, в которых начальный крутящий момент имеет наибольшее значение.Поэтому якоря большинства автомобильных стартеров имеют шунтирующую намотку.

Другие конфигурации включают следующее.

Шунтирующая рана

Катушка якоря имеет параллельное соединение с катушками возбуждения. Этот тип схемы намотки не обеспечивает достаточно высокий крутящий момент. Однако увеличение скорости вращения не приводит к уменьшению крутящего момента. Из-за небольшого усилия, создаваемого якорем, двигатели с параллельной обмоткой не подходят для систем пуска. Вместо этого они в основном используются в автомобильных аксессуарах.

Сложная рана

В этой схеме разводки якоря часть катушек якоря последовательно соединена с катушками статора (или катушек возбуждения). Другая секция подключается параллельно. Схема позволяет двигателю использовать преимущества как параллельной, так и последовательной схемы. В результате крутящий момент якоря остается достаточно высоким и постоянным на протяжении всей работы двигателя.

Часто задаваемые вопросы по якорю стартера

Мы отправились на поиски вопросов, которые задают многие автовладельцы и автолюбители по арматуре стартера.Вот их ответы.

1 кв. Какие материалы используются для изготовления якоря стартера?

A. Большая часть конструкции якоря стартера изготовлена ​​из меди. К ним относятся проволочные или катушечные обмотки. Коллекторные пластины или стержни тоже. Медь используется, помимо прочего, из-за ее исключительной способности проводить электричество. Сердечник якоря обычно представляет собой пластину из мягкого железа.

Изоляция присутствует на всех компонентах, от поверхностей между металлическими пластинами сердечника до проводов якоря.Сегменты коммутатора также имеют изоляционный материал. Вал, на котором крепятся элементы якоря, изготовлен из стали.

2 кв. Что такое сопротивление якоря стартера?

A. Это заданное сопротивление цепи якоря или обмоток сердечника. Вы можете использовать вольт или омметр для измерения сопротивления. Изменения показаний можно использовать для диагностики якоря, особенно катушек.

Высокое сопротивление указывает на перегоревшую катушку или сломанные части схемы.Он также может показать грязные контакты и коммутатор при измерении на клеммах. С другой стороны, значительное падение сопротивления произошло бы из-за короткого замыкания.

3 кв. В чем причины неисправности якоря стартера?

A. Неисправность якоря стартера может быть вызвана изношенными, корродированными или закороченными проводниками или сгоревшими проводами. Трение между движущимися частями вызывает износ поверхностей. Изоляция может выйти из строя и закоротить компоненты, а токовые перегрузки могут вызвать перегорание катушек.Если масло или вода попадут в двигатель, возникнет коррозия.

В большинстве случаев проблема заключается в коммутаторе. Он может быть изношен или покрыт грязью и не может эффективно передавать ток. Если это причина отказа, вы можете очистить грязные детали. Некоторые неисправности требуют покупки нового узла якоря или замены неисправных компонентов с помощью стартового комплекта якоря

.

4 кв. Какие признаки показывают неисправность якоря стартера?

A. Отказ якоря также является отказом стартера.Знаки включают в себя двигатель, который не вращается или вращается с низким крутящим моментом. Шумный запуск также указывает на плохие детали стартера, в том числе якорь. Признаки неудачи должны указать вам на проблему. Вы можете проверить якорь на наличие проблем со схемой или использовать визуальное наблюдение, чтобы найти изношенные или корродированные детали.

При проведении испытания якоря стартера для определения сопротивления настоятельно рекомендуется использовать подходящие инструменты. Также рекомендуется знать характеристики усилителя компонента и другие параметры.

5 квартал. Какие есть варианты ремонта якоря стартера?

A. Вы можете заменить отдельные детали или полностью заменить арматуру в сборе. Многие автовладельцы выбирают перемотку якоря стартера, чтобы исправить сгоревшие катушки. Это может сэкономить ваши деньги, особенно когда рассматриваемый двигатель является дорогостоящим.

В случае загрязнения коммутатора его очистка является одним из способов восстановления эффективности. Тем не менее, мы рекомендуем сначала определить проблему, прежде чем приступать к ремонту.Вот видео, объясняющее, как проверить якорь стартера.

6 кв. Как проводится проверка якоря стартера?

A. Существует несколько методов тестирования якоря стартера. Чаще всего используется проверка силы тока или потребляемого тока. Если электрические пути или схемы неисправны, это проявится как высокое сопротивление.

В руководстве по эксплуатации автомобиля указаны значения сопротивления проводов якоря стартера. Вы найдете его полезным при проведении теста, а также других диагностических действий на различных частях якоря.

Q7. Можно ли заменить якорь на стартер?

A. Можно. Фактически, замена узла обычно является одним из способов спасти стартер вашего автомобиля. Это если вы не хотите заменять сам двигатель. Многие энтузиасты DIY предпочитают делать это сами (это довольно простой процесс). Однако обращаться к услугам механика всегда удобнее и безопаснее.

8 кв. Какая цена стартерной арматуры?

А. Стоимость варьируется от 20 до 100 и более долларов. Многое зависит от типа двигателя, для которого построена арматура. Кроме того, его качество и то, является ли он вторичным товаром или оригинальным. В игру вступают и другие факторы, например производитель. Разные производители автозапчастей могут устанавливать разные цены на аналогичные якоря стартера.

Заключение

Якорь стартера, хотя и не виден, выполняет важную функцию в работе стартера. Он гарантирует, что ток из цепи системы зажигания без сбоев преобразуется в крутящий момент.К сожалению, этот компонент является одним из наиболее подверженных поломкам и выходу из строя. Благодаря информации, содержащейся в этом руководстве, вы теперь понимаете работу и полезность якоря в автомобильном стартере.

Катушка якоря — обзор

2.2.3 Двигатели

Двигатель постоянного тока имеет катушки с проводом, установленные в пазах на цилиндре из ферромагнитного материала, который называется якорем . Якорь установлен на подшипниках и может свободно вращаться. Он установлен в магнитном поле, создаваемом постоянными магнитами или током, проходящим через катушки с проволокой, которые называются полевыми катушками .Когда через катушку якоря проходит ток, на катушку действуют силы, приводящие к вращению. Щетки и коммутатор используются для реверсирования тока через катушку каждые пол-оборота и, таким образом, для поддержания вращения катушки. Скорость вращения можно изменить, изменив величину тока, подаваемого на катушку якоря. Однако, поскольку источники постоянного напряжения обычно используются в качестве входа для катушек, требуемый переменный ток часто обеспечивается электронной схемой. Это позволяет контролировать среднее значение напряжения и, следовательно, тока, изменяя время, в течение которого включается постоянное напряжение постоянного тока (Рисунок 2.32). Термин широтно-импульсная модуляция (ШИМ) используется потому, что ширина импульсов напряжения используется для управления средним постоянным напряжением, подаваемым на якорь. Таким образом, ПЛК может управлять скоростью вращения двигателя, управляя электронной схемой, используемой для управления шириной импульсов напряжения.

Рисунок 2.32. Широтно-импульсная модуляция.

Для многих промышленных процессов требуется только ПЛК для включения или выключения двигателя постоянного тока. Это можно сделать с помощью реле. Фигура 2.33а показывает основной принцип. Диод включен для рассеивания наведенного тока, возникающего из-за обратной ЭДС.

Рисунок 2.33. Двигатель постоянного тока: (а) включение / выключение и (б) управление направлением.

