Схема однофазного двигателя: Подключение однофазного двигателя: схемы, проверка, видео

Содержание

Подключение однофазного двигателя: схемы, проверка, видео

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

Содержание статьи

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими 

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим

). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения  и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практике

Однофазный асинхронный электродвигатель

Дмитрий Левкин

Однофазный асинхронный электродвигатель — это асинхронный электродвигатель, который работает от электрической сети однофазного переменного тока без использования частотного преобразователя и который в основном режиме работы (после пуска) использует только одну обмотку (фазу) статора.

Конструкция однофазного двигателя с вспомогательной или пусковой обмоткой

Основными компонентами любого электродвигателя являются ротор и статор. Ротор - вращающаяся часть электродвигателя, статор - неподвижная часть электродвигателя, с помощью которого создается магнитное поле для вращения ротора.

Основные части однофазного двигателя: ротор и статор

Статор имеет две обмотки, расположенные под углом 90° относительно друг друга. Основная обмотка называется главной (рабочей) и обычно занимает 2/3 пазов сердечника статора, другая обмотка называется вспомогательной (пусковой) и обычно занимает 1/3 пазов статора.

Двигатель фактически является двухфазным, но так как рабочей является только одна обмотка, электродвигатель называют однофазным.

Ротор обычно представляет из себя короткозамкнутую обмотку, также из-за схожести называемой "беличьей клеткой". Медные или алюминиевые стержни которого с торцов замкнуты кольцами, а пространство между стержнями чаще всего заливается сплавом алюминия. Так же ротор однофазного двигателя может быть выполнен в виде полого немагнитного или полого ферромагнитного цилиндра.

Однофазный двигатель с вспомогательной обмоткой имеет 2 обмотки расположенные перпендикулярно относительно друг друга

Принцип работы однофазного асинхронного двигателя

Для того чтобы лучше понять работу однофазного асинхронного двигателя, давайте рассмотрим его только с одним витком в главной и вспомогательной обмотки.

Проанализируем случай с двумя обмотками имеющими по оному витку

Рассмотрим случай когда в вспомогательной обмотки не течет ток. При включении главной обмотки статора в сеть, переменный ток, проходя по обмотке, создает пульсирующее магнитное поле, неподвижное в пространстве, но изменяющееся от +Фmах до -Фmах.

Запустить

Остановить

Пульсирующее магнитное поле

Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении.

Чтобы понять принцип действия однофазного асинхронного двигателя разложим пульсирующее магнитное поле на два одинаковых круговых поля, имеющих амплитуду равную Фmах/2 и вращающихся в противоположные стороны с одинаковой частотой:

,

  • где nпр
    – частота вращения магнитного поля в прямом направлении, об/мин,
  • nобр – частота вращения магнитного поля в обратном направлении, об/мин,
  • f1 – частота тока статора, Гц,
  • p – количество пар полюсов,
  • n1 – скорость вращения магнитного потока, об/мин

Запустить

Остановить

Разложение пульсирующего магнитного потока на два вращающихся

Действие пульсирующего поля на вращающийся ротор

Рассмотрим случай когда ротор, находящийся в пульсирующем магнитном потоке, имеет начальное вращение. Например, мы вручную раскрутили вал однофазного двигателя, одна обмотка которого подключена к сети переменного тока. В этом случае при определенных условиях двигатель будет продолжать развивать вращающий момент, так как скольжение его ротора относительно прямого и обратного магнитного потока будет неодинаковым.

Будем считать, что прямой магнитный поток Фпр, вращается в направлении вращения ротора, а обратный магнитный поток Ф

обр - в противоположном направлении. Так как, частота вращения ротора n2 меньше частоты вращения магнитного потока n1, скольжение ротора относительно потока Фпр будет:

,

  • где sпр – скольжение ротора относительно прямого магнитного потока,
  • n2 – частота вращения ротора, об/мин,
  • s – скольжение асинхронного двигателя

Прямой и обратный вращающиеся магнитные потоки вместо пульсирующего магнитного потока

Магнитный поток Фобр вращается встречно ротору, частота вращения ротора n2 относительно этого потока отрицательна, а скольжение ротора относительно Фобр

,

  • где sобр – скольжение ротора относительно обратного магнитного потока

Запустить

Остановить

Вращающееся магнитное поле пронизывающее ротор

Ток индуцируемый в роторе переменным магнитным полем

Согласно закону электромагнитной индукции прямой Фпр и обратный Фобр магнитные потоки, создаваемые обмоткой статора, наводят в обмотке ротора ЭДС, которые соответственно создают в короткозамкнутом роторе токи I2пр и I2обр. При этом частота тока в роторе пропорциональна скольжению, следовательно:

,

  • где f2пр – частота тока I2пр наводимого прямым магнитным потоком, Гц

,

  • где f2обр – частота тока I2обр наводимого обратным магнитным потоком, Гц

Таким образом, при вращающемся роторе, электрический ток I2обр, наводимый обратным магнитным полем в обмотке ротора, имеет частоту f2обр, намного превышающую частоту f2пр тока ротора I2пр, наведенного прямым полем.

Пример: для однофазного асинхронного двигателя, работающего от сети с частотой f1 = 50 Гц при n1 = 1500 и n2 = 1440 об/мин,

скольжение ротора относительно прямого магнитного потока sпр = 0,04;
частота тока наводимого прямым магнитным потоком f2пр = 2 Гц;
скольжение ротора относительно обратного магнитного потока sобр = 1,96;
частота тока наводимого обратным магнитным потоком f2обр = 98 Гц

Согласно закону Ампера, в результате взаимодействия электрического тока I2пр с магнитным полем Фпр возникает вращающий момент

,

  • где Mпр – магнитный момент создаваемый прямым магнитным потоком, Н∙м,
  • сM — постоянный коэффициент, определяемый конструкцией двигателя

Электрический ток I2обр, взаимодействуя с магнитным полем Фобр, создает тормозящий момент Мобр, направленный против вращения ротора, то есть встречно моменту Мпр:

,

  • где Mобр – магнитный момент создаваемый обратным магнитным потоком, Н∙м

Результирующий вращающий момент, действующий на ротор однофазного асинхронного двигателя,

,

Справка: В следствие того, что во вращающемся роторе прямым и обратным магнитным полем будет наводиться ток разной частоты, моменты сил действующие на ротор в разных направлениях будут не равны. Поэтому ротор будет продолжать вращаться в пульсирующем магнитном поле в том направлении в котором он имел начальное вращение.

Тормозящее действие обратного поля

При работе однофазного двигателя в пределах номинальной нагрузки, то есть при небольших значениях скольжения s = sпр, крутящий момент создается в основном за счет момента Мпр. Тормозящее действие момента обратного поля Мобр — незначительно. Это связано с тем, что частота f2обр много больше частоты f2пр, следовательно, индуктивное сопротивление рассеяния обмотки ротора х2обр = x2sобр току I2обр намного больше его активного сопротивления. Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его.

,

  • где r2 - активное сопротивление стержней ротора, Ом,
  • x2обр - реактивное сопротивление стержней ротора, Ом.

Если учесть, что коэффициент мощности невелик, то станет, ясно, почему Мобр в режиме нагрузки двигателя не оказывает значительного тормозящего действия на ротор однофазного двигателя.

С помощью одной фазы нельзя запустить ротор

Ротор имеющий начальное вращение будет продолжать вращаться в поле создаваемом однофазным статором

Действие пульсирующего поля на неподвижный ротор

При неподвижном роторе (n2 = 0) скольжение sпр = sобр = 1 и Мпр = Мобр, поэтому начальный пусковой момент однофазного асинхронного двигателя Мп = 0. Для создания пускового момента необходимо привести ротор во вращение в ту или иную сторону. Тогда s ≠ 1, нарушается равенство моментов Мпр и Мобр и результирующий электромагнитный момент приобретает некоторое значение .

Пуск однофазного двигателя. Как создать начальное вращение?

Одним из способов создания пускового момента в однофазном асинхронном двигателе, является расположение вспомогательной (пусковой) обмотки B, смещенной в пространстве относительно главной (рабочей) обмотки A на угол 90 электрических градусов. Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Для получения фазового сдвига между токами IA и IB в цепь вспомогательной (пусковой) обмотки В включают фазосмещающий элемент, в качестве которого используют активное сопротивление (резистор), индуктивность (дроссель) или емкость (конденсатор) [1].

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, пусковую обмотку В отключают. Отключение вспомогательной обмотки происходит либо автоматически с помощью центробежного выключателя, реле времени, токового или дифференциального реле, или же вручную с помощью кнопки.

Таким образом, во время пуска двигатель работает как двухфазный, а по окончании пуска — как однофазный.

Подключение однофазного двигателя

С пусковым сопротивлением

Двигатель с расщепленной фазой - однофазный асинхронный двигатель, имеющий на статоре вспомогательную первичную обмотку, смещенную относительно основной, и короткозамкнутый ротор [2].

Однофазный асинхронный двигатель с пусковым сопротивлением - двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки отличается повышенным активным сопротивлением.

Омический сдвиг фаз, биффилярный способ намотки пусковой обмотки

Разное сопротивление и индуктивность обмоток

Для запуска однофазного двигателя можно использовать пусковой резистор, который последовательно подключается к пусковой обмотки. В этом случае можно добиться сдвига фаз в 30° между токами главной и вспомогательной обмотки, которого вполне достаточно для пуска двигателя. В двигателе с пусковым сопротивлением разность фаз объясняется разным комплексным сопротивлением цепей.

Также сдвиг фаз можно создать за счет использования пусковой обмотки с меньшей индуктивностью и более высоким сопротивлением. Для этого пусковая обмотка делается с меньшим количеством витков и с использованием более тонкого провода чем в главной обмотке.

Отечественной промышленностью изготавливается серия однофазных асинхронных электродвигателей с активным сопротивлением в качестве фазосдвигающего элемента серии АОЛБ мощностью от 18 до 600 Вт при синхронной частоте вращения 3000 и 1500 об/мин, предназначенных для включения в сеть напряжением 127, 220 или 380 В, частотой 50 Гц.

С конденсаторным пуском

Двигатель с конденсаторным пуском - двигатель с расщепленной фазой, у которого цепь вспомогательной обмотки с конденсатором включается только на время пуска.

Ёмкостной сдвиг фаз с пусковым конденсатором

Чтобы достичь максимального пускового момента требуется создать круговое вращающееся магнитное поле, для этого требуется чтобы токи в главной и вспомогательной обмотках были сдвинуты друг относительно друга на 90°. Использование в качестве фазосдвигающего элемента резистора или дросселя не позволяет обеспечить требуемый сдвиг фаз. Лишь включение конденсатора определенной емкости позволяет обеспечить фазовый сдвиг 90°.

Среди фазосдвигающих элементов, только конденсатор позволяет добиться наилучших пусковых свойств однофазного асинхронного электродвигателя.

Двигатели в цепь которых постоянно включен конденсатор используют для работы две фазы и называются - конденсаторными. Принцип действия этих двигателей основан на использовании вращающегося магнитного поля.

Двигатель с экранированными полюсами - двигатель с расщепленной фазой, у которого вспомогательная обмотка короткозамкнута.

Статор однофазного асинхронного двигателя с экранированными полюсами обычно имеет явно выраженные полюса. На явно выраженных полюсах статора намотаны катушки однофазной обмотки возбуждения. Каждый полюс статора разделен на две неравные части аксиальным пазом. Меньшую часть полюса охватывает короткозамкнутый виток. Ротор однофазного двигателя с экранированными полюсами - короткозамкнутый в виде "беличьей" клетки.

При включении однофазной обмотки статора в сеть в магнитопроводе двигателя создается пульсирующий магнитный поток. Одна часть которого проходит по неэкранированной Ф', а другая Ф" - по экранированной части полюса. Поток Ф" наводит в короткозамкнутом витке ЭДС Ek, в результате чего возникает ток Ik отстающий от Ek по фазе из-за индуктивности витка. Ток Ik создает магнитный поток Фk, направленный встречно Ф", создавая результирующий поток в экранированной части полюса Фэ=Ф"+Фk. Таким образом, в двигателе потоки экранированной и неэкранированной частей полюса сдвинуты во времени на некоторый угол.

Пространственный и временной углы сдвига между потоками Фэ и Ф' создают условия для возникновения в двигателе вращающегося эллиптического магнитного поля, так как Фэ ≠ Ф'.

Пусковые и рабочие свойства рассматриваемого двигателя невысоки. КПД намного ниже, чем у конденсаторных двигателей такой же мощности, что связано со значительными электрическими потерями в короткозамкнутом витке.

Статор такого однофазного двигателя выполняется с ярко выраженными полюсами на не симметричном шихтованном сердечнике. Ротор - короткозамкнутый типа "беличья клетка".

Данный электродвигатель для работы не требует использования фазосдвигающих элементов. Недостатком данного двигателя является низкий КПД.


Подключение однофазного двигателя через конденсатор — 3 схемы

На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть. Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются.

В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение 220 вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой.

Конструкция и принцип работы

Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.

Конструкция асинхронного однофазного электродвигателя

Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.

Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:

  • статор с основной и дополнительной обмоткой пуска;
  • короткозамкнутый ротор;
  • борно с группой контактов на панели;
  • конденсаторы;
  • центробежный выключатель и многие другие элементы, показанные выше на рисунке.

Рассмотрим, как подключить однофазный двигатель. С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Совокупность силы полей и токов создают вращающий импульс, прилагаемый к ротору, он начинает вращаться.

Схемы подключения

 Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Схема подключения пускового конденсатора

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Соединения, центробежный выключатель на валу ротора

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Некоторые элементы

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

Варианты схемы подключения конденсаторов

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Комбинированная схема с двумя конденсаторами

Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно

Установка и подбор компонентов

Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).

Пример размещения конденсатора на внешней стороне корпуса электродвигателя

В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.

Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:

  • для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
  • для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.
Конденсаторы для подключения однофазного двигателя

Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

Похожие статьи:

Схема Подключения Однофазного Электродвигателя - tokzamer.ru

Поэтому ток I2обр, имеющий большую индуктивную составляющую, оказывает сильное размагничивающее действие на обратный магнитный поток Фобр, значительно ослабляя его. Другие способы При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.


Значения КПД, мощности и пускового момента, у однофазных моторов существенно ниже, чем у трехфазных устройств тех же размеров. Пара, дающая максимальное сопротивление, означает, что измерение выполнено через две обмотки одновременно, как на схеме.

Обе фазы таких устройств являются рабочими и включены все время. Одна из них движется через экранированную часть полюса.
Однофазные двигатели. Включаем оптимально. (Обзор)

Чтобы обмотки статора создавали вращающееся магнитное поле токи IA и IB в обмотках должны быть сдвинуты по фазе относительно друг друга. Присутствует постоянное разделение емкости.

Во время удерживания частота вращения ротора достигала значения номинальной величины. В этом примере направление вращения, вы уже не измените, какое есть такое и будет.

Примерами их использования ДАК могут служить стиральные машины, электросоковыжималки и, конечно же, любой электроинструмент. Пример размещения конденсатора на внешней стороне корпуса электродвигателя В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения.

Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье. Существуют модели, в которых пусковая обмотка работает не только при запуске, а и все остальное время.

Электродвигатель может быть взят от одного прибора и подключен к другому.

Как просто подключить трехфазный двигатель треугольником и звездой в сеть 220, через конденсатор.

Подключение однофазного асинхронного двигателя и принцип его работы

Использовать необходимо только конденсаторы, которые идут в комплекте поставки. Подбирать конденсаторы нужно с рабочим напряжением не меньше В. Только после того, как будет достоверно установлено, что нет короткого замыкания на корпусе, определены контакты каждой из обмоток, можно приступать к подключению.

Роторные обмотки намотаны в виде рамок и помещаются в специальных пазах, а их переключение происходит при помощи коллекторных выводов и контактов в виде графитовых щёток.

В данной статье будет рассказано о том, как подключить однофазный электродвигатель в сеть В, в зависимости от его типа. Такие электромоторы также называют индукционными.

Эти моторы также могут быть использованы в установках для мойки, генераторах теплого воздуха, системах централизованного обогрева.

С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Для этого выполняют подключение, как на схеме.

Рассмотрим, как подключить однофазный электродвигатель, чтобы он выполнял роль генератора трехфазного напряжения. В формулах выше Iном — это номинальный ток фазы электродвигателя.

Такие устройства имеют коэффициент мощности больший, чем у выше описанных короткозамкнутых приборов, развивают по сравнению с ними больший вращающий момент.
Как подключить двигатель от старой стиральной машины через конденсатор или без него

Расчет емкости конденсатора мотора

Проводку маркируют и убирают в сторону, а остальные контакты продолжают прозванивать по приведенной схеме.

Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше.

Именно в этом причина популярности двигателя среди населения. Кроме того, сдвиг фаз может быть получен путем использования пусковой фазы с большим значением сопротивления и меньшей индуктивностью. В результате их взаимодействия между собой ротор приводится в движение.

Конденсатор подбирается по потребляемому двигателем току. Мы постараемся разобрать в этой статье основные приемы решения проблемы и представим несколько альтернативных схем с описанием для подключения однофазного электродвигателя с конденсатом на вольт. Почему так происходит? В рамках этой схемы конденсатор постоянно подключен к источнику электричества, а не только во время старта.

Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети В. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором. Однако многолетний опыт профессионалов показывает, что достаточно придерживаться следующих рекомендаций: на 1 кВт мощности мотора необходимо 0,8 мкФ рабочего конденсатора; пусковая обмотка требует, чтобы это значение было в 2 или 3 раза выше. Только после того, как будет достоверно установлено, что нет короткого замыкания на корпусе, определены контакты каждой из обмоток, можно приступать к подключению.

Подключение


Существует несколько режимов работы конденсаторного двигателя: С пусковым конденсатором и дополнительной обмоткой, которые подключаются только на время запуска. На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации — вторая, с рабочим.

Подключение остальных типов электродвигателей либо требует использования специальных устройств запуска, либо, как, например, шаговые, управляются электронными схемами. Некоторые конденсаторные электродвигатели имеют центробежный контакт, используемый при запуске, размыкающийся при наборе оборотов.

Схема с рабочим конденсатором Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Запустить Остановить Пульсирующее магнитное поле Если поместить ротор, имеющий начальное вращение, в пульсирующее магнитное поле, то он будет продолжать вращаться в том же направлении. В то время как асинхронный двигатель работает в пределах максимальных оборотов, которые трудно, порою невозможно, плавно, без рывков, контролировать — уменьшать, увеличивать после разгонки.
Правильное подключение однофазного двигателя в сеть 220 v, от старой стиральной машинки.

Схема подключения однофазного двигателя через конденсатор

Во втором случае, для моторов с рабочим конденсатором, дополнительная обмотка подключена через конденсатор постоянно.

По информации на бирке мотора можно определить какая система в нем использована. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок.

Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Расчёт емкости производится исходя из рабочего напряжения и тока, или паспортной мощности мотора. Кратковременным подключением пускового конденсатора на валу двигателя создается мощный стартовый вращающий момент, время запуска сокращается в разы.

Из-за сложности формул расчёта принято выбирать емкости, исходя из приведённых выше пропорций. Расчет емкости конденсатора мотора Существует сложная формула, с помощью которой высчитывают необходимую точную емкость конденсатора. В этих двигателях, рабочая и пусковая — одинаковые обмотки по конструкции трехфазных обмоток. После списания прибора в утиль в большинстве случаев электродвигатели сохраняют работоспособность и могут еще довольно долго послужить в виде самодельных электронасосов, точил, станков, вентиляторов и газонокосилок.

Статья по теме: Виды электромонтажных работ по смете

Заключение

В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Это схема обмотки звездой Красные стрелки — это распределение напряжения в обмотках мотора, говорит о том, что на одной обмотке распределяется напряжение единичной фазы в В, а двух других — линейного напряжения В.

После запуска двигателя, конденсаторы содержат определенное количество заряда, потому прикасаться к проводникам запрещается. В этой обмотке которая еще имеет название рабочей магнитный поток изменяется с такой частотой, с которой протекает по обмотке ток. Вычислить, какие провода к какой обмотке относятся, можно путем измерения сопротивления. Обмотка, у которой сопротивление меньше — есть рабочая. В статоре однофазного электродвигателя находится однофазная обмотка, что отличает его от трехфазного.

Двигатели с высотой вращения более 90 мм представлены в чугунном исполнении. Такая схема исключает блок электроники, а следовательно — мотор сразу же с момента старта, будет работать на полную мощность — на максимальных оборотах, при запуске буквально срываясь с силой от пускового электротока, который вызывает искры в коллекторе; существуют электромоторы с двумя скоростями. Это необходимый запас для компенсации потерь мощности при старте — создании вращающегося момента магнитного поля. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле в холодильниках.

Генератор может исполнять роль двигателя, а он в свою очередь — генератора. На корпусе однофазного асинхронного электродвигателя должна быть схема подключения, где указываются выводы основной и дополнительной обмотки, а также емкость конденсатора. В этом случае движок гудит, ротор остается на месте.
Подключение однофазного электродвигателя

Схема подключения однофазного электродвигателя 220В (видео)

Вопрос как подключить однофазный электродвигатель очень часто возникает на практике из-за высокой популярности применения подобных агрегатов для решения различных бытовых задач.

Схема подключения однофазного электродвигателя достаточно проста и требует учета всего одного принципиального момента: для обеспечения его работоспособности необходимо вращающееся магнитное поле. При наличии только однофазной сети переменного тока на момент запуска электродвигателя его приходится формировать искусственно через применение соответствующих схемных решений.

Обмотки электромотора

Укладка обмоток в статоре однофазного электродвигателя

Конструкция любого однофазного электродвигателя предполагает использование как минимум трех катушек. Две из них являются элементов конструкции статора,включены параллельно. Одна из них является рабочей, а вторая выполняет функции пусковой. Их клеммы выведены на корпус двигателя и используются для подключения к сети. Обмотка ротора выполнена короткозамкнутой. К сети подключатся две из них, остальные служат для коммутации.

Для изменения мощности рабочая катушка может формироваться из двух частей, которые включаются последовательно.

Визуально идентифицировать рабочую и пусковую обмотку можно по сечению провода: у первой из них оно заметно больше. Можно замерить сопротивление тестером подключением его к клеммам: у рабочей обмотки его величина будет меньше. Как правило, сопротивления обмоток будет составлять не более нескольких десятков Ом.

Особенности формирования вращающего момента

Магнитное поле, создаваемое катушками электродвигателя, имеет фазовый сдвиг на 90 градусов. Это обычно достигается через конденсатор, который последовательно включается в цепь запуска. Возможные варианты соединения показаны на рисунке ниже.

Варианты создания сдвига фаз

Пусковая катушка может работать постоянно. Допустима также схема, основанная на ее отключении после достижения номинальной частоты вращения ротора. Постоянное подключение пусковой обмотки усложняет конструкцию двигателя, но улучшает его характеристики. На особенностях подключения к сети эти различия не сказываются.

Для упрощения запуска двигателя с рабочим конденсатором, перед подачей на него тока от сети параллельно ему подключают вспомогательную емкость.

Однофазный электромотор позволяет простыми средствами изменить направление вращения вала на противоположное. Для этого производится сдвиг фазы тока, поступающего от сети и протекающего через цепи запуска, меняется на противоположный. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой.

Конденсаторы

Схема подключения однофазных конденсаторных двигателей: а – с рабочей емкостью Ср, б – с рабочей емкостью Ср и пусковой емкостью Сп.

Электродвигатель может комплектоваться двумя разновидностями конденсаторов. Наличие емкости, включаемой последовательно спусковой обмоткой и пропускающей через себя ток для сдвига фазы, является обязательным. Ее значение заимствуется из паспортных данных электродвигателя и дублируется на его шильдике.

При отсутствии конденсатора нужной емкости допустимо применять любой другой с близким номиналом. При слишком сильном отклонении в меньшую сторону двигатель может не начать вращаться без ручной прокрутки его вала, а затем не будет развивать нужную мощность. При значительном превышении емкости начнется сильный нагрев.

Емкость дополнительного пускового компонента выбирается в два-три раза выше по сравнению с основным. Такая величина обеспечивает максимальный стартовый момент.

Для включения пускового элемента может использоваться как обычная кнопка, так и более сложные схемы.

Косвенное включение

Подключение однофазного двигателя

Основным компонентом схемы косвенного включения является магнитный пускатель, который включается в разрыв между выходом силовой сети и электродвигателем.

Силовые контакты этого блока выполнены как нормально разомкнутые. Магнитный пускатель по величине максимального протекающего через него тока относится к одной из семи нормированных групп. Из-за небольшой мощности однофазных электродвигателей обычно достаточно устройства первой группы, максимальное значение коммутируемого тока которого составляет 10 А.

Управляющая часть катушки предназначена для подключения к сетям с различным напряжением. Наиболее удобным является магнитный пускатель с управлением от 220в переменного тока.

Особенности применения магнитного пускателя

В управляющей части устройства предусмотрено несколько пар контактов, на которых собирается схема релейной автоматики. Один из них всегда является нормально замкнутым, а второй – нормально разомкнутым.

У кнопки «Пуск» рабочим считается нормально разомкнутый контакт, а у кнопки «Стоп» задействован нормально замкнутый элемент.

При выполнении подключения рассматриваемого устройства осуществляются соединения нескольких типов.

Однофазные электродвигатели. Виды, принцип действия, схемы включения однофазных электродвигателей.


Однофазные электродвигатели

Зачастую основное внимание уделяется изучению трёхфазных электродвигателей, частично в связи с тем, что трёхфазные электродвигатели применяются чаще, чем однофазные. Однофазные электродвигатели имеют тот же принцип действия, что и трёхфазные электродвигатели, только с более низкими пусковыми моментами. Они подразделяются по типам в зависимости от способа пуска.



Стандартный однофазный статор имеет две обмотки, расположенные под углом 90° по отношению друг к другу. Одна из них считается главной обмоткой, другая - вспомогательной, или пусковой. В соответствии с количеством полюсов каждая обмотка может делиться не несколько секций.

На рисунке приведен пример двухполюсной однофазной обмотки с четырьмя секциями в главной обмотке и двумя секциями во вспомогательной.



Следует помнить, что использование однофазного электродвигателя - это всегда, своего рода, компромисс. Конструкция того или иного двигателя зависит, прежде всего, от поставленной задачи. Это значит, что все электродвигатели разрабатываются в соответствии с тем, что наиболее важно в каждом конкретном случае: например, КПД, вращающий момент, рабочий цикл и т.д. Из-за пульсирующего поля однофазные электродвигатели CSIR и RSIR могут иметь более высокий уровень шума по сравнению с двухфазными электродвигателями PSC и CSCR, которые работают намного тише, так как в них используется пусковой конденсатор. Конденсатор, через который производится пуск электродвигателя, способствует его плавной работе.

Основные типы однофазных индукционных электродвигателей

Бытовая техника и приборы низкой мощности работают от однофазного переменного тока, кроме того, не везде может быть обеспечено трёхфазное электропитание. Поэтому однофазные электродвигатели переменного тока получили широкое распространение, особенно в США. Очень часто электродвигателям переменного тока отдают предпочтение, так как их отличает прочная конструкция, низкая стоимость, к тому же они не требуют технического обслуживания.

Как видно из названия, однофазный индукционный электродвигатель работает по принципу индукции; тот же принцип действует и для трёхфазных электродвигателей. Однако между ними есть различия: однофазные электродвигатели, как правило, работают при переменном токе и напряжении 110 -240 В, поле статора этих двигателей не вращается. Вместо этого каждый раз при скачке синусоидального напряжения от отрицательного к положительному меняются полюса.

В однофазных электродвигателях поле статора постоянно выравнивается в одном направлении, а полюса меняют своё положение один раз в каждом цикле. Это означает, что однофазный индукционный электродвигатель не может быть пущен самостоятельно.



Теоретически, однофазный электродвигатель можно было бы запустить при помощи механического вращения двигателя с последующим немедленным подключением питания. Однако на практике пуск всех электродвигателей осуществляется автоматически.

Выделяют четыре основных типа электродвигателей:

• индукционный двигатель с пуском через конденсатор / работа через обмотку (индуктивность) (CSIR),

• индукционный двигатель с пуском через кон

Как подключить однофазный электродвигатель, схема запуска

Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал. Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу. В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.

Содержание:

  1. Отличие от трехфазных двигателей
  2. Как это работает
  3. Основные схемы подключения
  4. Другие способы
  • Подбор конденсатора
  • Отличие от трехфазных двигателей

    Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.

    Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:

    1. добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
    2. для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.

    Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.

    После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.

    Схема подключения коллекторного электродвигателя в 220В

    Схема подключения однофазного асинхронного двигателя (схема звезда)

    Как это работает

    Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.

    Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.

    Основные схемы подключения

    В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.

    однофазный асинхронный двигатель и конденсатор

    Различают три основные способа запуска однофазного асинхронного двигателя через:

    • рабочий;
    • пусковой;
    • рабочий и пусковой конденсатор.

    В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.

    Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).

    Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.

    Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.

    Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.

    Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.

    На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.

    Другие способы

    При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

    С экранированными полюсами и расщепленной фазой

    В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.

    После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.

    Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

    С асимметричным магнитопроводом статора

    Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.

    Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.

    Подбор конденсатора

    Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами. Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В. Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя.

    Керамический и электролитический конденсатор

    Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.

    Однофазные асинхронные двигатели | Двигатели переменного тока

    Трехфазный двигатель может работать от однофазного источника питания. Однако он не запускается автоматически. Его можно запустить вручную в любом направлении, набрав скорость за несколько секунд. Он будет развивать только 2/3 номинальной мощности 3-φ, потому что одна обмотка не используется.

    Двигатель с 3 фазами работает от мощности 1 фазы, но не запускается

    Одиночная катушка однофазного двигателя

    Одиночная катушка однофазного асинхронного двигателя создает не вращающееся магнитное поле, а пульсирующее поле, достигающее максимальной напряженности при электрическом напряжении 0 ° и 180 °.

    Однофазный статор создает невращающееся пульсирующее магнитное поле

    Другая точка зрения состоит в том, что одиночная катушка, возбуждаемая однофазным током, создает два вектора магнитного поля, вращающихся в противоположных направлениях, совпадающих дважды за оборот при 0 ° (рисунок выше-a) и 180 ° (рисунок e). Когда векторы поворачиваются на 90 ° и -90 °, они отменяются на рисунке c.

    При 45 ° и -45 ° (рисунок b) они частично складываются по оси + x и сокращаются по оси y.Аналогичная ситуация существует на рисунке d. Сумма этих двух векторов - это вектор, неподвижный в пространстве, но чередующийся во времени. Таким образом, пусковой крутящий момент не создается.

    Однако, если ротор вращается вперед со скоростью немного меньшей, чем синхронная скорость, он будет развивать максимальный крутящий момент при 10% скольжении относительно вектора прямого вращения. Меньший крутящий момент будет развиваться выше или ниже 10% скольжения.

    Ротор будет испытывать скольжение на 200–10% относительно вектора магнитного поля, вращающегося в противоположных направлениях.Небольшой крутящий момент (см. Кривую зависимости крутящего момента от скольжения), за исключением двукратной пульсации частоты, создается вектором, вращающимся в противоположных направлениях. Таким образом, однофазная катушка будет развивать крутящий момент после запуска ротора.

    Если ротор запускается в обратном направлении, он будет развивать такой же большой крутящий момент, поскольку он приближается к скорости вращающегося в обратном направлении вектора.

    Однофазные асинхронные двигатели имеют медную или алюминиевую короткозамкнутую клетку, встроенную в цилиндр из стальных пластин, типичных для многофазных асинхронных двигателей.

    Двигатель с постоянным разделением конденсаторов

    Одним из способов решения проблемы с однофазным двигателем является создание двухфазного двигателя, получающего двухфазное питание от однофазного. Для этого требуется двигатель с двумя обмотками, разнесенными друг от друга на 90 ° , электрический, питаемый двумя фазами тока, смещенными во времени на 90 ° . Это называется конденсаторным двигателем с постоянным разделением.

    Асинхронный двигатель с постоянным разделением конденсаторов

    Этот тип двигателя подвержен увеличенной величине тока и сдвигу во времени назад, когда двигатель набирает скорость, с пульсациями крутящего момента на полной скорости.Решение состоит в том, чтобы конденсатор (импеданс) оставался небольшим, чтобы минимизировать потери.

    Потери меньше, чем для двигателя с экранированными полюсами. Эта конфигурация двигателя хорошо работает до 1/4 лошадиных сил (200 Вт), хотя обычно применяется к двигателям меньшего размера. Направление двигателя легко изменить, включив конденсатор последовательно с другой обмоткой. Этот тип двигателя может быть адаптирован для использования в качестве серводвигателя, описанного в другом месте этой главы.

    Однофазный асинхронный двигатель со встроенными катушками статора

    Однофазные асинхронные двигатели могут иметь катушки, встроенные в статор двигателей большего размера.Тем не менее, меньшие размеры требуют меньшего количества сложностей для создания концентрированных обмоток с выступающими полюсами.

    Асинхронный двигатель с конденсаторным пуском

    На рисунке ниже конденсатор большего размера может использоваться для запуска однофазного асинхронного двигателя через вспомогательную обмотку, если он отключается центробежным переключателем, когда двигатель набирает обороты. Кроме того, во вспомогательной обмотке может быть намного больше витков из более тяжелого провода, чем в двигателе с разделенной фазой сопротивления, чтобы уменьшить чрезмерное повышение температуры.

    В результате для тяжелых нагрузок, таких как компрессоры кондиционеров, доступен больший пусковой крутящий момент. Эта конфигурация двигателя работает настолько хорошо, что доступна в многомощных (несколько киловаттных) размерах.

    Асинхронный двигатель с конденсаторным пуском

    Асинхронный двигатель с конденсаторным двигателем

    Вариант двигателя с конденсаторным запуском (рисунок ниже) заключается в запуске двигателя с относительно большим конденсатором для высокого пускового момента, но после запуска оставляют конденсатор меньшей емкости на месте для улучшения рабочих характеристик, не потребляя при этом чрезмерного тока.Дополнительная сложность конденсаторного двигателя оправдана для двигателей большего размера.

    Асинхронный двигатель с конденсаторным двигателем

    Пусковой конденсатор двигателя может быть неполярным электролитическим конденсатором с двойным анодом, который может представлять собой два последовательно соединенных поляризованных электролитических конденсатора + к + (или - к -). Такие электролитические конденсаторы переменного тока имеют такие высокие потери, что их можно использовать только в прерывистом режиме (1 секунда во включенном состоянии, 60 секунд в выключенном состоянии), например, при запуске двигателя.

    Конденсатор для работы двигателя должен иметь не электролитическую конструкцию, а полимерный конденсатор с более низкими потерями.

    Асинхронный двигатель с двухфазным электродвигателем с сопротивлением

    Если во вспомогательной обмотке гораздо меньше витков, меньший провод размещен под углом 90 ° к главной обмотке, он может запустить однофазный асинхронный двигатель. При более низкой индуктивности и более высоком сопротивлении ток будет испытывать меньший фазовый сдвиг, чем основная обмотка.

    Может быть получено около 30 ° разности фаз.Эта катушка создает умеренный пусковой крутящий момент, который отключается центробежным переключателем на 3/4 синхронной скорости. Эта простая (без конденсатора) конструкция хорошо подходит для двигателей мощностью до 1/3 лошадиных сил (250 Вт), управляющих легко запускаемыми нагрузками.

    Асинхронный электродвигатель с разделенным фазным сопротивлением

    Этот двигатель имеет больший пусковой крутящий момент, чем двигатель с экранированными полюсами (следующий раздел), но не такой большой, как двухфазный двигатель, построенный из тех же частей.Плотность тока во вспомогательной обмотке во время пуска настолько высока, что последующий быстрый рост температуры исключает частый перезапуск или медленные пусковые нагрузки.

    Корректор коэффициента мощности Nola

    Фрэнк Нола из НАСА предложил корректор коэффициента мощности для повышения эффективности асинхронных двигателей переменного тока в середине 1970-х годов. Он основан на предположении, что асинхронные двигатели неэффективны при нагрузке ниже полной. Эта неэффективность коррелирует с низким коэффициентом мощности.

    Коэффициент мощности меньше единицы из-за тока намагничивания, необходимого для статора.Этот фиксированный ток составляет большую долю от общего тока двигателя при уменьшении нагрузки двигателя. При небольшой нагрузке полный ток намагничивания не требуется. Его можно уменьшить, уменьшив подаваемое напряжение, улучшив коэффициент мощности и КПД.

    Корректор коэффициента мощности определяет коэффициент мощности и снижает напряжение двигателя, тем самым восстанавливая более высокий коэффициент мощности и уменьшая потери.

    Поскольку однофазные двигатели примерно в 2–4 раза менее эффективны, чем трехфазные двигатели, существует потенциальная экономия энергии для двигателей 1-φ.Для полностью нагруженного двигателя нет экономии, поскольку требуется весь ток намагничивания статора.

    Напряжение не может быть уменьшено. Но есть потенциальная экономия от менее чем полностью загруженного двигателя. Двигатель с номинальным напряжением 117 В переменного тока рассчитан на работу при напряжении от 127 В переменного тока до 104 В переменного тока. Это означает, что он не полностью загружен при работе при напряжении более 104 В переменного тока, например, при работе холодильника на 117 В переменного тока.

    Контроллер коэффициента мощности может безопасно снизить сетевое напряжение до 104–110 В переменного тока.Чем выше начальное напряжение в сети, тем больше потенциальная экономия. Конечно, если энергокомпания подаст напряжение ближе к 110 В переменного тока, двигатель будет работать более эффективно без каких-либо дополнительных устройств.

    Любой практически неработающий однофазный асинхронный двигатель с 25% FLC или менее является кандидатом на использование PFC. Однако он должен работать большое количество часов в год. И чем больше времени он простаивает, как на пилораме, штамповочном прессе или конвейере, тем выше вероятность оплаты контроллера через несколько лет эксплуатации.

    За него должно быть втрое легче платить по сравнению с более эффективным 3-φ-двигателем. Стоимость PFC не может быть возмещена для двигателя, работающего всего несколько часов в день.

    Резюме: Однофазные асинхронные двигатели

    • Однофазные асинхронные двигатели не запускаются самостоятельно без вспомогательной обмотки статора, приводимой в действие противофазным током около 90 ° . После запуска вспомогательная обмотка необязательна.
    • Вспомогательная обмотка конденсаторного двигателя с постоянным разделением каналов имеет конденсатор, включенный последовательно с ней во время пуска и работы.
    • Асинхронный двигатель с конденсаторным запуском имеет только конденсатор, включенный последовательно со вспомогательной обмоткой во время запуска.
    • Двигатель с конденсаторным питанием обычно имеет большой неполяризованный электролитический конденсатор, включенный последовательно со вспомогательной обмоткой для запуска, а затем меньший неэлектролитический конденсатор во время работы.
    • Вспомогательная обмотка электродвигателя с разделенным фазным сопротивлением развивает разность фаз по сравнению с основной обмоткой во время пуска из-за разницы в сопротивлении.

    СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

    типов однофазных асинхронных двигателей | Схема электрических соединений однофазного асинхронного двигателя

    Поскольку жилые дома и многие коммерческие здания имеют только однофазное питание, однофазные асинхронные двигатели переменного тока находят множество применений. В домашних условиях стиральные и сушильные машины имеют по существу однофазный асинхронный двигатель мощностью около 1/3 лошадиных сил.

    Типичный холодильный холодильник без замораживания имеет три двигателя: один является неотъемлемой частью компрессорного агрегата, один для вентилятора для циркуляции холодного воздуха и один для запуска таймера цикла размораживания.

    В системах воздушного отопления имеется двигатель вентилятора. Кухонная техника, такая как блендеры и миксеры, инструменты, такие как дрели, и другие устройства могут легко иметь несколько десятков однофазных асинхронных двигателей.

    Асинхронный двигатель с расщепленной фазой

    На рисунке 1 показан асинхронный двигатель с расщепленной фазой.Электродвигатель с расщепленной фазой полагается исключительно на разницу в сопротивлении и реактивном сопротивлении обмоток для создания фазового сдвига.

    В цепи вспомогательной обмотки есть центробежный переключатель, который размыкается, когда двигатель достигает полной скорости. Электродвигатель с расщепленной фазой характеризуется относительно низким пусковым крутящим моментом, возможно, 100% -150% от номинального крутящего момента.

    РИСУНОК 1: Схема (проводка) двухфазного асинхронного двигателя (SPIM) и кривая крутящего момента-скорости.

    Асинхронные двигатели с конденсаторным запуском

    На рисунке 2 показан асинхронный двигатель с конденсаторным запуском.Двигатель с конденсаторным пуском использует конденсатор для фазового сдвига.

    Его размер обеспечивает высокий пусковой крутящий момент, до 300% от номинального крутящего момента. Конденсатор не предназначен для непрерывной работы, поэтому в этом двигателе есть центробежный выключатель для отключения вспомогательной обмотки после запуска.

    РИСУНОК 2: Схема (проводка) асинхронного двигателя с конденсаторным пуском (CSIM) и кривая крутящего момента-скорости.

    Однофазные двигатели по своей природе более шумные и менее плавные, чем многофазные двигатели.Поскольку существует компонент магнитного потока, вращающийся в обратном направлении, возникают пульсации крутящего момента, поэтому кривая крутящего момента-скорости на самом деле является просто представлением среднего крутящего момента.

    Если мы оставим конденсатор во вспомогательной обмотке после запуска двигателя, мы сможем приблизиться к двухфазной работе и получить более плавный и тихий двигатель.

    Двигатель с постоянным разделенным конденсатором

    Поскольку реактивное сопротивление обмотки двигателя и конденсатора являются функциями частоты, мы можем получить истинную двухфазную работу только при одной скорости двигателя для данного конденсатора.

    Двигатель с постоянным разделенным конденсатором, показанный на рисунке 3, имеет конденсатор, рассчитанный на работу, что означает, что пусковой крутящий момент очень низкий, возможно, всего 75% от номинального крутящего момента.

    РИСУНОК 3: Схема (электропроводка) двигателя с постоянным разделенным конденсатором (PSC) и кривая крутящего момента-скорости.

    Реверсивный двигатель с постоянным разделенным конденсатором, показанный на рисунке 4, использует две идентичные обмотки, один конденсатор и селекторный переключатель. Селекторный переключатель используется для переключения конденсатора между двумя обмотками.

    В положении переключателя 1 конденсатор подключается последовательно с обмоткой b, а в положении 2 - конденсатор последовательно с обмоткой a. В результате направление вращения меняется на противоположное.

    РИСУНОК 4: Схема реверсивного двигателя с постоянным разделенным конденсатором (проводка)

    Конденсатор пусковой конденсаторный двигатель

    Для обеспечения хорошего пускового момента и хороших рабочих характеристик можно использовать два конденсатора, как показано на рисунке 5.

    Один конденсатор обеспечивает высокий пусковой момент и отключается, когда двигатель достигает номинальной скорости. Другой конденсатор , меньшего размера, всегда остается в цепи. Этот тип двигателя называется конденсаторным пусковым конденсатором .

    РИСУНОК 5: Схема (электропроводка) двигателя пускового конденсатора пускового конденсатора и кривая крутящего момента-скорости.

    На рисунке 6 представлена ​​фотография асинхронного двигателя с конденсаторным пуском.Характерный выступ в верхней части двигателя - это место, где расположен конденсатор.

    Асинхронный двигатель с расщепленной фазой не будет иметь горба, потому что в нем нет конденсатора. На рисунке 7 показана фотография конденсатора пробега .

    На рисунках 8 и 9 представлены фотографии ротора и статора, оборудованных центробежным переключателем. На Рисунке 8 грузы на валу отклоняются, когда двигатель приближается к синхронной скорости, в результате чего шайба на конце перемещается к беличьей клетке.Это освобождает переключатель, который установлен в концевой раме двигателя, как показано на Рисунке 9.

    РИСУНОК 6: Асинхронный двигатель с конденсаторным пуском (CSIM). ( Предоставлено Baldor Electric Company )

    РИСУНОК 7: Рабочий конденсатор для PSC или двухконденсаторного двигателя.

    РИСУНОК 8: Ротор с короткозамкнутым ротором с вращающейся частью центробежного переключателя.

    РИСУНОК 9: Стационарная часть центробежного переключателя в концевой раме статора.

    Электродвигатель с расщепленными полюсами

    Другой член семейства асинхронных электродвигателей - электродвигатели с расщепленными полюсами. Обычно двигатель с экранированными полюсами представляет собой очень маленькую машину (0,05 л.с.), используемую для легко запускаемых нагрузок, таких как вентилятор.

    Несмотря на то, что это не очень эффективный, это простой, дешевый и прочный аппарат. Тот факт, что это маленькая машина, как правило, компенсирует ее неэффективность. На рисунке 10 показан принцип работы двигателя с расщепленными полюсами.

    Конструкция двигателя с экранированными полюсами

    Часть железа статора обернута несколькими короткозамкнутыми витками медного проводника.Согласно закону Фарадея, ток в закороченных витках (затеняющей катушке) будет создавать поток, который будет противодействовать любому изменению потока через него.

    Левое медное кольцо на Рисунке 10 показывает увеличение потока через кольцо. Изменение магнитного потока индуцирует ток в закороченном кольце, который противодействует изменению магнитного потока, как показано.

    Кольцо справа показывает, что происходит, когда поток через кольцо уменьшается. Теперь индуцированный ток пытается поддерживать поток в кольце.В нижней половине рисунка 10 показан один тип двигателя с расщепленными полюсами. Пластины прямоугольные, с вырезом для катушки и еще одним вырезом для ротора, как показано. Катушка намотана через прямоугольное окно в стопке пластин.

    РИСУНОК 10: Конструкция двигателя с экранированными полюсами и работа экранирующей вехи.

    Работа двигателя с экранированными полюсами

    Работа двигателя с прямоугольным экранированным полюсом показана на Рисунке 11.

    Первый вид (1) показывает двигатель, когда ток увеличивается в положительном направлении, как показано на синусоиде в середине рисунка. В течение этого интервала большая часть потока проходит через центр ротора, а не через заштрихованные полюса.

    В интервале секунд ток и магнитный поток уменьшаются. Таким образом, заштрихованный полюс пытается поддерживать поток, и большая часть потока проходит через заштрихованные полюса. Обратите внимание, что в результате общее направление потока изменилось с верхнего левого угла на нижний левый угол.

    Процесс продолжается на видах 3 и 4, и в результате получается квази-вращающееся поле, которого достаточно для запуска и запуска двигателя. Направление вращения двигателя с экранированными полюсами можно изменить, только физически разобрав двигатель и изменив направление ротора на обратное.

    РИСУНОК 11: Диаграммы магнитного потока в двигателе с расщепленными полюсами.

    Основное преимущество двигателя с расщепленными полюсами заключается в том, что он очень дешевый. Многие читатели, возможно, купили в дисконтном магазине большой вентилятор с несколькими скоростями менее чем за 15 долларов.00.

    Поскольку электродвигатель с расщепленными полюсами работает при больших значениях скольжения, регулирование скорости также очень дешево. Вспомните уравнение для напряжения, индуцированного в катушке:

    $ {{E} _ {rms}} = 4.44fN {{\ phi} _ {\ max}} $

    Управление скоростью двигателя с экранированным полюсом

    напряжение, приложенное к двигателю, конечно, постоянно (или, по крайней мере, почти постоянное). Если бы количество витков в обмотке было изменено, то поток изменился бы в противоположном направлении. Таким образом, скоростью двигателя с экранированными полюсами можно управлять, изменяя количество вольт на виток обмотки статора, как показано на рисунке 12.

    Регулировка скорости осуществляется с помощью обмотки с отводом и селекторного переключателя, как показано на Рисунке 12 (а). Увеличение количества витков приведет к меньшему напряжению на виток и меньшему магнитному потоку; меньший поток означает меньший крутящий момент от машины, что приводит к работе с более высоким значением скольжения и более низкой скоростью.

    РИСУНОК 12: Регулировка скорости двигателя с расщепленными полюсами.

    Рисунок 13 - фотография ротора и статора двигателя с расщепленными полюсами. На рисунке 14 представлена ​​фотография круглого двигателя с расщепленными полюсами и шестью выступающими полюсами на статоре.

    РИСУНОК 13: Ротор и статор с расщепленными полюсами.

    РИСУНОК 14: Двигатель с круглыми расщепленными полюсами.

    Универсальный двигатель

    Универсальный двигатель, по сути, представляет собой двигатель постоянного тока, предназначенный для работы от переменного тока. Поскольку катушки возбуждения воспринимают переменный ток, статор должен быть сделан из пластин, как и якорь. Якорь и поле соединены последовательно, как показано на виде в разрезе на Рисунке 15.

    Когда ток меняет полярность, поток, создаваемый обеими обмотками, также меняет полярность, что приводит к однонаправленному вращению.

    Если проследить поток тока в каждом виде на Рисунке 15 и применить правило левой руки для двигателей, можно увидеть, что направление вращения всегда против часовой стрелки для этого конкретного расположения обмоток.

    РИСУНОК 15: Универсальный двигатель с источником переменного тока.

    Универсальный двигатель, как и последовательный двигатель постоянного тока, имеет очень высокую скорость холостого хода, которая быстро падает с увеличением нагрузки.На рисунке 16 показаны скоростные характеристики универсального двигателя.

    Скорость холостого хода может быть настолько высокой, что центробежная сила может разорвать двигатель. Таким образом, двигатель должен быть постоянно подключен к какой-либо механической нагрузке.

    В отличие от асинхронного двигателя вариации , универсальный двигатель не ограничивается работой со скоростью ниже синхронной. Универсальные двигатели используются в переносных дрелях, пилах, фрезерных станках, пылесосах и подобных устройствах.

    РИСУНОК 16: Характеристика крутящего момента и скорости универсального двигателя.

    Направление вращения универсального двигателя можно изменить, поменяв местами относительные полюса ротора и статора. Это достигается путем изменения щеточных соединений на коммутаторе, чтобы позволить току изменить свое направление в роторе, продолжая течь в том же направлении в статоре. Скорость универсального двигателя обычно регулируется с помощью электронных устройств.

    Типы однофазных асинхронных двигателей | Схема электрических соединений однофазного асинхронного двигателя

    Однофазные асинхронные двигатели традиционно используются в жилых помещениях, таких как потолочные вентиляторы, кондиционеры, стиральные машины и холодильники.Эти двигатели состоят из двигателей с расщепленной фазой, экранированных полюсов и конденсаторных двигателей.

    Двигатель переменного тока (переменного тока) - это электромеханическое устройство, которое преобразует электрическую энергию в механическое движение за счет использования электромагнетизма и изменения частоты и напряжений, производимых коммунальной компанией или контроллером двигателя.

    Двигатели переменного тока составляют основу потребления электроэнергии в мире, потому что они делают так много и с минимальным вмешательством человека.Электродвигатель переменного тока на сегодняшний день является самым простым и дешевым электродвигателем, используемым в промышленности.

    Рис.1: Статор и ротор двигателя

    Электродвигатель переменного тока состоит из очень небольшого количества деталей, пока они не выходят за рамки своих рабочих характеристик, они могут проработать до 100 лет с минимальным техобслуживанием. Основными частями двигателя переменного тока являются ротор и статор, как показано на рисунке 1 .

    Ротор - это вращающаяся часть двигателя переменного тока, которая поддерживается набором подшипников, обеспечивающих безупречное вращение внутри концевых колец.Подшипники запрессованы в набор концевых раструбов, заполненных смазкой для обеспечения плавного движения.

    Статор - это неподвижная или неподвижная часть двигателя, к которой прикреплены концевые раструбы, а обмотки намотаны вокруг многослойных листов железа, которые создают электромагнитное вращающееся поле, когда катушка находится под напряжением.

    Двигатели - это очень универсальные электромеханические компоненты, поскольку они могут иметь размер, конфигурацию и конструкцию, подходящую для любой ситуации или для выполнения любых задач.Большой процент двигателей, используемых в промышленности, составляют однофазные и трехфазные двигатели, как показано на рисунке 2.

    Рис.2: Трехфазный асинхронный двигатель (Изображение предоставлено Википедией)

    Однофазные асинхронные двигатели

    Однофазный асинхронный двигатель - это электродвигатель, работающий от одной формы волны переменного тока. Однофазные асинхронные двигатели используются в жилых помещениях для электроприборов переменного тока в одиночных или многоквартирных домах. Существует три типа однофазных асинхронных двигателей: электродвигатели с экранированными полюсами, электродвигатели с разделенной фазой и конденсаторные электродвигатели.

    Электродвигатель с экранированными полюсами

    Двигатели с экранированными полюсами , , как показано на рисунке 3, представляют собой однофазные асинхронные двигатели, используемые для работы с небольшими охлаждающими вентиляторами внутри холодильников компьютеров. Они принадлежат к семейству асинхронных двигателей с короткозамкнутым ротором, которые используются в ограниченном количестве приложений, требующих менее 3/4 лошадиных сил, обычно в диапазоне от 1/20 до 1/6 лошадиных сил.

    Самая большая нагрузка - двигатель с экранированным полюсом может повернуть очень легкий компонент, способный вращаться с низкой плотностью вращения. . Обычно, когда двигатели с экранированными полюсами выходят из строя, их выбрасывают в мусорную корзину и покупают новый.

    Рис.3: Двигатель с экранированными полюсами

    Рис.4: Схема электрических соединений двигателя с экранированными полюсами

    Полюса статора снабжены дополнительной обмоткой в ​​каждом углу, называемой обмоткой оттенка , как показано на рис.4 . Эти обмотки не имеют электрического соединения для запуска, но используют индуцированный ток для создания вращающегося магнитного поля.

    Полюсная конструкция двигателя с экранированными полюсами позволяет создавать вращающееся магнитное поле, задерживая нарастание магнитного потока. Медный проводник изолирует заштрихованную часть полюса, образуя полный виток вокруг него. В заштрихованной части магнитный поток увеличивается, но задерживается током, индуцированным в медном экране. Магнитный поток в незатененной части увеличивается с током обмотки, формирующим вращающееся поле.

    Двухфазный двигатель

    Асинхронный двигатель с расщепленной фазой - это однофазный асинхронный двигатель с двумя обмотками, называемыми рабочей обмоткой, вторичной пусковой обмоткой и центробежным переключателем, как показано на рисунке 6. Двигатели с расщепленной фазой обычно работают при 1/20 л.с. TO 1 / 3 л.с.

    Эти двигатели с короткозамкнутым ротором являются ступенью выше двигателей с экранированными полюсами, потому что они могут немного больше работать с более тяжелой нагрузкой, приложенной к валу ротора.

    Рис.5: Двигатель с расщепленной фазой

    Рис.6: Схема электрических соединений двигателя с расщепленной фазой

    Электродвигатель с расщепленной фазой используется в приложениях, требующих от 1/20 л.с. до 1/3 л.с., что означает, что он может вращать что угодно, от лопастей потолочного вентилятора, ванн стиральных машин, двигателей нагнетателей для нефтяных печей и небольших насосов.

    Центробежный выключатель - это нормально замкнутое управляющее устройство, подключенное к пусковой обмотке. Цель этой конфигурации состоит в том, что пусковая обмотка двигателя будет отключена от цепи, когда двигатель достигнет 75-80% своей номинальной скорости.Несмотря на то, что он считается надежным двигателем, этот центробежный переключатель является подвижной частью, которая иногда не включается, когда двигатель перестает вращаться.

    Как работают электродвигатели с разделенной фазой
    • Для пуска двигателя с расщепленной фазой пусковая и пусковая обмотки должны быть соединены параллельно
    • При 75% полной скорости центробежный выключатель размыкается, отключая пусковую обмотку.
    • Поскольку пусковая обмотка отключена от цепи, двигатель работает через пусковую обмотку.
    • Для отключения питания двигателя с расщепленной фазой при скорости 40% полной нагрузки центробежный переключатель замыкается. Выключение мотора.

    Конденсаторные двигатели

    Однофазные конденсаторные двигатели - это следующий шаг в семействе однофазных асинхронных двигателей. Конденсаторные двигатели содержат такую ​​же пусковую и рабочую обмотку, что и двигатель с расщепленной фазой, за исключением конденсатора, который дает двигателю больший крутящий момент при запуске или во время работы. Конденсатор предназначен для возврата напряжения в систему при отсутствии напряжения и синусоидального сигнала ЦАП в однофазной системе.

    В однофазной системе переменного тока имеется только одна форма волны напряжения, и в течение одного цикла из 60 гц, необходимых для выработки напряжения, напряжение не создается в двух точках. Работа конденсатора заключается в том, чтобы заполнить эту пустоту, чтобы двигатель всегда находился под напряжением, что означает, что во время работы двигателя создается большой крутящий момент.

    Конденсаторные двигатели трех типов: конденсаторный пуск, конденсаторный двигатель и конденсаторный пуск и пуск.

    Асинхронный двигатель с конденсаторным пуском

    Конденсаторный пуск Асинхронные двигатели , как показано на рисунке 7, представляют собой однофазный асинхронный двигатель, в котором конденсатор включен последовательно с пусковой обмоткой и центробежным переключателем двигателя.Эта конфигурация дает двигателю более высокую пусковую мощность, но приложение не требует большой мощности во время работы. Во время работы инерция нагрузки играет большую роль в работе двигателя, когда есть проблема с двигателем, обычно это происходит из-за неисправного конденсатора. Двигатель обычно не вращается, если внешняя сила не раскручивает вал; после запуска он будет продолжать нормально работать до тех пор, пока с двигателя не будет отключено питание.

    Двигатели с конденсаторным пуском обычно используются в блоках переменного тока, больших двигателях воздуходувок и вентиляторах конденсатора.Конденсатор этих двигателей иногда встроен в двигатель или расположен на удалении от двигателя, что упрощает замену.

    Рис.7: Конденсаторный пусковой двигатель

    Работа конденсаторного двигателя
    • Имеет пусковую обмотку, пусковую обмотку и центробежный переключатель, который размыкается при скорости полной нагрузки от 60 до 80%, как показано на рисунке 8.
    • Пусковая обмотка и конденсатор больше не используются после размыкания центробежного переключателя, как показано на рисунке 9.
    • Конденсатор используется только для пуска с высоким крутящим моментом.

    Рис.8: Пусковой конденсатор

    Рис.9: Центробежный переключатель

    Конденсаторный асинхронный двигатель

    Асинхронные двигатели с конденсаторным запуском , как показано на рисунках 10 и 11, очень похожи на индукционные электродвигатели с конденсаторным запуском, за исключением того, что пусковая обмотка и рабочая обмотка всегда остаются в цепи. Для этого типа двигателя требуется низкий пусковой крутящий момент, но он должен поддерживать постоянный крутящий момент во время работы.Этот тип двигателя иногда можно встретить в компрессоре кондиционера. Пусковая обмотка постоянно подключена к конденсатору последовательно.

    Рис.10: Конденсаторный двигатель

    Рис.11: Конденсаторный двигатель

    Работа конденсатора
    • Использует конденсатор более низкого номинала, потому что конденсатор всегда находится в цепи на полной скорости нагрузки.
    • Используется для более высокого крутящего момента.

    Конденсатор пусковой конденсатор Асинхронный двигатель

    Конденсаторные асинхронные двигатели с пусковым конденсатором - это однофазные асинхронные двигатели, у которых есть конденсатор в пусковой обмотке и в пусковой обмотке, как показано на рисунках 12 и 13 (электрическая схема).Этот тип двигателя разработан для обеспечения высокого пускового момента и стабильной работы в таких приложениях, как большие водяные насосы.

    Рис.12: Конденсаторный пуск и конденсаторный двигатель

    Рис.13: Схема электрических соединений электродвигателя пускового конденсатора и работающего конденсатора

    Конденсатор пуск-конденсатор Работа двигателя

    • Состоит из двух конденсаторов
    • Один конденсатор включен последовательно с пусковой обмоткой; другой конденсатор включен последовательно с обмоткой хода.
    • Оба конденсатора имеют разные номиналы.
    • Конденсаторный пуск и запуск Двигатель имеет одинаковый пусковой крутящий момент и более высокий рабочий крутящий момент, потому что у него больше емкости.
    • Конденсатор большей емкости для запуска и конденсатор меньшей емкости для работы.
    Схема и работа однофазного двигателя

    Однофазные двигатели очень широко используются в домах, офисах, мастерских и т. Д., Поскольку в большинство домов и офисов подается однофазное питание. Кроме того, однофазные двигатели надежны, дешевы по стоимости, просты в конструкции и легко ремонтируются.

    1. Однофазный асинхронный двигатель (разделенная фаза, конденсатор, экранированный полюс и т. Д.)
    2. Однофазный синхронный двигатель
    3. Тяговый двигатель и др.
    В этой статье объясняется основная конструкция и работа однофазного асинхронного двигателя .

    Однофазный асинхронный двигатель

    Конструкция однофазного асинхронного двигателя аналогична конструкции трехфазного асинхронного двигателя с короткозамкнутым ротором, за исключением того, что статор намотан для однофазного питания.Статор также снабжен «пусковой обмоткой», которая используется только для пусковых целей. Это можно понять из схемы однофазного асинхронного двигателя слева.
    Принцип работы однофазного асинхронного двигателя
    Когда на статор однофазного двигателя подается однофазное питание, он создает переменный магнитный поток в обмотке статора. Переменный ток, протекающий через обмотку статора, вызывает индуцированный ток в стержнях ротора (ротора с короткозамкнутым ротором) согласно закону электромагнитной индукции Фарадея.Этот индуцированный ток в роторе также будет создавать переменный магнитный поток. Даже после установки обоих переменных потоков двигатель не запускается (причина объясняется ниже). Однако, если ротор запускается под действием внешней силы в любом направлении, двигатель разгоняется до конечной скорости и продолжает работать с номинальной скоростью. Такое поведение однофазного двигателя можно объяснить теорией вращения двойного поля.
    Теория вращения двойного поля

    Теория вращения двойного поля утверждает, что любая переменная величина (здесь переменный поток) может быть разделена на две составляющие, величина которых равна половине максимальной величины переменной величины, и обе эти составляющие вращаются в противоположном направлении.

    Следующие рисунки помогут вам понять теорию вращения двойного поля.
    Почему однофазный асинхронный двигатель не запускается автоматически?
    Статор однофазного асинхронного двигателя намотан с однофазной обмоткой. Когда на статор подается однофазное питание, он создает переменный магнитный поток (который чередуется только вдоль одной оси пространства). Переменный поток, действующий на ротор с короткозамкнутым ротором, не может производить вращение, только вращающийся поток может. Вот почему однофазный асинхронный двигатель не запускается автоматически.
    Как сделать самозапуск однофазного асинхронного двигателя?
    • Как объяснено выше, однофазный асинхронный двигатель не запускается автоматически . Для самозапуска его можно временно преобразовать в двухфазный двигатель при запуске. Это может быть достигнуто путем введения дополнительной «пусковой обмотки», также называемой вспомогательной обмоткой.
    • Следовательно, статор однофазного двигателя имеет две обмотки: (i) основная обмотка и (ii) пусковая обмотка (вспомогательная обмотка).Эти две обмотки подключены параллельно к однофазному источнику питания и разнесены на 90 электрических градусов друг от друга. Разность фаз в 90 градусов может быть достигнута путем последовательного подключения конденсатора к пусковой обмотке.
    • Следовательно, двигатель ведет себя как двухфазный двигатель, а статор создает вращающееся магнитное поле, которое заставляет ротор вращаться. Когда двигатель набирает скорость, скажем, до 80 или 90% от его нормальной скорости, пусковая обмотка отключается от цепи с помощью центробежного переключателя, и двигатель работает только от основной обмотки.

    Реверсивные однофазные асинхронные двигатели

    Реверсивные однофазные асинхронные двигатели

    Начиная с моей статьи о двигателях переменного тока, Меня часто спрашивают о том, как изменить асинхронный двигатель переменного тока. Раньше я подробно не рассказывал, как запускаются асинхронные двигатели. потому что это обширная тема сама по себе.

    Ротор асинхронного двигателя представляет собой проницаемый железный сердечник. с залитой алюминиевой обмоткой короткого замыкания. Ты можешь видеть алюминий на обоих концах ротора.Алюминий также проходит через продольные отверстия в роторе для укорочения типа «беличья клетка» обмотка цепи. Линии едва видны под небольшим углом на роторе где проходят обмотки.

    Обмотка короткого замыкания заставляет ротор сопротивляться быстрым изменениям магнитного поля. полей, поэтому, если на него воздействует вращающееся магнитное поле, он попытается следовать за ним. (подробнее об этом здесь)

    В трехфазном двигателе, естественно, три фазы на трех обмотках. создают вращающееся магнитное поле.Но для однофазных двигателей переменного тока магнитное поле только чередуется вперед и назад. Нужны некоторые хитрости для создания вращающегося поля.

    Реверс двигателя с расщепленной фазой

    В этом двигателе с расщепленной фазой основная обмотка (метка 'M') подключается непосредственно к источнику переменного тока 60 Гц, а другая обмотка (метка 'O') подключена последовательно с конденсатор (С). Взаимодействие индуктивности двигателя обмотки и емкость конденсатора приводят к тому, что обмотка составляет около 90 градусы не совпадают по фазе с основной обмоткой.

    Основная обмотка создает магнитное поле, чередующееся по вертикали, а другая обмотка создает магнитное поле, чередующееся по горизонтали. но не в фазе, в сумме это вращающееся магнитное поле. Ротор пытается следовать за ним, заставляя его вращаться.

    Реверс двигателя - это просто перестановка силового соединения. так что другая обмотка находится непосредственно на переменном токе. По сути, перемещение одна сторона силового соединения от (A) до (B), в результате чего обмотка (O) быть основной обмоткой, а обмотка (M) - фазосдвинутой.

    На двигателях мощностью более 1/4 л.с. две обмотки обычно имеют разные числа оборотов, поэтому этот метод реверсирования может быть неприменим. Сначала убедитесь, что сопротивление двух обмоток одинаково.

    Если обмотки не одинакового сопротивления, вы все равно можете его поменять местами. поменяв полярность одной из обмоток, при условии, что винты не связаны друг с другом внутри двигателя (например, более трех провода выходящие из обмоток).

    Обмотки стартера на более мощных двигателях

    Теперь, если мы заглянем внутрь более крупного двигателя, такого как этот двигатель мощностью 3/4 лошадиных сил, обмотки выглядят намного сложнее.Обмотки распределены по множеству пазов. в статоре двигателя (C). Таким образом, там меньше резкого перехода от одного полюса к другому. Этот делает магнитное поле более гладким, что делает его тише, более эффективный мотор.

    Этот двигатель имеет толстую главную обмотку (M), а также обмотку стартера. из более тонкой проволоки (S). Основная обмотка создает горизонтальную магнитное поле, а обмотка стартера создает вертикальное.

    Эта обмотка стартера включена последовательно с конденсатором (C) и центробежным переключатель (S).В этом моторе установлен пусковой конденсатор. внутри основного корпуса. Обычно пусковой конденсатор монтируется сверху корпуса под металлическим куполом.

    Центробежный выключатель (S) установлен на задней панели. и активируется диском (P), который нажимает на выступ на переключатель (слева от буквы S на фото).

    Сняв ротор и посмотрев на диск, можно увидеть два металлических выступа. Когда двигатель вращается, центробежная сила толкает их наружу, что по очереди вытягивает диск обратно.Это освободит пластиковый язычок на переключателе, вызывая размыкание переключателя и отключение обмотки стартера. Диск отодвигается достаточно далеко, чтобы больше не контактировать с язычком, сводящим к минимуму трение и износ. Это умный способ активировать переключатель на основе центробежной силы без необходимости переключается на вращение.

    Расположение центробежного переключателя издает отчетливый "щелчок". когда он сбрасывается после выключения двигателя. Щелчок переключателя вовлечение, когда оно начинается, различить гораздо труднее.

    Если обмотка стартера помогает запускать двигатель, это обязательно поможет. мотор тоже работает. Так почему бы просто не оставить стартер обмотка подключена? Ну а Вся штука с фазовым сдвигом не так уж и элегантна. Размер конденсатора вы потребность очень сильно зависит от нагрузки двигателя. Для быстрого запуска мотора, вам нужна большая емкость, чем для эффективного непрерывного операция. Кроме того, конденсатор является электролитическим конденсатором и не является рассчитан на постоянную нагрузку. И потому что обмотка стартера только используется недолго, поэтому для экономии денег он сделан из более тонкой проволоки, потому что медь стоит дорого.

    Некоторые двигатели используют большой конденсатор для запуска и конденсатор меньшего размера для непрерывной работы. Такие моторы часто имеют два внешних конденсатора (C), как видно на этой в моей настольной пиле. Эти двигатели называются двигателями с конденсаторным запуском и запуском конденсатора. Конденсаторные двигатели с конденсаторным запуском обычно имеют более одного Лошадиные силы. Это 1,75 лошадиных сил.

    Двигатели можно удешевить, заменив их конденсатор на резистор. Хотя обычно отдельный резистор не добавляется.Вместо, обмотка стартера сделана из более тонкой (дешевой) медной проволоки, поэтому у него большее сопротивление в самой обмотке.

    Это приводит к гораздо меньшему фазовый сдвиг, чем у конденсатора, но достаточный для запуска двигателя. Обмотки двигателя по существу образуют индуктор, а когда синусоидальная волна переменного тока (например, мощность переменного тока) подается на катушку индуктивности, ток отстает от напряжения на 90 градусов. И магнитное поле строго зависит от тока.

    Для резистора ток синфазен с напряжением.Если бы у нас был большой последовательное сопротивление и малая индуктивность, падение напряжения и ток будет во многом определяться резистором. Итак, ток и магнитный поле будет в значительной степени синфазным с приложенным напряжением. С участием тока в основной обмотке, отставая на 90 градусов, мы имели бы Разница между ними 90 градусов, но обмотка стартера было бы крайне неэффективно.

    На самом деле компромисс гораздо меньше. фазового сдвига и большей мощности. Этого достаточно, чтобы мотор заработал.Как бы то ни было, стартер на этих моторах довольно неэффективен, но он не имеет большого значения, когда двигатель работает. Однако лишний ток требуемый для стартера может привести к срабатыванию автоматического выключателя, поэтому этот метод обычно используется только для двигателей меньшего размера, от 1/4 до 1/2 л.с. В двигателях мощностью 3/4 или больше обычно используется пусковой конденсатор.

    Если вы не знакомы с аналоговой электроникой, приведенное выше объяснение вероятно, неадекватен, и вы можете узнать больше об индукции моторы, если вы этого не понимаете.

    В асинхронных двигателях изнашиваются только подшипники, выключатель стартера и конденсатор. Без конденсатора есть один меньше вещей потерпеть неудачу.

    Совсем недавно я случайно заклинил выключатель стартера на Мотор с резистивным запуском мощностью 1/4 л.с. от сушилки для белья (тот, что на этот вентилятор), и мотор отключился всего за 15 секунд. его схема тепловой защиты из-за перегрева обмотки стартера.

    Реверс конденсаторного пускового двигателя

    Так как же нам поменять местами конденсаторный пусковой двигатель? Как только началось, однофазная индукция мотор с радостью будет вращаться в любом направлении.Чтобы обратить это вспять, нам нужно изменить направление вращающегося магнитного поля, создаваемого основным и стартерные обмотки. И этого можно добиться, переставив полярность стартерной обмотки. По сути, нам нужно поменять местами соединения на обоих концах обмотки стартера. Иногда это только обмотка, Иногда обмотка, переключатель и конденсатор в обратном порядке. Порядок выключателя и конденсатора не важно, если вы подключены последовательно.

    Вы также можете перевернуть двигатель, перевернув основную обмотку. (тот же эффект).

    Если бы вам пришлось поменять местами основную и стартерную обмотки, как это делают с двигателем с расщепленной фазой двигатель также будет реверсировать. Тем не мение, он не будет работать на полную мощность и также может сгореть. В обмотка стартера не предназначена для продолжительной работы.

    Наклейка на этом двигателе указывает: «ДВИГАТЕЛЬ НЕРЕВЕРСИРУЕТСЯ».

    Если вы посмотрите на предыдущие фотографии этого двигателя, вы увидите, что только три провода (красный, желтый и синий) выходят из обмоток.Один конец основной и пусковой обмоток соединен между собой. прямо на обмотках.

    Чтобы перевернуть обмотку стартера, мне пришлось бы разорвать это соединение внутрь обмоток и вытащить другой конец стартера обмотка. Но я действительно не могу понять это из-за как это внутри мотора. Мне пришлось бы проделать дыру в ограждение, чтобы добраться даже до точки, где они связаны вместе. Это не то, чтобы этот двигатель нельзя было реверсировать, просто для экономии средств меры, они сделали его поворот более трудным, чем того стоит беда.

    Но на реверсивных двигателях этикетка всегда указывает на то, что нужно поменять местами два провода, чтобы поменять местами.

    Провода для реверса - это всегда провода, ведущие к обмотке стартера.

    Если у вас двигатель, на котором отсутствует этикетка, обмотка стартера обычно имеет электрическое сопротивление примерно в три раза больше, чем основное обмотка и всегда включена последовательно с выключателем стартера и конденсатором (если есть). Если вы можете изолировать оба конца этой обмотки и поменять их местами, вы можете перевернуть мотор.Если, однако, есть только из обмоток выходят три провода, затем основная и пусковая обмотки один конец связан вместе, и двигатель не реверсивный.

    Для 120-вольтного двигателя мощностью 1/2 л.с. основная обмотка обычно имеет около 1,5 Ом, а обмотка стартера около 4 Ом. Для 240 вольт 1/2 л.с. двигатели (только 240 вольт), вы должны ожидать около 6 Ом на основной обмотке и 16 Ом на обмотке стартера. Ожидайте, что сопротивление обмоток будет обратно пропорционально мощности.

    У многих двигателей от обмоток отходят несколько дополнительных проводов. Часто к обмоткам прикрепляют термовыключатель, и этот выключатель может быть частично привязан к одной из обмоток. Также, если мотор можно переподключить на 120 и 240 вольт, основная обмотка будет состоять двух обмоток на 120 В, которые можно соединить последовательно или параллельно. Так что от обмоток может выходить довольно много проводов. Это может занять немного времени и поисков, чтобы понять это.

    Для двигателей, которые могут быть подключены как на 120 В, так и на 240 В, стартер обмотка - обмотка на 120 вольт.Когда эти двигатели подключены к 240 вольт, основная обмотка используется как автотрансформатор, чтобы сделать 120 вольт для обмотки стартера. В противном случае переподключение мотора от 120 до 240 вольт было бы намного сложнее!

    Однофазный асинхронный двигатель

    : работа схем и применение

    Поскольку требования к питанию систем с одной нагрузкой обычно невелики, все наши дома, офисы снабжены только однофазным источником переменного тока. Для обеспечения надлежащих условий работы при использовании этого однофазного источника питания необходимо использовать совместимые двигатели.Помимо совместимости, двигатели должны быть экономичными, надежными и простыми в ремонте. Все эти характеристики легко найти в однофазном асинхронном двигателе. Подобно трехфазным двигателям, но с некоторыми модификациями, однофазные асинхронные двигатели являются отличным выбором для бытовой техники. Их простой дизайн и низкая стоимость привлекли множество приложений.


    Определение однофазного асинхронного двигателя

    Однофазные асинхронные двигатели - это простые двигатели, которые работают от однофазного тока А.C. и в котором крутящий момент создается из-за индукции электричества, вызванного переменными магнитными полями. Однофазные асинхронные двигатели бывают разных типов в зависимости от условий запуска и различных факторов. Их-

    1). Двигатели с расщепленной фазой.

    • Электродвигатели с сопротивлением пуска.
    • Двигатели емкостные пусковые.
    • Двигатель с постоянным разделенным конденсатором.
    • Двухзначный конденсаторный двигатель.

    2). Асинхронные двигатели с расщепленными полюсами.

    3).Асинхронный двигатель с резистивным пуском.

    4). Отталкивание - пуск асинхронного двигателя.

    Конструкция однофазного асинхронного двигателя

    Основными частями однофазного асинхронного двигателя являются статор, ротор, обмотки. Статор - это неподвижная часть двигателя, на которую подается переменный ток. Статор содержит два типа обмоток. Одна - основная обмотка, другая - вспомогательная. Эти обмотки размещены перпендикулярно друг другу. К вспомогательной обмотке параллельно подключен конденсатор.

    Поскольку питание переменного тока используется для работы однофазного асинхронного двигателя, необходимо учитывать определенные потери, такие как - потери на вихревые токи, потери на гистерезис. Для устранения потерь на вихревые токи статор имеет пластинчатую штамповку. Для уменьшения потерь на гистерезис эти штамповки обычно изготавливают из кремнистой стали.

    Ротор - это вращающаяся часть двигателя. Здесь ротор похож на ротор с короткозамкнутым ротором. Ротор не только цилиндрический, но и имеет по всей поверхности прорези.Чтобы обеспечить плавную и стабильную работу двигателя, предотвращая магнитную блокировку статора и ротора, пазы скошены, а не параллельны.

    Жилы ротора представляют собой алюминиевые или медные стержни, вставленные в пазы ротора. Торцевые кольца, изготовленные из алюминия или меди, замыкают проводники ротора. В этом однофазном асинхронном двигателе не используются контактные кольца и коммутаторы, поэтому их конструкция становится очень простой и легкой.

    Эквивалентная схема однофазного асинхронного двигателя

    На основе теории двойного вращающегося поля можно нарисовать эквивалентную схему однофазного асинхронного двигателя.Схема изображена в двух положениях - состояние покоя ротора состояние заблокированного ротора.

    Двигатель с заблокированным ротором действует как трансформатор с короткозамкнутой вторичной обмоткой.

    Эквивалентная схема однофазного асинхронного двигателя

    В состоянии покоя ротора два вращающихся магнитных поля имеют противоположное направление с одинаково разделенными величинами и кажутся соединенными последовательно друг с другом.

    Схема однофазного асинхронного двигателя в состоянии покоя ротора

    Принцип работы однофазного асинхронного двигателя

    На главную обмотку однофазных асинхронных двигателей подается однофазный ток А.C. ток. Это создает флуктуирующий магнитный поток вокруг ротора. Это означает, что при изменении направления переменного тока изменяется направление генерируемого магнитного поля. Этого условия недостаточно, чтобы ротор вращался. Здесь применяется принцип теории двойного вращающегося поля.

    Согласно теории двойного вращающегося поля, одиночное переменное поле возникает из-за комбинации двух полей равной величины, но вращающихся в противоположном направлении. Величина этих двух полей равна половине величины переменного поля.Это означает, что при приложении переменного тока создаются два поля половинной величины с равными величинами, но вращающимися в противоположных направлениях.

    Итак, теперь в статоре течет ток, а на роторе вращается магнитное поле, таким образом, закон электромагнитной индукции Фарадея действует на ротор. Согласно этому закону вращающиеся магнитные поля производят электричество в роторе, которое создает силу «F», которая может вращать ротор.

    Почему однофазный асинхронный двигатель не запускается автоматически?

    Когда к ротору применяется закон электромагнитной индукции Фарадея, индуцируется электричество и создается сила на стержнях ротора.Но согласно теории двойного вращающегося поля, есть два магнитных поля с одинаковой величиной, но вращающихся в противоположном направлении. Таким образом, создаются два вектора силы с одинаковой величиной, но противоположными по направлению.

    Таким образом, эти векторы силы, поскольку они имеют одинаковую величину, но противоположны по направлению, не заставляют ротор вращаться. Итак, однофазные асинхронные двигатели не запускаются самостоятельно. Мотор в таком состоянии просто гудит. Для предотвращения этой ситуации и вращения ротора необходимо приложить пусковое усилие для однофазного двигателя.Когда сила в одном направлении становится больше, чем сила в другом направлении, ротор начинает вращаться. В однофазных асинхронных двигателях для этой цели используются вспомогательные обмотки.

    Способы пуска однофазного асинхронного двигателя

    Однофазный асинхронный двигатель не имеет пускового момента, поэтому для обеспечения этого пускового момента необходима внешняя схема. Для этого в статоре этих двигателей имеется вспомогательная обмотка. Вспомогательная обмотка подключена параллельно конденсатору.Когда конденсатор включен, аналогично основной обмотке, на вспомогательной обмотке наблюдаются вращающиеся два магнитных поля одинаковой величины, но в противоположном направлении.

    Из этих двух магнитных полей вспомогательной обмотки одно компенсирует одно из магнитных полей основной обмотки, а другое складывается с другим магнитным полем основной обмотки. Таким образом, в результате получается одно вращающееся магнитное поле большой величины. Это создает силу в одном направлении, следовательно, вращает ротор.Когда ротор начинает вращаться, он вращается, даже если конденсатор выключен.

    Существуют различные способы определения однофазных асинхронных двигателей. Обычно эти двигатели выбираются в зависимости от способа их запуска. Эти методы можно отнести к

    .
    • Двухфазный пуск.
    • Запуск с расщепленными полюсами.
    • Пуск отталкивающего двигателя
    • Пуск противодействия.

    При двухфазном пуске статор имеет два типа обмоток - основную и вспомогательную, соединенные параллельно.Двигатели с данным типом пуска -

    • Двигатели с резистивным разделением фаз.
    • Двигатели с конденсаторной фазой.
    • Конденсаторы запускают и запускают двигатели.
    • Двигатель с конденсаторным двигателем.

    Однофазный индукционный конденсаторный пусковой двигатель

    Его также называют конденсаторным электродвигателем с разделенной фазой. Здесь количество витков вспомогательной обмотки равно количеству витков основной обмотки. Конденсатор включен последовательно со вспомогательной обмоткой.Вспомогательная обмотка отключается с помощью центробежного переключателя, когда ротор достигает 75% синхронной скорости. Двигатель продолжает ускоряться, пока не достигнет нормальной скорости.

    Номинальная мощность двигателей с конденсаторным пуском находится в диапазоне от 120 до 750 Вт. Эти двигатели обычно выбирают для таких применений, как холодильники, кондиционеры и т. Д. Из-за их высокого пускового момента.

    Применение однофазного асинхронного двигателя

    Эти двигатели находят применение в вентиляторах, холодильниках, кондиционерах, пылесосах, стиральных машинах, центробежных насосах, инструментах, мелкой сельскохозяйственной технике, воздуходувках и т. Д.Они в основном используются для маломощных устройств с постоянной скоростью, таких как сельскохозяйственные инструменты и оборудование, где трехфазное питание недоступно. Двигатели от 1/400 кВт до 1/25 кВт используются в игрушках, фенах и т. Д.…

    Итак, мы часто используем однофазные асинхронные двигатели в повседневной жизни. Эти моторы легко ремонтировать. Тем не менее, у этих двигателей есть некоторые недостатки. С каким недостатком этих моторов вы столкнулись? Вы можете назвать некоторые из них?

    Источник изображения: Цепи однофазного асинхронного двигателя

    Однофазные асинхронные двигатели



    ЗАДАЧИ

    • описать основные операции следующих типов асинхронных двигателей:

    • Двухфазный двигатель (одно- и двухполюсный)
    • конденсаторный пуск, асинхронный двигатель (одно- и двухполярное напряжение)
    • конденсаторный пуск, конденсаторный двигатель с одним конденсатором
    • конденсаторный пуск, конденсаторный двигатель с двумя конденсаторами
    • конденсаторный пуск, конденсаторный двигатель с автотрансформатором с один конденсатор

    • сравните двигатели в списке цели 1 в отношении запуска крутящий момент, скоростные характеристики и коэффициент мощности при номинальной нагрузке.

    Два основных типа однофазных асинхронных двигателей - это двухфазные электродвигатели. двигатель и конденсаторный двигатель. Оба типа однофазных асинхронных двигателей обычно имеют дробную оценку мощности. Используется двигатель с расщепленной фазой для работы с такими устройствами, как стиральные машины, небольшие водяные насосы, масляные горелки и другие типы небольших нагрузок, не требующие сильного пускового момента. Конденсаторный двигатель обычно используется с устройствами, требующими сильного пуска. крутящий момент, например, в холодильниках и компрессорах.Оба типа однофазных асинхронные двигатели относительно невысоки в стоимости, имеют прочную конструкцию; и демонстрируют хорошие производственные показатели.

    КОНСТРУКЦИЯ ИНДУКЦИОННОГО ДВИГАТЕЛЯ РАЗДЕЛЕННОЙ ФАЗЫ

    Асинхронный двигатель с расщепленной фазой в основном состоит из статора, ротора, центробежный выключатель, расположенный внутри двигателя, корпус с двумя торцевыми щитками подшипники, поддерживающие вал ротора, и стальная литая рама в к которому прижимается сердечник статора.Два торцевых щита прикручены к стальной литой каркас. Подшипники, размещенные в торцевых щитках, удерживают ротор. центрирован внутри статора, так что он будет вращаться с минимальным трением, без ударов и трения сердечника статора.

    Статор двигателя с расщепленной фазой состоит из двух удерживаемых на месте обмоток. в пазах стального многослойного сердечника. Обе обмотки состоят из изолированных катушки распределены и соединены в две обмотки, разнесенные на 90 электрических градусы друг от друга.Одна обмотка - это бегущая обмотка, а вторая обмотка. это пусковая обмотка.

    Ходовая обмотка состоит из изолированного медного провода. Он находится по адресу дно пазов статора. Сечение провода в пусковой обмотке меньше, чем у бегущей обмотки. Эти катушки размещены сверху катушек ходовой обмотки в ближайших к ротору пазах статора.

    Пусковая и рабочая обмотки подключены параллельно к однофазная линия при пуске двигателя.После того, как мотор разгоняется до скорости, равной примерно от двух третей до трех четвертей номинальной скорости, пусковая обмотка автоматически отключается от линии с помощью центробежного переключателя.

    Ротор электродвигателя с расщепленной фазой имеет такую ​​же конструкцию, как и трехфазного асинхронного двигателя с короткозамкнутым ротором. То есть ротор состоит цилиндрического сердечника, собранного из стальных пластин. Медные прутки устанавливается возле поверхности ротора.Прутки припаиваются или привариваются к два медных концевых кольца. В некоторых двигателях ротор выполнен из литого алюминия. Ед. изм.

    илл. 1 показан типичный короткозамкнутый ротор для однофазной индукции. мотор. Этот тип ротора требует минимального обслуживания, так как нет обмотки, щетки, контактные кольца или коммутаторы. Обратите внимание на рисунок, что Роторные вентиляторы являются частью роторного узла с короткозамкнутым ротором. Эти ротор вентиляторы поддерживают циркуляцию воздуха через двигатель, чтобы предотвратить большое увеличение по температуре обмоток.


    ил. 1 Литой алюминиевый ротор с короткозамкнутым ротором.

    Центробежный выключатель установлен внутри двигателя. Центробежный переключатель отключает пусковую обмотку после достижения ротором заданного скорость, обычно от двух третей до трех четвертей номинальной скорости. Выключатель состоит из неподвижной части и вращающейся части. Стационарная часть устанавливается на одном из торцевых щитов и имеет два контакта, которые действуют как однополюсный однонаправленный переключатель.Вращающаяся часть центробежного переключатель установлен на роторе.

    Простая схема работы центробежного выключателя приведена в рисунок 2. Когда ротор остановлен, давление пружины на волоконном кольце вращающейся части удерживает контакты замкнутыми. Когда ротор достигает примерно трех четвертей своей номинальной скорости, центробежное действие ротора заставляет пружину ослаблять давление на оптоволоконном кольце и контакты размыкаются.В результате пусковая обмотка цепь отключена от линии. ill 3 - типичный центробежный переключатель, используемый с асинхронными двигателями с расщепленной фазой.


    ил. 2 Схема показывает работу центробежного выключателя: ротор в состоянии покоя, центробежный выключатель замкнут; ротор с нормальной скоростью центробежный сила, установленная в механизме переключателя, заставляет воротник двигаться и позволяет переключать контакты, чтобы открыть. ил. 3 Центробежный механизм переключения с переключатель удален.

    Принцип работы

    Когда цепь к асинхронному двигателю с расщепленной фазой замкнута, оба пусковая и ходовая обмотки запитываются параллельно. Потому что бег обмотка состоит из проволоки относительно большого сечения, ее сопротивление составляет низкий. Напомним, что ходовая обмотка размещена внизу прорезей. сердечника статора. В результате индуктивное сопротивление этой обмотки сравнительно высока из-за массы окружающего его железа.Поскольку бегущая обмотка имеет низкое сопротивление и высокое индуктивное сопротивление, ток бегущей обмотки отстает от напряжения примерно на 90 электрические степени.

    Пусковая обмотка состоит из проволоки меньшего сечения; следовательно, его сопротивление высокое. Поскольку обмотка размещена в верхней части статора пазы, масса железа, окружающего его, сравнительно мала, а индуктивная реактивное сопротивление низкое. Следовательно, пусковая обмотка имеет высокое сопротивление и низкое индуктивное сопротивление.В результате ток пускового обмотка почти синфазна с напряжением.

    Ток ходовой обмотки отстает от тока пусковой обмотки. примерно на 30 электрических градусов. Эти два тока разнесены на 30 электрических градусы друг от друга проходят через эти обмотки и вращающееся магнитное поле разработан. Это поле движется по внутренней части сердечника статора. Скорость магнитного поля определяется с использованием той же процедуры. дано для трехфазного асинхронного двигателя.

    Если асинхронный двигатель с расщепленной фазой имеет четыре полюса на обмотках статора и подключен к однофазному источнику с частотой 60 Гц, синхронная скорость Оборотного поля:

    S = 120 x f / 4

    S = синхронная скорость

    f = частота в герцах

    S = 120 x 60/4 = 1800 об / мин

    Когда поле вращающегося статора движется с синхронной скоростью, оно сокращает медные стержни ротора и индуцирует напряжение в стержнях беличьей клетки обмотка.Эти наведенные напряжения создают токи в стержнях ротора. Как в результате создается поле ротора, которое реагирует с полем статора на развивают крутящий момент, который заставляет ротор вращаться.

    Когда ротор разгоняется до номинальной скорости, центробежный выключатель отключается. пусковая обмотка от линии. Затем двигатель продолжает работать. используя только бегущую обмотку. На рисунке 4 показаны соединения центробежного выключателя в момент запуска двигателя (выключатель замкнут) и когда двигатель достигает своей нормальной скорости вращения (выключатель разомкнут).

    Двигатель с расщепленной фазой должен иметь под напряжением как пусковая, так и рабочая обмотки. при запуске мотора. Двигатель напоминает двухфазный асинхронный двигатель. в котором токи этих двух обмоток составляют примерно 90 электрических градусов не в фазе. Однако источник напряжения однофазный; следовательно, двигатель называется двухфазным двигателем, потому что он запускается как двухфазный двигатель от однофазной сети. Как только двигатель разгонится до значения, близкого к его номинальная частота вращения, он работает на ходовой обмотке как однофазный индукционный мотор.

    Если контакты центробежного переключателя не замыкаются при остановке двигателя, тогда цепь пусковой обмотки все еще разомкнута. Когда цепь двигателя снова запитана, двигатель не запускается. Двигатель должен иметь как пусковая и рабочая обмотки находятся под напряжением в момент замыкания цепи двигателя для создания необходимого пускового момента. Если мотор не запускается, но просто издает низкий гудящий звук, затем цепь пусковой обмотки размыкается. Либо контакты центробежного переключателя не замкнуты, либо есть обрыв катушек пусковых обмоток.Это небезопасное состояние. Бегущая обмотка потребляет чрезмерный ток и, следовательно, двигатель должен быть отключен от сети.


    ил. 22-4 Подключения центробежного переключателя при пуске и работе. Асинхронный двигатель с расщепленной фазой: центробежный переключатель размыкается примерно при На 75% от номинальной скорости пусковая обмотка имеет высокое сопротивление и низкое индуктивное сопротивление. Ходовая обмотка имеет низкое сопротивление и высокое индуктивное реактивное сопротивление.(обеспечивает фазовый угол 45-50 градусов для запуска крутящий момент.)

    Если механическая нагрузка слишком велика при запуске двигателя с расщепленной фазой, или если напряжение на клеммах двигателя низкое, двигатель может не достичь скорости, необходимой для работы центробежного переключателя.

    Пусковая обмотка предназначена для работы от сетевого напряжения в течение всего три или четыре секунды, пока двигатель ускоряется к его номинальной скорости.Важно, чтобы пусковая обмотка была отключена. от линии центробежным выключателем, как только двигатель разгоняется до 75 процентов номинальной скорости. Работа двигателя при его запуске обмотка более 60 секунд может привести к сгоранию изоляции на обмотке. или вызвать перегорание обмотки.

    Чтобы изменить направление вращения двигателя, просто поменяйте местами провода пусковая обмотка (5). Это приводит к тому, что направление поля устанавливается обмотками статора на обратное.В результате направление вращения обратное. Направление вращения электродвигателя с расщепленной фазой также можно поменять местами, поменяв местами два провода ходовой обмотки. Как обычно, пусковая обмотка используется для реверса.

    Однофазные двигатели часто имеют двойное номинальное напряжение: 115 В и 230 В. вольт. Для получения этих номиналов ходовая обмотка состоит из двух секций. Каждая секция обмотки рассчитана на 115 вольт. Один участок бега обмотка обычно обозначается T и T, а другая часть обозначается T и T. Если двигатель должен работать от 230 В, две обмотки по 115 В. соединены последовательно через линию 230 В.Если мотор должен быть работает от 115 вольт, затем две 115-вольтовые обмотки подключаются в параллельно линии 115 В.


    ил. 5 Изменение направления вращения при индукции с разделением фаз мотор.

    Пусковая обмотка обычно состоит только из одной обмотки на 115 В. В выводы пусковой обмотки обычно имеют маркировку T и T. Если двигатель должен работать от 115 вольт, обе секции ходовой обмотки включены параллельно пусковой обмотке (6).

    Для работы от 230 вольт в клемме заменены соединительные перемычки. коробку так, чтобы две 115-вольтовые секции ходовой обмотки были соединены последовательно по линии 230 В (7). Обратите внимание, что 115 вольт пусковая обмотка подключена параллельно одной секции ходовой обмотка. Падение напряжения на этом участке ходовой обмотки равно 115 вольт, и напряжение на пусковой обмотке тоже 115 вольт.


    ил.6 Двигатель с двойным напряжением, подключенный на 115 В.


    ил. 7 Двигатель с двойным напряжением, подключенный на 230 вольт.


    ил. 8 Обмотка двухвольтного двигателя с двумя пусковая и две ходовые обмотки

    Некоторые двухфазные двигатели с двойным напряжением имеют пусковую обмотку с двумя секции, а также двухсекционная ходовая обмотка. Бегущая обмотка секции обозначены T1 и T2 для одной секции и T3 и T4 для другой. раздел.Одна часть пусковой обмотки имеет маркировку Т5 и Т6, а Вторая секция пусковой обмотки имеет маркировку Т7 и Т8.

    Национальная ассоциация производителей электрооборудования (NEMA) имеет цветовую кодировку терминальные выводы. Если используются цвета, их следует кодировать следующим образом: Т1 - синий; Т2 - белый; Т3 - оранжевый; Т4 - желтый; Т5 - черный; и Т6 - красный.

    илл. 7 показано расположение обмоток для двухвольтного двигателя с две пусковые обмотки и две ходовые обмотки.Правильные соединения для режима 115 В и для режима 230 В приведены в таблице проиллюстрировано в 8.

    У асинхронного двигателя с расщепленной фазой очень хорошее регулирование скорости. Это имеет быстродействие от холостого хода до полной нагрузки, аналогичное этому трехфазного асинхронного двигателя с короткозамкнутым ротором. Процент скользит по большинству фракционные двигатели с разделенной фазой в лошадиных силах составляют от 4 до 6 процентов.

    Пусковой момент двигателя с расщепленной фазой сравнительно низкий.В низкое сопротивление и высокое индуктивное сопротивление в цепи бегущей обмотки, а также высокое сопротивление и низкое индуктивное реактивное сопротивление в пусковой обмотке цепи приводят к тому, что два значения тока будут значительно меньше 90 электрических градусы друг от друга. Токи пусковой и ходовой обмоток во многих электродвигатели с расщепленной фазой имеют сдвиг по фазе только на 30 электрических градусов с каждым Другие. В результате поле, создаваемое этими токами, не развивается. сильный пусковой момент.

    КОНДЕНСАТОР ПУСК, ВПУСКНОЙ ДВИГАТЕЛЬ

    Конструкция конденсаторного пускового двигателя почти такая же, как и у двигателя. асинхронного двигателя с расщепленной фазой. Однако для конденсаторного пускового двигателя конденсатор включен последовательно с пусковыми обмотками. Конденсатор обычно устанавливается в металлическом кожухе наверху двигателя. Конденсатор может быть установлен в любом удобном внешнем положении на раме двигателя и, в некоторых случаях может быть установлен внутри корпуса двигателя.Конденсатор обеспечивает более высокий пусковой крутящий момент по сравнению со стандартной расщепленной фазой мотор. Кроме того, конденсатор ограничивает пусковой выброс тока. до более низкого значения, чем у стандартного двигателя с расщепленной фазой.

    Асинхронный двигатель с конденсаторным пуском применяется в холодильных установках, компрессорах, масляные горелки, а также для небольшого машинного оборудования, а также для приложений которые требуют сильного пускового момента.


    ил.9 Два соединения ходовой обмотки и одна пусковая обмотка схема подключения.

    Принцип работы

    Когда конденсаторный пусковой двигатель подключен к более низкому напряжению и запущен, как ходовая, так и пусковая обмотки подключены параллельно через линейное напряжение при замыкании центробежного выключателя. Пусковая обмотка, однако он подключен последовательно с конденсатором. Когда мотор достигает при значении 75 процентов от его номинальной скорости центробежный выключатель размыкает и отключает пусковую обмотку и конденсатор от сети.В тогда двигатель работает как однофазный асинхронный двигатель, используя только работающий обмотка. Конденсатор используется для улучшения пускового момента и не улучшает коэффициент мощности двигателя.

    Для создания необходимого пускового момента вращающееся магнитное поле должно настраиваться обмотками статора. Пусковой ток в обмотке приведет к рабочий ток обмотки на 90 электрических градусов, если конденсатор, имеющий правильная емкость подключена последовательно с пусковой обмоткой.В результате магнитное поле, создаваемое обмотками статора, почти идентична двухфазному асинхронному двигателю. Пусковой момент для двигателя с конденсаторным пуском, таким образом, намного лучше, чем у стандартного двухфазный двигатель.

    Неисправные конденсаторы - частая причина неисправностей в конденсаторах. пусковые, асинхронные двигатели. Возможны следующие отказы конденсаторов:

    • конденсатор может замкнуться, о чем свидетельствует более низкий пусковой ток. крутящий момент.

    • конденсатор может быть «открыт», в этом случае цепи пусковой обмотки будет открыт, в результате чего двигатель не запустится.

    • конденсатор может вызвать короткое замыкание и вызвать срабатывание предохранителя для вторичная цепь двигателя на обрыв. Если номиналы предохранителей достаточно высоки и не прерывают подачу питания на двигатель достаточно скоро, запуск обмотка может перегореть.

    • пусковые конденсаторы могут короткое замыкание, если двигатель многократно включается и выключается за короткий промежуток времени.Чтобы предотвратить выход конденсатора из строя, многие производители двигателей рекомендуют запускать двигатель с конденсаторным пуском. не более 20 раз в час. Поэтому этот тип двигателя используется только в тех приложениях, где относительно мало запусков в коротком временной период.


    ил. 10 Подключения для конденсаторного пуска, асинхронный двигатель

    Скоростные характеристики двигателя с конденсаторным пуском очень хорошие. Прирост в процентном скольжении от холостого хода до полной нагрузки составляет от 4 процентов до 6 процентов.В этом случае быстродействие такое же, как у стандартного. двухфазный двигатель.

    Провода цепи пусковой обмотки поменяны местами на реверс направление вращения конденсаторного пускового двигателя. В результате направление вращения магнитного поля, создаваемого обмотками статора в сердечнике статора меняется на обратное, и вращение ротора меняется на противоположное. (См. Рисунок 9, где показано подключение проводов в обратном направлении.)

    ил 10 - схема подключения конденсаторного пускателя. электродвигатель до того, как провода пусковой обмотки поменяны местами для реверсирования направление вращения ротора.Схема на рисунке 11 показывает схемы соединений двигателя после замены выводов пусковой обмотки для изменения направления вращения.

    Второй способ изменения направления вращения пускового конденсатора Двигатель должен поменять местами два провода ходовой обмотки. Однако этот метод редко используется.

    Конденсаторный пуск, асинхронные двигатели часто имеют двойное напряжение 115 вольт и 230 вольт. Подключения для конденсаторного пускового двигателя такие же, как у асинхронных двигателей с расщепленной фазой.


    ил. 11 Соединения для реверсирования конденсаторного пуска, индукционные запустить мотор.

    КОНДЕНСАТОР ПУСК, КОНДЕНСАТОР РАБОТАЮЩИЙ ДВИГАТЕЛЬ

    Конденсаторный пуск, конденсаторный двигатель аналогичен конденсаторному пуску, асинхронный двигатель, за исключением того, что пусковая обмотка и конденсатор постоянно подключен к цепи. У этого мотора очень хороший пуск крутящий момент. Коэффициент мощности при номинальной нагрузке составляет почти 100 процентов или единицу. из-за того, что в двигателе постоянно используется конденсатор.

    Есть несколько различных конструкций для этого типа двигателя. Один тип конденсаторный пуск, конденсаторный двигатель имеет две обмотки статора, которые разнесены на 90 электрических градусов. Подключается основная или ходовая обмотка непосредственно через номинальное сетевое напряжение. Конденсатор подключен последовательно с пусковой обмоткой и эта последовательная комбинация также связана по номинальному сетевому напряжению. Центробежный выключатель не используется, потому что пусковая обмотка находится под напряжением в течение всего периода работы мотор.

    илл. 12 иллюстрирует внутренние соединения для запуска конденсатора, конденсатор запускает двигатель с использованием одного значения емкости.


    ил. 12 Соединения для конденсаторного пуска, конденсаторного двигателя.

    Чтобы реверсировать вращение этого двигателя, проводные соединения пускового обмотку необходимо поменять местами. Этот тип конденсаторного запуска, конденсаторный запуск двигатель работает бесшумно и используется на масляных горелках, вентиляторах и небольших деревообрабатывающие и металлообрабатывающие станки.

    Второй тип конденсаторного запуска, конденсаторный двигатель имеет два конденсатора. 13 - схема внутренних соединений двигателя. В в момент запуска двигателя два конденсатора включаются параллельно. Когда двигатель достигает 75 процентов номинальной скорости, центробежный переключатель отключает конденсатор большей емкости. Затем двигатель работает с меньший конденсатор подключен только последовательно с пусковой обмоткой.


    ил.13 Подключения для конденсаторного пуска, конденсаторного двигателя: МАЛЫЙ КОНДЕНСАТОР, ИСПОЛЬЗУЕМЫЙ ДЛЯ ЗАПУСКА И РАБОТЫ; КОНДЕНСАТОР БОЛЬШОГО РАЗМЕРА ДЛЯ ЗАПУСК.

    Этот тип двигателя имеет очень хороший пусковой момент, хорошую регулировку скорости и коэффициент мощности почти 100 процентов при номинальной нагрузке. Заявки на К этому типу двигателей относятся топочные топки, холодильные агрегаты и компрессоры.

    Третий тип конденсаторного запуска, конденсаторный двигатель с автотрансформатором. с одним конденсатором.Этот двигатель имеет высокий пусковой момент и высокую рабочую фактор силы. Рис. 14 представляет собой схему внутренних соединений для этот мотор. При запуске двигателя центробежный переключатель подключает обмотку 2 в точку А на отводном автотрансформаторе. Поскольку конденсатор подключенный через максимальное количество витков трансформатора, он получает максимальное напряжение вывод при запуске. Таким образом, конденсатор подключается с номиналом примерно 500 вольт. В результате в обмотке возникает большое значение ведущего тока. 2, и развивается сильный пусковой крутящий момент.

    Когда двигатель достигает примерно 75 процентов номинальной скорости, центробежный выключатель отключает пусковую обмотку от точки А и снова подключает эту обмотку к точке B на автотрансформаторе. Применяется меньшее напряжение к конденсатору, но двигатель работает с обеими обмотками под напряжением. Таким образом, конденсатор поддерживает коэффициент мощности, близкий к единице, при номинальной нагрузке.

    Пусковой момент этого двигателя очень хороший, а регулировка скорости удовлетворительно.Приложения, требующие этих характеристик, включают большие холодильники и компрессоры.


    ил. 14 Подключения для конденсаторного пуска, конденсаторного двигателя с автотрансформатором

    НАЦИОНАЛЬНЫЙ КОД ЭЛЕКТРИЧЕСКОГО КОДА

    Раздел 430-32 (b) (1) Национального электротехнического кодекса гласит, что любые двигатель мощностью в одну или менее лошадиных сил, который запускается вручную и находится в пределах вид с места стартера, считается защищенным от перегрузка устройством максимального тока, защищающим проводники ответвления схема.Это устройство максимального тока ответвления не должно быть больше указанного. в Статье 430, Часть D (Ответвительная цепь двигателя, короткое замыкание и замыкание на землю). Защита). Исключением является то, что любой такой двигатель можно использовать при напряжении 120 вольт. или менее в ответвленной цепи, защищенной не более 20 ампер.

    Считается, что расстояние более 50 футов находится вне поля зрения стартовая локация. Раздел 430-32 (c) охватывает двигатели мощностью в одну лошадиную силу или меньше, запускаются автоматически, вне поля зрения со стартовой точки или стационарно установлен.

    Раздел 430-32 (c) (1) гласит, что любой двигатель мощностью в одну или менее лошадиных сил который запускается автоматически, должен иметь отдельное устройство максимального тока который реагирует на ток двигателя. Этот блок перегрузки должен быть установлен для отключения при не более 125% номинального тока полной нагрузки мотор для моторов с маркировкой на превышение температуры не более 40 градусов Цельсия или с коэффициентом обслуживания не менее 1,15 (1,15 или выше) и не более 115 процентов для всех других типов двигателей.

    РЕЗЮМЕ

    Однофазный асинхронный двигатель - один из наиболее часто используемых двигателей в жилых и легких коммерческих целях. Каждое приложение подскажет правильный мотор стиль для использования. Все двигатели используют концепцию использования одной фазы или одной фазы. синусоиды, и смещение эффектов токов через катушки на создают движущееся магнитное поле. Расщепленная фаза и конденсаторный пуск электродвигатель использует пусковой выключатель для отключения пусковых обмоток от линия, когда двигатель наберет скорость.Двухконденсаторные двигатели используют несколько конденсаторов или варианты конденсаторов двух номиналов для создания пусковой и работающей цепи. Все те же правила NEC, которые применяются к трехфазному двигатели по-прежнему применимы к однофазным двигателям. Есть много исключений, которые относятся только к двигателям малой мощности.

    ВИКТОРИНА

    1. Перечислите основные части асинхронного двигателя с расщепленной фазой.

    2. Что произойдет, если контакты центробежного переключателя не смогут повторно замкнуться, когда мотор останавливается?

    3.Объясните, как направление вращения асинхронного двигателя с расщепленной фазой обратный.

    4. Асинхронный двигатель с расщепленной фазой имеет номинальное значение двойного напряжения 115/230. вольт. Двигатель имеет две ходовые обмотки, каждая из которых рассчитана на 115 вольт и одну пусковую обмотку на 115 вольт. Нарисуйте схематическую диаграмму этого асинхронного двигателя с расщепленной фазой, подключенного для работы на 230 В.

    5. Нарисуйте принципиальную схему подключения асинхронного двигателя с расщепленной фазой. в вопросе 4 подключен для работы от 115 вольт.

    6. Асинхронный двигатель с расщепленной фазой имеет номинальное значение двойного напряжения 115/230. вольт. Двигатель имеет две ходовые обмотки, каждая из которых рассчитана на 115 вольт. Кроме того, есть две пусковые обмотки, и каждая из этих обмоток рассчитан на 115 вольт. Нарисуйте принципиальную схему подключения этой разделенной фазы. асинхронный двигатель подключен для работы от 230 В.

    7. В чем основное отличие асинхронного двигателя с расщепленной фазой от конденсаторного двигателя с индукционным пуском?

    8.Если центробежный выключатель не открывается при ускорении двигателя с расщепленной фазой до его номинальной скорости, что будет с пусковой обмоткой?

    9. Какое ограничение у конденсаторного пуска асинхронного двигателя?

    10. Вставьте правильное слово или фразу для завершения каждого из следующих заявления.

    а. Двигатель мощностью не более одной лошадиной силы, который запускается вручную и который находится в пределах видимости от стартовой точки, считается защищенной ______

    г.Двигатель мощностью не более одной лошадиной силы, запускаемый вручную, считается в пределах видимости места стартера, если расстояние не превышает _________

    г.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *