Степень огнестойкости здания как определить: Степень огнестойкости здания, как важная характеристика пожарной безопасности

Содержание

Степень огнестойкости здания, как важная характеристика пожарной безопасности

Безопасность эксплуатации зданий и сооружений зависит от множества факторов. Это и соблюдение технологии при строительстве, и применение качественных материалов и множество других.

Важным условием успешной эксплуатации является и пожарная безопасность объекта. Она зависит, прежде всего, от степени огнестойкости здания или сооружения.

От чего зависит

Огнестойкость здания определяется, прежде всего, применяемыми материалами и конструктивными особенностями. В зависимости от того, какие материалы берут при строительстве, сооружение может быть в разной степени устойчивым к воздействию неблагоприятных факторов, таких как открытый огонь, поражение молнией, воздействие электрического тока.

Примером влияния используемых материалов может служить простой довод, что дома из дерева при прямом ударе молнии с большей долей вероятности загорятся, чем каменные или кирпичные.

В качестве примера влияния конструктивных особенностей на сопротивляемость сооружения огню можно привести сравнение двух зданий с различной высотой и степенью оборудования молниезащитой и заземлением.

Высокое здание более подвержено прямому попаданию молнии, чем низкое. А то, в котором выполнено заземление без молниеотвода, находится, как бы ни казалось это странным, в менее благоприятном положении, чем сооружение вообще без заземления.

Сопротивляемость сооружения воздействию огня определяет возможность тушения возникшего пожара в течение времени, за которое здание не получит существенных повреждений, влияющих на способность выполнять функциональное предназначение.

Это свойство важно и при расчете времени, достаточного для эвакуации жильцов дома или обслуживающего персонала в случае возникновения опасности возгорания.

Понятие предела огнестойкости

Степень огнестойкость всего строения в целом в значительной мере определяется пределом огнестойкости конструкций, составляющих это здание.

Эта величина характеризует время, до истечения которого гарантированно не наступит одно или несколько предельных состояний, характерных для конкретной конструкции.

Предел огнестойкости обозначается в минутах после латинской буквы или группы букв, которые обозначают предельное состояние. Как правило, рассматриваются три вида предельных состояний – по потере несущей способности, по потере целостности, по потере изоляционных свойств.

Пример обозначения – REI45. Это означает, что конструкция должна в течение 45 минут не потерять ни несущей способности, ни целостности, ни изоляционных свойств.

Предел этот применительно к каждому строительному материалу, изготовленному по требованиям соответствующего ГОСТа, определяется по результатам испытаний образцов специальными методами.

Узнать значение предела для конкретной конструкции можно по таблицам из свода правил СП2.13130.2009.

Классификация зданий

Самая простая классификация строений по стойкости к воздействию пожаров предполагает разделение на несгораемые, трудносгораемые и сгораемые:

  • несгораемыми считаются здания, построенные из материалов, которые совершенно не горят. Они не возгораются от источника пламени и даже не поддерживают горение. Примерами таких материалов могут служить искусственный и природный камень;
  • под трудносгораемыми предполагаются строения, материал которых либо горюч и обработан составами, замедляющими возгорание, либо материал сам негорючий, но под воздействием огня может плавиться или разрушаться. Они строятся из дерева с пропиткой его антипиренами или с последующим оштукатуриванием деревянных конструкций. Также при проектировании таких сооружений могут быть предусмотрены металлические конструкции, не подвергавшиеся термической защите;
  • сгораемые здания строятся из материала с высокою степенью горючести. Это деревянные дома из бревен, бруса, каркасные дома, если материал совершенно ничем не обрабатывался.

Поскольку в последнее время при строительстве часто используют пластики, то желательно, чтобы их степень огнестойкости, горючесть и другие важные характеристики были определены и зафиксированы в сертификате соответствия.

Виды степеней

СНиП 21.01-97 определяет, что огнестойкость может подразделяться на пять базовых степеней. Некоторые из них делятся еще на несколько позиций. Обозначаются они римскими цифрами с добавлением в случае необходимости малых букв кириллического алфавита.

Классификация по степеням выглядит следующим образом.

Первая степень (I) присваивается зданиям, в которых спроектированы несущие и ограждающие конструкции из крупнопанельных или листовых материалов, абсолютно не поддерживающих горение. Они также могут быть из монолитного бетона или железобетона.

Второй уровень (II) присваивается строениям, удовлетворяющим требованиям предыдущего пункта, но только если покрытия выполнены из металлических конструкций, не подвергавшихся огнезащитной обработке.

Третья степень (III) устанавливается для зданий, несущие стены которых выполнены из искусственного или природного камня, а перекрытия могут быть из древесных материалов при условии, что они защищены цементной или гипсовой штукатуркой. Покрытие выполняется из трудносгораемых листов по деревянным конструкциям, обработанным антипиренами – составами для повышения огнезащиты древесины.

IIIа уровень присваивается строениям с элементами каркаса, выполненными из металла. Ограждающие конструкции обшиваются листами, не поддерживающими горения. Утеплитель внутри каркаса здания тоже должен быть негорючим.

IIIб степень присваивается одноэтажным постройкам, стены которых изготовлены из древесины. Это могут быть и каркасные, и бревенчатые стены, и стены из бруса. Деревянные детали здания обрабатывают специальными составами. Каркасные строения могут быть обшиты шпоном, вагонкой либо плитными материалами, изготовленными из отходов древесного производства – опилок, стружек. Плиты и листы также обрабатываются огнезащитными составами.

IV степень огнестойкости предусматривает строительство здания из горючих материалов, защищенных трудносгораемыми листами. Кровельная конструкция может изготавливаться из древесины, причем обработка огнезащитными составами в этом случае не требуется, хотя некоторые элементы могут быть и защищены.

IVа уровень предполагает, что здания имеют каркасную металлическую конструкцию. При этом обшиты они негорючими листами и утеплены при помощи негорючих изоляционных материалов. Требования к защите материалов каркаса и облицовки не предъявляются.

V степень назначается для тех строений, к которым никакие требования по огнестойкости не предъявляются вообще.

Степень огнестойкости зависит не только от применяемых при строительстве здания материалов и технологий. Важную роль играет обеспеченность помещений средствами для тушения пожаров и системой оповещения о возникновении пожара.

Категории пожарной опасности

Кроме степени огнестойкости существует еще одна характеристика – категория пожарной опасности здания. Она определяет, насколько само строение опасно при учете риска возникновения пожара.

Дело в том, что по назначению постройки подразделяются на жилые и производственные. В зависимости от назначения и происходящих внутри сооружений процессов, возгораемость внутри помещений, отсеков может существенно варьироваться.

Совершенно очевидно, что в производственных зданиях при работах с огнем и при высоких температурах риск возгорания выше. Даже в жилых домах, оборудованных газовыми плитами или электрическими, эта характеристика будет различаться.

Также учитывается и способ отопления зданий. Наличие котельной внутри здания повышает категорию пожарной опасности.

Существует шесть категорий, которые обозначаются заглавными буквами кириллического алфавита от А до Е.

Категория пожарной опасности учитывается в основном при проектировании производственных зданий. Именно в этом случае различия будут очень существенны. Для жилых домов обычно такая классификация не применяется.

СНиП 31-03-2001 содержит таблицу для определения степеней огнестойкости производственных зданий и сооружений, а также зависимость их от категории пожарной опасности здания.

Таблица, приведенная в одном из приложений к Федеральному закону № 123-ФЗ, определяет соответствие между пределами огнестойкости строительных конструкций и степенями огнестойкости сооружений.

Как определяют

При обследовании строений на сопротивляемость пожарам, сравнивают фактическую и требуемую огнестойкость.

Фактическая определяется по результатам пожарно-технической экспертизы, а требуемая рассчитывается по нормам, приведенным в СНиП и СП.

Полученные результаты сравниваются, и если степень фактической сопротивляемости огню превышает требуемую, то здание признается соответствующим противопожарным нормам.

Задача определения степени огнестойкости и принятие решения о пожарной безопасности зданий и сооружений возложена на уполномоченные органы в области пожарного надзора.

Загрузка...

Другие полезные статьи:

Как определить степень огнестойкости здания

На чтение 7 мин. Просмотров 1.6k.

Степень огнестойкости зданий и сооружений

Устойчивость к пожарам увеличивает шансы уцелеть зданию и сохранить человеческую жизнь. Огнестойкость зависит от материалов, из которых построено здание и предназначение сооружения по отношению к выполняемым функциям. Существуют разные категории степени огнестойкости, которые нумеруют римскими цифрами от одного до пяти.

Высокой устойчивостью к огню наделены производственные и складские сооружения, потому как имеют высокую степень возможности возгорания. Сильно подвержены опасности возгораний торговые и развлекательные центры, где большие шансы загораний и распространений огня по территории. Сейчас степень устойчивости здания к огню определяет основу пожарной безопасности.

СНИП

В основном здания и сооружения имеют противопожарные стены типа I, а точнее, пожарные отсеки. Степень устойчивости к огню определяется по минимальному пределу стойкости к огню материалов также по скорости захвата территории, то есть конструкций и каркасов.

Минимальный порог устойчивости здания к огню равен 25. Следовательно, этому можно использовать незащищённые металлические конструкции. Для всех типов зданий строительные нормы допускают облицовку гипсокартонными материалами, чтобы увеличить огнестойкость.

Обычно степень огнестойкости определяют за типом назначения здания:

  • по категории пожарной или взрывопожарной опасности.
  • пожарный отсек должен находиться в границах площади этажа.
  • Этажность здания.

По сгораемости строительные материалы делятся на такие группы:

  • Негорючие
  • Трудно сгораемые
  • Несгораемые

Устанавливая каркасные конструкции, следует использовать негорючие материалы. Горючие материалы можно использовать для зданий I-IV степени огнестойкости, кроме вестибюлей.

Строительные материалы классифицируют по токсичности и образованию дыма во время горения продуктов.

Алгоритм действий определения огнестойкости для разных типов строений

Жилые здания (дома)

Огнестойкость дома имеет пять степеней, которые дают характеристику каждому материалу, из чего сделан дом.

Конструктивные характеристики жилого дома:

  • Для домов этого класса огнестойкости требуется выполнение работы из негорючих материалов. Здание, следует выполнить из кирпича, бетонных блоков или камня. Для утепления требуются огнеустойчивые материалы. Крышу нужно сделать из черепицы, металлочерепицы, профнастила или шифера, то есть материалов устойчивых к огню. Для перекрытий необходимо использовать железобетонные плиты.
  • Здание построено из блоков и кирпича. Перекрытия могут быть деревянными, но покрыты защищающими материалами, такими как штукатурка или негорючие плиты. Деревянная стропильная система должна пройти обработку пропитками, защищающими от огня. Для утепления необязательно использовать негорючие материалы, можно применить предметы с пределами устойчивости к огню Г1, Г2.

III. Сооружение необходимо выполнить из металлического каркаса, это касается и стропильной системы. Металлокаркасное утепление следует выполнить с пределами устойчивости к огню Г1, Г2 или огнестойкое. Для наружной обшивки дома необходимо использовать негорючие материалы.

IIIб. Одноэтажный дом выполнений на каркасной основе следует пропитать огнестойкими веществами. Обшивка также подвергается пропиткам, утеплитель из групп Г1, Г2 или не воспламеняющихся материалов.

  • Деревянный каркас, защищённый материалами в виде штукатурного покрытия.
    Огнестойкая обработка должна быть на перекрытиях чердака. По обшивке дома не выдвигаются особые требования, поэтому ее можно выполнить из любых материалов.

IVб. Аналогично предыдущей группе только здание одноэтажное. Металлические материалы следует применить для каркасных конструкций. Ограждающие конструкции необходимо выполнить из материалов, не поддающихся горению. Материалы группы Г3 и Г4 необходимо использовать при укладке утеплителя.

  • Относятся все категории домов, не попавшие в этот список. К этой группе не выдвигаются особые требования по отношению их стойкости к огню.

Общественные здания

В основном жилые дома классифицируют по функциональной пожарной безопасности по следующим категориям:

  • Ф 1.2 Общежития
  • Ф 1.3 Многоквартирные здания, включая семьи, живущие с инвалидами.

Сквозные проезды в домах должны быть шириной в 3,5м, а высота требуется, чтобы была не меньше 4,25м. Необходимо чтобы через сквозные проходы вдоль лестничной клетки были размещены на расстоянии друг от друга не больше чем 100м. Верхний этаж определяет высоту сооружения, включая мансардный, не включая технический этаж, расположенный на самом верху здания. Разница границ точек проезда для огнеборющихся машин между верхней и нижней, определяет высоту этажа здания.

Следующему классу зданий Ф 1.3 можно определить степень, огнестойкости дома опираясь на маркированный список, а также на максимально допустимую площадь пожарного отсека, размещённого на этаже.

  • Степени огнестойкости общественного сооружения делят на пять групп – I, II, III, IV, V.
  • По классу конструктивной пожарной опасности сооружения определяют: I- C0, II-С0, С1, III- С0,С1, IV-С0, С1, С2, V- не нумеруется.
  • Максимальная допустимая высота сооружения в метрах, а также площадь для пожарного отсека, размещенного на этаже: I-75м-;II-С0-50, С1-28; III-C0-28, С1-15; IV-CO-5-1000м2, С1-3м-1400м2, С2-5м-800м2. Далее идут цифры допустимой высоты без нумерации(С), 3м-1200м2, 5м-500м2, 3м-900м2; V-не нумеруется-5м-500м2 и 3м-800м2.

Внутри зданий, в которых находятся деревянные стены, потолки, и перегородки следует обрабатывать огнестойкими материалами, такими как лак и штукатурка. Это касается таких зданий, как школы, дошкольные заведения, больницы, пионерские лагеря и клубы.

Для автовокзалов внутреннюю площадь можно не ограничивать, потому как там имеется система пожаротушения. Относительно первой степени огнестойкости площадь автовокзала можно увеличить до 10000м2, в том случае если внизу вокзала в цокольных помещениях не находятся складские или кладовые помещения.

Производственные здания

Производственные здания определяют как сооружения выпускающие товары в виде полуфабрикатов, а также готовой продукции. Производства разделяются на многие отрасли и каждые имеют свои нюансы и тонкости, они бывают ремонтные, ткацкие, химические, инструментальные, металлургические, механосборочные и многие другие.

Степень огнестойкости производств особо важна, так как на некоторых ведется работа с взрывоопасными или ядовитыми веществами, которые могут навредить окружающей природной среде и непосредственно человеку.

Производственные здания классифицируют на пять степеней. Следуя возгораемости и пределом устойчивости к огню главных конструкций и материалов, из которых они сделаны, определяют степень огнестойкости здания.

Здания І-го класса определяются ІІ-й степенью, для ІІ-го-ІІІ-я. Для ІІІ и ІV нумерация не требуется. Поэтому пожарная безопасность производственных зданий напрямую зависит от огнестойкости строительных материалов.

Исходя из, конструкций и архитектурных сооружений производственные здания делятся на одноэтажные, многоэтажные и смешанной этажности.

Складские помещения

Предел устойчивости к огню и распространением его по территории определяет степень огнестойкости конструкций. Следовательно, этому разработанные разные строительные материалы, определяющие степень огнестойкости.

Наиболее уязвимыми считаются помещения складов из деревянных материалов, но степень стойкости к огню можно увеличить за счет разных пропиток, а также штукатурки. Огнестойкость складских помещений это пассивная защита, предотвращающая или уменьшающая степень распространение огня внутри сооружения.

Для увеличения степени огнестойкости металлических конструкций используют противопожарную обработку, это может быть штукатурка, керамическая или бетонная плитка. Очень эффективными считаются вспучивающиеся краски, которые дают больше времени для достижения температуры до критической.

Также для увеличения пожарной защиты следует обрабатывать специальными пропитками окна зачастую применяют полимерную пену или заменяют проемы на специальные стеклоблоки. Дверные проемы следует изготавливать из негорючих металлических веществ, например, алюминий.

Эти мероприятия смогут повысить предел огнестойкости складского помещения и обезопасить человеческую жизнь.

Разработанные законами СНИП позволяют определить степень огнестойкости зданий и сооружений, понять до какого класса и типа они принадлежат. Эти нормы дают четкую характеристику зданию и позволяют определить безопасность сооружения необходимую для охраны труда или сохранения жизни человека. Следовательно, нормам и предназначению здания используют соответствующие материалы, необходимы для выполнения каркасных конструкций, утепления и обшивки здания.

Как определить степень огнестойкости зданий?

На чтение 3 мин. Просмотров 1.1k.

Среди основных причин возникающих пожаров можно выделить человеческую деятельность и несоблюдение технологий строительства. Поэтому при возведении жилой постройки обязательно учитывается один из важнейших критериев – ее огнестойкость.

Степени огнестойкости

Определение

Под огнестойкостью понимается возможность основных конструкций постройки препятствовать распространению огня.

Она зависит от следующих факторов:

  1. Число этажей.
  2. Характер деятельности, осуществляемой во внутренних помещениях.
  3. Общая площадь строения.
  4. Качество и основные характеристики материалов, которые использовались в процессе возведения.

Показатели огнестойкости определяются в результате испытаний огнем, происходящих на протяжении установленных периодов времени.

Виды

Существует классификация всех зданий в зависимости от их конструктивной пожарной опасности, она включает в себя 5 категорий построек:

  1. Класс Ф1 включает в себя больницы, детские сады, дома престарелых, гостиницы и общежития. Сюда же входят все разновидности частных домов и городские многоквартирные здания.
  2. Класс Ф2 включает в себя любые здания с сидячими местами для посетителей и зрителей, музеи, библиотеки, выставочные центры.
  3. Класс Ф3 включает в себя объекта здравоохранения, торговые предприятия, спортивные объекты без трибун и любые другие постройки, где осуществляется обслуживание населения.
  4. Класс Ф4 включает в себя все образовательные и научные учреждения.
  5. Класс Ф5 включает в себя производственные объекты, лаборатории, складские помещения, логистические центры, архивы, стоянки и помещения для обслуживания автомобильного транспорта, сельскохозяйственные здания.

Как определить степень огнестойкости?

Таблица

Степень огнестойкости жилого здания можно определить в соответствии с таблице, приведенной ниже:

Показатель огнестойкостиОсобенности конструкцииПерекрытияПокрытия
I и II степеньНесущие и ограждающие конструкции из камня, бетона и железобетона.Камень, бетон, железобетон.Любые разновидности плитовых или листовых материалов негорючего типа.
III степеньНесущие и ограждающие конструкции из камня, бетона и железобетона.Древесина, которая дополнительно защищается штукатуркой или различными листовыми материалами негорючего типа или с пониженной степенью горючести.Единственное требование к материалам заключатся в прохождении обработки огнезащитными средствами.
IIIа степеньКаркасные конструкции или ограждающие конструкции из металлического профиля.Аналогично предыдущему пункту.Аналогично предыдущему пункту.
IIIб степеньКаркасные конструкции, не более 1 этажа, ограждения могут быть деревянными.Древесина, прошедшая предварительную обработку.Нет требований.
IV степеньКаркасные и ограждающие конструкции из древесины или материалов на ее основе, защищенных негорючими листовыми материалами.Нет требований.Требования предъявляются только к материалам для чердачных помещений: они должны пройти предварительную обработку для повышения показателей огнестойкости.
IVа степеньКаркасные конструкции, не более 1 этажа.Металлические конструкции и утеплительные материалы, относящиеся к группам горючести Г3 или Г4.Аналогично предыдущему пункту.
VстепеньНет требований.Нет требований.Нет требований.

Нормативные акты

Основным нормативным актом, в котором содержится информация о правилах определения огнестойкости зданий, является СНиП 21-01-97.

В нем приведены исчерпывающие сведения о правилах пожарной безопасности при строительстве, действующих на территории Российской Федерации.

Степень огнестойкости - определение термина

 

 



 

Трудно даже специально придумать менее подходящее определение, чем то, которое вошло в Федеральный закон "Технический регламент о требованиях пожарной безопасности". Давайте посмотрим на это определение, и определение из учебника периода наивысшего развития пожарной охраны.

 

В соверемнном техническом регламенте, в определении термина указана, что степень огнестойкости здания определяется в зависимости от характеристик строительных конструкций - применяемых в нём. Та же логическая ошибка повторяется в СП 2.13130.2012, к которому и обращаются специалисты для определения степени огнестойкости.

 

А вот советском определении указано, что именно пределы огнестойкости конструкции определяется по степени огнестойкости.

 

Правы конечно те, кто писал советский учебник. Почему? Давайте рассуждать логически.

 

Мы решили построить здание. Мы обязаны позаботиться о его пожарной безопасности.  Нам нужно выбрать безопасные, способные сопротивляться огню строительные конструкции. От чего будет записить степень пожарной опасности здания?

Прежде всего от фукнционального назначения. То есть от такой классификационной характеристики как класс функциональной пожарной опасности.

 

Это понятно - то, что делают люди на объекте влияет на его пожарную опасность. Поэтому первое что нужно знать для определения степени огнестойкости - это класс функциональной пожарной опасности. 

 

Давайте предположим у нас будет два здания с одинаковым классом функциональной пожарной опасности. Какое из них будет опаснее? Естественно то, которое выше (при прочих равных условиях. Следовательно следующая характеристика объекта защиты нужная нам для определения степени его опасности -  высота здания и сооружения.

После этого давайте подумаем, что опаснее два здания одинакового функционала и высоты но в одном два этажа, а другое одноэтажное. Разумеется опаснее двухэтажное, как менее устойчивое и эвакуация из которого займет больше времени.

 

Ну и если брать наши гипотетические одинаковые по классу функциональной пожарной опасности, категориям, высоте и этажности здания остается еще одна характеристика - площадь этажа. Чем больше эта площадь - тем опаснее здание, так как на большей площади будет больше пожарной нагрузки, большее количество людей, а значит при пожаре риски разрушения здания будут тем выше, тем больше площадь этажа.

И вот именно для ля того, чтобы охарактеризовать все эти условия опасности, в практике пожарной охраны появилась такая характеристика - как степень огнестойкости. Поэтому определяется она совершенно не так, как указано в Техническом регламенте - пределами огнестойкости строительных конструкций. Она определяется по уровню опасности здания, чем выше уровень опасности, тем выше и степень огнестойкости, и уже потом - тем выше пределы огнестойкости строительных конструкций.

 

Именно этот метод определения соответствует ЛОГИКЕ обеспечения пожарной безопасности. 

 

 

Есть еще несколько условий для выбора степени огнестойкости, например высота размещения конферен-залов, количество мест в здании и прямые указания на ограничение степени огнестойкости того или иного здания. Также степень огнестойкости может зависить (взаимообразоно) и от класса конструктивной пожарной опасности здания.

 

Мы собрали все известные нам условия в схемы, которые под каждый класс пожарной опасности в виде иллюстраций представили как приложения к настоящей статьей, а пока предлагаем Вам посмотреть пример определения степени огнестойкости для разных общественных зданий.

 

 

 


Итак - у нас общественное здание, например класса функциональной пожарной опасности Ф 4.3.  Мы обращаемся к таблице 6.9

 

 

Мы хотим, чтобы наше здание Ф.4.3 было высотой 50 метров. Мы смотрим в соответсвующую таблицу СП 2.13130.2009 и понимаем, что если мы выбираем такую высоту, то здание может быть II степени огнестойкости.

 

Мы планируем сделать в нашем здании 8 этажей каждый площадью 5000 квадратных метров. Можно ли нам это сделать? Нет, потому что при данном проектном решении увеличивается уровень пожарной опасности здания - больше площадь - выше уровень опасности. Поэтому мы можем либо сделать этаж 4000 квадратных метров, отказавшись от требуемого нам по технологии решения, либо делить здание на два пожарных отсека, возведя противопожарную стены.

 

 

А такое мероприятие довольно и дорого да и  хотим мы хотим единое пространство, не разделяемое никакими противопожарными стенами.Мы начинаем думать, что нам сделать, чтобы можно было реализовать. И та же таблица дает нам выбор - мы можем  увеличеть степень огнестойкости до первой.

 

Но эти таблицы из СП 2.13130 не конечный критерий выбора степень огнестойкости.Следует учесть и иные критерии пожарной опасности объекта, или прямое указание, на степень огнестойкости того или иного типа объекта защиты, встречающееся в нормативных документах.

Пример можно привести, если использовать  таблицу 6.9 для выбора степени огнестойкости здания пожарного депо. Предположим нам нужно построить здание пожарного депо. Предположим нам нужно одноэтажное здание пожарного депо высотой не более 6 метров и площадью 300 метров квадратных..По таблице 6.9 (которую (хоть и с некоторой натяжкой) на практике применяют при определении степени огнестойкости таких зданий, как для общественных зданий относящихся к классу Ф 4 в целом мы можем выбрать пятую - самую низшую (и, как следствие, самую удобную в строительстве) степень огнестойкости.

Но при этом, если мы думающие пожарные специалисты, мы должны ориентироваться и на требования пожарной безопасности, указанные не только в нормативных документах разработанных и введенны в целях исполнения Федеральнго закона от 22 июля 32008 года № 123-ФЗ "Технический регламент о требованиях пожарной безопасности", но и в иных документах, особенно включенных в перечень , если они устанавливают более высокие и жесткие требования. И тут мы видим, что в пункте 6.13 СП 380.1325800.2018 "Здания пожарных депо. Правила проектирования" указано:

 


Многоэтажные здания пожарных депо следует выполнять не ниже степени
огнестойкости II, одноэтажные здания - не ниже степени огнестойкости III.

 


Если обратиться к определению термина "требования пожарной безопасности", мы увидим, что сформулированное в СП 380.13330 условие - безусловно таковым требованием является, а значит у нас есть обязанность по его соблюдению. И в данном случае, несмотря на то, что СП 2.13130 допускает степень огнестойкости V   пожарный специалист, опираясь на данную норму  выберет третью степень огнестойкости.

Ппредставим, что мы строим общественное здание класса Ф 4.3. Мы строим пятиэтажное здание, высотой 15 метров с площадью этажа 1000 метров квадратных.  На последнем этаже, расположенном на высоте 10 метров мы планируем разместить конференц-зал на 100 человек Таблица 6.9 в данном случае позволяет выбрать нам степень огнестойкости III.

 

 

.  Но, так как в нашем здании планируется размещение конференц зала на определенной высоте, то мы обязаны учесть еще один фактор, влияющий на степень огнестойкости.

 

Физическая суть данного требования тоже понятна, чем выше расположено помещение с массовым пребыванием людей, тем опаснее объект защиты, тем надежнее должно быть здание, а значит выше  степень огнестойкости.

На следующих страницах приведены схемы  показываюющие условия определения степени огнестойкости для зданий и сооружений всех классов фукнциональной пожарной опасности

 

страница

Степени огнестойкости зданий и сооружений — ПОЖАРНЫЕ РЕБЯТА

Степени огнестойкости зданий, сооружений и пожарных отсеков


Степень огнестойкости зданий, сооружений и пожарных отсеков - классификационная характеристика зданий, сооружений и пожарных отсеков, определяемая пределами огнестойкости конструкций, применяемых для строительства указанных зданий, сооружений и отсеков. 

Здания, сооружения и пожарные отсеки по степени огнестойкости подразделяются на 5 степеней огнестойкости (I, II, III, IV и V степени).

1. Первая степень (I)

Несущие и ограждающие конструкции зданий и сооружений сделаны с применением железобетона, камня, огнеупорных плит и листовых материалов. 

2. Вторая степень (II)

Несущие и ограждающие конструкции зданий и сооружений сделаны с применением железобетона, камня, огнеупорных плит и листовых материалов.  Для этой категории могут строиться перекрытия с применением металлических (стальных) конструкций (перекрытий).

3. Третья степень (III)

Делится на 3 категории:

  1. Третья.
    Строения с бетонными, железобетонными, каменными несущими конструкциями, в которых применяются ограждения с деревянными перекрытиями, покрытые трудногорючими плитами и листовыми материалами, штукатуркой.
  2. Третья «а».
    Каркасные здания, при строительстве которых используется незащищенная сталь (металл). Ограждения делают из профилированного стального листа и других негорючих материалов. Может использоваться негорючий утеплитель.
  3. Третья «б».
    Одноэтажные деревянные каркасные конструкции, обработанные огнезащитным составом. Панельные ограждения также изготовлены из дерева, предварительно пропитанного огнезащитными составами.

4. Четвертая степень (IV)

Делится на 2 категории:

  1. Четвертая.
    Сооружения с несущими конструкциями и ограждениями из горючих материалов (например древесины), защищенных трудносгораемыми листами, плиткой или штукатуркой. К перекрытиям нет высоких требований по огнестойкости. Чердак из дерева обязательно обрабатывают огнезащитными составами.
  2. Четвертая «а».
    Одноуровневые здания с каркасной схемой. Каркас - стальной, обшиты негорючими листами и утеплены негорючими изоляционными материалами.

5. Пятая степень (V)

Самый низкий порог к огнестойкости и скорости распространения огня. Такие сооружения не предполагают постоянного наличия людей, они не предназначены для хранения горючих и взрывоопасных материалов и для использования в них электроприборов. Никакие требования по огнестойкости не предъявляются вообще.


Степень огнестойкости зданий, класс конструктивной и функциональной пожарной опасности

По старой пожарно-технической классификации (согласно СНиП 2.01.02-85*) все здания и сооружения по огнестойкости подразделялись на восемь степеней: I, II, III, I11a, III6, IV, IVa и V, по новой пожарно-технической классификации ( СНиП 21-01-97*) на пять степеней огнестойкости: I, II, III, IV, V. Степень огнестойкости здания регламентируется пределами огнестойкости основных конструктивных элементов здания.

Различают фактическую и требуемую степени огнестойкости здания (сооружения).

Фактическая степень огнестойкости здания - это действительная степень огнестойкости запроектированного или построенного здания. Под требуемой степенью огнестойкости здания подразумевается минимальная степень огнестойкости, которой должно обладать здание для удовлетворения требований пожарной безопасности.

Класс конструктивной пожарной опасности здания определяется степенью участия строительных конструкций в развитии пожара и образовании его опасных факторов.

Имеется четыре класса конструктивной пожарной опасности зданий и сооружений: СО, Cl, C2, СЗ. Класс конструктивной пожарной опасности здания зависит от классов пожарной опасности основных несущих и ограждающих строительных конструкций.


Здания и помещения по функциональной пожарной опасности подразделяются на классы в зависимости от способа их использования и от меры безопасности людей в случае возникновения. Существует пять классов функциональной пожарной опасности зданий и помещений: Ф1, Ф2, ФЗ, Ф4, Ф5.

Методика проверки соответствия строительных конструкций требованиям пожарной безопасности состоит в следующем:

1. По соответствующим нормативным документам определяют требуемую степень огнестойкости здания и требуемый класс конструктивной пожарной опасности.

2. Далее находят требуемые пределы огнестойкости строительных конструкций и допускаемые классы пожарной опасности строительных конструкций.

3. Оценивают опасность строительных материалов, используемых в конструкциях (горючесть Г, воспламеняемость В, распространение пламени РП, дымообразующую способность Д, токсичность Т), используя справочную техническую литературу и определяют область применения этих материалов (в конструкциях какого класса пожарной опасности разрешается использовать материалы). Результаты оценки пожарной опасности заносят в таблицу.

4. Исходя из характеристики конструктивных элементов здания и пожарной опасности материалов строительных конструкций, по справочной технической определяют фактические пределы огнестойкости конструкций и фактические классы пожарной опасности конструкций.


5. Фактические пределы огнестойкости строительных конструкций сравнивают с требуемыми пределами огнестойкости, а фактические классы пожарной опасности строительных конструкций - с допускаемыми классами пожарной опасности конструкций, после чего делают вывод о соответствии строительных конструкций требованиям пожарной безопасности.

Пожарно-техническую экспертизу строительных конструкций целесообразно выполнять в табличной форме.

Предупреждение и ограничение развития пожара в зданиях.

Пожарные отсеки и секции: назначение, нормирование

Пожарные отсеки и секции, нормативные обоснования деления зданий на пожарные отсеки и секции.

Под пожарной секцией следует понимать группу помещений (отдельное помещение), выделенную в объеме пожарного отсека п/п преградами с целью предупреждения пожара и обеспечение успешного их тушения, в пределах которой размещается родственные по функциональному назначению, пожарной опасности или по роду применяемых средств тушения процессы.

Отсек – часть здания, выделанная противопожарными стенами. Площадь отсека устанавливается нормами. Например, в отдельные секции выделяют бытовки, встроенные складские помещения, вентиляционные камеры.

Противопожарные стены предназначены для разделения объема здания на пожарные отсеки, при этом площадь отсека устанавливается нормами.

1) По размещению в зданиях п/п стены подразделяют:

- внутренние

- наружные

Внутренние п/п стены предназначены для предотвращения распространения пожара из одного пожарного отсека в другой.

Наружные- для предотвращения распространения пожара между зданиями.

2) По конструктивному исполнению п/п стены подразделяются:

- каркасные (со штучным заполнением каркаса кирпичом или блоками)

- каркасно- панельные

- бескаркасные (штучные изделия кирпич, блоки).

3) По способу восприятия нагрузок п/п стены могут быть:

- несущие

- самонесущие

- ненесущие

Надежность выполнения п/п стенами своих функций зависит от их конструктивного исполнения, огнестойкости, устойчивости, обеспечением плотности и герметичности.

По тр п/п стены = 2,5 часа независимо от СО здания.

38 Противопожарные преграды: назначение, виды, типы, нормирование.

Противопожарные преграды предназначены для ограничения распространения пожара. Преграды способствуют уменьшению размеров пожара и уменьшению ущерба от него.

Анализ пожаров показывает, что при отсутствии или неправильном устройстве противопожарных преград пожар быстро распространяется, пожарные подразделения не могут быстро локализовать пожар и преступить к его ликвидации. Время же разрушения строительных конструкций в условиях пожара определено их пределами огнестойкости. Если пожар не удается своевременно потушить, возможно обрушение строительных конструкций, при этом ущерб от пожара максимален. охватывая большую площадь. 

Различают общие и местные противопожарные преграды. Общие преграды предназначены для ограничения объемного распространения пожара. К ним относятся противопожарные стены, перегородки, перекрытия, зоны, экраны, водяные завесы и т. п.

Местные противопожарные преграды предназначены для ограничения линейного распространения пожара. К ним относятся преграды для ограничения распространения пожара по поверхности и пустотам конструкций, преграды для ограничения разлива жидкостей и распространения пожара, различные огнезадерживающие шиберы и заслонки в воздуховодах и продуктопроводах для транспортировки горючих веществ, противопожарные двери и прочие устройства, являющиеся составными элементами общих противопожарных преград и помогающие выполнять им свои функции.

Отнесение противопожарных преград к тому или иному типу в зависимости от пределов огнестойкости элементов противопожарных преград и типов заполнения проемов в них осуществляется в соответствии со статьей 88 настоящего Федерального закона.

Принципы классификации зданий по функциональной пожарной опасности

Здания (сооружения, пожарные отсеки и части зданий, сооружений — помещения или группы помещений, функционально связанные между собой) по классу функциональной пожарной опасности в зависимости от их назначения, а также от возраста, физического состояния и количества людей, находящихся в здании, сооружении, возможности пребывания их в состоянии сна подразделяются на:

1) Ф1 — здания, предназначенные для постоянного проживания и временного пребывания людей, в том числе:

а) Ф1.1 — здания детских дошкольных образовательных учреждений, специализированных домов престарелых и инвалидов (неквартирные), больницы, спальные корпуса образовательных учреждений интернатного типа и детских учреждений;

б) Ф1.2 — гостиницы, общежития, спальные корпуса санаториев и домов отдыха общего типа, кемпингов, мотелей и пансионатов;

в) Ф1.3 — многоквартирные жилые дома;

г) Ф1.4 — одноквартирные жилые дома, в том числе блокированные;

2) Ф2 — здания зрелищных и культурно-просветительных учреждений, в том числе:

а) Ф2.1 — театры, кинотеатры, концертные залы, клубы, цирки, спортивные сооружения с трибунами, библиотеки и другие учреждения с расчетным числом посадочных мест для посетителей в закрытых помещениях;

б) Ф2.2 — музеи, выставки, танцевальные залы и другие подобные учреждения в закрытых помещениях;

в) Ф2.3 — здания учреждений, указанные в подпункте «а» настоящего пункта, на открытом воздухе;

г) Ф2.4 — здания учреждений, указанные в подпункте «б» настоящего пункта, на открытом воздухе;

3) Ф3 — здания организаций по обслуживанию населения, в том числе:

а) Ф3.1 — здания организаций торговли;

б) Ф3.2 — здания организаций общественного питания;

в) Ф3.3 — вокзалы;

г) Ф3.4 — поликлиники и амбулатории;

д) Ф3.5 — помещения для посетителей организаций бытового и коммунального обслуживания с нерасчетным числом посадочных мест для посетителей;

е) Ф3.6 — физкультурно-оздоровительные комплексы и спортивно-тренировочные учреждения с помещениями без трибун для зрителей, бытовые помещения, бани;

4) Ф4 — здания научных и образовательных учреждений, научных и проектных организаций, органов управления учреждений, в том числе:

а) Ф4.1 — здания общеобразовательных учреждений, образовательных учреждений дополнительного образования детей, образовательных учреждений начального профессионального и среднего профессионального образования;

б) Ф4.2 — здания образовательных учреждений высшего профессионального образования и дополнительного профессионального образования (повышения квалификации) специалистов;

в) Ф4.3 — здания органов управления учреждений, проектно-конструкторских организаций, информационных и редакционно-издательских организаций, научных организаций, банков, контор, офисов;

г) Ф4.4 — здания пожарных депо;

5) Ф5 — здания производственного или складского назначения, в том числе:

а) Ф5.1 — производственные здания, сооружения, производственные и лабораторные помещения, мастерские;

Классификация зданий по конструктивной пожарной опасности

Классификация зданий, сооружений, строений и пожарных отсеков осуществляется с учетом следующих критериев:

1) степень огнестойкости;

2) класс конструктивной пожарной опасности;

3) класс функциональной пожарной опасности.

Классификация зданий, сооружений, строений и пожарных отсеков по степени огнестойкости:

1. Здания, сооружения, строения и пожарные отсеки по степени огнестойкости подразделяются на здания, сооружения, строения и пожарные отсеки I, II, III, IV и V степеней огнестойкости.

2. Порядок определения степени огнестойкости зданий, сооружений, строений и пожарных отсеков устанавливается статьей 87 настоящего Федерального закона.

Классификация зданий, сооружений, строений и пожарных отсеков по конструктивной пожарной опасности:

1. Здания, сооружения, строения и пожарные отсеки по конструктивной пожарной опасности подразделяются на классы С0, С1, С2 и С3.

2. Порядок определения класса конструктивной пожарной опасности зданий, сооружений, строений и пожарных отсеков устанавливается статьей 87 настоящего Федерального закона.

Статья 87.

Степень огнестойкости зданий, сооружений, строений и пожарных отсеков должна устанавливаться в зависимости от их этажности, класса функциональной пожарной опасности, площади пожарного отсека и пожарной опасности происходящих в них технологических процессов.

2. Пределы огнестойкости строительных конструкций должны соответствовать принятой степени огнестойкости зданий, сооружений, строений и пожарных отсеков. Соответствие степени огнестойкости зданий, сооружений, строений и пожарных отсеков и предела огнестойкости применяемых в них строительных конструкций приведено в таблице 21 приложения к настоящему Федеральному закону.

3. Пределы огнестойкости заполнения проемов (дверей, ворот, окон и люков), а также фонарей, в том числе зенитных, и других светопрозрачных участков настилов покрытий не нормируются, за исключением заполнения проемов в противопожарных преградах.

4. На незадымляемых лестничных клетках типа Н1 допускается предусматривать лестничные площадки и марши с пределом огнестойкости R15 класса пожарной опасности К0.

5. Класс конструктивной пожарной опасности зданий, сооружений, строений и пожарных отсеков должен устанавливаться в зависимости от их этажности, класса функциональной пожарной опасности, площади пожарного отсека и пожарной опасности происходящих в них технологических процессов.

6. Класс пожарной опасности строительных конструкций должен соответствовать принятому классу конструктивной пожарной опасности зданий, сооружений, строений и пожарных отсеков. Соответствие класса конструктивной пожарной опасности зданий, сооружений, строений и пожарных отсеков классу пожарной опасности применяемых в них строительных конструкций приведено в таблице 22 приложения к настоящему Федеральному закону.

7. Пожарная опасность заполнения проемов в ограждающих конструкциях зданий, сооружений, строений (дверей, ворот, окон и люков) не нормируется, за исключением проемов в противопожарных преградах.

8. Для зданий, сооружений и строений класса функциональной пожарной опасности Ф1.1 должны применяться системы наружного утепления класса пожарной опасности К0.

9. Пределы огнестойкости и классы пожарной опасности строительных конструкций должны определяться в условиях стандартных испытаний по методикам, установленным нормативными документами по пожарной безопасности.

10. Пределы огнестойкости и классы пожарной опасности строительных конструкций, аналогичных по форме, материалам, конструктивному исполнению строительным конструкциям, прошедшим огневые испытания, могут определяться расчетно-аналитическим методом, установленным нормативными документами по пожарной безопасности.

Эвакуация людей, параметры движения людских потоков

- Эвакуация представляет собой процесс организованного самостоятельного движения людей наружу из помещений, в которых имеется возможность воздействия на них опасных факторов пожара. Эвакуацией также следует считать несамостоятельное перемещение людей, относящихся к маломобильным группам населения, осуществляемой обслуживающим персоналом. Эвакуация осуществляется по путям эвакуации через эвакуационные выходы.

Условие безопасной эвакуации:

- Главным показателем эффективности технических решений, гарантирующим людям безопасность, является время, которое требуется для того, чтобы они при пожаре могли без ущерба для здоровья покинуть отдельные помещения и здание в целом.

- Условие безопасности людей выполнено, если фактическое время эвакуации равно или меньше времени появления опасных факторов пожара: τр ≤ τн

где τр – расчетное (фактическое) время эвакуации людей, мин;

τн - необходимое время эвакуации (время появления опасных факторов пожара), мин.

Требования к пожаробезопасным зданиям

Строительство полностью огнестойкой конструкции может оказаться немного дорогостоящим, но всегда можно построить конструкции со значительной огнестойкостью при приемлемом бюджете. Этого можно достичь, учитывая требования к огнестойкости зданий. Например, выбор подходящих строительных материалов, принятие определенных мер предосторожности при строительстве зданий и установка систем пожарной сигнализации и огнетушителей там, где это необходимо.

Показано, что эти требования могут существенно снизить влияние пожарной нагрузки на здание, т.е. снизить пожарную нагрузку до минимально возможного. Термин «пожарная нагрузка» означает количество тепла, выделяемое в килоджоулей на квадратный метр (кДж / м2) площади пола любого отсека в результате сгорания содержимого здания, включая его собственную горючую часть. Он определяется путем умножения веса всех горючих материалов на их теплотворную способность и деления на площадь пола.

1. Использование подходящих материалов

Свойства огнестойкости Материалы

  1. Не должен распадаться под действием тепла.
  2. Он не должен расширяться при нагревании, чтобы создавать ненужные напряжения в здании.
  3. Материал не должен легко воспламеняться.
  4. Он не должен терять прочности при воздействии огня.

Характеристики огнестойкости обычных строительных материалов

Есть несколько материалов, которые обычно используются при строительстве зданий.Ниже приведены характеристики огнестойкости этих материалов:

Камень

Плохой проводник тепла. Песчаники с огненными зернами могут умеренно противостоять огню; Гранит разрушается под действием огня; Известняк легко крошится, а большинство других камней распадаются во время охлаждения после нагревания в огне.

Кирпич

Кирпичи выдерживают нагрев до 1200 ° C. Во время строительства, если для связывания кирпичей используется качественный раствор, огнестойкость конструкции многократно повышается.

Рис.1: Кирпичи
Древесина

Любая конструкция из дерева быстро разрушается под действием огня. Древесина увеличивает интенсивность огня. Использование в зданиях тяжелых деревянных секций нежелательно.

Чтобы сделать древесину более огнестойкой, поверхность древесины покрывают химическими веществами, такими как фосфат и сульфат аммония, борная кислота и бура. Иногда на деревянную поверхность, используемую в здании, наносят огнестойкую краску для повышения стойкости.

Рис.2: Огнестойкая древесина
Бетон

Бетон обладает очень хорошей огнестойкостью. Фактическое поведение бетона в случае пожара зависит от качества цемента и заполнителей, используемых во время строительства.

В случае железобетона и предварительно напряженного бетона положение стали также влияет на огнестойкость. Чем больше бетонное покрытие, тем лучше огнестойкость элемента.

Бетон практически не теряет своей прочности до температуры 250 ° C.Снижение его прочности начинается, когда температура превышает 250 ° C. Обычно железобетонные конструкции могут противостоять возгоранию около часа при температуре 1000 ° C. Следовательно, цементный бетон идеально использовать как огнестойкий материал.

Сталь

Хороший проводник тепла. Стальные стержни теряют предел прочности и начинают деформироваться при температуре около 600 ° C. Они полностью плавятся при 1400 ° C. Стальные колонны становятся небезопасными при длительном действии огня.Под постоянным воздействием огня стальная арматура ослабляет железобетонные конструкции.

Следовательно, стальные колонны обычно защищаются кирпичной кладкой или бетонным покрытием. Армирование в бетоне защищено бетонным покрытием, а стальные решетки и балки нанесены огнестойкими красками.

Стекло

Плохой проводник тепла. Он расширяется при нагревании, а когда остывает, в стекле начинают образовываться трещины.Стекло, армированное стальной проволокой, более устойчиво к возгоранию, и в процессе охлаждения, даже если оно разбивается, разбитые стекла остаются в исходном положении.

Рис.4: Огнестойкое стекло
Алюминий

Отличный проводник тепла. Обладает повышенной огнестойкостью.

Асбестоцемент

Это негорючий материал, обладающий высокой огнестойкостью.

2. Меры предосторожности при строительстве зданий

  • Размеры компонентов здания
  • Отсек
  • Противопожарные материалы
  • Требования к выходу согласно NBC Индии, которые включают обеспечение достаточных выходов в каждое здание, чтобы обеспечить безопасный выход в случае пожара, выходы должны быть свободными от препятствий, и обеспечение надлежащего освещения (освещения).
Рис.4: Отсек

ISO - ISO 834-10: 2014 - Испытания на огнестойкость - Элементы конструкции здания - Часть 10: Особые требования для определения вклада применяемых огнезащитных материалов в конструкционные стальные элементы

ISO 834-10: 2014 определяет метод испытаний систем противопожарной защиты, применяемых к конструкционным стальным элементам, используемым в зданиях в качестве балок, колонн или элементов растяжения. Он предназначен для использования вместе с протоколом оценки, описанным в ISO 834‑11.Он применяется к стальным профилям (включая полые) и учитывает только секции без отверстий в стенке. Результаты анализа I или H сечений напрямую применимы к углам, каналам и T-образным сечениям для одного и того же коэффициента сечения, независимо от того, используются ли они в качестве отдельных элементов, например распорка или часть сборной конструкционной системы, такой как стальная ферменная конструкция. ISO 834-10: 2014 не распространяется на сплошные стержни, стержни или полые профили, заполненные бетоном.

ISO 834-10: 2014 описывает процедуры испытаний на огнестойкость, которые определяют испытания, которые должны быть выполнены для определения способности системы противопожарной защиты оставаться достаточно согласованной и в рабочем состоянии для четко определенного диапазона деформаций, печи и стали. температуры, так что эффективность системы противопожарной защиты существенно не снижается, а также для предоставления данных о тепловых характеристиках системы противопожарной защиты при воздействии стандартной кривой температура / время, указанной в ISO 834‑1.

В особых случаях, когда это указано в Национальных строительных нормах, может быть требование подвергать материалы реактивной противопожарной защиты кривой тления. Тест и требования к его использованию описаны в ISO 834-10: 2014 (Приложение G).

ISO 834-10: 2014 применим как к пассивным, так и к реактивным системам противопожарной защиты, как это определено в терминах и определениях, которые устанавливаются или применяются таким образом, что они остаются на месте в течение предполагаемой продолжительности воздействия огня.

Методология испытаний на огнестойкость предусматривает сбор и представление данных, которые затем используются в качестве прямого ввода в ISO 834-11 для определения пределов прямого применения к стальным профилям различных форм, размеров и периодов огнестойкости.

Напряжение, ток, сопротивление и закон Ома

Добавлено в избранное Любимый 109

Основы электроэнергетики

Приступая к изучению мира электричества и электроники, важно начать с понимания основ напряжения, тока и сопротивления.Это три основных строительных блока, необходимых для управления и использования электричества. Поначалу эти концепции могут быть трудными для понимания, потому что мы не можем их «видеть». Невооруженным глазом нельзя увидеть энергию, текущую по проводу, или напряжение батареи, стоящей на столе. Даже молния в небе, хотя и видимая, на самом деле не является обменом энергии между облаками и землей, а является реакцией в воздухе на энергию, проходящую через него. Чтобы обнаружить эту передачу энергии, мы должны использовать измерительные инструменты, такие как мультиметры, анализаторы спектра и осциллографы, чтобы визуализировать, что происходит с зарядом в системе.Однако не бойтесь, это руководство даст вам общее представление о напряжении, токе и сопротивлении, а также о том, как они соотносятся друг с другом.

Георг Ом

Рассмотрено в этом учебном пособии

  • Как электрический заряд соотносится с напряжением, током и сопротивлением.
  • Что такое напряжение, сила тока и сопротивление.
  • Что такое закон Ома и как его использовать для понимания электричества.
  • Простой эксперимент для демонстрации этих концепций.

Рекомендуемая литература

и nbsp

и nbsp

Электрический заряд

Электричество - это движение электронов. Электроны создают заряд, который мы можем использовать для работы. Ваша лампочка, стереосистема, телефон и т. Д. - все используют движение электронов для выполнения работы. Все они работают, используя один и тот же основной источник энергии: движение электронов.

Три основных принципа этого урока можно объяснить с помощью электронов или, более конкретно, заряда, который они создают:

  • Напряжение - это разница в заряде между двумя точками.
  • Текущий - это скорость начисления.
  • Сопротивление - это способность материала сопротивляться потоку заряда (тока).

Итак, когда мы говорим об этих значениях, мы на самом деле описываем движение заряда и, следовательно, поведение электронов. Цепь - это замкнутый контур, который позволяет заряду перемещаться из одного места в другое. Компоненты схемы позволяют нам контролировать этот заряд и использовать его для работы.

Георг Ом был баварским ученым, изучавшим электричество.Ом начинается с описания единицы сопротивления, которая определяется током и напряжением. Итак, начнем с напряжения и продолжим.

Напряжение

Мы определяем напряжение как количество потенциальной энергии между двумя точками цепи. Одна точка заряжена больше, чем другая. Эта разница в заряде между двумя точками называется напряжением. Он измеряется в вольтах, что технически представляет собой разность потенциалов между двумя точками, которые передают один джоуль энергии на каждый кулон заряда, который проходит через них (не паникуйте, если это не имеет смысла, все будет объяснено).Единица «вольт» названа в честь итальянского физика Алессандро Вольта, который изобрел то, что считается первой химической батареей. Напряжение представлено в уравнениях и схемах буквой «V».

При описании напряжения, тока и сопротивления общей аналогией является резервуар для воды. По этой аналогии заряд представлен количеством воды , напряжение представлено давлением воды , а ток представлен потоком воды . Для этой аналогии запомните:

  • Вода = Заряд
  • Давление = Напряжение
  • Расход = Текущий

Рассмотрим резервуар для воды на определенной высоте над землей.На дне этой емкости находится шланг.

Давление на конце шланга может представлять напряжение. Вода в баке представляет собой заряд. Чем больше воды в баке, тем выше заряд, тем больше давление измеряется на конце шланга.

Мы можем представить этот резервуар как батарею, место, где мы накапливаем определенное количество энергии, а затем высвобождаем ее. Если мы сливаем из нашего бака определенное количество жидкости, давление, создаваемое на конце шланга, падает. Мы можем думать об этом как об уменьшении напряжения, например, когда фонарик тускнеет по мере разрядки батарей.Также уменьшается количество воды, протекающей через шланг. Меньшее давление означает, что течет меньше воды, что приводит нас к течению.

Текущий

Мы можем представить количество воды, текущей по шлангу из бака, как ток. Чем выше давление, тем выше расход, и наоборот. С водой мы бы измерили объем воды, протекающей по шлангу за определенный период времени.18 электронов (1 кулон) в секунду проходят через точку в цепи. Амперы представлены в уравнениях буквой «I».

Предположим теперь, что у нас есть два резервуара, каждый со шлангом, идущим снизу. В каждом резервуаре одинаковое количество воды, но шланг одного резервуара уже, чем шланг другого.

Мы измеряем одинаковое давление на конце любого шланга, но когда вода начинает течь, расход воды в баке с более узким шлангом будет меньше, чем расход воды в баке с более широкий шланг.С точки зрения электричества, ток через более узкий шланг меньше, чем через более широкий шланг. Если мы хотим, чтобы поток через оба шланга был одинаковым, мы должны увеличить количество воды (заряда) в баке с помощью более узкого шланга.

Это увеличивает давление (напряжение) на конце более узкого шланга, проталкивая больше воды через бак. Это аналогично увеличению напряжения, которое вызывает увеличение тока.

Теперь мы начинаем видеть взаимосвязь между напряжением и током.Но здесь следует учитывать третий фактор: ширину шланга. В этой аналогии ширина шланга - это сопротивление. Это означает, что нам нужно добавить еще один термин в нашу модель:

  • Вода = заряд (измеряется в кулонах)
  • Давление = напряжение (измеряется в вольтах)
  • Расход = ток (измеряется в амперах или, для краткости, «амперах»)
  • Ширина шланга = сопротивление

Сопротивление

Снова рассмотрим наши два резервуара для воды, один с узкой трубой, а другой с широкой.

Само собой разумеется, что мы не можем пропустить через узкую трубу такой же объем, как более широкая, при том же давлении. Это сопротивление. Узкая труба «сопротивляется» потоку воды через нее, даже если вода находится под тем же давлением, что и резервуар с более широкой трубой.

В электрическом смысле это две цепи с одинаковым напряжением и различным сопротивлением. Цепь с более высоким сопротивлением позволит протекать меньшему количеству заряда, то есть в цепи с более высоким сопротивлением будет меньше тока, протекающего через нее.18 электронов. Это значение обычно представлено на схемах греческой буквой «& ohm;», которая называется омега и произносится как «ом».

Закон Ома

Объединив элементы напряжения, тока и сопротивления, Ом разработал формулу:

Где

  • В = Напряжение в вольтах
  • I = ток в амперах
  • R = Сопротивление в Ом

Это называется законом Ома.Скажем, например, что у нас есть цепь с потенциалом 1 вольт, током 1 ампер и сопротивлением 1 Ом. Используя закон Ома, мы можем сказать:

Допустим, это наш резервуар с широким шлангом. Количество воды в баке определяется как 1 В, а «узость» (сопротивление потоку) шланга определяется как 1 Ом. Используя закон Ома, это дает нам ток (ток) в 1 ампер.

Используя эту аналогию, давайте теперь посмотрим на бак с узким шлангом. Поскольку шланг более узкий, его сопротивление потоку выше.Определим это сопротивление как 2 Ом. Количество воды в резервуаре такое же, как и в другом резервуаре, поэтому, используя закон Ома, наше уравнение для резервуара с узким шлангом составляет

.

а какой ток? Поскольку сопротивление больше, а напряжение такое же, это дает нам значение тока 0,5 А:

Значит, в баке с большим сопротивлением ток меньше. Теперь мы видим, что если мы знаем два значения закона Ома, мы можем решить третье.Продемонстрируем это на эксперименте.

Эксперимент по закону Ома

Для этого эксперимента мы хотим использовать батарею на 9 В для питания светодиода. Светодиоды хрупкие и могут пропускать через них только определенное количество тока, прежде чем они перегорят. В документации к светодиоду всегда будет «текущий рейтинг». Это максимальное количество тока, которое может пройти через конкретный светодиод, прежде чем он перегорит.

Необходимые материалы

Для проведения экспериментов, перечисленных в конце руководства, вам потребуется:

ПРИМЕЧАНИЕ. светодиодов - это так называемые «неомические» устройства.Это означает, что уравнение для тока, протекающего через сам светодиод, не так просто, как V = IR. Светодиод вызывает в цепи то, что называется «падением напряжения», тем самым изменяя величину протекающего через нее тока. Однако в этом эксперименте мы просто пытаемся защитить светодиод от перегрузки по току, поэтому мы пренебрегаем токовыми характеристиками светодиода и выбираем номинал резистора, используя закон Ома, чтобы быть уверенным, что ток через светодиод безопасно ниже 20 мА.

В этом примере у нас есть батарея на 9 В и красный светодиод с номинальным током 20 мА, или 0.020 ампер. Чтобы быть в безопасности, мы бы предпочли не управлять максимальным током светодиода, а его рекомендуемым током, который указан в его техническом описании как 18 мА или 0,018 ампер. Если просто подключить светодиод непосредственно к батарее, значения закона Ома будут выглядеть так:

следовательно:

, а поскольку сопротивления еще нет:

Деление на ноль дает бесконечный ток! Что ж, на практике не бесконечно, но столько тока, сколько может дать батарея. Поскольку мы НЕ хотим, чтобы через светодиод проходил такой большой ток, нам понадобится резистор.Наша схема должна выглядеть так:

Мы можем использовать закон Ома точно так же, чтобы определить значение резистора, которое даст нам желаемое значение тока:

следовательно:

вставляем наши значения:

решение для сопротивления:

Итак, нам нужно сопротивление резистора около 500 Ом, чтобы ток через светодиод не превышал максимально допустимый.

500 Ом не является обычным значением для стандартных резисторов, поэтому в этом устройстве вместо него используется резистор 560 Ом.Вот как выглядит наше устройство вместе.

Успех! Мы выбрали номинал резистора, достаточно высокий, чтобы ток через светодиод не превышал его максимального номинала, но достаточно низкий, чтобы ток был достаточным, чтобы светодиод оставался красивым и ярким.

Этот пример светодиодного / токоограничивающего резистора является обычным явлением в хобби-электронике. Вам часто придется использовать закон Ома, чтобы изменить величину тока, протекающего по цепи. Другой пример такой реализации - светодиодные платы LilyPad.

При такой настройке вместо того, чтобы выбирать резистор для светодиода, резистор уже встроен в светодиод, поэтому ограничение тока выполняется без необходимости добавлять резистор вручную.

Ограничение тока до или после светодиода?

Чтобы немного усложнить ситуацию, вы можете разместить токоограничивающий резистор по обе стороны от светодиода, и он будет работать точно так же!

Многие люди, впервые изучающие электронику, борются с идеей, что резистор, ограничивающий ток, может находиться по обе стороны от светодиода, и схема по-прежнему будет работать как обычно.

Представьте себе реку в непрерывной петле, бесконечную, круглую, текущую реку. Если бы мы построили в нем плотину, то перестала бы течь вся река, а не только одна сторона. А теперь представьте, что мы помещаем водяное колесо в реку, которое замедляет течение реки. Неважно, где в круге находится водяное колесо, оно все равно замедлит поток на всей реке .

Это чрезмерное упрощение, поскольку токоограничивающий резистор нельзя размещать где-либо в цепи ; он может быть размещен на с любой стороны светодиода для выполнения своей функции.

Чтобы получить более научный ответ, мы обратимся к закону напряжения Кирхгофа. Именно из-за этого закона резистор, ограничивающий ток, может располагаться по обе стороны светодиода и при этом иметь тот же эффект. Для получения дополнительной информации и некоторых практических задач с использованием KVL посетите этот веб-сайт.

Ресурсы и дальнейшее развитие

Теперь вы должны понять концепции напряжения, тока, сопротивления и их взаимосвязь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *