Схема подключения 3 фазного двигателя: Схемы подключения трехфазных электродвигателей

Содержание

звезда, треугольник, трехфазная сеть 380В, однофазная сеть 220В

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»

Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например:
— зачем шесть контактов в двигателе?
— а почему контактов всего три?
— что такое «звезда» и «треугольник»?
— а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
— а как измерить ток в обмотках?

— что такое пускатель?
и т. п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:

1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.


Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.

Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Подключение электродвигателя по схеме звезда

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.


Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.


Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):


Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).


Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):



Двигатель для однофазной сети 220В
(~ 1, 220В)

Двигатель для трехфазной сети
220В/380В (220/380, Δ / Y)

Двигатель для трехфазной сети 380В
(~ 3, Y, 380В)

Двигатель для трехфазной сети
(380В / 660В (Δ / Y, 380В / 660В)


3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).

Есть 2 способа подключения электродвигателя:
— использование автоматического выключателя или автомата защиты электродвигателя

Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).

Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

— использование пускателя

Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пускателя:

Магнитный пускатель устроен достаточно просто и состоит из следующих частей:

(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).

При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с использованием пускателя:


При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса


Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Подключение электродвигателя к однофазной сети 220 В

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку

Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.

Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.

Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).


Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

— регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
— при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

Данные насосы используются в качестве дозирующих насосов на пищевом производстве.


Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).


Технический директор
ООО «Насосы Ампика»
Моисеев Юрий.


Как подключить трёхфазный электродвигатель на 380 Вольт

Трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 вольт. Если у Вас в доме или гараже есть ввод на 380 Вольт, тогда обязательно покупайте компрессор или станок с трехфазным электродвигателем. Это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети 380 Вольт.

Выбор схемы включения электродвигателя

Схемы подключения 3-х фазных двигателей при помощи магнитных пускателей Я подробно описывал в прошлых статьях: «Схема подключения электромоторов с тепловым реле» и «Схема реверсивного пуска«.

Подключить трех фазный двигатель возможно и в сеть 220 Вольт с использованием конденсаторов по этой схеме. Но будет значительное падение мощности и эффективности его работы.

В статоре асинхронного двигателя на 380 В расположены три отдельные обмотки, которые соединяются между собой в треугольник или звезду и к трем лучам или вершинам подключаются 3 разноименные фазы.

Вы должны учитывать, что при подключении звездой пуск будет плавным, но для того что бы достичь полной мощности необходимо подключить мотор треугольником. При этом мощность возрастет в 1.5 раза, но ток при запуске мощных или средних моторов будет очень высоким, и да же может повредить изоляцию обмоток.

Перед подключением электродвигателя ознакомьтесь с его характеристиками в паспорте и на шильдике. Особенно это важно при подключении 3 фазных электродвигателей западно-европейского производства, которые рассчитаны на работу  от сети напряжением 400/690. Пример такого шильдика на картинке снизу.  Такие моторы подключаются только по схеме «треугольник» к нашей электросети. Но многие монтажники подключают их аналогично отечественным в «звезду» и электромоторы при этом сгорают, особенно быстро под нагрузкой.

На практике все электродвигатели отечественного производства на 380 Вольт подключаются звездой. Пример на картинке.   В очень редких случаях на производстве для того что бы, выжать всю мощность используется комбинированная схема включения звезда-треугольник. Об этом подробно узнаете в самом конце статьи.

Схема подключения электродвигателя звезда треугольник

В некоторых наших электромоторах выходит всего 3 конца из статора с обмотками- это означает, что уже внутри двигателя собрана звезда. Вам только остается подключить к ним 3 фазы. А для того, что бы собрать звезду необходимы оба конца, каждой обмотки или 6 выводов.

Нумерация концов обмоток на схемах идет слева направо. К номерам 4, 5 и 6 подключаются 3 фазы А-В-С от электросети.

При соединении звездой трёхфазного электродвигателя начала его обмоток статора соединяются вместе в одной точке, а к концам обмоток подключаются 3 фазы электропитания на 380 Вольт.

При соединении треугольником статорные обмотки между собой соединяются последовательно. Практически, необходимо соединить конец одной обмотки с началом следующей. К трем точкам соединения их между собой подключаются 3 фазы питания.

Подключение схемы звезда-треугольник

Для подключения мотора по  довольно редкой схеме  звезды при запуске, с последующим переводом для работы в рабочем режиме в схему треугольника. Так Мы сможем выжать максимум мощности, но получается довольно сложная схема без возможности реверсирования или изменения направления вращения.

Для работы схемы необходимы 3 пускателя. На первый К1 подключено электропитание с одной стороны, а с другой — концы обмоток статора. Их же начала подключены к К2 и К3. С пускателя К2 начала обмоток подключаются соответственно на другие фазы по схеме треугольник. При включении К3 все 3 фазы закорачиваются между собой и получается схема работы звездой.

Внимание, одновременно не должны включаться магнитные пускатели К2 и К3, а то произойдет произойдет аварийное отключение автомата защиты из-за возникновения межфазного короткого замыкания. Поэтому и делается электрическая блокировка между ними- при включении одного из них размыкается блок контактами цепь управления другого.

Схема работает следующим образом. При включении пускателя К1 реле времени включает К3 и двигатель запускается по схеме звезда. По истечении заданного промежутка, достаточного для полного запуска двигателя реле времени отключает пускатель К3 и включает К2. Мотор переходит на работу обмоток по схеме треугольник.

Отключение происходит пускателем К1. При повторном запуске все снова повторяется.

Схема подключения 3х фазного двигателя на 380

Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.

Схемы подключения трехфазного двигателя

Из множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода.

  • Схема звезды.
  • Схема треугольника.

Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.

Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.

Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.

Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.

Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.

Проверка схемы подключения мотора

Представим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.

Метод определения фаз статора

После разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах. Нужно помнить, что обязательна маркировка проводов, любым способом.

Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.

Полярность обмоток

Чтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:

  • Подключить импульсный постоянный ток.
  • Подключить переменный источник тока.

Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.

Как проверить полярность обмоток батарейкой и тестером

На контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.

Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.

Проверка переменным током

Две любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.

Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.

Схема звезды

Этот тип схемы подключения трехфазного двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.

Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.

Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:

С = (2800 · I) / U

Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.

Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.

В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».

Схема треугольника

Схемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.

Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:

С = (4800 · I) / U

Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.

Двигатель с магнитным пускателем

Трехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.

Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.

В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.

Подключение мотора от автомата

Общий вариант такой схемы подключения выглядит как на рисунке:

Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.

Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.

Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.

При применении схемы подключения трехфазного двигателя нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.

Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»

Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например:
– зачем шесть контактов в двигателе?
– а почему контактов всего три?
– что такое «звезда» и «треугольник»?
– а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
– а как измерить ток в обмотках?
– что такое пускатель?
и т.п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:

1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.

Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы – C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая – C2 и C5, а третья – C3 и C6.

Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Подключение электродвигателя по схеме звезда

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.

Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.

Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):

Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).

Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):

3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
– использование автоматического выключателя или автомата защиты электродвигателя

Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

– использование пускателя

Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пускателя:

Магнитный пускатель устроен достаточно просто и состоит из следующих частей:

(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).

При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с использованием пускателя:

При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса

Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Подключение электродвигателя к однофазной сети 220 В

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку

Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.

Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.

Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).

Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

– регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
– при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
– при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

Данные насосы используются в качестве дозирующих насосов на пищевом производстве.

Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).

Некоторые мастера самостоятельно собирают станки по обработке древесины или металла в домашних условиях. Для этого могут использоваться любые доступные двигатели подходящей мощности. В некоторых случаях приходится разбираться с тем, как подключить трехфазный двигатель к однофазной сети. Именно этой теме и посвящена статья. Также будет рассказано о том, как правильно подобрать требуемые конденсаторы.

Однофазные и трехфазные


Чтобы правильно понимать предмет обсуждения, который объясняет подключение двигателя 380 на 220 вольт, необходимо разобраться, в чем лежит принципиальное отличие таких агрегатов. Все трехфазные двигатели являются асинхронными. Это означает, что фазы в нем подключены с некоторым смещением. Конструктивно двигатель состоит из корпуса, в который помещена статическая часть, которая не вращается, ее называют статором. Также есть вращающийся элемент, который называется ротором. Ротор находится внутри статора. На статор подается трехфазное напряжение, каждая фаза по 220 вольт. После этого происходит образование электромагнитного поля. Из-за того, что фазы находятся в угловом смещении, появляется электродвижущая сила. Она и заставляет ротор, который находится в магнитном поле статора вращаться.

Однофазные асинхронные агрегаты имеют немного иной тип подключения, т. к. питаются от сети 220 вольт. В ней есть только два провода. Один называется фазным, а второй нулевым. Чтобы запуститься, двигателю необходимо иметь только одну обмотку, к которой подключается фаза. Но только одной будет мало для пускового импульса. Поэтому присутствует еще она обмотка, которая задействована во время пуска. Чтобы она выполнила свою роль, она может быть подключена через конденсатор, что бывает чаще всего, или кратковременно замыкаться.

Подключение трехфазного двигателя


Обычное подключение трехфазного двигателя к трехфазной сети может стать непростой задачей для тех, кто никогда не сталкивался с ней. В некоторых агрегатах есть только три провода для подключения. Они позволяют сделать это по схеме «звезда». В других приборах есть шесть проводов. В таком случае появляется выбор между треугольником и звездой. Ниже на фото можно видеть реальный пример подключения звездой. В белой обмотке подходит питающий кабель, и он подключается только к трем выводам. Дальше установлены специальные перемычки, которые обеспечивают правильное питание обмоток.

Чтобы было понятнее, как это реализовать самостоятельно, ниже будет приведена схема такого подключения. Подключение треугольником несколько проще, т. к. три дополнительные клеммы отсутствуют. Но это говорит лишь о том, что механизм перемычек реализован уже в самом двигателе. При этом нет возможности повлиять на способ соединения обмоток, а значит необходимо будет соблюсти нюансы при подключении такого двигателя в однофазную сеть.

Подключение к однофазной сети


Трехфазный агрегат с успехом можно подключить к однофазной сети. Но стоит учитывать, что при схеме, которая называется «звезда», мощность агрегата не будет превышать половины его номинальной мощности. Чтобы увеличить этот показатель, необходимо обеспечить подключение по типу «треугольник». В таком случае можно будет добиться лишь 30-процентного падения мощности. Бояться при этом не стоит, ведь в сети 220 вольт невозможно возникновение критического напряжения, которое бы повредило обмотки двигателя.

Схемы подключения


Когда трехфазный двигатель подключен к сети 380, тогда каждая его обмотка запитана от одной фазы. При соединении его к 220 вольтовой сети на две обмотки приходит фазный и нулевой провод, а третья остается незадействованной. Чтобы исправить этот нюанс, необходимо подобрать правильный конденсатор, который в требуемый момент сможет подать на нее напряжение. В идеале в цепи должно быть два конденсатора. Один из них является пусковым, а второй рабочим. Если мощность трехфазного агрегата не превышает 1,5 кВт, и нагрузка на него подается уже после того, как он наберет требуемые обороты, тогда можно использовать только рабочий конденсатор.

В этом случае его необходимо его необходимо установить в разрыв между третьим контактом треугольника и нулевым проводом. Если необходимо добиться эффекта, при котором двигатель будет вращаться в обратном направлении, тогда необходимо на один вывод конденсатора подключить не нулевой, а фазный провод. Если двигатель по мощности превосходит, указанную выше, тогда понадобится еще и пусковой конденсатор. Он монтируется параллельно рабочему. Но стоит учитывать, что в провод, который дет между ними, на разрыв должен быть установлен выключатель без фиксации. Такая кнопка позволит задействовать конденсатор только во время пуска. При этом придется после включения двигателя в сеть несколько секунд удерживать эту клавишу для того, чтобы агрегат набрал требуемые обороты. После этого ее необходимо отпустить, чтобы не сжечь обмотки.

Если потребуется реализовать включение такого агрегат реверсивно, тогда монтируется тумблер на три вывода. Средний должен быть постоянно подключен к рабочему конденсатору. Крайние должны быть подключены к фазному и нулевому проводу. В зависимости от того, в какую сторону должно быть вращение, потребуется выставить тумблер либо на ноль, либо на фазу. Ниже схематически изображена схема такого подключения.

Подбор конденсатора


Не существует универсальных конденсаторов, которые бы подходили ко всем агрегатам без разбора. Их характеристикой служит емкость, которую они способны держать. Поэтому каждый придется подбирать индивидуально. Основным требованием для него будет работа при напряжении сети в 220 вольт, чаще они рассчитаны на 300 вольт. Чтобы определиться, какой именно элемент потребуется, необходимо воспользоваться формулой. Если соединение осуществляется звездой, тогда необходимо силу тока разделить на напряжение в 220 вольт и умножить на 2800. Показателем силы тока берется цифра, которая указана в характеристиках двигателя. Для подключения треугольником формула остается такой же, но последний коэффициент изменяется на 4800.

Например, если на агрегате написано, что номинальный ток, который может протекать по его обмоткам составляет 6 ампер, тогда емкость рабочего конденсатора будет 76 мкФ. Это при подключении звездой, для подключения треугольником результат будет 130 мкФ. Но выше говорилось, что если агрегат испытывает нагрузку при старте или имеет мощность больше 1,5 кВт, тогда понадобится еще один конденсатор – пусковой. Его емкость обычно в 2 или в 3 раза больше рабочего. То есть для соединения звездой понадобится второй конденсатор с емкостью 150–175 мкФ. Подбирать его придется опытным путем. В продаже может не быть конденсаторов требуемой емкости, тогда можно собрать блок для получения требуемой цифры. Для этого доступные конденсаторы соединяются параллельно, чтобы их емкость сложилась.

Почему пусковые конденсаторы лучше подбирать опытным путем начиная с наименьшего? Дело в том, что при недостаточном его значении будет подаваться ток большего значения, что может вывести из строя обмотки. Если его значение будет больше требуемого, тогда агрегату будет недостаточно импульса для запуска. Более наглядно представить себе подключение можно с помощью видео.

Вывод


Во время работы с электрическим током соблюдайте технику безопасности. Не запускайте ничего, если до конца неуверены в правильности выполненного подключения. Обязательно посоветуйтесь с опытным электриком, который подскажет, сможет ли проводка выдержать требуемую нагрузку от агрегата.

Подключение трехфазного двигателя к однофазной сети

Здравствуйте,  дорогие читатели и гости сайта «Заметки электрика».

Частенько у каждого из нас возникает необходимость в гараже или на даче подключить трехфазный асинхронный двигатель, например, для наждачного или сверлильного станка, бетономешалки и т.п.

А в наличии имеется только источник однофазного напряжения.

Как быть в данной ситуации?

Все просто. Необходимо трехфазный асинхронный двигатель включить как конденсаторный по следующим классическим схемам.

Еще раз напоминаю, что это самые распространенные схемы подключения трехфазного двигателя к однофазной сети. Существует еще несколько способов включения, но о них в данной статье мы говорить не будем.

Как видно из схем, это осуществляется с помощью рабочего и пускового конденсаторов. Их еще называют фазосдвигающими.

Кстати, со схемой соединения звездой и треугольником обмоток асинхронного двигателя я Вас знакомил в прошлой статье. 

 

Выбор емкости конденсаторов

1. Выбор емкости рабочего конденсатора

Величина емкости рабочего конденсатора (Сраб.) рассчитывается по формуле:

Полученное значение емкости рабочего конденсатора получается в (мкФ).

Вышеприведенная формула может показаться Вам сложной, поэтому Вашему вниманию предлагаю более легкий вариант расчета емкости рабочего конденсатора для подключения трехфазного двигателя к однофазной сети. Для этого Вам необходимо лишь знать мощность (кВт) асинхронного двигателя.

Если сказать еще более проще, то на каждые 100 (Вт) мощности трехфазного двигателя необходимо порядка 7 (мкФ) емкости рабочего конденсатора.

При выборе емкости рабочего конденсатора необходимо контролировать ток в фазных обмотках статора в установившемся режиме. Этот ток не должен превышать номинального значения.

2. Выбор емкости пускового конденсатора

Если же у Вас пуск электродвигателя происходит при значительной нагрузке на валу, то параллельно рабочему конденсатору необходимо включать пусковой конденсатор. Включается он только на время пуска двигателя (примерно 2-3 секунды) с помощью ключа SA до набора номинальной частоты вращения ротора, а затем отключается.

Что случится, если забыть отключить пусковые конденсаторы?

Если забыть отключить пусковые конденсаторы, то возникнет сильный перекос по токам в фазах и двигатель может перегреться.

Величина емкости пускового конденсатора выбирается в 2,5-3 раза больше емкости рабочего конденсатора.

В таком случае пусковой момент двигателя становится номинальным и двигатель запустится без проблем.

Необходимая емкость набирается с помощью параллельного и последовательного соединения конденсаторов. Об этом я напишу отдельную статью в разделе «Электротехника«. Следите за обновлениями на сайте. Подписывайтесь на новые статьи.

Трехфазные двигатели мощностью до 1 (кВт) можно включать в однофазную сеть только с рабочим конденсатором. Пусковой конденсатор можно не применять.

Выбор типа конденсаторов

Как выбрать емкость рабочих и пусковых конденсаторов Вы уже знаете. Теперь необходимо разобраться, какой тип конденсаторов можно применять в представленных схемах.

Желательно использовать один и тот же тип конденсаторов, как для рабочих, так и для пусковых конденсаторов.

Чаще всего, для подключения трехфазного двигателя в однофазную сеть, применяют бумажные конденсаторы в металлическом герметичном корпусе типа МПГО, МБГП, КБП или МБГО.

Кое-что я нашел у себя в запасе.

Практически все они имеют прямоугольную форму.

На самом корпусе можно увидеть их параметры:

  • емкость (мкФ)
  • рабочее напряжение (В)

Но у бумажных конденсаторов есть один недостаток — они выпускаются слишком громоздкие и при этом имеют небольшую емкость. Поэтому при включении трехфазного двигателя небольшой мощности в однофазную сеть, батарея набранных конденсаторов получается «солидная».

Также вместо бумажных конденсаторов  можно применять и электролитические, но схема их подключения совершенно другая и содержит в себе дополнительные элементы в виде диодов и резисторов.

Применять Вам электролитические конденсаторы я Вам настоятельно не рекомендую!!!

У них есть недостаток в виде того, что при пробое диода через конденсатор пойдет переменный ток, что вызовет его нагрев и взрыв (выход его из строя).

Тем более, что в современной электронике вышли в свет новые металлизированные полипропиленовые конденсаторы переменного тока типа СВВ.

Вот например, СВВ60 в круглом корпусе.

Или СВВ61 в прямоугольном корпусе.

В основном, они выпускаются на напряжение 400-450 (В). Вот на них то и стоит обратить внимание — очень хорошо себя зарекомендовали. Нареканий к ним нет. Кстати, такой же конденсатор у меня стоит на сверлильном станке в мастерской.

 

 

Выбор напряжения конденсаторов

Также при выборе конденсаторов для трехфазного двигателя в однофазной сети важно правильно учитывать их рабочее напряжение.

Если выбрать конденсатор с большим запасом по напряжению, то это будет не целесообразно и приведет к дополнительным затратам и увеличению габаритных размеров нашей установки.

Если же выбрать конденсатор с рабочим напряжением меньше, чем напряжение сети, то это приведет к преждевременному выходу из строя конденсаторов (даже возможен взрыв).

Принято выбирать рабочее напряжение конденсаторов  для схем, указанных в данной статье, равное 1,15 напряжению сети, а еще лучше не менее 300 (В).

Вроде бы все ясно и понятно. Но не стоит забывать, что при использовании бумажных конденсаторов в сети переменного напряжения следует разделить их рабочее напряжение примерно в 1,5-2 раза.

Например, если на бумажном конденсаторе указано напряжение 180 (В), то его рабочее напряжение при переменном токе следует принять 90-120 (В).

 

Пример подключения трехфазного двигателя к однофазной сети

Чтобы закрепить теорию на практике, рассмотрим пример выбора конденсаторов для подключения трехфазного двигателя АОЛ 22-4 мощностью 400 (Вт) в однофазную сеть. Кстати я уже описывал устройство этого двигателя в предыдущих статьях. Прочитать про него можете здесь.

Цель нашего эксперимента — запустить этот двигатель от однофазной сети 220 (В).

Данные двигателя АОЛ 22-4:

Т.к. мощность этого двигателя небольшая (до 1 кВт), то для его запуска в однофазной сети достаточно будет применить только рабочий конденсатор.

Определим емкость рабочего конденсатора:

Исходя из формул, принимаем среднее значение емкости рабочего конденсатора равной 25 (мкФ).

Для эксперимента я буду использовать емкость 10 (мкФ). Заодно и посмотрим, можно ли использовать емкость чуть ниже расчетной.

Далее идем в кладовку и ищем подходящие конденсаторы. Нашлись конденсаторы типа МБГО.

Теперь нам необходимо, применив навыки электротехники

, собрать из этих конденсаторов необходимую нам емкость.

Емкость одного конденсатора составляет 10 (мкФ).

При параллельном соединении 2 конденсаторов мы получим емкость, равную 20 (мкФ). Но рабочее напряжение у них составляет всего 160 (В). Поэтому для увеличения рабочего напряжения до 320 (В), эти 2 конденсатора соединим последовательно с 2 такими же конденсаторами, соединенных параллельно. Общая их емкость получится 10 (мкФ). Вот как это получилось.

Подключаем полученную батарею рабочих конденсаторов согласно схемы, представленной в начале данной статьи и пробуем запустить трехфазный двигатель в однофазной сети.

Дальнейшие итоги нашего эксперимента смотрите на видео.

Эксперимент завершился УДАЧНО!!!

И вообще мне показалось, что запуск двигателя от однофазной сети с помощью конденсаторов произошел легче и быстрее, чем от трехфазной сети…Выслушаю и Ваше мнение по этому поводу!!!

При включении трехфазного асинхронного двигателя в однофазную сеть его полезная мощность не превысит 70-80% номинальной мощности, а частота вращения ротора  практически равна номинальной.

Примечание 1: если у Вас двигатель 380/220 (В), то подключать его в сеть 220 (В) необходимо только треугольником.

Примечание 2: если на бирке указана только схема звезды с напряжением 380 (В), то подключить такой двигатель в однофазную сеть 220 (В) получится только при одном условии. Нужно «распотрошить» общую точку звезды и вывести в клеммник 6 концов. Общая точка чаще всего находится в лобовой части двигателя.

Я думаю Вам будет интересно продолжение этой статьи о том, как осуществить реверс трехфазного двигателя, подключенного к однофазной сети.

P.S. Задавайте вопросы по данной теме в комментариях, я с удовольствием отвечу Вам. А также подписывайтесь на новые статьи. Дальше будет интереснее.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Схема подключения трехфазного электродвигателя

Некоторые мастера самостоятельно собирают станки по обработке древесины или металла в домашних условиях. Для этого могут использоваться любые доступные двигатели подходящей мощности. В некоторых случаях приходится разбираться с тем, как подключить трехфазный двигатель к однофазной сети. Именно этой теме и посвящена статья. Также будет рассказано о том, как правильно подобрать требуемые конденсаторы.

Однофазные и трехфазные


Чтобы правильно понимать предмет обсуждения, который объясняет подключение двигателя 380 на 220 вольт, необходимо разобраться, в чем лежит принципиальное отличие таких агрегатов. Все трехфазные двигатели являются асинхронными. Это означает, что фазы в нем подключены с некоторым смещением. Конструктивно двигатель состоит из корпуса, в который помещена статическая часть, которая не вращается, ее называют статором. Также есть вращающийся элемент, который называется ротором. Ротор находится внутри статора. На статор подается трехфазное напряжение, каждая фаза по 220 вольт. После этого происходит образование электромагнитного поля. Из-за того, что фазы находятся в угловом смещении, появляется электродвижущая сила. Она и заставляет ротор, который находится в магнитном поле статора вращаться.

Обратите внимание! Напряжение на обмотки трехфазного двигателя подается через тип соединения, которое выполняется в форме звезды или треугольника.

Однофазные асинхронные агрегаты имеют немного иной тип подключения, т. к. питаются от сети 220 вольт. В ней есть только два провода. Один называется фазным, а второй нулевым. Чтобы запуститься, двигателю необходимо иметь только одну обмотку, к которой подключается фаза. Но только одной будет мало для пускового импульса. Поэтому присутствует еще она обмотка, которая задействована во время пуска. Чтобы она выполнила свою роль, она может быть подключена через конденсатор, что бывает чаще всего, или кратковременно замыкаться.

Подключение трехфазного двигателя


Обычное подключение трехфазного двигателя к трехфазной сети может стать непростой задачей для тех, кто никогда не сталкивался с ней. В некоторых агрегатах есть только три провода для подключения. Они позволяют сделать это по схеме «звезда». В других приборах есть шесть проводов. В таком случае появляется выбор между треугольником и звездой. Ниже на фото можно видеть реальный пример подключения звездой. В белой обмотке подходит питающий кабель, и он подключается только к трем выводам. Дальше установлены специальные перемычки, которые обеспечивают правильное питание обмоток.

Чтобы было понятнее, как это реализовать самостоятельно, ниже будет приведена схема такого подключения. Подключение треугольником несколько проще, т. к. три дополнительные клеммы отсутствуют. Но это говорит лишь о том, что механизм перемычек реализован уже в самом двигателе. При этом нет возможности повлиять на способ соединения обмоток, а значит необходимо будет соблюсти нюансы при подключении такого двигателя в однофазную сеть.

Подключение к однофазной сети


Трехфазный агрегат с успехом можно подключить к однофазной сети. Но стоит учитывать, что при схеме, которая называется «звезда», мощность агрегата не будет превышать половины его номинальной мощности. Чтобы увеличить этот показатель, необходимо обеспечить подключение по типу «треугольник». В таком случае можно будет добиться лишь 30-процентного падения мощности. Бояться при этом не стоит, ведь в сети 220 вольт невозможно возникновение критического напряжения, которое бы повредило обмотки двигателя.

Схемы подключения


Когда трехфазный двигатель подключен к сети 380, тогда каждая его обмотка запитана от одной фазы. При соединении его к 220 вольтовой сети на две обмотки приходит фазный и нулевой провод, а третья остается незадействованной. Чтобы исправить этот нюанс, необходимо подобрать правильный конденсатор, который в требуемый момент сможет подать на нее напряжение. В идеале в цепи должно быть два конденсатора. Один из них является пусковым, а второй рабочим. Если мощность трехфазного агрегата не превышает 1,5 кВт, и нагрузка на него подается уже после того, как он наберет требуемые обороты, тогда можно использовать только рабочий конденсатор.

Обратите внимание! Без дополнительных конденсаторов или других приспособлений подключить напрямую двигатель на 380 к 220 не получиться.

В этом случае его необходимо его необходимо установить в разрыв между третьим контактом треугольника и нулевым проводом. Если необходимо добиться эффекта, при котором двигатель будет вращаться в обратном направлении, тогда необходимо на один вывод конденсатора подключить не нулевой, а фазный провод. Если двигатель по мощности превосходит, указанную выше, тогда понадобится еще и пусковой конденсатор. Он монтируется параллельно рабочему. Но стоит учитывать, что в провод, который дет между ними, на разрыв должен быть установлен выключатель без фиксации. Такая кнопка позволит задействовать конденсатор только во время пуска. При этом придется после включения двигателя в сеть несколько секунд удерживать эту клавишу для того, чтобы агрегат набрал требуемые обороты. После этого ее необходимо отпустить, чтобы не сжечь обмотки.

Если потребуется реализовать включение такого агрегат реверсивно, тогда монтируется тумблер на три вывода. Средний должен быть постоянно подключен к рабочему конденсатору. Крайние должны быть подключены к фазному и нулевому проводу. В зависимости от того, в какую сторону должно быть вращение, потребуется выставить тумблер либо на ноль, либо на фазу. Ниже схематически изображена схема такого подключения.

Подбор конденсатора


Не существует универсальных конденсаторов, которые бы подходили ко всем агрегатам без разбора. Их характеристикой служит емкость, которую они способны держать. Поэтому каждый придется подбирать индивидуально. Основным требованием для него будет работа при напряжении сети в 220 вольт, чаще они рассчитаны на 300 вольт. Чтобы определиться, какой именно элемент потребуется, необходимо воспользоваться формулой. Если соединение осуществляется звездой, тогда необходимо силу тока разделить на напряжение в 220 вольт и умножить на 2800. Показателем силы тока берется цифра, которая указана в характеристиках двигателя. Для подключения треугольником формула остается такой же, но последний коэффициент изменяется на 4800.

Например, если на агрегате написано, что номинальный ток, который может протекать по его обмоткам составляет 6 ампер, тогда емкость рабочего конденсатора будет 76 мкФ. Это при подключении звездой, для подключения треугольником результат будет 130 мкФ. Но выше говорилось, что если агрегат испытывает нагрузку при старте или имеет мощность больше 1,5 кВт, тогда понадобится еще один конденсатор – пусковой. Его емкость обычно в 2 или в 3 раза больше рабочего. То есть для соединения звездой понадобится второй конденсатор с емкостью 150–175 мкФ. Подбирать его придется опытным путем. В продаже может не быть конденсаторов требуемой емкости, тогда можно собрать блок для получения требуемой цифры. Для этого доступные конденсаторы соединяются параллельно, чтобы их емкость сложилась.

Обратите внимание! Есть некоторое ограничение по мощности трехфазных агрегатов, которые можно запитать от однофазной сети. Оно составляет 3 кВт. При превышении этого значения может выйти из строя проводка.

Почему пусковые конденсаторы лучше подбирать опытным путем начиная с наименьшего? Дело в том, что при недостаточном его значении будет подаваться ток большего значения, что может вывести из строя обмотки. Если его значение будет больше требуемого, тогда агрегату будет недостаточно импульса для запуска. Более наглядно представить себе подключение можно с помощью видео.

Вывод


Во время работы с электрическим током соблюдайте технику безопасности. Не запускайте ничего, если до конца неуверены в правильности выполненного подключения. Обязательно посоветуйтесь с опытным электриком, который подскажет, сможет ли проводка выдержать требуемую нагрузку от агрегата.

Отправить комментарий

Запуск 3х фазного двигателя от 220 Вольт

Запуск 3х фазного двигателя от 220 Вольт

 

Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель, а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.

Читаем подробно далее

 

 

Емкость применяемого конденсатора, зависит от мощности электродвигателя и рассчитывается по формуле

С = 66·Рном ,

где С — емкость конденсатора, мкФ,   Рном — номинальная мощность электродвигателя, кВт.

То есть можно считать, что на каждые 100 Вт мощности трехфазного электродвигателя требуется около 7 мкФ электрической емкости.

Например, для электродвигателя мощностью 600 Вт нужен конденсатор емкостью 42 мкФ. Конденсатор такой емкости можно собрать из нескольких параллельно соединенных конденсаторов меньшей емкости:

Cобщ = C1 + C1 + … + Сn

Итак, суммарная емкость конденсаторов для двигателя мощностью 600 Вт должна быть не менее 42 мкФ. Необходимо помнить, что подойдут конденсаторы, рабочее напряжение которых в 1,5 раза больше напряжения в однофазной сети.

В качестве рабочих конденсаторов могут быть использованы конденсаторы типа КБГ, МБГЧ, БГТ. При отсутствии таких конденсаторов применяют и электролитические конденсаторы. В этом случае корпуса конденсаторов электролитических соединяются между собой и хорошо изолируются.

Отметим, что частота вращения трехфазного электродвигателя, работающего от однофазной сети, почти не изменяется по сравнению с частотой вращения двигателя в трехфазном режиме.

Большинство трехфазных электродвигателей подключают в однофазную сеть по схеме «треугольник» (рис. 1). Мощность, развиваемая трехфазным электродвигателем, включенным по схеме «треугольник», составляет 70-75% его номинальной мощности.

Рис 1.   Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»

Трехфазный электродвигатель подключают так же по схеме «звезда» (рис. 2).

 

Рис. 2.   Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»

 

Чтобы произвести подключение по схеме «звезда», необходимо две фазные обмотки электродвигателя подключить непосредственно в однофазную сеть (220 В), а третью — через рабочий конденсатор (Ср) к любому из двух проводов сети.

Для пуска трехфазного электродвигателя небольшой мощности обычно достаточно только рабочего конденсатора, но при мощности больше 1,5 кВт электродвигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применять еще пусковой конденсатор (Сп). Емкость пускового конденсатора в 2,5-3 раза больше емкости рабочего конденсатора. В качестве пусковых конденсаторов лучше всего применяют электролитические конденсаторы типаЭП или такого же типа, как и рабочие конденсаторы.

Схема подключения трехфазного электродвигателя с пусковым конденсатором Сп показана на рис. 3.

 

Рис. 3.   Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором С
п

 

Нужно запомнить: пусковые конденсаторы включают только на время запуска трехфазного двигателя, подключенного к однофазной сети на 2-3 с, а затем пусковой конденсатор отключают и разряжают.

Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого возьмите любой из 6 наружных выводов электродвигателя и присоедините его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1, а его конец — С4. Аналогично найдем начало и конец второй обмотки и обозначим их C2 и C5, а начало и конец третьей — СЗ и С6.

Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигателя согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим двигатель в однофазную сеть с использованием конденсаторов.

Если двигатель без сильного гудения сразу наберет номинальную частоту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке поменяйте местами выводы С1 и С4. Если это не помогает, концы первой обмотки верните в первоначальное положение и теперь уже выводы C2 и С5 поменяйте местами. То же самое сделайте в отношении третьей пары, если двигатель продолжает гудеть.

При определении начал и концов фазных обмоток статора электродвигателя строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.

Для изменения направления вращения ротора трехфазного электродвигателя, включенного в однофазную сеть по схеме «треугольник» (см. рис. 1), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).

Чтобы изменить направление вращения трехфазного электродвигателя, включенного в однофазную сеть по схеме «звезда» (см. рис. 2, б), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V). Направление вращения однофазного двигателя изменяют, поменяв подключение концов пусковой обмотки П1 и П2 (рис. 4).

При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо детально осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, смазать их, очистить корпус двигателя от грязи и пыли.

Чтобы заменить поврежденные подшипники, удалите их винтовым съемником с вала и промойте бензином место посадки подшипника. Новый подшипник нагрейте в масляной ванне до 80° С. Уприте металлическую трубу, внутренний диаметр которой немного превышает диаметр вала, во внутреннее кольцо подшипника и легкими ударами молотка по трубе насадите подшипник на вал электродвигателя. После этого заполните подшипник на 2/3 объема смазкой. Сборку производите в обратном порядке. В правильно собранном электродвигателе ротор должен вращаться без стука и вибрации.

 

Рис. 4.   Изменение направления вращения ротора однофазного двигателя переключением пусковой обмотки

 

220В или 380В? — подключение электродвигателя к сети

Сложно представить гараж или собственный дом, в котором имеется мастерская без установленных в них электроприборов. Учитывая довольно высокую стоимость, которых владельцы мастерской стараются изготовить их самостоятельно.

Это могут быть заточные станки или более сложные механизмы, использующие электродвигатели. В каждом гараже всегда можно найти двигатель от неисправной бытовой техники.

Электроснабжение гаражей осуществляется от сети напряжением 220 вольт. Двигатели от бытовой техники однофазные, а при изготовлении станка появляется необходимость в схеме подключения двигателя.

Подключение однофазного коллекторного и асинхронного моторов к сети 220 вольт

В бытовой технике используются коллекторные или асинхронные двигатели. Схема подключения однофазного двигателя при использовании таких электродвигателей будет разная. Для того чтобы выбрать правильную схему необходимо знать тип двигателя.

Это сделать очень просто, если сохранился шильдик. При его отсутствии следует посмотреть, имеются ли щетки. При их наличии электродвигатель коллекторный, если они отсутствуют — двигатель асинхронный.

Схема подсоединения коллекторного двигателя очень проста. Достаточно имеющиеся провода подключить к сети 220 вольт и мотор должен заработать.

Основным недостатком таких моторов большой шум в процессе работы. К достоинствам можно отнести легкость регулировки оборотов. Существует более сложная схема для подключения однофазного асинхронного двигателя.

Они бывают однофазные и трехфазные. Однофазные электродвигатели выпускают с пусковой обмоткой (бифилярные) и конденсаторные.

В момент пуска таких моторов пусковая обмотка замыкается, а после достижения необходимых оборотов отключается специальными устройствами. На практике такие электродвигатели включаются специальными кнопками, у которых средние контакты при нажатии замыкаются, а после отпускания кнопки размыкаются. Это так называемые кнопки ПНВС они специально сконструированы для работы с такими электродвигателями.

В конденсаторных имеется две обмотки, которые работают постоянно. Они смещены относительно друг друга на 90º , благодаря чему можно осуществить реверс.

Схема подключения асинхронного двигателя на 220в ненамного сложнее включения коллекторного. Отличие состоит в том, что к вспомогательной обмотке подсоединяется конденсатор. Его номинал рассчитывается по сложной формуле.

 

Но опираясь на эмпирические данные его, подбирают из расчета 70 Мкф на 1 Квт мощности, а рабочий конденсатор в 2–3 раза меньше, и соответственно имеет параметры 25–30 Мкф на 1 Квт.

Для того чтобы осуществить подключение однофазного двигателя необходимо подключить конденсатор к вспомогательной обмотке, схема несложная и ее может собрать любой человек.

Достаточно иметь необходимые комплектующие и не перепутать обмотки. Определить назначение обмоток можно с помощью тестера, измерив, сопротивление. Пусковая обмотка имеет в два раза большее сопротивление, чем рабочая.

Схемы включения однофазного электродвигателя

Для включения двигателя применяются три схемы подключения электродвигателей на напряжение 220 в. Для тяжелого пуска устройств, таких как бетономешалка, применяют схему с подсоединением пускового конденсатора с последующим его отключением. Существует более простая схема подключения однофазного двигателя с постоянным подключением конденсатора малой емкости к пусковой обмотке, она применяется наиболее часто.

 

 

При этом параллельно рабочему конденсатору во время пуска подключается дополнительный конденсатор.

Для того чтобы наиболее полно раскрыть возможности двигателя применяется схема с постоянно подсоединенным конденсатором к вспомогательной обмотке.

Это самая распространенная схема подключения, с помощью которой подключают любой однофазный асинхронный двигатель при изготовлении заточного станка. При использовании таких схем подсоединения следует знать, что двигатель не сможет развивать полную мощность.

Подключение трехфазных электродвигателей

Часто возникает необходимость в подсоединении асинхронного двигателя,предназначенного для подключения к трехфазной сети в однофазную. Схема подключения трехфазного мотора не сильно отличается от подсоединения однофазного.

Подключение к однофазной сети 220 вольт

Основное отличие состоит в конструкции самого двигателя. В нем имеются равнозначные обмотки, которые соединяются звездой или треугольником. Все зависит от рабочего напряжения.

Схема подключения трехфазного двигателя к однофазной сети включает в себя магнитный пускатель, кнопку включения — выключения и конденсатор. Емкость конденсатора рассчитывается по формуле.

Эта формула справедлива для соединения звездой. И позволяет подобрать рабочий конденсатор.

Вторая формула позволяет рассчитать номинальную емкость для работы с электродвигателем при соединении обмоток треугольником.

Номинал конденсатора можно рассчитать по упрощенной формуле:

Часто при запуске по такой схеме используют пусковой конденсатор, который включают параллельно с рабочим. И выбирается из условий:

Если необходимого номинала нет, то подбор конденсаторов возможен из имеющихся комплектующих при соединении их параллельно или последовательно.

При параллельном соединении емкость суммируется, т. е. увеличивается. А при последовательном соединении уменьшается. И будет меньше меньшего номинала. При подборе конденсаторов необходимо учитывать рабочее напряжение, которое должно быть выше сетевого в 1,5 раза.

При монтаже следует иметь в виду, что схема подключения 3х фазного двигателя предполагает включение конденсатора к третьей обмотке, что позволяет использовать моторы в однофазной сети 220 вольт.

Для того чтобы использовать механизм на полную мощность, следует подключить его к трехфазной сети.

Подключение к трехфазной сети

Для подключения 3 х фазного двигателя на напряжение 380 вольт схема представляет собой соединение обмоток звездой. Соединение треугольником применяется при наличии трехфазной сети на 220 вольт.

Схема подключения асинхронного двигателя к трехфазной сети имеет пускатель на три фазы, кнопку «пуск – стоп» и двигатель. Но в быту имеется однофазное подключение к гаражу или мастерской. Поэтому и возникает необходимость подключения 3х фазного двигателя через конденсаторы к сети 220 вольт, когда используется схема с применением фазосдвигающей цепочки.

Для сдвига фазы применяют конденсатор, который подключают к одной из фаз, а две другие подключают к электрической сети. Это стандартная схема подключения асинхронного двигателя, применяемая для подключения к однофазной сети. При изготовлении всевозможных станков возникает необходимость в реверсивном включении механизмов.

Реверсивная схема подключения при включении трехфазного двигателя к однофазной сети производится по следующей методике.

Достаточно переключить сетевой провод с одного контакта конденсатора на другой. В результате вал начнет вращаться в обратную сторону.

Сложнее осуществляется схема реверсивного подключения двигателя на 380 вольт, если имеется трехфазное соединение.

Для этого применяется принципиальная схема подключения электродвигателя с применением двух магнитных пускателей. С помощью одного из них производится переключение фаз на обмотках.

Второй имеет стандартное включение. При монтаже необходимо предусмотреть защиту от одновременного включения пускателей. В противном случае произойдет короткое замыкание.

Техника безопасности

При самостоятельном подключении электродвигателей следует соблюдать несложные правила. Не работать при подключенном напряжении.

Строго соблюдать правила техники безопасности. Во время работы применять средства индивидуальной защиты.

Нельзя допускать к работе с электричеством необученных людей и детей возрастом менее восемнадцать лет.

Следует помнить, что электричество не имеет запаха и нельзя определить на глаз его наличие на контактах. Обязательно, для определения напряжения использовать только разрешенные средства измерения.

Как подключить трехфазный двигатель высокого и низкого напряжения

Трехфазный двигатель более эффективен, чем однофазный, из-за особенностей переменного тока. Когда питание двигателя подается по трем проводам, а не только по одному, и подача энергии проходит через каждый из них последовательно (отсюда, часть «А» переменного тока), это обеспечивает эффективный уровень мощности, равный √3-кратному выше (примерно в 1,728 раза), чем у соответствующей однофазной схемы.Как вы помните, электрическая мощность — это уровень напряжения, умноженный на ток.

Трехфазный двигатель может иметь одну из двух конфигураций: Y-образный (часто пишется «звезда», как это произносится) или треугольный. Кроме того, эти двигатели имеют шесть или девять выводов. При установке с шестью выводами вы не можете выбрать, получаете ли вы систему высокого или низкого напряжения, но при установке с девятью выводами вы можете выбрать любой из них, используя любую конфигурацию. Это дает в общей сложности четыре варианта подключения.

В вашей схеме также могут использоваться программируемые логические переключатели или ПЛК.

Для справки: L1, L2 и L3 обычно черные, красные и синие соответственно. Провода двигателя (от T1 до T9) обычно в порядке: синий, белый, оранжевый, желтый, черный, серый, розовый, красный и кирпично-красный. При выполнении следующих шагов, если возможно, обратитесь к диаграмме.

Схема «звезда», низкое напряжение

Подключите 1 и 7 к L1, 2 и 8 к L2, а 3 и 9 к L3. Соедините оставшиеся выводы (4, 5 и 6) вместе.

Схема «звезда», высокое напряжение

Подключите 1 к L1, 2 к L2 и 3 к L3. Затем подключите 4 к 7, 5 к 8 и 6 к 9.

Дельта-конфигурация, низкое напряжение

Подключите 1, 6 и 7 к L1; 2, 4 и 8 к L2; и 3, 5 и 9 — L3.

Дельта-конфигурация, высокое напряжение

Подключите 1 к L1, 2 к L2 и 3 к L3. Подключите 4 к 7, 5 к 8 и 6 к 9.

Схемы подключения двигателя

Маркировка проводов электродвигателя и соединения

Для конкретных подключений двигателей Leeson перейдите на их веб-сайт и введите номер каталога Leeson в поле «Обзор», вы найдете данные подключения, размеры, данные паспортной таблички и т. Д.www.leeson.com

Однофазные соединения: (трехфазные — см. Ниже)
Однофазные соединения:

Вращение L1 L2
против часовой стрелки 1,8 4,5
CW 1,5 4,8

Двойное напряжение: (только основная обмотка)

Напряжение Вращение L1 L2 Присоединиться
Высокая против часовой стрелки 1 4,5 2 и 3 и 8
CW 1 4,8 2 и 3 и 5
Низкая против часовой стрелки 1,3,8 2,4,5 ——-
CW 1,3,5 2,4,8 ——-

Двойное напряжение: (основная и вспомогательная обмотки)

Напряжение Вращение L1 L2 Присоединиться
Высокая против часовой стрелки 1,8 4,5 2 и 3,6 и 7
CW 1,5 4,8 2 и 3,6 и 7
Низкая против часовой стрелки 1,3,6,8 2,4,5,7 ———
CW 1,3,5,7 2,4,6,8 ———

Маркировка однофазных клемм по цвету: (Стандарты NEMA)
1-Синий 5-Черный P1-Цвет не назначен
2-Белый 6-Цвет не назначен P2-Коричневый
3-Оранжевый 7-Цвет не назначен
4- Желтый 8-Красный

Трехфазные соединения:

Начало обмотки детали:
6 отведений Номенклатура NEMA:
WYE или Delta Connected

Т1 T2 T3 T7 T8 T9
Выводы двигателя 1 2 3 7 8 9

9 выводов Номенклатура NEMA
WYE Connected (только для низкого напряжения)

Т1 T2 T3 T7 T8 T9 Вместе
Выводы двигателя 1 2 3 7 8 9 4 и 5 и 6

12 выводов Номенклатура NEMA и IEC
Одно- или низковольтные двигатели с двойным напряжением

Т1 T2 T3 T7 T8 T9
NEMA 1,6 2,4 3,5 7,12 8,10 9,11
МЭК 1 2 3 7 8 9

Трехфазные односкоростные двигатели

Номенклатура Nema — 6 выводов:

Одно напряжение — внешнее соединение WYE

L1 L2 L3 Присоединиться
1 2 3 4 и 5 и 6

Одиночное напряжение — внешнее соединение треугольником

Соединения одиночного напряжения WYE-треугольник

Режим работы Соединение L1 L2 L3 Присоединиться
Старт WYE 1 2 3 4 и 5 и 6
Бег Дельта 1,6 2,4 3,5 ——-

Соединения двойного напряжения WYE-треугольник

Напряжение Соединение L1 L2 L3 Присоединиться
Высокая WYE 1 2 3 4 и 5 и 6
Низкая Дельта 1,6 2,4 3,5 ——-

Номенклатура NEMA — 9 выводов:
Двойное напряжение, соединение WYE

Напряжение L1 L2 L3 Присоединиться
Высокая 1 2 3 4 и 7, 5 и 8, 6 и 9
Низкая 1,7 2,8 3,9 4 и 5 и 6

Двойное напряжение, соединение по треугольнику

Напряжение L1 L2 L3 Присоединиться
Высокая 1 2 3 4 и 7, 5 и 8,6 и 9
Низкая 1,6,7 2,4,8 3,5,9 ————

Номенклатура NEMA — 12 выводов:
, двойное напряжение — внешнее соединение WYE

Напряжение L1 L2 L3 Присоединиться
Высокая 1 2 3 4 и 7, 5 и 8, 6 и 9, 10 и 11 и 12
Низкая 1,7 2,8 3,9 4 и 5 и 6, 10 и 11 и 12

Двойное напряжение
Пуск, соединение WYE
Работа, соединение треугольником

Напряжение Соед. L1 L2 L3 Присоединиться
Высокая WYE 1 2 3 4 и 7, 5 и 8, 6 и 9, 10 и 11 и 12
Дельта 1,12 2,10 3,11 4 и 7, 5 и 8, 6 и 9
Низкая WYE 1,7 2,8 3,9 4 и 5 и 6, 10 и 11 и 12
Дельта 1,6,7,12 2,4,8,10 3,5,9,11 ————

Номенклатура IEC — 6 и 12 выводов:
Соединения WYE-треугольник с одним напряжением Соединения WYE-треугольник с одним напряжением

рабочий режим
Соед. L1 L2 L3 Присоединиться
Старт WYE U1 V1 W1 U2 и V2 и W2
Бег Дельта U1, W2 В1, У2 W1, V2 —————

Соединения двойного напряжения WYE-треугольник

Вольт Соед. L1 L2 L3 Присоединиться
Высокая WYE U 1 V1 W1 U2 и V2 и W2
Низкая Дельта U1, W2 В1, У2 W1, V2 —————

Пуск с двойным напряжением, соединением по схеме «звезда»
, соединение по схеме «треугольник»

Вольт Соед. L1 L2 L3 Присоединиться
Высокая WYE U 1 V1 W1 U2 и U5, V2 и V5, W2 и W5, U6 и V6 и W6
Дельта U1, W6 V1, U6 W1, V6 U2 и U5, V2 и V5,
W2 и W5
НИЗКАЯ WYE U1, U5 V1, V5 W1, W5 U2 и V2 и W2,
U6 и V6 и W6
Дельта U1, U5,
W2, W6
V1, V5
U2, U6
W1, W5
V2, V6
——————————

Номенклатура NEMA — 6 выводов:
Соединение с постоянным крутящим моментом
(низкоскоростное HP составляет половину высокоскоростного HP)

Скорость L1 L2 L3 Типовое соединение
Высокая 6 4 5 1, 2 и 3 Присоединиться 2 WYE
Низкая 1 2 3 4-5-6 Открыть 1 Дельта

Соединение с регулируемым крутящим моментом (низкоскоростное HP составляет 1/4 высокоскоростного HP)

Скорость L1 L2 L3 Типовое соединение
Высокая 6 4 5 1, 2 и 3 Присоединиться 2 WYE
Низкая 1 2 3 4-5-6 Открыть 1 WYE

Подключение постоянной мощности (одинаковая мощность на обеих скоростях)

Скорость L1 L2 L3 Типовое соединение
Высокая 6 4 5 1-2-3 Открыть 1 Дельта
Низкая 1 2 3 4, 5 и 6 стыков 2 WYE

Номенклатура IEC — 6 выводов:
Соединение с постоянным крутящим моментом

Скорость L1 L2 L3 Типовое соединение
Высокая 2 Вт 2U 2 В 1U, 1V и 1W — ПРИСОЕДИНЯЙТЕСЬ 2 WYE
Низкая 1U 1 В 1 Вт 2U-2V-2W ОТКРЫТЬ 1 Дельта

Соединение с регулируемым крутящим моментом

Скорость L1 L2 L3 Типовое соединение
Высокая 2 Вт 2U 2 В 1U, 1V и 1W — ПРИСОЕДИНЯЙТЕСЬ 2 WYE
Низкая 1U 1 В 1 Вт 2U-2V-2W ОТКРЫТЬ 1 WYE

Основная проводка для управления двигателем — Руководство по техническим данным

Схемы электрических соединений

На схемах показаны подключения к контроллеру.Схемы подключения, иногда называемые « основной, » или «, конструкция, », , схемы , показывают фактические точки подключения проводов к компонентам и клеммам контроллера.

Основная проводка для управления двигателем — Технические данные

Они показывают взаимное расположение компонентов. Их можно использовать в качестве руководства при подключении контроллера. Рисунок 1 — это типичная электрическая схема для трехфазного магнитного пускателя .

Рисунок 1 — Типовая электрическая схема

Линейные диаграммы показывают схемы работы контроллера

Линейные диаграммы , также называемые « схема » или « элементарная » диаграмма , показывают схемы, которые образуют базовую операцию контроллера.Они не указывают на физические отношения различных компонентов в контроллере. Они являются идеальным средством для поиска неисправностей в цепи.

На рисунке 2 показана типичная линия или схематическая диаграмма.

Рисунок 2 — Типовая линейная или принципиальная схема

Стандартизированные символы упрощают чтение схем

Как линейные, так и электрические схемы представляют собой язык изображений. Выучить основные символы несложно. Как только вы это сделаете, вы сможете быстро читать схемы и часто сможете понять схему с первого взгляда.Чем больше вы работаете с линейными и электрическими схемами, тем лучше вы их анализируете.

Американская ассоциация стандартов ( ASA ) и Национальная ассоциация производителей электрооборудования ( NEMA ) являются агентствами, которые несут ответственность за установление и поддержание стандартов символов.

Благодаря этим стандартам вы сможете читать все диаграммы, встречающиеся на вашем рабочем месте.

Базовая проводка для управления двигателем

Связанное содержимое EEP с рекламными ссылками

Схема подключения обмотки двигателя »Схема подключения всех обмоток двигателя

Самая большая проблема, которая возникает после обмотки двигателя, — это соединение обмотки двигателя.В разных типах двигателей соединения выполняются по-разному. В них некоторые соединения двигателя нормализованы, некоторые соединения обмоток двигателя выполнены в 3 SPEED . Некоторые двигатели. Соединение обмотки с помощью трех проводов. Таким же образом, обмотка 4-х проводных двигателей снимается со многих двигателей, и вся эта игра представляет собой схему подключения.
Во много раз скорость двигателя может быть уменьшена и увеличена путем изменения схемы подключения обмотки двигателя, просто и только введя ОДИНАКОВЫЕ КАТУШКИ, ТАКЖЕ ОБОРОТ из ОДНОГО ПРОВОДА, он работает нормально с Схема подключения обмотки двигателя настольного вентилятора

Схема подключения 4-проводного двигателя

Из 4-х проводов в 4-проводном двигателе два провода относятся к ходовой обмотке и только два — к пусковой обмотке.
Провод, который выходит из рабочей обмотки двигателя, обычно соединяется с проводом красного цвета . И две звезды, которые выходят из пусковой обмотки двигателя, в основном это Черный провод . Ходовая и пусковая обмотки двигателя идентифицируются с помощью самого цветового кода. Все типы двигателей имеют нагрузку на ходовую обмотку.

Подключение однофазного двигателя.


А в некоторых двигателях пусковая обмотка вставляется только и только для запуска двигателя, как только двигатель будет развернут на полную скорость, чем с помощью диска сцепления, ОТСОЕДИНИТЕ пусковую обмотку от ходовой обмотки двигателя. этот мотор.Он задается, а позже используется только для ходовой обмотки двигателя, который в основном используется в одностороннем двигателе с диапазоном от 1 до 3 л.с.

Схема подключения четырехпроводного двигателя — от motorcoilwindingdata.com

Схема подключения трехпроводной обмотки двигателя .

В трехпроводном двигателе от обмотки двигателя отходят три провода. Среди них один провод — ОБЩИЙ ПРОВОД, другой провод — бегущей обмотки, а третий провод протянут в пусковой обмотке.

Синий провод подключается непосредственно к НЕЙТРАЛЬНОМУ ПРОВОДУ, идущему от основного источника питания сзади, а красный провод и черный провод подключаются к конденсатору. Черный провод плотно соединен с конденсатором, и он же соединен со вторым проводом конденсатора с красным проводом, идущим от рабочей обмотки, вместе с проводом, обращенным к источнику питания, идущему сзади.
Вы можете легко подключиться к трехпроводному двигателю, посмотрев на все провода на схеме подключения ниже.

Трехпроводное соединение двигателя с конденсатором.

ОБЫЧНЫЙ ПРОВОД в основном имеет синий цвет.

Цвет РАБОЧЕЙ НАМОТКИ ПРОВОДА в основном красный.

Цвет ПУСКОВОГО ПРОВОДА в основном черный.

Вы можете выполнить это соединение с этими типами двигателей.

motorcoilwindingdata.com

Четырехпроводное соединение двигателя с конденсатором .

Двигатель, обмотка которого выходит из 4-х проводов, состоит из 2-х проводов ходовой обмотки и только два являются звездами пусковой обмотки двигателя.Красный бегущий провод часто присоединяется к ходовой обмотке двигателя, и аналогично черный провод добавляется к пусковой обмотке двигателя.
Красный провод и черный провод соединены вместе, образуя мысленный провод. Что подключено к нулевому проводу блока питания 220 вольт, идущему сзади?
Оставшийся красный и черный провод подключаем напрямую к конденсатору. Черный провод надежно соединен с конденсатором, когда провод от красного провода удален и подается 220-вольтное питание, идущее сзади.Связан со строкой, содержащей PHASEmotorcoilwindingdata.com

Вы также можете установить это соединение с этими типами двигателей.

  • Обмотка двигателя вентилятора стола
  • Обмотка двигателя настенного вентилятора
  • Обмотка двигателя охладителя
  • Обмотка двигателя переменного тока
  • Обмотка однофазного двигателя
  • Обмотка двигателя вытяжного вентилятора
  • Обмотка односкоростного двигателя

Подключение двигателя С конденсатором.

В трехпроводном двигателе Синий провод сделан ОБЩИЙ ПРОВОД , который подключается к НЕЙТРАЛЬНОМУ ПРОВОДУ 220-вольтового источника питания, идущего сзади.
И на нем нарисованы две оставшиеся звезды, одна Красная, и другая черная, красный провод выходит из ходовой обмотки, а черный провод выходит из пусковой обмотки двигателей.
Красно-черный провод подключается непосредственно к конденсатору, а второй провод источника питания 220 Вольт, идущий сзади, подключается к красному проводу обмотки двигателя. При этом закругление двигателя осуществляется изнутри и непосредственно внутри обмотки двигателя….

Схема подключения однофазного двигателя. motorcoilwindingdata.com

Схема подключения потолочного вентилятора класса А.

Схема подключения трехпроводного потолочного вентилятора с конденсатором. motorcoilwindingdata.com

Схема подключения охлаждающего двигателя Видео Смотрите здесь: —

Подключение обмотки трехфазного асинхронного двигателя со схемой

Схема подключения обмотки трехфазного двигателя звездой-треугольником.

Подключение обмотки трехфазного двигателя Видео Смотрите здесь: —

Схема трехпроводного подключения потолочного вентилятора .

Схема подключения настольного вентилятора. Схема подключения настольного вентилятора motorcoilwindingdata.com

Связанное

Схема подключения контактора для трехфазного двигателя с реле перегрузки

В промышленной системе мы используем в основном три фазы электроэнергии для асинхронных электродвигателей.Однофазный асинхронный двигатель не может работать, как трехфазный. Для трехфазного двигателя мы используем некоторые электрические устройства для запуска, выключения и сброса, магнитный контактор является одним из них, поэтому сегодня мы не используем проводку контактора с полным объяснением. В трех энергосистемах мы используем некоторые устройства между асинхронным двигателем и источником питания: автоматический выключатель CB, магнитный контактор MC или пускатель двигателя, реле перегрузки O / L и кнопочные переключатели NC, NO для включения / выключения и сброса.

Как выполнить проводку контактора для 3-фазного асинхронного двигателя с 3-полюсным автоматическим выключателем, реле перегрузки, кнопочными переключателями NO, NC


В этом обучающем посте я расскажу вам о подключении контактора двигателя и его схеме. Но прежде мы откажемся от использования устройств и работы с ними.

Трехполюсный выключатель CB

Для источника питания 3P мы используем трехполюсный автоматический выключатель для переключения питания. Всегда используйте выключатель перед подключением цепи, так вы можете обезопасить свою цепь, и мы сможем выключить / в любое время.Вы также можете использовать 4-полюсные автоматические выключатели, что очень удобно, потому что вы можете контролировать также нейтральный провод.

MC Магнитный контактор

Для пуска / останова трехфазного асинхронного двигателя мы всегда используем контакт MC или. Это тип электрического реле, которое может легко переключать 3 электрических соединения. Я также публиковал посты о работе стартера двигателя, которые вы можете увидеть по ссылкам ниже.
Щелкните здесь для получения дополнительной информации.

Реле перегрузки O / L

Реле перегрузки — это защитное устройство, которое предохраняет наш электродвигатель от возгорания при протекании высокого тока к асинхронному двигателю.Существует два популярных типа реле O / L: тепловое реле перегрузки и электронное реле перегрузки. На этой схеме подключения контактора я показал тепловое реле перегрузки, однако вскоре я сделаю схему электронного реле.

Кнопочный выключатель нормально закрытого типа NC

Для подключения контактора двигателя мы используем кнопочные переключатели для включения / выключения двигателя. NC означает нормальное закрытие, что означает, что эта кнопка обычно находится в замкнутой цепи, и когда мы нажимаем, она замыкает электрическую цепь.Я показываю NC с красной кнопкой и NO с зеленым цветом.
Для подробностей нажмите здесь.

НЕТ нормально разомкнутый кнопочный переключатель

Нормально разомкнутый S обычно находится в разомкнутой электрической цепи, и если человек нажимает этот НО, он замыкает цепь НЗ. Для получения дополнительной информации перейдите по ссылке ниже.
Для дополнительной информации щелкните здесь.

Схема электрических соединений пускателя двигателя MC с CB, MC, O / L, NO, NC

Символьная диаграмма — это лучше всего, но все не могут понять ее легко, поэтому я всегда сосредотачиваюсь на изображении + диаграмме, которые легко и просто понять и которые полезны для изучения.Но вы знаете, что проектирование этой диаграммы занимает время с момента создания диаграммы символов. Но я люблю своих читателей, так как я студент и изо всех сил пытаюсь учиться. Я хочу поделиться всем, чему я научился.
Магнитная проводка реле контактора и автоматический выключатель, метод проводки кнопки прост. И я думаю, что нет никакого смысла объяснять больше после построения диаграммы, однако давайте сделаем небольшое путешествие с советами.
Для схемы и процедуры управления трехфазным двигателем следуйте приведенным ниже советам.

  1. Прежде всего подключите автоматический выключатель CB, но не включайте его.
  2. Затем Подключите кнопочную проводку реле O / L и катушки MC, которую мы можем назвать «малой проводкой» или «проводкой управления».
  3. Затем подключите реле перегрузки к MC.
  4. Затем выполните соединение между CB и MC.
  5. Затем подключите питание двигателя с помощью реле перегрузки.
  6. Затем подключите провод заземления к корпусу двигателя.
Вы можете использовать тот же метод, который я показал на схеме подключения контактора ниже, для подключения трехфазного двигателя с автоматическим выключателем, статера трехполюсного двигателя и реле перегрузки.

Лучше всего новая схема. Используйте новую схему. Подключение

На приведенной выше схеме подключения контактора я показал 3-фазную 440-вольтовую 4-проводную систему. Я беру одну фазу и нейтральный провод для катушки MC, которая составляет 220 В, но всегда подключаю катушку контактора в соответствии с требованиями к напряжению / току катушки. Если для катушки требуется от 110 В до 120 В, то обеспечьте питание 110 В, а если для подачи питания требуется от 380 В до 440 В, то подключите такое же необходимое питание. Код напряжения катушки находится рядом с клеммой / соединением питания катушки, поэтому проверьте его перед запуском.
В реле перегрузки мы должны выбрать, какие NC и NO. При перегрузке по току из точек NC он замыкает цепь. Которые показаны на изображении выше с 95-NC-96.
Если вы хотите узнать из символа , контактор схему подключения , нажмите здесь.
Сообщение:
Выше приведен пример схемы подключения контактора с реле перегрузки, и я надеюсь, что эта схема очень поможет новичку. Но это только начало, и В SHA ALLAH мы сделаем для вас более качественную схему подключения контакторов и дополнительные руководства.
Оставайтесь с нами …. и продолжайте посещать ……

Что такое трехфазный двигатель и как он работает?

Трехфазные двигатели (также численно обозначаемые как трехфазные двигатели) широко используются в промышленности и стали рабочей лошадкой многих механических и электромеханических систем из-за их относительной простоты, проверенной надежности и длительного срока службы. Трехфазные двигатели являются одним из примеров типа асинхронного двигателя, также известного как асинхронный двигатель, который работает на принципах электромагнитной индукции.Хотя существуют также однофазные асинхронные двигатели, эти типы асинхронных двигателей реже используются в промышленных приложениях, но широко используются в бытовых приложениях, таких как пылесосы, компрессоры холодильников и кондиционеры, из-за использования однофазных двигателей. фаза переменного тока в домах и офисах. В этой статье мы обсудим, что такое трехфазный двигатель, и опишем, как он работает. Чтобы получить доступ к другим ресурсам о двигателях, обратитесь к одному из наших других руководств по двигателям, охватывающим двигатели переменного тока, двигатели постоянного тока, асинхронные двигатели, или к более общей статье о типах двигателей.Полный список статей о моторах можно найти в разделе статей по теме.

Что такое трехфазное питание?

Чтобы понять трехфазные двигатели, полезно сначала понять трехфазную мощность.

При производстве электроэнергии переменный ток (AC), создаваемый генератором, имеет характеристику, заключающуюся в том, что его амплитуда и направление меняются со временем. Если показано графически с амплитудой по оси Y и временем по оси X, соотношение между напряжением или током в зависимости отвремя будет напоминать синусоидальную волну, как показано ниже:

Рисунок 1 — Однофазный переменный ток

Изображение предоставлено: Фуад А. Саад / Shutterstock.com

Электроэнергия, подаваемая в дома, является однофазной, это означает, что имеется один токоведущий провод плюс нейтраль и заземление. В трехфазном питании, которое используется в промышленных и коммерческих условиях для работы более крупного оборудования, которое требует большей мощности, есть три проводника электрического тока, каждый из которых работает с разностью фаз 120 o 2π / 3. радианы друг от друга.Если смотреть графически, каждая фаза будет выглядеть как отдельная синусоида, которая затем объединяется, как показано на изображении ниже:

Рисунок 2 — Трехфазное электрическое питание со сдвигом фаз 120
o между каждой фазой

Изображение предоставлено: teerawat chitprung / Shutterstock.com

Трехфазные двигатели питаются от электрического напряжения и тока, которые генерируются как трехфазная входная мощность и затем используются для выработки механической энергии в виде вращающегося вала двигателя.

Что такое трехфазный двигатель?

Трехфазные двигатели — это тип двигателя переменного тока, который является конкретным примером многофазного двигателя. Эти двигатели могут быть асинхронными двигателями (также называемыми асинхронными двигателями) или синхронными двигателями. Двигатели состоят из трех основных компонентов — статора, ротора и корпуса.

Статор состоит из ряда пластин из легированной стали, вокруг которых намотана проволока, образуя индукционные катушки, по одной катушке на каждую фазу источника электроэнергии.Катушки статора питаются от трехфазного источника питания.

Ротор также содержит индукционные катушки и металлические стержни, соединенные в цепь. Ротор окружает вал двигателя и представляет собой компонент двигателя, который вращается для выработки механической энергии на выходе двигателя.

Корпус двигателя удерживает ротор с валом двигателя на комплекте подшипников для уменьшения трения вращающегося вала. Корпус имеет торцевые крышки, которые удерживают подшипниковые опоры и вентилятор, прикрепленный к валу двигателя, который вращается при вращении вала двигателя.Вращающийся вентилятор втягивает окружающий воздух снаружи корпуса и заставляет воздух проходить через статор и ротор для охлаждения компонентов двигателя и рассеивания тепла, которое генерируется в различных катушках от сопротивления катушки. Кожух также обычно имеет выступающие механические ребра снаружи, которые служат для дальнейшего отвода тепла в наружный воздух. Торцевая крышка также обеспечит место для электрических соединений для трехфазного питания двигателя.

Как работает трехфазный двигатель?

Трехфазные двигатели работают по принципу электромагнитной индукции, который был открыт английским физиком Майклом Фарадеем еще в 1830 году.Фарадей заметил, что когда проводник, такой как катушка или проволочная петля, помещается в изменяющееся магнитное поле, в проводнике возникает наведенная электродвижущая сила или ЭДС. Он также заметил, что ток, протекающий в проводнике, таком как провод, будет генерировать магнитное поле и что магнитное поле будет изменяться, когда ток в проводе изменяется по величине или направлению. Это выражается в математической форме, связывая ротор электрического поля со скоростью изменения магнитного потока во времени:

Эти принципы составляют основу для понимания того, как работает трехфазный двигатель.

На рисунке 3 ниже показан закон индукции Фарадея. Обратите внимание, что наличие ЭДС зависит от движения магнита, которое приводит к изменению магнитного поля.

Рисунок 3 — Принцип электромагнитной индукции

Изображение предоставлено: Фуад А. Саад / Shutterstock.com

Для асинхронных двигателей, когда статор питается от трехфазного источника электроэнергии, каждая катушка генерирует магнитное поле, полюса которого (северный или южный) меняют положение, когда переменный ток колеблется в течение полного цикла.Поскольку каждая из трех фаз переменного тока сдвинута по фазе на 120, или , магнитная полярность трех катушек не одинакова в один и тот же момент времени. Это состояние приводит к тому, что статор создает так называемое RMF или вращающееся магнитное поле. Поскольку ротор находится в центре катушек статора, изменяющееся магнитное поле статора индуцирует ток в катушках ротора, что, в свою очередь, приводит к возникновению противоположного магнитного поля, создаваемого ротором. Поле ротора стремится выровнять свою полярность относительно поля статора, в результате к валу двигателя прикладывается чистый крутящий момент, и он начинает вращаться, пытаясь выровнять свое поле.Обратите внимание, что в трехфазном асинхронном двигателе нет прямого электрического соединения с ротором; магнитная индукция вызывает вращение двигателя.

В трехфазных асинхронных двигателях ротор стремится поддерживать соосность с RMF статора, но никогда не достигает этого, поэтому асинхронные двигатели также называют асинхронными. Явление, которое заставляет скорость ротора отставать от скорости RMF, известно как скольжение, что выражается как:

, где N r — скорость ротора, а N s — синхронная скорость вращающегося поля (RMF) статора.

Синхронные двигатели работают аналогично асинхронным двигателям, за исключением того, что в случае синхронного двигателя поля статора и ротора синхронизированы, так что RMF статора заставляет ротор вращаться с точно такой же скоростью вращения (в синхронизация — значит, скольжение равно 0). Для получения дополнительной информации о том, как это сделать, обратитесь к статьям о реактивных двигателях и бесщеточных двигателях постоянного тока. Обратите внимание, что синхронные двигатели, в отличие от асинхронных двигателей, не нуждаются в питании от сети переменного тока.

Контроллеры двигателей для 3-фазных двигателей

Скорость, создаваемая трехфазным двигателем переменного тока, является функцией частоты источника переменного тока, поскольку она является источником RMF в обмотках статора. Поэтому некоторые контроллеры двигателей переменного тока работают, используя вход переменного тока для генерации модулированной или управляемой частоты на входе двигателя, тем самым управляя скоростью двигателя. Другой подход, который можно использовать для управления скоростью двигателя, — это изменение скольжения (описанное ранее).Если скольжение увеличивается, скорость двигателя (то есть скорость ротора) уменьшается.

Чтобы узнать больше о подходах к управлению двигателями, просмотрите нашу статью о контроллерах двигателей переменного тока.

Резюме

В этой статье представлено краткое обсуждение того, что такое трехфазные двигатели и как они работают. Чтобы узнать больше о двигателях, ознакомьтесь с нашими соответствующими статьями, перечисленными ниже. Для получения информации о других продуктах обратитесь к нашим дополнительным руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Источники:
  1. https://kebblog.com/how-a-3-phase-ac-induction-motor-works/
  2. https://www.engineering.com/ElectronicsDesign/ElectronicsDesignArticles/ArticleID/15848/Three-Phase-Electric-Power-Explained.aspx
  3. http://www.oddparts.com/oddparts/acsi/defines/poles.htm
  4. http://www.gohz.com/how-to-determine-the-pole-number-of-an-induction-motor
  5. https://www.elprocus.com/induction-motor-types-advantages/
  6. https: // www.intechopen.com/books/electric-machines-for-smart-grids-applications-design-simulation-and-control/single-phase-motors-for-household-applications
  7. https://www.worldwideelectric.net/resource/construction-ac-motors/

Прочие изделия для двигателей

Больше от Machinery, Tools & Supplies

типов однофазных асинхронных двигателей | Схема электрических соединений однофазного асинхронного двигателя

Однофазные асинхронные двигатели традиционно используются в жилых помещениях, таких как потолочные вентиляторы, кондиционеры, стиральные машины и холодильники.Эти двигатели состоят из двигателей с расщепленной фазой, экранированных полюсов и конденсаторных двигателей.

Двигатель переменного тока (переменного тока) — это электромеханическое устройство, которое преобразует электрическую энергию в механическое движение за счет использования электромагнетизма и изменения частоты и напряжений, производимых коммунальной компанией или контроллером двигателя.

Двигатели переменного тока составляют основу потребления электроэнергии в мире, потому что они делают так много и с минимальным вмешательством человека.Электродвигатель переменного тока на сегодняшний день является самым простым и дешевым электродвигателем, используемым в промышленности.

Рис.1: Статор и ротор двигателя

Электродвигатель переменного тока состоит из очень небольшого количества деталей, пока они остаются в пределах своих рабочих характеристик, они могут проработать до 100 лет с минимальным техобслуживанием. Основными частями двигателя переменного тока являются ротор и статор, как показано на рисунке 1 .

Ротор — это вращающаяся часть двигателя переменного тока, которая поддерживается набором подшипников, обеспечивающих безупречное вращение внутри концевых колец.Подшипники запрессованы в набор концевых раструбов, заполненных смазкой для обеспечения плавного движения.

Статор — это неподвижная или неподвижная часть двигателя, к которой прикреплены концевые раструбы, а обмотки намотаны вокруг многослойных листов железа, которые создают электромагнитное вращающееся поле, когда катушка находится под напряжением.

Двигатели — это очень универсальные электромеханические компоненты, поскольку их размер, конфигурация и конструкция могут быть адаптированы к любой ситуации или выполнению любых задач.Большой процент двигателей, используемых в промышленности, составляют однофазные и трехфазные двигатели, как показано на рисунке 2.

Рис.2: Трехфазный асинхронный двигатель (Изображение предоставлено Википедией)

Однофазные асинхронные двигатели

Однофазный асинхронный двигатель — это электродвигатель, работающий от одной формы волны переменного тока. Однофазные асинхронные двигатели используются в жилых помещениях для электроприборов переменного тока в одиночных или многоквартирных домах. Существует три типа однофазных асинхронных двигателей: двигатели с экранированными полюсами, двигатели с разделением фаз и конденсаторные двигатели.

Двигатель с экранированными полюсами

Двигатели с экранированными полюсами , , как показано на рисунке 3, представляют собой однофазные асинхронные двигатели, используемые для работы небольших охлаждающих вентиляторов внутри холодильников компьютеров. Они принадлежат к семейству асинхронных двигателей с короткозамкнутым ротором, которые используются в ограниченном количестве приложений, требующих менее 3/4 лошадиных сил, обычно в диапазоне от 1/20 до 1/6 лошадиных сил.

Самая большая нагрузка: двигатель с экранированным полюсом может повернуть очень легкий компонент, способный вращаться с низкой плотностью вращения. . Обычно, когда двигатели с экранированными полюсами выходят из строя, их выбрасывают в мусорную корзину и покупают новый.

Рис.3: Двигатель с экранированными полюсами

Рис.4: Схема электрических соединений двигателя с экранированными полюсами

Полюса статора снабжены дополнительной обмоткой в ​​каждом углу, называемой обмоткой оттенка , как показано на рис.4 . Эти обмотки не имеют электрического соединения для запуска, но используют индуцированный ток для создания вращающегося магнитного поля.

Полюсная конструкция двигателя с экранированными полюсами позволяет создавать вращающееся магнитное поле, задерживая нарастание магнитного потока. Медный проводник изолирует заштрихованную часть полюса, образуя полный виток вокруг него. В заштрихованной части магнитный поток увеличивается, но задерживается током, индуцированным в медном экране. Магнитный поток в незатененной части увеличивается с током обмотки, формирующим вращающееся поле.

Двигатель с расщепленной фазой

Асинхронный двигатель с расщепленной фазой — это однофазный асинхронный двигатель с двумя обмотками, называемыми рабочей обмоткой, вторичной пусковой обмоткой и центробежным переключателем, как показано на рисунке 6. Двигатели с расщепленной фазой обычно работают при 1/20 л.с. TO 1 / 3 л.с.

Эти двигатели с короткозамкнутым ротором являются ступенью выше двигателей с экранированными полюсами, потому что они могут немного больше работать с более тяжелой нагрузкой, приложенной к валу ротора.

Рис.5: Двигатель с расщепленной фазой

Рис.6: Схема электрических соединений двигателя с расщепленной фазой

Электродвигатель с расщепленной фазой можно найти в приложениях, требующих от 1/20 л.с. до 1/3 л.с., что означает, что он может вращать все, что угодно, от лопастей потолочного вентилятора, ванн стиральных машин, двигателей нагнетателей для нефтяных печей и небольших насосов.

Центробежный выключатель — это нормально замкнутое управляющее устройство, подключенное к пусковой обмотке. Цель этой конфигурации состоит в том, что пусковая обмотка двигателя будет отключена от цепи, когда двигатель достигнет 75-80% своей номинальной скорости.Несмотря на то, что он считается надежным двигателем, этот центробежный переключатель является подвижной частью, которая иногда не включается, когда двигатель перестает вращаться.

Как работают электродвигатели с разделенной фазой
  • Для пуска двигателя с расщепленной фазой пусковая и пусковая обмотки должны быть соединены параллельно
  • При 75% полной скорости центробежный выключатель размыкается, отключая пусковую обмотку.
  • Поскольку пусковая обмотка отключена от цепи, двигатель работает через пусковую обмотку.
  • Для отключения питания двигателя с расщепленной фазой при скорости 40% полной нагрузки центробежный переключатель замыкается. Выключение мотора.

Конденсаторные двигатели

Однофазные конденсаторные двигатели — это следующий шаг в семействе однофазных асинхронных двигателей. Конденсаторные двигатели содержат такую ​​же пусковую и рабочую обмотку, что и двигатель с расщепленной фазой, за исключением конденсатора, который дает двигателю больший крутящий момент при запуске или во время работы. Конденсатор предназначен для возврата напряжения в систему при отсутствии напряжения и синусоидального сигнала ЦАП в однофазной системе.

В однофазной системе переменного тока существует только одна форма волны напряжения, и в течение одного цикла из нездоровых 60 гц, необходимых для создания напряжения, напряжение не создается в двух точках. Работа конденсатора заключается в том, чтобы заполнить эту пустоту, чтобы двигатель всегда находился под напряжением, что означает, что во время работы двигателя создается большой крутящий момент.

Конденсаторные двигатели трех типов: конденсаторные пусковые, конденсаторные и конденсаторные пусковые и пусковые.

Асинхронный двигатель с конденсаторным пуском

Конденсаторный пуск Асинхронные двигатели , как показано на рисунке 7, представляют собой однофазный асинхронный двигатель, в котором конденсатор включен последовательно с пусковой обмоткой и центробежным переключателем двигателя.Эта конфигурация дает двигателю более высокую пусковую мощность, но приложение не требует большой мощности во время работы. Во время работы инерция нагрузки играет большую роль в работе двигателя, когда есть проблема с двигателем, обычно это происходит из-за неисправного конденсатора. Двигатель обычно не вращается, если внешняя сила не раскручивает вал; после запуска он будет продолжать нормально работать до тех пор, пока с двигателя не будет отключено питание.

Электродвигатели с конденсаторным пуском обычно используются в установках переменного тока, больших электродвигателях воздуходувок и вентиляторах конденсатора.Конденсатор этих двигателей иногда встроен в двигатель или расположен на удалении от двигателя, что упрощает замену.

Рис.7: Конденсаторный пусковой двигатель

Работа конденсаторного двигателя
  • Имеет пусковую обмотку, пусковую обмотку и центробежный переключатель, который размыкается при скорости полной нагрузки от 60 до 80%, как показано на рисунке 8.
  • Пусковая обмотка и конденсатор больше не используются после размыкания центробежного переключателя, как показано на рисунке 9.
  • Конденсатор используется только для пуска с высоким крутящим моментом.

Рис.8: Пусковой конденсатор

Рис.9: Центробежный переключатель

Конденсаторный асинхронный двигатель

Асинхронные двигатели с конденсаторным запуском , как показано на рисунках 10 и 11, очень похожи на индукционные электродвигатели с конденсаторным запуском, за исключением того, что пусковая обмотка и рабочая обмотка всегда остаются в цепи. Для этого типа двигателя требуется низкий пусковой крутящий момент, но он должен поддерживать постоянный крутящий момент во время работы.Этот тип двигателя иногда можно встретить в компрессоре кондиционера. Пусковая обмотка постоянно подключена к конденсатору последовательно.

Рис.10: Конденсаторный двигатель

Рис.11: Конденсаторный двигатель

Работа конденсатора
  • Использует конденсатор более низкого номинала, потому что конденсатор всегда находится в цепи на полной скорости нагрузки.
  • Используется для более высокого крутящего момента.

Конденсатор пусковой конденсатор Индукционный двигатель

Конденсаторные асинхронные двигатели с пусковым конденсатором — это однофазные асинхронные двигатели с конденсаторами в пусковой обмотке и в пусковой обмотке, как показано на рисунках 12 и 13 (электрическая схема).Этот тип двигателя разработан для обеспечения высокого пускового момента и стабильной работы в таких приложениях, как большие водяные насосы.

Рис.

Добавить комментарий

Ваш адрес email не будет опубликован.