Иногда требуется ПЛК для изменения направления вращения двигателя. Это можно сделать с помощью реле для изменения направления тока, подаваемого на катушку якоря. На рисунке 2.33b показан основной принцип. Для вращения в одном направлении переключатель 1 замкнут, а переключатель 2 разомкнут.Для вращения в другом направлении переключатель 1 разомкнут, а переключатель 2 замкнут.

Другой тип двигателя постоянного тока — бесщеточный двигатель постоянного тока . В этом случае для создания магнитного поля используется постоянный магнит, но вместо того, чтобы катушка якоря вращалась под действием магнитного поля магнита, постоянный магнит вращается внутри неподвижной катушки. В обычном двигателе постоянного тока необходимо использовать коммутатор для реверсирования тока через катушку каждые пол-оборота, чтобы катушка вращалась в одном и том же направлении.В бесщеточном двигателе с постоянными магнитами электронная схема используется для реверсирования тока. Двигатель можно запускать и останавливать, контролируя ток, подаваемый на неподвижную катушку. Реверсировать двигатель труднее, так как реверсирование тока не так просто из-за электронной схемы, используемой для функции коммутатора. Один из используемых методов — это установка датчиков на двигатель для определения положения северного и южного полюсов. Эти датчики могут затем вызвать переключение тока на катушки в нужный момент, чтобы изменить силы, приложенные к магниту.Скорость вращения можно регулировать с помощью широтно-импульсной модуляции, то есть контролируя среднее значение импульсов постоянного напряжения постоянного тока.

Хотя двигатели переменного тока дешевле, прочнее и надежнее, чем двигатели постоянного тока, поддержание постоянной скорости и управление этой скоростью обычно сложнее, чем с двигателями постоянного тока. Как следствие, двигатели постоянного тока, особенно бесщеточные двигатели с постоянными магнитами, как правило, более широко используются для целей управления.

Электродвигатель — Энциклопедия Нового Света

Вращающееся магнитное поле как сумма магнитных векторов от трех фазных катушек

Электродвигатель преобразует электрическую энергию в кинетическую.Обратную задачу — преобразование кинетической энергии в электрическую — выполняет генератор или динамо-машина. Во многих случаях два устройства различаются только своим применением и незначительными деталями конструкции, а некоторые приложения используют одно устройство для выполнения обеих ролей. Например, тяговые двигатели, используемые на локомотивах, часто выполняют обе задачи, если локомотив оборудован динамическими тормозами.

Большинство электродвигателей работают за счет электромагнетизма, но также существуют двигатели, основанные на других электромеханических явлениях, таких как электростатические силы и пьезоэлектрический эффект.Фундаментальный принцип, на котором основаны электромагнитные двигатели, заключается в том, что на любой токоведущий провод, находящийся внутри магнитного поля, действует механическая сила. Сила описывается законом силы Лоренца и перпендикулярна как проводу, так и магнитному полю.

Большинство магнитных двигателей являются вращающимися, но существуют и линейные двигатели. В роторном двигателе вращающаяся часть (обычно внутри) называется ротором, а неподвижная часть — статором. Ротор вращается, потому что провода и магнитное поле расположены так, что вокруг оси ротора создается крутящий момент.Двигатель содержит электромагниты, намотанные на раму. Хотя эту раму часто называют арматурой, этот термин часто используют ошибочно. Правильно, якорь — это та часть двигателя, на которую подается входное напряжение. В зависимости от конструкции машины якорь может служить как ротор, так и статор.

Двигатели постоянного тока

Электродвигатели различных типоразмеров. Ротор от маленького мотора постоянного тока 3В. Этот двигатель имеет 3 катушки, и коммутатор можно увидеть на ближнем конце.

Один из первых электромагнитных роторных двигателей был изобретен Майклом Фарадеем в 1821 году и состоял из свободно висящего провода, погруженного в бассейн с ртутью. Постоянный магнит был помещен в середину ртутной ванны. Когда через провод пропускался ток, он вращался вокруг магнита, показывая, что ток порождал круговое магнитное поле вокруг провода. Этот двигатель часто демонстрируется на школьных уроках физики, но иногда вместо токсичной ртути используется рассол (соленая вода).Это простейшая форма класса электродвигателей, называемых униполярными двигателями. Более поздняя доработка — Колесо Барлоу.

В другой ранней конструкции электродвигателя использовался поршень возвратно-поступательного действия внутри переключаемого соленоида; концептуально его можно рассматривать как электромагнитную версию двухтактного двигателя внутреннего сгорания. Томас Давенпорт построил небольшой электродвигатель постоянного тока в 1834 году, используя его для управления игрушечным поездом по круговой дороге. Он получил на него патент в 1837 году.

Современный двигатель постоянного тока был изобретен случайно в 1873 году, когда Зеноб Грамм соединил вращающуюся динамо-машину со вторым аналогичным устройством, приведя его в действие как двигатель.Машина Грамма была первым промышленно полезным электродвигателем; более ранние изобретения использовались в качестве игрушек или лабораторных диковинок.

Классический двигатель постоянного тока имеет вращающийся якорь в виде электромагнита. Поворотный переключатель, называемый коммутатором, меняет направление электрического тока дважды за цикл, чтобы он протекал через якорь, так что полюса электромагнита толкаются и притягиваются к постоянным магнитам на внешней стороне двигателя. Когда полюса электромагнита якоря проходят через полюса постоянных магнитов, коммутатор меняет полярность электромагнита якоря.В этот момент переключения полярности импульс поддерживает классический двигатель в нужном направлении. (См. Диаграммы ниже.)

  • Вращение двигателя постоянного тока
  • Простой электродвигатель постоянного тока. Когда катушка запитана, вокруг якоря создается магнитное поле. Левая сторона якоря отодвигается от левого магнита и тянется вправо, вызывая вращение.

  • Якорь продолжает вращаться.

  • Когда якорь выравнивается по горизонтали, коммутатор меняет направление тока через катушку на противоположное, изменяя направление магнитного поля.Затем процесс повторяется.

Электродвигатель постоянного тока с возбуждением от возбуждения

Постоянные магниты на внешней стороне (статоре) двигателя постоянного тока могут быть заменены электромагнитами. Изменяя ток возбуждения, можно изменять соотношение скорость / крутящий момент двигателя. Обычно обмотка возбуждения размещается последовательно (последовательная обмотка) с обмоткой якоря для получения низкоскоростного двигателя с высоким крутящим моментом, параллельно (шунтирующая обмотка) с якорем для получения высокоскоростного двигателя с низким крутящим моментом или имеют обмотку частично параллельно, а частично последовательно (составная обмотка) для баланса, обеспечивающего стабильную скорость в диапазоне нагрузок. Раздельное возбуждение также является обычным, с фиксированным напряжением поля, скорость регулируется изменением напряжения якоря. Дальнейшее уменьшение тока возбуждения возможно для получения еще более высокой скорости, но, соответственно, более низкого крутящего момента, что называется режимом «слабого поля».

Теория

Если вал двигателя постоянного тока вращается под действием внешней силы, двигатель будет действовать как генератор и создавать электродвижущую силу (ЭДС). Это напряжение также генерируется при нормальной работе двигателя.Вращение двигателя создает напряжение, известное как противо-ЭДС (CEMF) или противо-ЭДС, поскольку оно противодействует приложенному напряжению на двигателе. Следовательно, падение напряжения на двигателе состоит из падения напряжения из-за этой CEMF и паразитного падения напряжения, возникающего из-за внутреннего сопротивления обмоток якоря.

Поскольку CEMF пропорциональна скорости двигателя, при первом запуске или полном останове электродвигателя CEMF отсутствует. Следовательно, ток через якорь намного выше.Этот высокий ток создаст сильное магнитное поле, которое запустит вращение двигателя. По мере вращения двигателя CEMF увеличивается до тех пор, пока не станет равным приложенному напряжению, за вычетом паразитного падения напряжения. В этот момент через двигатель будет протекать меньший ток.

Регулировка скорости

Обычно скорость вращения двигателя постоянного тока пропорциональна приложенному к нему напряжению, а крутящий момент пропорционален току. Регулировка скорости может быть достигнута с помощью регулируемых выводов аккумуляторной батареи, переменного напряжения питания, резисторов или электронного управления.Направление двигателя постоянного тока с обмоткой возбуждения можно изменить, поменяв местами подключения возбуждения или якоря, но не то и другое вместе. Обычно это делается с помощью специального набора контакторов (контакторов направления).

Эффективное напряжение можно изменять, вставляя последовательный резистор или используя переключающее устройство с электронным управлением, состоящее из тиристоров, транзисторов или, ранее, ртутных дуговых выпрямителей. В цепи, известной как прерыватель, среднее напряжение, приложенное к двигателю, изменяется путем очень быстрого переключения напряжения питания.Поскольку отношение «включено» к «выключено» изменяется для изменения среднего приложенного напряжения, скорость двигателя изменяется. Процент времени включения, умноженный на напряжение питания, дает среднее напряжение, приложенное к двигателю.

Поскольку двигатель постоянного тока с последовательным возбуждением развивает максимальный крутящий момент на низкой скорости, он часто используется в тяговых устройствах, таких как электровозы и трамваи. Другое применение — стартеры для бензиновых и небольших дизельных двигателей. Серийные двигатели никогда не должны использоваться в приложениях, где привод может выйти из строя (например, ременные передачи).По мере ускорения двигателя ток якоря (и, следовательно, возбуждения) уменьшается. Уменьшение поля заставляет двигатель ускоряться (см. «Слабое поле» в последнем разделе), пока он не разрушит себя. Это также может быть проблемой для железнодорожных двигателей в случае потери сцепления, поскольку, если быстро не взять под контроль двигатели, они могут развивать скорость намного выше, чем при нормальных обстоятельствах. Это может вызвать проблемы не только для самих двигателей и шестерен, но и из-за разницы в скорости между рельсами и колесами, это также может вызвать серьезные повреждения рельсов и ступеней колес, поскольку они быстро нагреваются и охлаждаются.Ослабление поля используется в некоторых электронных элементах управления для увеличения максимальной скорости электромобиля. В простейшей форме используется контактор и резистор ослабления поля, электронное управление контролирует ток двигателя и подключает резистор ослабления поля в цепь, когда ток двигателя уменьшается ниже заданного значения (это будет, когда двигатель работает на полной расчетной скорости). Как только резистор включен в цепь, двигатель увеличит скорость выше своей нормальной скорости при номинальном напряжении. Когда ток двигателя увеличивается, система управления отключает резистор и становится доступным крутящий момент на низкой скорости.

Одним из интересных методов управления скоростью двигателя постоянного тока является управление Уорда-Леонарда. Это метод управления двигателем постоянного тока (обычно с шунтирующей или составной обмоткой) и был разработан как метод обеспечения двигателя с регулируемой скоростью от источника переменного тока (переменного тока), хотя он не лишен своих преимуществ в схемах постоянного тока. Источник переменного тока используется для привода двигателя переменного тока, обычно асинхронного двигателя, который приводит в действие генератор постоянного тока или динамо-машину. Выход постоянного тока из якоря напрямую подключен к якорю двигателя постоянного тока (обычно идентичной конструкции).Шунтирующие обмотки возбуждения обеих машин постоянного тока возбуждаются через переменный резистор от якоря генератора. Этот переменный резистор обеспечивает исключительно хорошее управление скоростью от состояния покоя до полной скорости и постоянный крутящий момент. Этим методом управления был метод de facto с момента его разработки до момента его замены на твердотельные тиристорные системы. Она нашла применение практически в любой среде, где требовалось хорошее управление скоростью, от пассажирских лифтов до обмотки головок большой шахты и даже промышленного технологического оборудования и электрических кранов.Его основным недостатком было то, что для реализации схемы требовалось три машины (пять в очень больших установках, поскольку машины постоянного тока часто дублировались и управлялись тандемным переменным резистором). Во многих случаях установка мотор-генератор часто оставалась постоянно работающей, чтобы избежать задержек, которые в противном случае были бы вызваны ее запуском по мере необходимости. Есть множество устаревших установок Ward-Leonard, которые все еще используются.

Универсальные двигатели

Вариант двигателя с обмоткой Двигатель постоянного тока — универсальный двигатель . Название происходит от того факта, что он может использовать переменный ток или постоянный ток, хотя на практике они почти всегда используются с источниками переменного тока. Принцип заключается в том, что в двигателе постоянного тока с обмоткой поля ток как в поле, так и в якоре (и, следовательно, результирующие магнитные поля) будут чередоваться (обратная полярность) в одно и то же время, и, следовательно, генерируемая механическая сила всегда в одном и том же направлении. . На практике двигатель должен быть специально разработан для работы с переменным током (необходимо учитывать импеданс, а также пульсирующую силу), и получаемый в результате двигатель обычно менее эффективен, чем эквивалентный чистый двигатель DC .При работе на нормальных частотах линии электропередачи максимальная мощность универсальных двигателей ограничена, а двигатели мощностью более одного киловатта встречаются редко. Но универсальные двигатели также составляют основу традиционного железнодорожного тягового двигателя. В этом приложении для поддержания высокого электрического КПД они работали от источников переменного тока очень низкой частоты, обычно с частотой 25 Гц и 16 2 / 3 Гц. Поскольку это универсальные двигатели, локомотивы, использующие эту конструкцию, также обычно могли работать от третьего рельса с питанием от постоянного тока.

Преимущество универсального двигателя заключается в том, что источники питания переменного тока могут использоваться на двигателях, которые имеют типичные характеристики двигателей постоянного тока, в частности, высокий пусковой момент и очень компактную конструкцию, если используются высокие скорости вращения. Отрицательный аспект — проблемы с обслуживанием и коротким сроком службы, вызванные коммутатором. В результате такие двигатели обычно используются в устройствах переменного тока, таких как миксеры для пищевых продуктов и электроинструменты, которые используются только с перерывами. Непрерывное управление скоростью универсального двигателя, работающего от переменного тока, очень легко достигается с помощью тиристорной схемы, в то время как ступенчатое регулирование скорости может осуществляться с помощью нескольких отводов на катушке возбуждения.Бытовые блендеры, рекламирующие много скоростей, часто сочетают в себе катушку возбуждения с несколькими ответвлениями и диод, который можно вставить последовательно с двигателем (в результате чего двигатель работает на полуволновом постоянном токе с 0,707 среднеквадратичного напряжения линии питания переменного тока).

В отличие от двигателей переменного тока, универсальные двигатели могут легко превышать один оборот за цикл сетевого тока. Это делает их полезными для таких приборов, как блендеры, пылесосы и фены, где требуется высокая скорость работы. Моторы многих пылесосов и триммеров для сорняков превышают 10 000 об / мин, Dremel и другие подобные миниатюрные шлифовальные машины часто превышают 30 000 об / мин.Теоретический универсальный двигатель, которому разрешено работать без механической нагрузки, будет превышать скорость, что может привести к его повреждению. В реальной жизни, однако, различное трение подшипников, «парусность» якоря и нагрузка любого встроенного охлаждающего вентилятора — все это предотвращает превышение скорости.

Из-за очень низкой стоимости полупроводниковых выпрямителей в некоторых приложениях, где раньше использовался универсальный двигатель, теперь используется чистый двигатель постоянного тока, обычно с полем постоянного магнита. Это особенно верно, если полупроводниковая схема также используется для регулирования скорости.

Преимущества универсального двигателя и распределения переменного тока сделали установку низкочастотной системы распределения тягового тока экономичной для некоторых железнодорожных сооружений. На достаточно низких частотах характеристики двигателя примерно такие же, как если бы двигатель работал от постоянного тока.

Двигатели переменного тока (переменного тока)

В 1882 году Никола Тесла определил принцип вращающегося магнитного поля и впервые применил вращающееся силовое поле для работы машин.Он использовал этот принцип для разработки уникального двухфазного асинхронного двигателя в 1883 году. В 1885 году Галилео Феррарис независимо исследовал эту концепцию. В 1888 году Феррарис опубликовал свое исследование в докладе Королевской академии наук в Турине.

Введение двигателя Теслы с 1888 г. и далее положило начало тому, что известно как Вторая промышленная революция, сделав возможным эффективное производство и распределение электроэнергии на большие расстояния с использованием системы передачи переменного тока, также изобретенной Тесла (1888 г.).До изобретения вращающегося магнитного поля двигатели работали, непрерывно пропуская проводник через постоянное магнитное поле (как в униполярных двигателях).

Тесла предположил, что коммутаторы из машины могут быть удалены, и устройство может работать во вращающемся силовом поле. Его учитель профессор Пошель заявил, что это было бы похоже на создание вечного двигателя. [1] Тесла позже получит патент США 0416194 (PDF), электродвигатель (декабрь 1889 г.), который напоминает двигатель, изображенный на многих фотографиях Теслы.Этим классическим электромагнитным двигателем переменного тока был асинхронный двигатель .

Энергия статора Энергия ротора Всего поставлено энергии Мощность развита
10 90 100 900
50 50 100 2500

В асинхронном двигателе , поле и якорь в идеале имели одинаковую напряженность поля, а сердечники поля и якоря были одинакового размера.Полная энергия, потребляемая для работы устройства, равнялась сумме энергии, затраченной на якорь и катушку возбуждения. [2] Мощность, развиваемая при работе устройства, равна произведению энергии, затрачиваемой в катушках якоря и возбуждения. [3]

Михаил Осипович Доливо-Добровольский позже изобрел трехфазный «клеть-ротор» в 1890 году. Успешная коммерческая многофазная система генерации и передачи на большие расстояния была спроектирована Альмерианом Декером в Mill Creek No.1 [4] в Редлендс, Калифорния. [5]

Детали и типы

Типичный двигатель переменного тока состоит из двух частей:

  1. Внешний неподвижный статор с катушками, на которые подается переменный ток для создания вращающегося магнитного поля, и;
  2. Внутренний ротор, прикрепленный к выходному валу, на который создается крутящий момент вращающимся полем.

В зависимости от типа используемого ротора существует два основных типа двигателей переменного тока:

  • Синхронный двигатель, который вращается точно с частотой питающей сети или долей частоты питающей сети, и;
  • Асинхронный двигатель, который вращается немного медленнее и обычно (хотя и не всегда) имеет форму двигателя с короткозамкнутым ротором.

Трехфазные асинхронные двигатели переменного тока

Трехфазные асинхронные двигатели переменного тока мощностью 1 л.с. (746 Вт) и 25 Вт с небольшими двигателями от проигрывателя компакт-дисков, игрушек и привода считывателя компакт-дисков и DVD-дисков.

Там, где имеется многофазный источник питания, обычно используется трехфазный (или многофазный) асинхронный двигатель переменного тока, особенно для двигателей большей мощности. Разность фаз между тремя фазами многофазного источника питания создает вращающееся электромагнитное поле в двигателе.

Благодаря электромагнитной индукции вращающееся магнитное поле индуцирует ток в проводниках в роторе, который, в свою очередь, создает уравновешивающее магнитное поле, которое заставляет ротор вращаться в направлении вращения поля.Ротор всегда должен вращаться медленнее, чем вращающееся магнитное поле, создаваемое многофазным источником питания; в противном случае в роторе не будет создаваться уравновешивающее поле.

Асинхронные двигатели являются рабочими лошадками промышленности, и двигатели мощностью до 500 кВт (670 лошадиных сил) производятся в строго стандартизированных размерах корпуса, что делает их практически полностью взаимозаменяемыми между производителями (хотя стандартные размеры в Европе и Северной Америке различаются). Очень большие синхронные двигатели могут иметь выходную мощность в десятки тысяч кВт для трубопроводных компрессоров, приводов в аэродинамической трубе и наземных преобразовательных систем.

В асинхронных двигателях используются два типа роторов.

Роторы с короткозамкнутым ротором: В большинстве двигателей переменного тока используется ротор с короткозамкнутым ротором, который можно найти практически во всех бытовых и легких промышленных двигателях переменного тока. Беличья клетка получила свое название от своей формы — кольца на обоих концах ротора, с перемычками, соединяющими кольца по всей длине ротора. Обычно это литой алюминий или медь, залитые между железными пластинами ротора, и обычно видны только концевые кольца.Подавляющее большинство токов ротора будет проходить через стержни, а не через ламинаты с более высоким сопротивлением и обычно покрытые лаком. Очень низкие напряжения при очень высоких токах типичны для шин и концевых колец; В двигателях с высоким КПД часто используется литая медь для уменьшения сопротивления ротора.

В работе двигатель с короткозамкнутым ротором можно рассматривать как трансформатор с вращающейся вторичной обмоткой — когда ротор не вращается синхронно с магнитным полем, индуцируются большие токи ротора; большие токи ротора намагничивают ротор и взаимодействуют с магнитными полями статора, чтобы синхронизировать ротор с полем статора.Двигатель с короткозамкнутым ротором без нагрузки при синхронной скорости будет потреблять электроэнергию только для поддержания скорости ротора с учетом потерь на трение и сопротивление; по мере увеличения механической нагрузки будет увеличиваться и электрическая нагрузка — электрическая нагрузка по своей природе связана с механической нагрузкой. Это похоже на трансформатор, где электрическая нагрузка первичной обмотки связана с электрической нагрузкой вторичной обмотки.

Вот почему, например, двигатель вентилятора с короткозамкнутым ротором может приглушать свет в доме при запуске, но не приглушает свет, когда его вентиляторный ремень (и, следовательно, механическая нагрузка) снимается.Кроме того, остановившийся двигатель с короткозамкнутым ротором (перегруженный или с заклинившим валом) будет потреблять ток, ограниченный только сопротивлением цепи, при попытке запуска. Если что-то еще не ограничивает ток (или не отключает его полностью), вероятным результатом является перегрев и разрушение изоляции обмотки.

Практически каждая стиральная машина, посудомоечная машина, отдельный вентилятор, проигрыватель и т. Д. Использует какой-либо вариант двигателя с короткозамкнутым ротором.

Ротор с обмоткой: Альтернативная конструкция, называемая ротором с обмоткой, используется, когда требуется регулировка скорости.В этом случае ротор имеет такое же количество полюсов, что и статор, а обмотки выполнены из проволоки, соединенной с контактными кольцами на валу. Угольные щетки подключают контактные кольца к внешнему контроллеру, например, к переменному резистору, который позволяет изменять скорость скольжения двигателя. В некоторых мощных приводах с регулируемой скоростью вращения ротора энергия частоты скольжения улавливается, выпрямляется и возвращается в источник питания через инвертор.

По сравнению с роторами с короткозамкнутым ротором, двигатели с фазным ротором дороги и требуют обслуживания контактных колец и щеток, но они были стандартной формой для регулирования скорости до появления компактных силовых электронных устройств.Транзисторные инверторы с частотно-регулируемым приводом теперь можно использовать для управления скоростью, а двигатели с фазным ротором становятся все реже. (Транзисторные инверторные приводы также позволяют использовать более эффективные трехфазные двигатели, когда доступен только однофазный сетевой ток, но это никогда не используется в бытовых приборах, потому что это может вызвать электрические помехи и из-за высоких требований к мощности.)

Используются несколько способов запуска многофазного двигателя. Там, где допустимы большой пусковой ток и высокий пусковой момент, двигатель можно запустить через линию, подав полное линейное напряжение на клеммы (Direct-on-line, DOL).Если необходимо ограничить пусковой пусковой ток (если мощность двигателя больше, чем у источника питания при коротком замыкании), используется пуск с пониженным напряжением с использованием последовательных катушек индуктивности, автотрансформатора, тиристоров или других устройств. Иногда используется метод пуска со звезды на треугольник, когда катушки двигателя сначала соединяются звездой для ускорения нагрузки, а затем переключаются на треугольник, когда нагрузка достигает скорости. Этот метод более распространен в Европе, чем в Северной Америке.Транзисторные приводы могут напрямую изменять приложенное напряжение в зависимости от пусковых характеристик двигателя и нагрузки.

Этот тип двигателя становится все более распространенным в тяговых приложениях, таких как локомотивы, где он известен как асинхронный тяговый двигатель.

Скорость в этом типе двигателя традиционно изменялась за счет наличия дополнительных наборов катушек или полюсов в двигателе, которые можно включать и выключать для изменения скорости вращения магнитного поля. Однако развитие силовой электроники означает, что частота источника питания теперь также может быть изменена, чтобы обеспечить более плавное управление скоростью двигателя.

Трехфазные синхронные двигатели переменного тока

Если соединения с обмотками ротора трехфазного двигателя сняты на контактных кольцах и подают отдельный ток возбуждения для создания непрерывного магнитного поля (или если ротор состоит из постоянного магнита), результат называется синхронным. двигатель, потому что ротор будет вращаться синхронно с вращающимся магнитным полем, создаваемым многофазным источником питания.

Синхронный двигатель также может использоваться в качестве генератора переменного тока.

В настоящее время синхронные двигатели часто приводятся в действие транзисторными частотно-регулируемыми приводами. Это значительно облегчает запуск массивного ротора большого синхронного двигателя. Они также могут запускаться как асинхронные двигатели с использованием обмотки с короткозамкнутым ротором, которая имеет общий ротор: как только двигатель достигает синхронной скорости, ток в обмотке с короткозамкнутым ротором не индуцируется, поэтому он мало влияет на синхронную работу двигателя. , помимо стабилизации скорости двигателя при изменении нагрузки.

Синхронные двигатели иногда используются в качестве тяговых двигателей.

Двухфазные серводвигатели переменного тока

Типичный двухфазный серводвигатель переменного тока имеет короткозамкнутый ротор и поле, состоящее из двух обмоток: 1) главной обмотки постоянного напряжения (AC) и 2) обмотки управляющего напряжения (AC) в квадратуре с основная обмотка так, чтобы создавать вращающееся магнитное поле. Электрическое сопротивление ротора намеренно повышено, чтобы кривая скорость-крутящий момент была достаточно линейной.Двухфазные серводвигатели по своей сути являются высокоскоростными устройствами с низким крутящим моментом, которые в значительной степени приспособлены для управления нагрузкой.

Однофазные асинхронные двигатели переменного тока

Трехфазные двигатели по своей природе создают вращающееся магнитное поле. Однако, когда доступна только однофазная мощность, вращающееся магнитное поле должно создаваться другими способами. Обычно используются несколько методов.

Обычным однофазным двигателем является двигатель с экранированными полюсами, который используется в устройствах, требующих низкого крутящего момента, таких как электрические вентиляторы или другие небольшие бытовые приборы.В этом двигателе небольшие одновитковые медные «затеняющие катушки» создают движущееся магнитное поле. Часть каждого полюса окружена медной катушкой или лентой; индуцированный ток в перемычке противодействует изменению потока через катушку (закон Ленца), так что максимальная напряженность поля перемещается через поверхность полюса в каждом цикле, создавая необходимое вращающееся магнитное поле.

Другой распространенный однофазный двигатель переменного тока — это асинхронный двигатель с разделением фаз , обычно используемый в основных бытовых приборах, таких как стиральные машины и сушилки для одежды.По сравнению с двигателями с экранированными полюсами эти двигатели обычно могут обеспечивать гораздо больший пусковой крутящий момент за счет использования специальной пусковой обмотки в сочетании с центробежным переключателем.

В электродвигателях с расщепленной фазой пусковая обмотка спроектирована с более высоким сопротивлением, чем рабочая обмотка. Это создает цепь LR, которая немного сдвигает фазу тока в пусковой обмотке. Когда двигатель запускается, пусковая обмотка подключается к источнику питания через набор подпружиненных контактов, на которые нажимает еще не вращающийся центробежный переключатель.

Фаза магнитного поля в этой пусковой обмотке сдвинута по сравнению с фазой сетевого питания, что позволяет создать движущееся магнитное поле, которое запускает двигатель. Когда двигатель достигает скорости, близкой к расчетной, срабатывает центробежный выключатель, размыкая контакты и отсоединяя пусковую обмотку от источника питания. В этом случае двигатель работает только на ходовой обмотке. Пусковую обмотку необходимо отключить, так как это приведет к увеличению потерь в двигателе.

В конденсаторном пусковом двигателе , пусковой конденсатор вставлен последовательно с пусковой обмоткой, создавая LC-цепь, способную к гораздо большему сдвигу фаз (и, следовательно, гораздо большему пусковому крутящему моменту). Конденсатор, естественно, увеличивает стоимость таких двигателей.

Другой вариант — двигатель с постоянным разделенным конденсатором (PSC) (также известный как конденсаторный двигатель запуска и работы). Этот двигатель работает аналогично двигателю с конденсаторным пуском, описанному выше, но здесь нет переключателя центробежного пуска, а вторая обмотка постоянно подключена к источнику питания.Двигатели PSC часто используются в кондиционерах, вентиляторах и воздуходувках, а также в других случаях, когда требуется регулируемая скорость.

Отталкивающие двигатели — это однофазные двигатели переменного тока с фазным ротором, аналогичные универсальным двигателям. В отталкивающем двигателе щетки якоря закорочены вместе, а не соединены последовательно с полем. Было изготовлено несколько типов отталкивающих двигателей, но наиболее часто использовался асинхронный двигатель с отталкивающим пуском (RS-IR).Двигатель RS-IR оснащен центробежным переключателем, который закорачивает все сегменты коммутатора, так что двигатель работает как асинхронный после разгона до полной скорости. Двигатели RS-IR используются для обеспечения высокого пускового момента на ампер в условиях низких рабочих температур и плохого регулирования напряжения источника. По состоянию на 2006 год продано немного отталкивающих двигателей любого типа.

Однофазные синхронные двигатели переменного тока

Небольшие однофазные двигатели переменного тока также могут быть спроектированы с намагниченными роторами (или несколькими вариантами этой идеи).Роторы в этих двигателях не требуют индуцированного тока, поэтому они не скользят назад против частоты сети. Вместо этого они вращаются синхронно с частотой сети. Из-за высокой точности скорости такие двигатели обычно используются для питания механических часов, проигрывателей виниловых пластинок и ленточных накопителей; раньше они также широко использовались в приборах точного времени, таких как ленточные самописцы или механизмы привода телескопов. Синхронный двигатель с расщепленными полюсами — это одна из версий.

Моментные двигатели

Моментный двигатель — это особая форма асинхронного двигателя, способная работать неограниченное время при остановке (с заблокированным от вращения ротором) без повреждений.В этом режиме двигатель будет прикладывать постоянный крутящий момент к нагрузке (отсюда и название). Обычное применение моментного двигателя — это двигатели подающей и приемной катушек в ленточном накопителе. В этом приложении, приводимые в действие низким напряжением, характеристики этих двигателей позволяют приложить к ленте относительно постоянное легкое натяжение независимо от того, протягивает ли ведущую ленту мимо головок ленты. Управляемые более высоким напряжением (и, следовательно, обеспечивающие более высокий крутящий момент), моментные двигатели также могут работать в режиме быстрой перемотки вперед и назад, не требуя каких-либо дополнительных механизмов, таких как шестерни или муфты.В компьютерном мире моментные двигатели используются с рулевыми колесами с обратной связью по усилию.

Шаговые двигатели

По конструкции тесно связаны с трехфазными синхронными двигателями переменного тока шаговые двигатели, в которых внутренний ротор, содержащий постоянные магниты или большой железный сердечник с выступающими полюсами, управляется набором внешних магнитов, которые переключаются электронно. Шаговый двигатель также можно рассматривать как нечто среднее между электродвигателем постоянного тока и соленоидом. Поскольку каждая катушка поочередно получает питание, ротор выравнивается с магнитным полем, создаваемым обмоткой возбуждения под напряжением.В отличие от синхронного двигателя, в его применении двигатель не может вращаться непрерывно; вместо этого он «шагает» от одного положения к другому, когда обмотки возбуждения последовательно включаются и отключаются. В зависимости от последовательности ротор может вращаться вперед или назад.

Двигатель с постоянными магнитами

Двигатель с постоянными магнитами аналогичен обычному двигателю постоянного тока, за исключением того факта, что обмотка возбуждения заменена постоянными магнитами. Таким образом, двигатель будет действовать как двигатель постоянного тока с постоянным возбуждением (двигатель постоянного тока с независимым возбуждением).

Эти двигатели обычно имеют небольшую мощность, до нескольких лошадиных сил. Они используются в небольших приборах, транспортных средствах с батарейным питанием, в медицинских целях, в другом медицинском оборудовании, таком как рентгеновские аппараты. Эти двигатели также используются в игрушках и в автомобилях в качестве вспомогательных двигателей для регулировки сиденья, электрических стеклоподъемников, люка в крыше, регулировки зеркал, электродвигателей нагнетателя, вентиляторов охлаждения двигателя и т.п.

Последние разработки — двигатели ПСМ для электромобилей.- Высокая эффективность — Минимальный фиксирующий момент и крутящий момент неровности поверхности — Небольшая занимаемая площадь, компактные размеры — Низкий вес источник [3]

Бесщеточные двигатели постоянного тока

Многие ограничения классического коллекторного двигателя постоянного тока связаны с необходимостью прижимания щеток к коммутатору. Это создает трение. На более высоких скоростях щеткам становится все труднее поддерживать контакт. Щетки могут отскакивать от неровностей поверхности коллектора, создавая искры.Это ограничивает максимальную скорость машины. Плотность тока на единицу площади щеток ограничивает мощность двигателя. Неидеальный электрический контакт также вызывает электрические помехи. Щетки со временем изнашиваются и требуют замены, а сам коллектор подлежит износу и техническому обслуживанию. Сборка коммутатора на большой машине — дорогостоящий элемент, требующий точной сборки многих деталей.

Эти проблемы устранены в бесщеточном двигателе. В этом двигателе механический «вращающийся переключатель» или узел коммутатора / щеточного устройства заменен внешним электронным переключателем, синхронизированным с положением ротора.Бесщеточные двигатели обычно имеют КПД 85-90 процентов, тогда как двигатели постоянного тока с щеткой обычно имеют КПД 75-80 процентов.

На полпути между обычными двигателями постоянного тока и шаговыми двигателями лежит область бесщеточных двигателей постоянного тока. Построенные аналогично шаговым двигателям, они часто используют внешний ротор с постоянным магнитом , три фазы управляющих катушек, одно или несколько устройств на эффекте Холла для определения положения ротора и соответствующую приводную электронику. В специализированном классе контроллеров бесщеточных двигателей постоянного тока для определения положения и скорости используется обратная связь по ЭДС через основные фазовые соединения вместо датчиков Холла.Эти двигатели широко используются в электрических радиоуправляемых транспортных средствах и упоминаются моделистами как двигатели outrunner (поскольку магниты находятся снаружи).

Бесщеточные двигатели постоянного тока обычно используются там, где требуется точное управление скоростью, в дисководах компьютеров или в видеомагнитофонах, шпинделях в приводах компакт-дисков, компакт-дисков (и т. Д.), А также в механизмах офисных изделий, таких как вентиляторы, лазерные принтеры и копировальные аппараты. . У них есть несколько преимуществ перед обычными моторами:

  • По сравнению с вентиляторами переменного тока, использующими двигатели с экранированными полюсами, они очень эффективны и работают намного холоднее, чем эквивалентные двигатели переменного тока.Такой холодный режим работы приводит к значительному увеличению срока службы подшипников вентилятора.
  • Без изнашиваемого коммутатора срок службы бесщеточного двигателя постоянного тока может быть значительно больше по сравнению с двигателем постоянного тока, использующим щетки и коммутатор. Коммутация также имеет тенденцию вызывать большое количество электрических и радиочастотных помех; без коммутатора или щеток бесщеточный двигатель может использоваться в электрически чувствительных устройствах, таких как звуковое оборудование или компьютеры.
  • Те же устройства на эффекте Холла, которые обеспечивают коммутацию, могут также обеспечивать удобный сигнал тахометра для приложений с замкнутым контуром (сервоуправлением).В вентиляторах сигнал тахометра может использоваться для получения сигнала «вентилятор исправен».
  • Двигатель можно легко синхронизировать с внутренними или внешними часами, что позволяет точно регулировать скорость.
  • Бесщеточные двигатели не имеют шансов на искрение, в отличие от щеточных двигателей, что делает их более подходящими для сред с летучими химическими веществами и топливом.

Современные бесщеточные двигатели постоянного тока имеют мощность от долей ватта до многих киловатт. В электромобилях используются более мощные бесщеточные двигатели мощностью до 100 кВт.Они также находят значительное применение в высокопроизводительных электрических моделях самолетов.

Двигатели постоянного тока без сердечника

Ничто в конструкции любого из описанных выше двигателей не требует, чтобы железные (стальные) части ротора действительно вращались; крутящий момент действует только на обмотки электромагнитов. Этим фактом пользуется бесщеточный электродвигатель постоянного тока , специализированная форма щеточного электродвигателя постоянного тока. Эти двигатели, оптимизированные для быстрого разгона, имеют ротор без железного сердечника.Ротор может иметь форму заполненного обмоткой цилиндра внутри магнитов статора, корзины, окружающей магниты статора, или плоского блинчика (возможно, сформированного на печатной монтажной плате), проходящего между верхним и нижним магнитами статора. Обмотки обычно стабилизируются путем пропитки эпоксидной смолой.

Поскольку ротор намного легче по весу (массе), чем обычный ротор, сформированный из медных обмоток на стальных пластинах, ротор может ускоряться намного быстрее, часто достигая механической постоянной времени менее 1 мс.Это особенно верно, если в обмотках используется алюминий, а не более тяжелая медь. Но поскольку в роторе нет металлической массы, которая могла бы служить радиатором, даже небольшие двигатели без сердечника часто должны охлаждаться принудительным воздухом.

Эти двигатели обычно использовались для привода приводов магнитных лентопротяжных устройств и до сих пор широко используются в высокопроизводительных системах с сервоуправлением.

Двигатели линейные

Линейный двигатель — это, по сути, электродвигатель, который «раскручен» так, что вместо создания крутящего момента (вращения) он создает линейную силу по всей своей длине, создавая бегущее электромагнитное поле.

Линейные двигатели чаще всего представляют собой асинхронные двигатели или шаговые двигатели. Вы можете найти линейный двигатель в поезде на магнитной подвеске (Transrapid), где поезд «летит» над землей.

Электродвигатель с двойным питанием

Электродвигатели с двойным питанием или Электромашины с двойным питанием включают в себя две группы многофазных обмоток с независимым питанием, которые активно участвуют в процессе преобразования энергии (т. Е. С двойным питанием), при этом по крайней мере одна из групп обмоток имеет электронное управление для синхронной работы от скорость от субсинхронной до сверхсинхронной.В результате электродвигатели с двойной подачей питания представляют собой синхронные машины с эффективным диапазоном скорости с постоянным крутящим моментом, который в два раза превышает синхронную скорость для данной частоты возбуждения. Это вдвое больше диапазона скоростей с постоянным крутящим моментом, чем у электрических машин с одиночным питанием, в которых используется одна активная обмотка. Теоретически этот атрибут имеет привлекательные разветвления по стоимости, размеру и эффективности по сравнению с электрическими машинами с одинарным питанием, но двигатели с двойным питанием трудно реализовать на практике.

Электромашины с двойным питанием и бесщеточным ротором с двойным питанием, бесщеточные электрические машины с двойным питанием и так называемые бесщеточные электрические машины с двойным питанием являются единственными примерами синхронных электрических машин с двойным питанием.

Электродвигатель с однополярным питанием

Электродвигатели с однополярным питанием или электрические машины с однополярным питанием включают в себя набор с одной многофазной обмоткой, которые активно участвуют в процессе преобразования энергии (т. Е. С однополярным питанием). Электромашины с однополярным питанием работают либо по индукционным (т.е. асинхронным), либо по синхронным принципам. Комплект активной обмотки может управляться электроникой для оптимальной производительности. Индукционные машины демонстрируют пусковой момент и могут работать как автономные машины, но синхронные машины должны иметь вспомогательные средства для запуска и практической работы, такие как электронный контроллер.

Асинхронные двигатели (т. Е. С короткозамкнутым ротором или с фазным ротором), синхронные двигатели (т. Е. С возбуждением от поля, двигатели с постоянным магнитом или бесщеточные двигатели постоянного тока, реактивные двигатели и т. Д.), Которые обсуждаются на этой странице, являются примеры двигателей с однополярным питанием. Безусловно, двигатели с однополярным питанием — это преимущественно устанавливаемые двигатели.

Двигатель с двумя механическими портами

Электродвигатели с двумя механическими портами (или электродвигатели DMP) считаются новой концепцией электродвигателей.Точнее, электродвигатели DMP — это на самом деле два электродвигателя (или генератора), занимающие один и тот же корпус. Каждый двигатель работает по традиционным принципам электродвигателя. Электрические порты, которые могут включать в себя электронную опору электродвигателей, связаны с одним электрическим портом, в то время как два механических порта (вала) доступны снаружи. Теоретически ожидается, что физическая интеграция двух двигателей в один увеличит удельную мощность за счет эффективного использования в противном случае ненужной площади магнитного сердечника.Механика интеграции, например, для двух механических валов, может быть довольно экзотической.

Наномотор с нанотрубками

Исследователи из Калифорнийского университета в Беркли разработали подшипники вращения на основе многослойных углеродных нанотрубок. Прикрепив золотую пластину (размером порядка 100 нм) к внешней оболочке подвешенной многослойной углеродной нанотрубки (например, вложенных углеродных цилиндров), они могут электростатически вращать внешнюю оболочку относительно внутреннего ядра.Эти подшипники очень прочные; Устройства колебались тысячи раз без признаков износа. Работа была сделана на месте в SEM. Эти наноэлектромеханические системы (НЭМС) являются следующим шагом в миниатюризации, которая в будущем может найти свое применение в коммерческих целях.

На этом рендере можно увидеть процесс и технологию.

Пускатели электродвигатели

Противо-ЭДС помогает сопротивлению якоря ограничивать ток через якорь. При первом подаче питания на двигатель якорь не вращается.В этот момент противоэдс равна нулю, и единственным фактором, ограничивающим ток якоря, является сопротивление якоря. Обычно сопротивление якоря двигателя меньше одного Ом; поэтому ток через якорь при подаче питания будет очень большим. Этот ток может вызвать чрезмерное падение напряжения, что повлияет на другое оборудование в цепи. Или просто отключите устройства защиты от перегрузки.

  • Следовательно, возникает необходимость в дополнительном сопротивлении, включенном последовательно с якорем, для ограничения тока до тех пор, пока вращение двигателя не сможет создать противоэдс.По мере увеличения скорости вращения двигателя сопротивление постепенно снижается.

Пускатель трехточечный

Входящая мощность обозначается как L1 и L2. Компоненты, обозначенные пунктирными линиями, образуют трехточечный стартер. Как следует из названия, есть только три соединения с пускателем. Подключения к якорю обозначены как A1 и A2. Концы катушки возбуждения (возбуждения) обозначены как F1. и F2. Для управления скоростью полевой реостат соединен последовательно с шунтирующим полем.Одна сторона линии соединена с рычагом стартера (на схеме обозначена стрелкой). Рычаг подпружинен, поэтому он вернется в положение «Выкл.», Которое не удерживается ни в каком другом положении.

  • На первом этапе плеча полное линейное напряжение прикладывается к полю шунта. Поскольку полевой реостат обычно устанавливается на минимальное сопротивление, скорость двигателя не будет чрезмерной; кроме того, двигатель будет развивать большой пусковой крутящий момент.
  • Стартер также соединяет электромагнит последовательно с шунтирующим полем.Он будет удерживать рычаг в положении, когда рычаг соприкасается с магнитом.
  • Между тем это напряжение прикладывается к шунтирующему полю, а пусковое сопротивление ограничивает прохождение тока к якорю.
  • По мере того, как двигатель набирает скорость, нарастает противо-ЭДС, рычаг медленно перемещается в положение короткого замыкания.

Пускатель четырехпозиционный

Четырехточечный стартер устраняет недостаток трехточечного стартера. В дополнение к тем же трем точкам, которые использовались с трехточечным стартером, другая сторона линии, L1, является четвертой точкой, подведенной к стартеру.Когда рычаг перемещается из положения «Выкл.», Катушка удерживающего магнита подключается к линии. Удерживающий магнит и пусковые резисторы работают так же, как и в трехпозиционном пускателе.

  • Возможность случайного размыкания цепи возбуждения весьма мала. Четырехточечный пускатель обеспечивает защиту двигателя от обесточивания. В случае сбоя питания двигатель отключается от сети.

См. Также

Компоненты:

  • Центробежный переключатель
  • Коммутатор (электрический)
  • Контактное кольцо

Ученые и инженеры:

Приложения:

  • Настольная пила
  • Электромобиль
  • Коррекция коэффициента мощности

Другое:

  • Электротехника
  • Электрический элемент
  • Электрогенератор
  • Список тем по электронике
  • Перечень технологий
  • Теорема о максимальной мощности
  • Мотор-генератор
  • Контроллер мотора
  • Способ движения
  • Электроэнергия однофазная
  • Хронология развития двигателей и двигателей

Примечания

  1. ↑ Tesla’s Early Years PBS.org .
  2. ↑ Патент США 0416194, «Электродвигатель», декабрь 1889 г.
  3. ↑ Патент США 0416194, «Электродвигатель», декабрь 1889 г.
  4. ↑ [1] electrichistory.com .
  5. ↑ [2] redlandsweb.com .

Список литературы

  • Бедфорд Б. Д., Р. Г. Хофт и др. 1964. Принципы инверторных цепей. Нью-Йорк: John Wiley & Sons, Inc. ISBN 0471061344. (Для управления скоростью двигателя с регулируемой частотой используются схемы инвертора)
  • Чиассон, Джон Н.2005. Моделирование и высокопроизводительное управление электрическими машинами , Нью-Йорк, Нью-Йорк: Wiley-IEEE Press. ISBN 047168449X.
  • Fink, Donald G .; Бити, Х. Уэйн (1978). Стандартный справочник для инженеров-электриков, одиннадцатое издание. Нью-Йорк, Нью-Йорк: Макгроу-Хилл. ISBN 007020974X.
  • Фицджеральд, А. Э., Чарльз Кингсли младший, Стивен Д. Уманс. 2002. Электрические машины. Колумбус, Огайо: McGraw-Hill Science / Engineering / Math. ISBN 0073660094.
  • Хьюстон, Эдвин Дж.; Артур Кеннелли, (1902) Последние типы динамо-электрических машин. , авторское право American Technical Book Company 1897, Нью-Йорк, Нью-Йорк: P.F. Кольер и сыновья. ASIN: B000874XH6
  • Купхальдт, Тони Р. Уроки электрических цепей — Том II. 2000-2006. Глава 13 ДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА. дата обращения 11 апреля 2006 г.
  • Пелли Б. Р. (1971). Тиристорные преобразователи с фазовым управлением и циклоконвертеры. Хобокен, Нью-Джерси: John Wiley & Sons. ISBN 0471677906
  • Шейнфилд Д.Дж. (2001). Промышленная электроника для инженеров, химиков и техников. Норвич, Нью-Йорк: Издательство Уильяма Эндрю. ISBN 0815514670.
  • Смит, А.О. Переменного и постоянного тока электродвигателей. [4]. accessdate 11.04.2006

Внешние ссылки

Все ссылки получены 18 сентября 2017 г.

Кредиты

Энциклопедия Нового Света Писатели и редакторы переписали и завершили статью Википедия в соответствии со стандартами New World Encyclopedia .Эта статья соответствует условиям лицензии Creative Commons CC-by-sa 3.0 (CC-by-sa), которая может использоваться и распространяться с указанием авторства. Кредит предоставляется в соответствии с условиями этой лицензии, которая может ссылаться как на участников Энциклопедии Нового Света, и на самоотверженных добровольцев Фонда Викимедиа. Чтобы процитировать эту статью, щелкните здесь, чтобы просмотреть список допустимых форматов цитирования. История более ранних публикаций википедистов доступна исследователям здесь:

История этой статьи с момента ее импорта в энциклопедию Нового Света :

Примечание. Некоторые ограничения могут применяться к использованию отдельных изображений, на которые распространяется отдельная лицензия.

Детали электродвигателя Центральный IL

Узнайте, почему ваш электродвигатель не работает должным образом

Есть ли проблемы с работой вашего оборудования или механизмов? Вместо полной замены подумайте, можно ли отремонтировать ваш электродвигатель. В ситуациях, когда возможен ремонт, качественные запчасти для электродвигателей, которые предлагает Central IL, можно найти в компании Armature Motor & Pump Co.

.

От различных брендов, таких как Abb Baldor, Victor Technologies и других, Armature Motor & Pump Co.может получить вам детали электродвигателя, которые вам нужны. С нашей командой квалифицированных специалистов мы можем выявить любую проблему с электродвигателем и предложить решения для ремонта, которые могут быть быстрыми и доступными.

Признаки неисправности электродвигателя

Чтобы ваши электродвигатели не выходили из строя после ремонта, вы должны уметь распознавать признаки того, что электродвигатель нуждается в новых деталях.

  • В рабочем состоянии
    • Компоненты электродвигателя спроектированы таким образом, чтобы не вызывать слишком большого трения.Это связано с использованием подшипников. Если вы заметили, что электродвигатель нагревается, возможно, подшипники изношены или не смазываются должным образом.
  • Искра
    • Когда вы начинаете видеть, как от электродвигателя вылетают искры, возникает проблема. Часто это означает, что щетки мотора нуждаются в замене. Кроме того, источником проблемы может быть сгоревший коммутатор.
  • Внезапное отключение
    • Это может быть опасно, если электродвигатель отключится без предупреждения.Источник этой проблемы, скорее всего, в проводке или электричестве, подаваемом на машину. Иногда переключатели могут быть изношены и случайно отключить двигатель.
  • Вибрация
    • Двигатель будет вибрировать, но не слишком сильно. Если вы заметите чрезмерную вибрацию, это может быть причиной любого количества проблем. Ослабленные винты и болты могут вызвать эту проблему, а также смещенный ротор.
Как еще мы можем помочь?

Armature Motor & Pump Co.продает не только новые детали электродвигателей. Местные жители Центральной Иллинойса могут отремонтировать или заменить свои насосы, двигатели и воздушные компрессоры одним из наших многочисленных технических специалистов. Благодаря лазерной юстировке и динамической балансировке мы предлагаем точное обслуживание, которое гарантирует, что ваши двигатели и насосы будут работать лучше, чем когда-либо.

Детали, которые мы продаем или ремонтируем, включают:

  • Насосы
    • Прокладки
    • Торцевые уплотнения
    • Кольца круглые
    • Ремни
    • Обратные клапаны
    • Двигатели
    • Реле давления
    • и другие
  • Двигатели
    • Подшипники
    • Ремни
    • Шкивы
    • Разнообразие переключателей
    • Электрические соединители
    • Детали под заказ
    • и другие
Поговорите с нашими техническими специалистами

Если вам нужна механическая мастерская, которая может помочь в обслуживании ваших насосов, двигателей и воздушных компрессоров, вы обратились по адресу: компания Armature Motor & Pump Co.Позвоните нам сегодня по телефону 309-699-4267.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *