- Степень огнестойкости здания, как важная характеристика пожарной безопасности
- Степень огнестойкости здания и сооружений: таблицы, классы и виды
- Степени огнестойкости зданий и сооружений — ПОЖАРНЫЕ РЕБЯТА
- Степень огнестойкости — определение термина
- Как определить степень огнестойкости здания?
- Таблица степеней огнестойкости зданий и сооружений
- Степень огнестойкости зданий и сооружений таблица, определение класса, расшифровка классификации
- Класс огнестойкости строительных материалов — Surviving Wildfire
- Центр CE — Проектирование противопожарной защиты
- NFPA 72 — NFPA Journal Сентябрь / октябрь 2020 г.
- Огнестойкие стены
- Понимание рейтингов огнестойкости кровли | Buildings
- Разница между реакцией и сопротивлением огню
- Понимание-Строительство-Строительство-Для-Противопожарных-Операций | Пожарная часть
Степень огнестойкости здания, как важная характеристика пожарной безопасности
Безопасность эксплуатации зданий и сооружений зависит от множества факторов. Это и соблюдение технологии при строительстве, и применение качественных материалов и множество других.
Важным условием успешной эксплуатации является и пожарная безопасность объекта. Она зависит, прежде всего, от степени огнестойкости здания или сооружения.
От чего зависит
Огнестойкость здания определяется, прежде всего, применяемыми материалами и конструктивными особенностями. В зависимости от того, какие материалы берут при строительстве, сооружение может быть в разной степени устойчивым к воздействию неблагоприятных факторов, таких как открытый огонь, поражение молнией, воздействие электрического тока.
Примером влияния используемых материалов может служить простой довод, что дома из дерева при прямом ударе молнии с большей долей вероятности загорятся, чем каменные или кирпичные.
В качестве примера влияния конструктивных особенностей на сопротивляемость сооружения огню можно привести сравнение двух зданий с различной высотой и степенью оборудования молниезащитой и заземлением.
Высокое здание более подвержено прямому попаданию молнии, чем низкое. А то, в котором выполнено заземление без молниеотвода, находится, как бы ни казалось это странным, в менее благоприятном положении, чем сооружение вообще без заземления.
Сопротивляемость сооружения воздействию огня определяет возможность тушения возникшего пожара в течение времени, за которое здание не получит существенных повреждений, влияющих на способность выполнять функциональное предназначение.
Это свойство важно и при расчете времени, достаточного для эвакуации жильцов дома или обслуживающего персонала в случае возникновения опасности возгорания.
Понятие предела огнестойкости
Степень огнестойкость всего строения в целом в значительной мере определяется пределом огнестойкости конструкций, составляющих это здание.
Эта величина характеризует время, до истечения которого гарантированно не наступит одно или несколько предельных состояний, характерных для конкретной конструкции.
Предел огнестойкости обозначается в минутах после латинской буквы или группы букв, которые обозначают предельное состояние. Как правило, рассматриваются три вида предельных состояний – по потере несущей способности, по потере целостности, по потере изоляционных свойств.
Пример обозначения – REI45. Это означает, что конструкция должна в течение 45 минут не потерять ни несущей способности, ни целостности, ни изоляционных свойств.
Предел этот применительно к каждому строительному материалу, изготовленному по требованиям соответствующего ГОСТа, определяется по результатам испытаний образцов специальными методами.
Узнать значение предела для конкретной конструкции можно по таблицам из свода правил СП2.13130.2009.
Классификация зданий
Самая простая классификация строений по стойкости к воздействию пожаров предполагает разделение на несгораемые, трудносгораемые и сгораемые:
- несгораемыми считаются здания, построенные из материалов, которые совершенно не горят. Они не возгораются от источника пламени и даже не поддерживают горение. Примерами таких материалов могут служить искусственный и природный камень;
- под трудносгораемыми предполагаются строения, материал которых либо горюч и обработан составами, замедляющими возгорание, либо материал сам негорючий, но под воздействием огня может плавиться или разрушаться. Они строятся из дерева с пропиткой его антипиренами или с последующим оштукатуриванием деревянных конструкций. Также при проектировании таких сооружений могут быть предусмотрены металлические конструкции, не подвергавшиеся термической защите;
- сгораемые здания строятся из материала с высокою степенью горючести. Это деревянные дома из бревен, бруса, каркасные дома, если материал совершенно ничем не обрабатывался.
Поскольку в последнее время при строительстве часто используют пластики, то желательно, чтобы их степень огнестойкости, горючесть и другие важные характеристики были определены и зафиксированы в сертификате соответствия.
Виды степеней
СНиП 21.01-97 определяет, что огнестойкость может подразделяться на пять базовых степеней. Некоторые из них делятся еще на несколько позиций. Обозначаются они римскими цифрами с добавлением в случае необходимости малых букв кириллического алфавита.
Классификация по степеням выглядит следующим образом.
Первая степень (I) присваивается зданиям, в которых спроектированы несущие и ограждающие конструкции из крупнопанельных или листовых материалов, абсолютно не поддерживающих горение. Они также могут быть из монолитного бетона или железобетона.
Второй уровень (II) присваивается строениям, удовлетворяющим требованиям предыдущего пункта, но только если покрытия выполнены из металлических конструкций, не подвергавшихся огнезащитной обработке.
Третья степень (III) устанавливается для зданий, несущие стены которых выполнены из искусственного или природного камня, а перекрытия могут быть из древесных материалов при условии, что они защищены цементной или гипсовой штукатуркой. Покрытие выполняется из трудносгораемых листов по деревянным конструкциям, обработанным антипиренами – составами для повышения огнезащиты древесины.
IIIа уровень присваивается строениям с элементами каркаса, выполненными из металла. Ограждающие конструкции обшиваются листами, не поддерживающими горения. Утеплитель внутри каркаса здания тоже должен быть негорючим.
IIIб степень присваивается одноэтажным постройкам, стены которых изготовлены из древесины. Это могут быть и каркасные, и бревенчатые стены, и стены из бруса. Деревянные детали здания обрабатывают специальными составами. Каркасные строения могут быть обшиты шпоном, вагонкой либо плитными материалами, изготовленными из отходов древесного производства – опилок, стружек. Плиты и листы также обрабатываются огнезащитными составами.
IV степень огнестойкости предусматривает строительство здания из горючих материалов, защищенных трудносгораемыми листами. Кровельная конструкция может изготавливаться из древесины, причем обработка огнезащитными составами в этом случае не требуется, хотя некоторые элементы могут быть и защищены.
IVа уровень предполагает, что здания имеют каркасную металлическую конструкцию. При этом обшиты они негорючими листами и утеплены при помощи негорючих изоляционных материалов. Требования к защите материалов каркаса и облицовки не предъявляются.
V степень назначается для тех строений, к которым никакие требования по огнестойкости не предъявляются вообще.
Степень огнестойкости зависит не только от применяемых при строительстве здания материалов и технологий. Важную роль играет обеспеченность помещений средствами для тушения пожаров и системой оповещения о возникновении пожара.
Категории пожарной опасности
Кроме степени огнестойкости существует еще одна характеристика – категория пожарной опасности здания. Она определяет, насколько само строение опасно при учете риска возникновения пожара.
Дело в том, что по назначению постройки подразделяются на жилые и производственные. В зависимости от назначения и происходящих внутри сооружений процессов, возгораемость внутри помещений, отсеков может существенно варьироваться.
Совершенно очевидно, что в производственных зданиях при работах с огнем и при высоких температурах риск возгорания выше. Даже в жилых домах, оборудованных газовыми плитами или электрическими, эта характеристика будет различаться.
Также учитывается и способ отопления зданий. Наличие котельной внутри здания повышает категорию пожарной опасности.
Существует шесть категорий, которые обозначаются заглавными буквами кириллического алфавита от А до Е.
Категория пожарной опасности учитывается в основном при проектировании производственных зданий. Именно в этом случае различия будут очень существенны. Для жилых домов обычно такая классификация не применяется.
СНиП 31-03-2001 содержит таблицу для определения степеней огнестойкости производственных зданий и сооружений, а также зависимость их от категории пожарной опасности здания.
Таблица, приведенная в одном из приложений к Федеральному закону № 123-ФЗ, определяет соответствие между пределами огнестойкости строительных конструкций и степенями огнестойкости сооружений.
Как определяют
При обследовании строений на сопротивляемость пожарам, сравнивают фактическую и требуемую огнестойкость.
Фактическая определяется по результатам пожарно-технической экспертизы, а требуемая рассчитывается по нормам, приведенным в СНиП и СП.
Полученные результаты сравниваются, и если степень фактической сопротивляемости огню превышает требуемую, то здание признается соответствующим противопожарным нормам.
Задача определения степени огнестойкости и принятие решения о пожарной безопасности зданий и сооружений возложена на уполномоченные органы в области пожарного надзора.
Другие полезные статьи:
Степень огнестойкости здания и сооружений: таблицы, классы и виды
Степень огнестойкости здания – это способность строения противостоять пожару какое-то время, не разрушаясь. На основе данного показателя можно дать оценку любому сооружению в плане пожарной безопасности. Именно от степени огнестойкости здания зависит, как быстро огонь будет распространяться по его помещениям и конструкциям. По понятным причинам этот показатель во многом будет зависеть от материалов, из которых строение возводится.
Огневая стойкость стройматериалов
К определению степени огнестойкости строительных материалов надо подходить с позиции: горючие они или нет. Поэтому стандартная классификация их так и разделяет на «НГ» – негорючие или «Г» – горючие. Последние делятся на несколько классов:
- Г1 – слабогорючие;
- Г2 – умеренные;
- Г3 – нормальные;
- Г4 – сильные.
Есть другой параметр, который определяет огневую стойкость стройматериалов – это их воспламеняемость, обозначаемая буквой «В». Здесь три класса:
- В1 – материалы, воспламеняемые с большим трудом;
- В2 – воспламеняются умеренно;
- В3 – легко.
Следующая характеристика степени огнестойкости стройматериалов – возможность или невозможность распространения пламени по своим поверхностям. Обозначается данный параметр аббревиатурой «РП». Итак:
- РП1 – не распространяют пламя;
- РП2 – слабо распространяют;
- РП3 – умеренно;
- РП4 – сильно.
Внимание! Показатель «РП» определяют только для напольных оснований и их покрытий, а также для кровель. К остальным конструктивным элементам он никакого отношения не имеет, за исключением разве что деревянных домов.
Дым и токсичность
В СНиПах не указывается, что дым и токсичность выделяемых продуктов сгорания влияют на степень огнестойкости здания. И это правильно. Но при возникновении пожара, где главная задача не только его потушить, но и вовремя провести эвакуацию людей, эти два фактора играют важную роль. Поэтому их обязательно указывают в паспорте строения.
Задымленность или коэффициент выделение дыма строительными материалами обозначается буквой «Д». По этой характеристики все строения разделяются на три группы:
- Д1 – с малым выделением дыма;
- Д2 – с умеренным;
- Д3 – большое выделение.
По токсичности при горении все стройматериалы делятся на четыре группы:
- Т1 – низкая опасность;
- Т2 – умеренная;
- Т3 – высокая;
- Т4 – крайне опасная для людей.
Обобщая все вышесказанное, можно закончить о степени огнестойкости строительных материалов тем, что в СНиПах все вышеобозначенные показатели (а их пять) объединяются в один общий, который обозначается аббревиатурой «КМ».
По показателю «КМ» стройматериалы делятся на пять классов, где класс КМ1 – это представители, у которых все вышеописанные характеристики имеют минимальное значение. Соответственно класс КМ5 – с максимальными значениями. КМ0 – это класс негорючих.
Огнестойкость зданий и сооружений
Разобравшись со стройматериалами, переходим к огнестойкости зданий и сооружений. Необходимо обозначить, что не все строения имеют идентичность материалов по всей конструкции. То есть, не всегда во всех строительных объектах в каждой их части (этажи, помещения и прочее) используются одни и те же строительные материалы. Поэтому производимая классификация по огневой стойкости считается условной. Но в любом случае все строительные объекты делят на три класса: несгораемые, трудно сгораемые, сгораемые.
Степень огнестойкости здания – как определить. В основе расчета лежит время от начала возгорания до момента разрушения или появления дефектов. Поэтому важно понимать, какие дефекты несущих конструкций можно принимать во внимание, чтобы точно говорить о том, что строение на пределе разрушения.
- Появляются сквозные отверстия и трещины, через которые проникают пламя огня и дым.
- Повышается температура нагрева конструкций в пределах от +160С до +190С. Здесь имеется в виду негорящая сторона. К примеру, если горит помещение, а стена с другой стороны нагревается на вышеобозначенные показатели, то это критичный момент.
- Деформируются несущие конструкция, приводящие к обрушению. Это в основном касается металлических узлов и конструкций. Кстати, незащищенные стальные профили относятся к категории КМ4. При температуре +1000С они просто начинают плавиться. К «КМ0» относятся железобетонные изделия.
Что касается скорости и времени сгорания, то, как уже было сказано выше, все зависит от материалов, из которых они возведены. К примеру, бетонная конструкция толщиною 25 см сгорает за 240 минут, кирпичная кладка за 300 минут, металлическая конструкция за 20, деревянная дверь (входная, обработанная антипиренами) за 60, деревянная конструкция, обшитая гипсокартоном толщиною 2 см, сгорает за 75 мин.
Классификация по степени огнестойкости зданий, сооружений и пожарных отсеков
Все строительные объекты делятся на пять степеней. И этот показатель обязательно указывается в паспорте строения.
Внимание! Степень огнестойкости здания могут определять только уполномоченные службы. Именно они дают оценку, определяют класс, который заносится в паспорт.
Итак, степень огнестойкости зданий и сооружений – таблица пяти классов огнестойкости (I-V), определяющих пожароопасность строения.
Класс | Особенности конструкции |
I | Объекты, возведенные полностью из негорючих материалов: камень, бетон или железобетон. |
II | Сооружения, в которых частично используются в качестве несущих конструкций металлические узлы. К этому же классу относятся кирпичные дома. |
III | Постройки, относящиеся к первой категории, только в их конструкциях разрешено использовать деревянные перекрытия, закрываемые штукатурными растворами или гипсовыми плитами. Для покрытия деревянных перекрытий здесь можно использовать листовые материалы, относящиеся к группе «трудносгораемых». Что касается кровель, то древесину можно применять и здесь, только с обработкой антипиренными составами.
|
IIIa | Каркасные дома из металлической основы (стальные профили), у которых степень огнестойкости низкая. Их обшивают негорючими материалами. здесь же можно использовать утеплитель из трудносгораемого материала. |
IIIб | Деревянные дома или постройки из композитных материалов, основа которых – древесина. Строения обязательно подвергаются обработке огнезащитными составами. Основное к ним требование – строительство вдали от возможных очагов возгорания. |
IV | Здания, возведенные из дерева, конструкции которых со всех сторон закрываются штукатурными растворами, гипсовыми плитами или другими изоляционными материалами, способными какое-то время сдерживать воздействие огня. Кровля обязательно подвергается огнезащите.
|
IVa | Строительные конструкции, собранные из стальных профилей, необработанных защитными составами. Единственное – это перекрытия, которые также собираются из стальных конструкций, но с использованием несгораемых теплоизоляционных материалов. |
V | Здания и сооружения, к которым не предъявляются какие-то требования, касающиеся огневой стойкости, скорости возгорания и прочего. |
Виды огневой стойкости
Разобравшись с классами степени огнестойкости зданий, необходимо обозначить и виды этой характеристики. Здесь всего две позиции: фактическая огневая стойкость, обозначаемая СОф и требуемая – СОтр.
Первая – это действительный показатель возведенного здания или сооружения, который был определен по результатам пожарно-технической экспертизы. В основе результатов лежат табличные значения, которые показаны на фото ниже.
Вторая – это подразумеваемое (запланированное) минимальное значение степени огнестойкости здания. Оно формируется на основе нормативных документов (отраслевых или специализированных). При этом учитывается назначение строения, его площадь, этажность, используются ли внутри взрывоопасные технологии, есть ли система пожаротушения и прочее.
Внимание! Сравнивая две разновидности огневой стойкости, необходимо всегда принимать за основу соотношение, что СОф не должна быть меньше СОтр.
Заключение
К классификации зданий и сооружений по степени огнестойкости надо относиться серьезно. Учитывая данный показатель, надо определяться с требованиями к системе пожарной безопасности. И чем ниже предел огневой стойкости постройки, тем больше вложений придется делать, организовывая систему пожарной охраны.
Видео:
Степени огнестойкости зданий и сооружений — ПОЖАРНЫЕ РЕБЯТА
Степени огнестойкости зданий, сооружений и пожарных отсеков
Степень огнестойкости зданий, сооружений и пожарных отсеков — классификационная характеристика зданий, сооружений и пожарных отсеков, определяемая пределами огнестойкости конструкций, применяемых для строительства указанных зданий, сооружений и отсеков.
Здания, сооружения и пожарные отсеки по степени огнестойкости подразделяются на 5 степеней огнестойкости (I, II, III, IV и V степени).
1. Первая степень (I)
Несущие и ограждающие конструкции зданий и сооружений сделаны с применением железобетона, камня, огнеупорных плит и листовых материалов.
2. Вторая степень (II)
Несущие и ограждающие конструкции зданий и сооружений сделаны с применением железобетона, камня, огнеупорных плит и листовых материалов. Для этой категории могут строиться перекрытия с применением металлических (стальных) конструкций (перекрытий).
3. Третья степень (III)Делится на 3 категории:
- Третья.
Строения с бетонными, железобетонными, каменными несущими конструкциями, в которых применяются ограждения с деревянными перекрытиями, покрытые трудногорючими плитами и листовыми материалами, штукатуркой. - Третья «а».
Каркасные здания, при строительстве которых используется незащищенная сталь (металл). Ограждения делают из профилированного стального листа и других негорючих материалов. Может использоваться негорючий утеплитель. - Третья «б».
Одноэтажные деревянные каркасные конструкции, обработанные огнезащитным составом. Панельные ограждения также изготовлены из дерева, предварительно пропитанного огнезащитными составами.
Делится на 2 категории:
- Четвертая.
Сооружения с несущими конструкциями и ограждениями из горючих материалов (например древесины), защищенных трудносгораемыми листами, плиткой или штукатуркой. К перекрытиям нет высоких требований по огнестойкости. Чердак из дерева обязательно обрабатывают огнезащитными составами. - Четвертая «а».
Одноуровневые здания с каркасной схемой. Каркас — стальной, обшиты негорючими листами и утеплены негорючими изоляционными материалами.
Самый низкий порог к огнестойкости и скорости распространения огня. Такие сооружения не предполагают постоянного наличия людей, они не предназначены для хранения горючих и взрывоопасных материалов и для использования в них электроприборов. Никакие требования по огнестойкости не предъявляются вообще.
Степень огнестойкости — определение термина
Трудно даже специально придумать менее подходящее определение, чем то, которое вошло в Федеральный закон «Технический регламент о требованиях пожарной безопасности». Давайте посмотрим на это определение, и определение из учебника периода наивысшего развития пожарной охраны.
В соверемнном техническом регламенте, в определении термина указана, что степень огнестойкости здания определяется в зависимости от характеристик строительных конструкций — применяемых в нём. Та же логическая ошибка повторяется в СП 2.13130.2012, к которому и обращаются специалисты для определения степени огнестойкости.
А вот советском определении указано, что именно пределы огнестойкости конструкции определяется по степени огнестойкости.
Правы конечно те, кто писал советский учебник. Почему? Давайте рассуждать логически.
Мы решили построить здание. Мы обязаны позаботиться о его пожарной безопасности. Нам нужно выбрать безопасные, способные сопротивляться огню строительные конструкции. От чего будет записить степень пожарной опасности здания?
Прежде всего от фукнционального назначения. То есть от такой классификационной характеристики как класс функциональной пожарной опасности.
Это понятно — то, что делают люди на объекте влияет на его пожарную опасность. Поэтому первое что нужно знать для определения степени огнестойкости — это класс функциональной пожарной опасности.
Давайте предположим у нас будет два здания с одинаковым классом функциональной пожарной опасности. Какое из них будет опаснее? Естественно то, которое выше (при прочих равных условиях. Следовательно следующая характеристика объекта защиты нужная нам для определения степени его опасности — высота здания и сооружения.
После этого давайте подумаем, что опаснее два здания одинакового функционала и высоты но в одном два этажа, а другое одноэтажное. Разумеется опаснее двухэтажное, как менее устойчивое и эвакуация из которого займет больше времени.
Ну и если брать наши гипотетические одинаковые по классу функциональной пожарной опасности, категориям, высоте и этажности здания остается еще одна характеристика — площадь этажа. Чем больше эта площадь — тем опаснее здание, так как на большей площади будет больше пожарной нагрузки, большее количество людей, а значит при пожаре риски разрушения здания будут тем выше, тем больше площадь этажа.
И вот именно для ля того, чтобы охарактеризовать все эти условия опасности, в практике пожарной охраны появилась такая характеристика — как степень огнестойкости. Поэтому определяется она совершенно не так, как указано в Техническом регламенте — пределами огнестойкости строительных конструкций. Она определяется по уровню опасности здания, чем выше уровень опасности, тем выше и степень огнестойкости, и уже потом — тем выше пределы огнестойкости строительных конструкций.
Именно этот метод определения соответствует ЛОГИКЕ обеспечения пожарной безопасности.
Есть еще несколько условий для выбора степени огнестойкости, например высота размещения конферен-залов, количество мест в здании и прямые указания на ограничение степени огнестойкости того или иного здания. Также степень огнестойкости может зависить (взаимообразоно) и от класса конструктивной пожарной опасности здания.
Мы собрали все известные нам условия в схемы, которые под каждый класс пожарной опасности в виде иллюстраций представили как приложения к настоящей статьей, а пока предлагаем Вам посмотреть пример определения степени огнестойкости для разных общественных зданий.
Итак — у нас общественное здание, например класса функциональной пожарной опасности Ф 4.3. Мы обращаемся к таблице 6.9
Мы хотим, чтобы наше здание Ф.4.3 было высотой 50 метров. Мы смотрим в соответсвующую таблицу СП 2.13130.2009 и понимаем, что если мы выбираем такую высоту, то здание может быть II степени огнестойкости.
Мы планируем сделать в нашем здании 8 этажей каждый площадью 5000 квадратных метров. Можно ли нам это сделать? Нет, потому что при данном проектном решении увеличивается уровень пожарной опасности здания — больше площадь — выше уровень опасности. Поэтому мы можем либо сделать этаж 4000 квадратных метров, отказавшись от требуемого нам по технологии решения, либо делить здание на два пожарных отсека, возведя противопожарную стены.
А такое мероприятие довольно и дорого да и хотим мы хотим единое пространство, не разделяемое никакими противопожарными стенами.Мы начинаем думать, что нам сделать, чтобы можно было реализовать. И та же таблица дает нам выбор — мы можем увеличеть степень огнестойкости до первой.
Но эти таблицы из СП 2.13130 не конечный критерий выбора степень огнестойкости.Следует учесть и иные критерии пожарной опасности объекта, или прямое указание, на степень огнестойкости того или иного типа объекта защиты, встречающееся в нормативных документах.
Пример можно привести, если использовать таблицу 6.9 для выбора степени огнестойкости здания пожарного депо. Предположим нам нужно построить здание пожарного депо. Предположим нам нужно одноэтажное здание пожарного депо высотой не более 6 метров и площадью 300 метров квадратных..По таблице 6.9 (которую (хоть и с некоторой натяжкой) на практике применяют при определении степени огнестойкости таких зданий, как для общественных зданий относящихся к классу Ф 4 в целом мы можем выбрать пятую — самую низшую (и, как следствие, самую удобную в строительстве) степень огнестойкости.
Но при этом, если мы думающие пожарные специалисты, мы должны ориентироваться и на требования пожарной безопасности, указанные не только в нормативных документах разработанных и введенны в целях исполнения Федеральнго закона от 22 июля 32008 года № 123-ФЗ «Технический регламент о требованиях пожарной безопасности», но и в иных документах, особенно включенных в перечень , если они устанавливают более высокие и жесткие требования. И тут мы видим, что в пункте 6.13 СП 380.1325800.2018 «Здания пожарных депо. Правила проектирования» указано:
Многоэтажные здания пожарных депо следует выполнять не ниже степени огнестойкости II, одноэтажные здания — не ниже степени огнестойкости III.
Если обратиться к определению термина «требования пожарной безопасности», мы увидим, что сформулированное в СП 380.13330 условие — безусловно таковым требованием является, а значит у нас есть обязанность по его соблюдению. И в данном случае, несмотря на то, что СП 2.13130 допускает степень огнестойкости V пожарный специалист, опираясь на данную норму выберет третью степень огнестойкости.
Ппредставим, что мы строим общественное здание класса Ф 4.3. Мы строим пятиэтажное здание, высотой 15 метров с площадью этажа 1000 метров квадратных. На последнем этаже, расположенном на высоте 10 метров мы планируем разместить конференц-зал на 100 человек Таблица 6.9 в данном случае позволяет выбрать нам степень огнестойкости III.
. Но, так как в нашем здании планируется размещение конференц зала на определенной высоте, то мы обязаны учесть еще один фактор, влияющий на степень огнестойкости.
Физическая суть данного требования тоже понятна, чем выше расположено помещение с массовым пребыванием людей, тем опаснее объект защиты, тем надежнее должно быть здание, а значит выше степень огнестойкости.
На следующих страницах приведены схемы показываюющие условия определения степени огнестойкости для зданий и сооружений всех классов фукнциональной пожарной опасности
страница
Как определить степень огнестойкости здания?
От чего зависит этот параметр?
В первую очередь, огнестойкость здания основывается на том, какие материалы использованы для его возведения. Именно от них зависит устойчивость не только к огню, но и к другим неблагоприятным факторам, таким, как поражение молнией, воздействие электротока и так далее.
Пример. Деревянное строение больше подвержено повреждению при пожаре, нежели такое же, возведенное из кирпича или камня.
На параметр также может повлиять высота строения, толщина стен. Высокое более подвержено попаданию молнии. Но здесь значимую роль играет наличие молниеотвода – с ним вероятность такого исхода значительно снижается.
Расчет предела огнестойкости металлических конструкций максимально точно определит время, в течении которого конструкции будут сохранять несущую способность в случае возникновения пожара. Это также важно при определении времени, необходимого на эвакуацию людей.
Разделение на степени огнестойкости
Относительно такого параметра, как степень огнестойкости, здания делятся на пять групп.
Класс конструктивной пожарной опасности строительных конструкций К0-К3
Разделение конструкций в обязательном порядке происходит на классы конструктивной пожарной опасности. Сюда относится 4 класса К0-К3:
Рассмотрим более подробно данную классификацию, которая имеет большое значение, когда проводится расчет огнестойкости металлических конструкций. Если после проведения обследования и расчетов специалист присвоил конструкции класс К0, это означает, что элементы не склонны к возгоранию или же воспламеняются только при экстремальном нагревании.
Класс К1 свидетельствует, что несущие элементы имеют некоторые повреждения, размер которых не превышает 40 см.
Если присутствуют более серьезные повреждения на несущих конструкциях (вертикальные – до 80 см и горизонтальные – до 50 см), присваивается класс К2. При еще более серьезных повреждениях говорят о классе К3, при этом в самом помещении есть источники возгорания.
Класс конструктивной пожарной опасности здания С0-С3
Еще одна классификация, она соответствует предыдущей. Согласно определениям, классификация начинается самым безопасным классом (С0), и заканчивается – опасными С(3). Цифры означают следующее:
-
0 – здание включает в себя конструкции безопасные, изготовленные из материалов, принадлежащих к категории негорючих, при пожарах не создают тепловой эффект и не выделяют токсических элементов;
-
1 – здание включает в себя несколько конструкций, из трудногорючих материалов;
-
2 – здание включает в себя конструкции, изготовленные из горючих и трудногорючих стройматериалов;
-
3 – регламентированных требований не предъявляют.
Как присваивается степень огнестойкости
Расчет предела огнестойкости металлических конструкций проводится разными методами, используют как теоретические сведения, так и практические методики. Полученные в ходе практического тестирования результаты в конце подытоживаются и отображаются в соответствующей таблице, которая и служит основанием для окончательного заключения. Сравнительные итоги позволяют судить о том, в каком состоянии находится объект, ими руководствуются при присвоении объекту соответствующей степени огнестойкости.
Оценивая защищенность конструкции от пожара, необходимо принимать во внимание не только класс конструктивной пожарной опасности строительных конструкций К, но и не забывать о классе конструктивной пожарной опасности здания С. Только так можно с уверенностью сказать, в полной ли мере соответствует исследуемый объект существующим нормативным требованиям в области пожарной безопасности. Полный перечень нормируемых данных представлен в таблице.
Значение СП 2.13130
СП 2.13130 – основополагающий свод правил, регламентирует возведение объектов, относящихся к самым разным категориям. Документ отображает все самые главные моменты, касающиеся подготовительного этапа по проектированию здания, а также учитывает возможность строений к противостоянию воздействию огня.
Приведенная информация дает возможность воспользоваться готовыми техрешениями, чтобы выбрать максимально подходящий вариант. Также стоит учитывать, что для практической оценки состояний объектов используют свод правил от 97 года, а при подготовке к тестовым испытаниям руководствуются теоретической частью СНиПа 2001 года.
Практический способ определения
Обследуя строения, обязательно учитывают расчет фактического предела огнестойкости металлических конструкций. Его возможно определить путем проведения пожарно-технической экспертизы. Требуемая огнестойкость, как отмечалось, определяется нормами СП
После этого полученные результаты сравнивают. Если они говорят о том, что фактическая сопротивляемость выше требуемой, объект считают таким, что соответствует противопожарным нормам.
Рассмотрим пример определения степени огнестойкости здания. Пределы огнестойкости конструкций определяются временными промежутками, при которых она утратит свои первоначальные свойства. Во время испытания оценивается состояние всех элементов, и как только один из них достигнет пределов, огонь тушат.
Для эксперимента необходима термическая печь, ее устанавливают на 10-сантиметровом расстоянии от зоны испытания. При помощи форсунки в печь впрыскивается горючее средство и поджигается. Чтобы не возникло настоящего пожара, обязательно учитывают температурные показатели горения, плавления материалов. Как только испытуемый стройматериал начнет плавиться, размягчаться, гореть, эксперимент останавливают и определяют время, которое потребовалось для начала этого процесса, а также скорость, с которой распространялся огонь. Этот практический метод достаточно опасный, поэтому проводить экспериментальные исследования должны только специально обученные люди. При этом необходимо придерживаться всех норм и правил безопасности, использовать огнезащитное снаряжение.
Преимущества нашей компании
Если вам необходимо провести определение огнестойкости здания и (или) строительных конструкций, обращайтесь в нашу компанию «КТБ железобетона». Здесь работают высококвалифицированные специалисты с многолетним опытом работы и знанием всех нюансов проведения подобных испытаний. Кроме того, компания располагает собственной огневой лабораторией и сильным научно-техническим потенциалом, поэтому мы проводим весь спектр работ, направленных на укрепление пожарной безопасности зданий и объектов.
Наши специалисты знают все требования ПБ, располагают всем необходимым инструментом, оборудованием и материалом, который позволит быстро и качественно рассчитать пределы огнестойкости разных конструкций. Комплексный подход к выполнению любых поставленных задач – одно из главных преимуществ нашей работы.
Чтобы заказать услугу, позвоните по указанному на сайте номеру или свяжитесь с нашим консультантом в режиме онлайн. Стоимость работы зависит от размера, сложности объекта, определяется в индивидуальном порядке.
Таблица степеней огнестойкости зданий и сооружений
Что такое огнестойкость здания, от чего зависит и на что влияет этот показатель?
В первую очередь, огнестойкость здания отражает способность здания, а также материалов, из которых состоят отдельные составляющие элементы конструкций, смогут противостоять пожару, не разрушаясь и не деформируясь в случае его возникновения и распространения. Именно от показателя огнестойкости здания будет зависеть то, насколько быстро или медленно пожар, в случае начала, будет распространяться по зданию.
Определение предела огнестойкости
Предел огнестойкости любой конструкции определяется следующим образом. За основу принято брать время, которое проходит от начала самого возгорания до момента возникновения любого предельного состояния огнестойкости выбранного элемента. В частности:
По плотности: возникновение сквозных отверстий либо трещин, через которые могут беспрепятственно проникать продукты горения, а также огонь.
По теплоизолирующей способности: показателем является повышение температуры более чем на 160 градусов (в среднем), либо на 190 (в любой выбранной точке на поверхности конструкции) по сравнению с температурой до начала проведения испытания. Учитывается также повышение температуры более чем на 220 градусов вне зависимости от изначальной зафиксированной температуры.
По потере несущей способности конструкций и узлов – в зависимости от типа и строения конструкции в расчёт принимается деформация, либо обрушение.
Исследования показали, что наибольшим пределом огнестойкости обладают железобетонные конструкции. Наименьший характерен конструкциям из металла.
Учитывая то, что любое здание состоит из различных составляющих элементов, этот показатель может существенно разниться. Однако в целом принято выделять несколько степень огнестойкости, которые приняты выделять римскими цифрами от I до V.
Степени огнестойкости и их характеристика
Выделение пяти базовых степеней огнестойкости зданий и сооружений осуществляется в соответствии с СНиП 21.01-97. За основу при выводе этого показателя как правило берется степень огнестойкости основных элементов конструкции, несущих функциональную роль.
Приведем примерные характеристики знаний в зависимости от показателя их огнестойкости
- I степень. Здания, имеющие ограждающие, а также несущие конструкции с использованием плитных и листовых негорючих материалов, железобетона, бетона. А также построенные на основе как естественных, так и искусственных материалов.
- II степень. Здания имеют характеристики, схожие с описанными выше. Дополнительно, покрытия зданий могут иметь и незащищенные конструкции из стали.
- III степень. Здания, несущие, либо ограждающие конструкции которых построены с использованием как естественных, так искусственных материалов (в частности каменных). Перекрытия могут быть возведены из дерева при условии если они защищены трудногорючими материалами (штукатуркой, плитами и т.д.). Элементы чердачного покрытия постройки тоже должны пройти огнезащитную обработку при помощи специальных материалов. Требования, связанные с распределением огня, а также непосредственно показателями огнестойкости, не распространяются на элементы покрытий.
- IIIа степень. Здания чаще всего имеют каркасную конструктивную схему. Эти элементы (незащищенные конструкции) чаще всего изготавливаются из стали. На изготовление ограждающих конструкций идут профилированные листы из стали, либо другого материала (негорючего, либо с утеплителем из трудногорючего материала).
- IIIб степень. К этой категории относятся преимущественно одноэтажные постройки, имеющие каркасную конструктивную схему. Элементы каркаса в большинстве случаев изготовлены из древесины (допустимо использование как цельного, так клееного материала). Необходимый показатель предела распространения огня достигается при помощи обработки дерева обработки специальными материалами. Для ограждающих конструкций могут быть использованы древесины, а также любые материалы на ее основе; сами ограждающие конструкции могут быть собраны из панелей, либо поэлементно. Для того, чтобы был достигнут показатель необходимого предела распределения огня, а также древесина была максимально защищена от воздействия огня и температурного воздействия, ее также следует обработать материалами, придающими ей требуемые свойства.
- IV степень. Знания отличаются несущими, а также ограждающими конструкциями, построенными из горючих, либо трудногорючих материалов. Для защиты от воздействия огня могут быть использованы плитные, листовые материалы, а также штукатурка. Элементы покрытий не должны отвечать тем или иным требованиям в плане огнестойкости, а также пределу распространения огня. Тем не менее, элементы чердачного покрытия при необходимости могут подвергаться обработке от воздействия как высоких температур, так открытого огня.
- IVа степень. Одноэтажные здания, имеющие каркасную конструктивную схему. Элементы самого каркаса чаще всего из стальных конструкций, не имеющих специальной защиты. Ограждающие конструкции постройки строятся с использованием негорючих материалов, либо материалов, имеющих специальный горючий утеплитель (например, из профилированного железа).
- V степень. Под эту категорию попадают те постройски, несущие и ограждающие конструкции которых могут иметь произвольный показатель огнестойкости и предела распространения огня. Никаких других требований к ним не предъявляется.
Виды степеней огнестойкости
Согласно нормативным документам, особые требования к пределу огнестойкости предъявляются к тем элементам конструкции, которые помимо всего прочего несут ограждающую функцию (например, к несущим стенам). К ним относится сохранность таких показателей, как целостность, теплоизолирующая и несущая способность. Существенную роль играет также функциональная пожарная безопасность постройки.
На сегодняшний день принято выделять два вида огнестойкости зданий: фактическую и требуемую.
Фактическая степень огнестойкости постройки – этот тот уровень огнестойкости, который определяется непосредственно по итогам проведенной пожарно-технической экспертизы. Критерием для выводов являются актуальные на тот момент нормативные акты и документы. Пределы огнестойкости, разработанные для строительных конструкций различного типа, занесены в таблицу.
Степени огнестойкости. Таблица
Степень огнестойкости здания |
Предел огнестойкости строительных конструкций, не менее |
||||||
Несущие элементы здания |
Наружные ненесущие стены |
Перекрытия междуэтажные (в том числе чердачные и над подвалами) |
Элементы бесчердачных покрытий |
Лестничные клетки |
|||
Настилы (в том числе с утеплителем) |
Фермы, балки, прогоны |
Внутренние стены |
Марши и площадки лестниц |
||||
I |
R 120 |
Е ЗО |
REI 60 |
RE 30 |
R ЗО |
REI 120 |
R 60 |
II |
R 90 |
Е 15 |
REI 45 |
RE 15 |
R 15 |
REI 90 |
R 60 |
III |
R 45 |
Е 15 |
REI 45 |
RE 15 |
R 15 |
REI 60 |
R 45 |
IV |
R 15 |
Е 15 |
REI 15 |
RE 15 |
R 15 |
REI 45 |
R 15 |
V |
Не нормируется |
Требуемая степень огнестойкости отражает то значение показателя, которое должно быть характерно зданию для того, чтобы максимально соответствовать требованиям пожарной безопасности и быть пригодным для эксплуатации. Этот критерий может определяться специально разработанными нормативными документами, а также зависит от целого ряда характеристик здания. К ним относятся площадь здания и его этажность, назначение (в частности – категория производства по пожароопасности). Значимую роль играет также наличие либо отсутствие специальных установок, предназначенных для пожаротушения.
Узнать степени огнестойкости для жилых строений, а также производственных и общественных зданий можно, обратившись к таблицам. Данные СНиП 31-03-2001 справедливы для производственных зданий, СНиП 2.08.02-89* — для общественных построек и сооружений, СНиП 31-01-2003 – для жилых построек.
В том случае, если по результатам проведенных проверок показатель фактической огнестойкости здания превышает либо оказывается равным требуемой степени огнестойкости, здание признается соответствующим нормам пожарной безопасности.
Для того, чтобы степень огнестойкости здания максимально соответствовало требуемым стандартам важно учитывать действующие пределы огнестойкости, а также пределы распределения огня.
Степень огнестойкости зданий и сооружений таблица, определение класса, расшифровка классификации
Степень огнестойкости зданий и сооружений, таблица показателей этих величин нужны для того, чтобы знать, при какой температуре происходит разрушение строения от пожара. Сейчас увеличилось количество пожаров, причиной которых является небрежное обращение с огнем, поэтому нужно знать уровень стойкости к возгоранию различных объектов.
Что такое огнестойкость здания, от чего зависит и на что влияет этот показатель?
Интенсивность распространения огня зависит от огнестойкости объекта и его конструкций. Все стройматериалы по изменению характеристик в условиях пожара делятся на:
- негорючие;
- трудногорючие;
- горючие.
Огнестойкость представляет собой способность здания противостоять действию открытого пламени в определенный промежуток времени, при котором сохраняются его эксплуатационные характеристики, такие как теплопроводность, несущая способность опор, устойчивость к огню. Для определения этого показателя нужно знать периоды, в течение которых конструкция разрушается до такого состояния, когда ее нельзя будет восстановить.
Огнестойкость зданий — важный параметр, который обязательно учитывается при проектировании и строительстве зданий и сооружений. Огнестойкость дома зависит от уровня стойкости к возгоранию его конструкций.
Для определения предела огнестойкости применяют расчеты или практические способы, которые позволяют по результатам испытаний получить данные показатели. После сравнения величин делают вывод о состоянии здания и присваивают ему классификацию. Когда оценивается противопожарная защищенность объекта, надо учитывать, что ее расчет основан на классификации по категории C (конструкции опор, пролеты лестниц). После этого определяют, соответствует ли здание строительным нормам по степени стойкости к горению.
Пожар — это неконтролируемый процесс горения и разрастания пламени, который сопровождается разрушением имущества и создает опасность для здоровья и жизни находящихся в этой зоне людей. Горение представляет собой химический процесс преобразования горючих веществ в продукты горения, он сопровождается выделением огня, токсичных газов, тепла, которое осуществляется вследствие реакции окисления кислорода.
Пожары делят по их интенсивности на такие типы:
- Отдельный, возникающий в одном сооружении. Перемещение людей и техники по площади между такими пожарами может осуществляться без средств защиты от огня.
- Сплошной, представляющий собой одновременное сильное горение нескольких сооружений на одном участке. Перемещение людей и техники по площади сплошного пожара не может происходить без средств защиты от пожара.
Определение предела огнестойкости
Пределом огнестойкости материала называют время, в течение которого он сохраняет свои характеристики при горении. Предел негорючести материалов зависит от слоя защитного покрытия, сечения профиля, уровня огнестойкости стройматериалов, возможности сохранять свои параметры при горении. Степень огнестойкости характеризуют такие факторы:
- стойкость к возгоранию;
- уровень огнестойкости;
- уровень распространения огня.
Существуют предельные нормы огнестойкости:
- Утрата технологических характеристик из-за обрушения или появления предельных деформаций — маркируется латинской буквой R.
- Утрата целостности вследствие возникновения повреждений или пробоин, через которые наружу попадают продукты горения и огонь. Обозначают буквой E.
- Потеря изолирующей функции в результате увеличения температуры на поверхности. Обозначают I.
Регламентируются такие предельные показатели для несущих конструкций по степени стойкости к огню:
- балок, стоек, арок, ферм утрата несущей способности — R;
- несущих стен и перекрытий — утрата несущей способности R и целостности E;
- наружных стен здания, которые не считаются несущими, — утрата целостности E;
- внутренних стен и перегородок — утрата целостности E и способности к теплоизоляции I;
- внутренних стен и оград — утрата несущей способности R, целостности E и изолирующей характеристики I.
Как определить степень огнестойкости?
Классификация зданий по степени огнестойкости находится в зависимости от:
- числа этажей в данном строении;
- площади его территории;
- производственных процессов или другой деятельности, которые проводятся на объекте;
- характеристик и степени воспламеняемости материалов, использованных при строительстве объекта.
Огнестойкость конструкции характеризует длительность промежутка времени, в течение которого эти конструкции проходили тестирование пламенем. Стойкость объектов к огню регламентируют СНиП, где имеется 5 степеней стойкости зданий к огню.
Все здания делят на 5 категорий:
- Взрывопожароопасные, в них осуществляют технические процессы, связанные с появлением огня, горючих газов, воспламеняющихся жидкостей с пределом вспышки до +28ºC.
- Сооружения, где проводят работы с использованием воспламеняющихся жидкостей с пределом вспышки больше +28ºC, которые могут создавать взрывоопасные вещества и при их горении возникает давление взрыва больше 5 кПа.
- Объекты, где происходят производственные процессы с применением горючих жидкостей и твердых материалов, которые при соединении с кислородом могут гореть. Это пожароопасная категория.
- Сооружения, где проводятся технологические действия с применением невоспламеняющихся материалов в раскаленном виде.
- Объекты, где происходят производственные процессы с применением твердых негорючих веществ.
Виды степеней огнестойкости
Чем больше этажность и площадь сооружения, тем выше должна быть требуемая степень огнестойкости здания. Жилые объекты возводят из кирпича, бетона, камня, их относят к 1 степени.
Жилые дома из кирпича и бетонных панелей относятся к 2 степени. Жилые дома с металлическим каркасом относят к 3 степени. Облицовку этих сооружений выполняют из негорючих материалов. К 4 степени относят объекты, имеющие деревянный каркас, т.е. она присваивается для деревянного дома. К 5 степени относят все остальные дома, которые подвержены появлению пожара. Учитывая эту классификацию зданий, выполняют проектирование и строительство зданий.
Бывает, что дом имеет низкую классификацию по уровню огнестойкости. Тогда его перегородки, полы, несущие конструкции обрабатывают негорючим покрытием, которое защищает их от пожара. Можно также выполнить обшивку дома негорючими материалами. С помощью этих комплексных мер повышают стойкость к пламени жилых домов. В жилых домах 1, 2 и 3 степени ставят перегородки, которые смогут сдерживать пожар не менее 45 минут, а в домах 4 степени — 15 минут.
Если сооружение построено из сэндвич-панелей, то между ними устанавливают утеплитель. Этот материал может выдержать морозы, поэтому их применяют при строительстве в регионах с холодным климатом. Материал используют для строительства быстро возводимых домов, он легок в монтаже.
Сэндвич-панели безопасны для здоровья людей, имеют отличную шумоизоляцию и высокие показатели стойкости к возгоранию. Предел огнестойкости этого вещества зависит от его толщины: чем толще материал, тем более продолжительное время он сможет выдержать воздействие огня. Из сэндвич-панелей нельзя строить дома 1 степени стойкости к пожару.
Рассмотрим стойкость кирпичного здания к пожару. Кирпичные дома имеют наиболее высокий показатель пожаробезопасности, поэтому их относят к 1 степени. Показатель зависит от стройматериала, из которого выполнено сооружение. Кирпич является негорючим материалом, он не тлеет, не деформируется от пожара, поэтому его часто выбирают для строительства жилых зданий. Такой материал обеспечит безопасность людей и имущества при возникновении возгорания.
Таким образом, любой строительный материал имеет свой показатель огнестойкости, поэтому при их выборе для строительства здания следует учитывать характеристики материалов и конструктивных элементов, из которых будет состоять строящийся объект.
Степени огнестойкости: таблица
Таблица показателей огнестойкости сооружений:
Степени огнестойкости зданий | Несущие стены, колонны | Наружные не несущие стены | Фермы, балки, прогоны | Марши, площадки лестниц |
1 | R 120 | Е 30 | R 30 | R 60 |
2 | 90 | 15 | 15 | 60 |
3 | 45 | 15 | 15 | 45 |
4 | 15 | 15 | 15 | 15 |
5 | не нормируется | не нормируется | не нормируется | не нормируется |
Эта таблица показывает зависимость показателя от пожарных характеристик стен, колонн, балок, прогонов лестничных площадок и других конструкций дома. Зная данный показатель, проектировщики выполняют проект, создают схемы, ведут расчеты, разрабатывают конструкцию жилого дома с учетом требований противопожарной безопасности.
Класс огнестойкости строительных материалов — Surviving Wildfire
Статья Автор:
Стивен Л. Куорлз, старший научный сотрудник Страхового института безопасности бизнеса и дома, Ричбург, Южная Каролина
Введение
Если вы живете на границе дикой местности с городом (WUI), вы, вероятно, слышали или читали о терминах, которые описывают материалы, рекомендуемые для использования в вашем доме, чтобы повысить его шансы выжить в условиях лесного пожара. Эти материалы описываются с использованием таких терминов, как негорючие, негорючие, стойкие к возгоранию, класс А и огнестойкость — термины, которые описывают относительную горючесть материалов.Иногда эти термины относятся к материалу (например, когда вы заменяете сайдинг, выберите огнестойкий материал ), а иногда они относятся к типу конструкции (например, ваш дом должен включать огнестойкую конструкцию , или вы следует использовать огнестойкую строительную технику ). Вы относите негорючие, негорючие, огнестойкие и огнестойкие к одной и той же категории «хороших» или одно лучше другого? Следует ли отнести все горючие материалы к «плохой» категории или есть способ оценить различия в ожидаемых характеристиках двух горючих материалов? Цель этой статьи — описать, как строительные нормы и стандарты и соответствующие стандарты определяют и используют эти термины, а также предоставить способы оценки различий между горючими материалами.
Определения
Строительные нормы и стандарты испытаний предоставили определения некоторых терминов, обычно используемых для описания того, как данный материал или сборка будут работать при пожаре. Были определены следующие термины:
- Горючие газы
- Негорючие
- Огнестойкость или огнестойкость
- Устойчивый к возгоранию
Горючие и негорючие относятся к характеристикам материала (например, дерева, штукатурки, стали). Огнестойкий может относиться к материалу или сборке (например,g., все компоненты в стене — сайдинг, изоляция и обшивка). Пример сборки крыши приведен на рисунке 1. Устойчивость к воспламенению может относиться к материалу или конструкции (например, при обсуждении конструкции, устойчивой к возгоранию). Определения этих терминов были разработаны рядом групп и представлены в Приложении A.
Рис. 1. Это алюминиевое кровельное покрытие имеет класс огнестойкости «при сборке». В этом случае сборка крыши состоит из алюминиевого кровельного покрытия, перекрывающих друг друга слоев кровельного материала верхнего слоя (для повышения огнестойкости) и конструкционной обшивки, прикрепленных к деревянному каркасу.
Как используются термины
Горючие
Горючие материалы — это материалы, которые легко воспламеняются и горят. Многие распространенные строительные материалы являются горючими, включая древесину и древесно-пластиковый композит и пластмассовые изделия (обычно используемые для настилов и сайдинга). Был разработан ряд тестов, оценивающих огнестойкость горючих материалов. Что касается лесных пожаров, два свойства полезны для характеристики относительной горючести различных материалов — индекс распространения пламени и скорость выделения тепла.
Степень распространения пламени материала определяется путем воздействия на материал, помещенный в горизонтальный туннель, газовое пламя (рис. 2). Горючий материал будет классифицирован как класс A, класс B или класс C на основе его характеристик в этом испытании. Материал, оцененный как класс A, будет иметь меньшее распространение пламени и, следовательно, лучшие характеристики, чем материал класса C. Результаты испытания на распространение пламени выражаются в числовой форме. Если числовое значение меньше 25, то присваивается индекс распространения пламени класса А.Числовые значения для класса B находятся в диапазоне от 25 до 75. Значения выше 75 попадают в категорию класса C. Большинство коммерческих пород древесины имеют индекс распространения пламени от 90 до 160 (Лаборатория лесных товаров, 1999).
Другой метод, используемый для сравнения горючести материалов, — это оценка скорости тепловыделения. Это может быть сделано путем измерения потери массы (веса) горящего материала или путем измерения общей и / или скорости высвобождения энергии во время горения материала. Показатели тепловыделения были опубликованы для обычных строительных материалов и являются одним из критериев, которым должны соответствовать некоторые материалы, чтобы соответствовать Главе 7A Строительного кодекса Калифорнии (CBC).В главе 7A изложены требования к новому строительству в определенных районах Калифорнии, подверженных лесным пожарам. Скорость тепловыделения материала определяется путем сбора газов сгорания (кислорода, диоксида углерода и монооксида углерода) в калориметре истощения кислорода. Теплота сгорания на единицу массы потребляемого кислорода почти постоянна для широкого диапазона материалов (Quintiere 1998), и поэтому скорость тепловыделения материала (HHR) прямо пропорциональна скорости, с которой кислород потребляется во время сгорания.Чтобы измерить HRR узлов и секций более крупных компонентов, их сжигают под большим кожухом, подключенным к системе сбора воздуха (рис. 3). Скорость тепловыделения небольших образцов можно измерить в калориметре меньшего размера, который называется коническим калориметром. Меньшие значения скорости тепловыделения отражают меньшую горючесть, чем большие значения. Глава 7A CBC определяет максимальное чистое пиковое тепловыделение (не более) 25 кВт / фут2 [269 кВт / м2] для досок настила. Для сравнения, HHR для большого куста можжевельника может достигать 1000 кВт.Продукты для настила, которые соответствуют требованиям CBC, можно найти в онлайн-документе, опубликованном Калифорнийским управлением государственного пожарного маршала (OSFM 2010).
Рис. 2. Горизонтальный туннель, или туннель «Штайнера», используемый для оценки степени распространения пламени материала. Материал прикрепляется к верхней поверхности туннеля и рассчитывается на расстояние, на которое пламя распространяется по длине туннеля на открытой поверхности материала. Продолжительность этого теста — 10 минут. Фотография любезно предоставлена г-ном Биллом Хендриксом, Safer Building Solutions and Southwest Research Institute, Сан-Антонио, Техас.
Рейтинг распространения пламени и скорость тепловыделения материалов использовались для характеристики горючих материалов. Эта информация становится доступной для материалов, обычно используемых снаружи зданий, и используется для сравнения характеристик горючих строительных материалов. Диапазон числовых значений распространения пламени класса C велик.Вы не узнаете, приближается ли числовое значение продукта класса C, который вы, возможно, рассматриваете, к верхнему пределу класса B, равному 75, или намного выше. Информация о чистом пиковом уровне тепловыделения для настилов, соответствующих требованиям CBC, может быть использована, если продукт продается в Калифорнии и не классифицируется как негорючий. Однако, если у вас нет доступа к результатам отчета об испытаниях, вы будете знать только то, что скорость тепловыделения была менее 25 кВт / фут2 [269 кВт / м2].
Рисунок 3.Капюшон и окружающая юбка над стеной. Воздуховод (не виден) над вытяжкой собирает дым и дымовые газы во время горения. На этой фотографии также изображена излучающая панель перед деревянной панелью. Фотография любезно предоставлена Западным пожарным центром, Келсо, Вашингтон.
Негорючие
Негорючий материал — это материал, который не может гореть в определенных условиях (ASTM E 176). Невоспламеняемость может быть оценена с помощью стандартного метода испытаний, ASTM E-136, Стандартный метод испытаний на поведение материалов в вертикальной трубчатой печи при температуре 750 ° C.В испытании, описанном в ASTM E-136, используется печь, аналогичная показанной на рисунке 4. Испытание начинается с четырех образцов данного материала. Чтобы считаться негорючими, три из четырех повторных образцов для испытаний должны соответствовать одному из следующих двух наборов критериев:
- Если потеря веса образца во время испытания составляет 50% или меньше, тогда
- а. Зарегистрированная температура материала не более чем на 30 ° C (54 ° F) выше температуры, измеренной в испытательном устройстве.
- г. После первых 30 секунд испытания образец не пламени.
Рис. 4. Схема печи, используемая для оценки того, можно ли считать материал «негорючим». Рисунок основан на рисунке 1, стандарт ASTM E 136.
- Если потеря веса образца во время испытания превышает 50%, то
- а. Зарегистрированная температура материала не превышает температуру, измеренную в конкретном месте испытательного устройства.
- г. Во время испытания образец не пылает.
Критерий № 2 предназначен для материалов, которые содержат большие количества комбинированной воды или других газообразных компонентов, условие, которое не применимо к существующим строительным материалам для наружного использования.
Критерий № 1 является наиболее полезным для характеристики строительных материалов. Обратите внимание, что материал, соответствующий этим критериям, может считаться негорючим, даже если может произойти некоторое ограниченное возгорание.Условия, указанные в критерии № 1, были основаны на исследованиях, проведенных Сечкиным (1952).
Устойчивый к возгоранию
В большинстве регионов Северной Америки термин «устойчивость к возгоранию» не определяется, поэтому для разных людей он может означать разные вещи. Международный кодекс границ между дикой природой и городом, принятый Советом Международного кодекса, и Строительный кодекс Калифорнии определяют стойкие к возгоранию материалы как те, которые соответствуют минимальному уровню распространения пламени после того, как они подвергаются определенному циклу выветривания-сушки.Горизонтальный туннель распространения пламени, использованный для испытания на огнестойкость, показан на рисунке 2. Продолжительность испытания на «устойчивость к возгоранию» составляет 30 минут по сравнению с 10-минутной продолжительностью, использованной для оценки распространения пламени. В Калифорнии материал с надписью «устойчивый к возгоранию» прошел 30-минутное испытание. Примером стойкого к возгоранию материала является древесина, пропитанная под давлением огнезащитным составом, предназначенным для использования на внешней стороне здания.
Древесина и изделия из древесины, которые квалифицируются как огнестойкие материалы, были обработаны антипиреном, вероятно, с использованием цикла вакуума-давления.Ускоренный цикл выветривания используется для удаления легко выщелачиваемых огнезащитных химикатов из продукта перед испытанием на огнестойкость.
Огнестойкий
Рейтинги огнестойкости и испытания служат руководством по вопросам пожарной безопасности. Они предназначены для оценки способности материала или сборки сдерживать пожар в отсеке или здании или продолжать выполнять структурную функцию в случае (внутреннего) пожара (Beitel 1995). Например, рейтинги огнестойкости помогут определить, дает ли данная конструкция здания достаточно времени для выхода людей из горящего здания, прежде чем оно рухнет (Kruppa 1997).
Обычное испытание на огнестойкость для оценки огнестойкости стен использует большую вертикальную печь (рис. 5), чтобы подвергнуть стену воздействию лучистого тепла от газовых горелок. Продолжительность теста составляет от 20 минут до нескольких часов, в зависимости от желаемого рейтинга и тестируемого продукта или сборки. Температура внутри печи достигает около 1700 ° F (~ 925 ° C) в течение первого часа.
Рис. 5. Эта вертикальная печь используется для оценки огнестойкости стеновых конструкций, дверей и окон.Испытываемый узел крепится к внешнему периметру печи. Большие темные круги на задней стенке печи — это газовые горелки. Аналогичная горизонтальная печь используется для оценки огнестойкости сборных перекрытий. Фотография любезно предоставлена Западным пожарным центром, Келсо, Вашингтон.
Гипсокартон часто используется для повышения огнестойкости стены. Как видно на Рисунке 6, на общей стене, примыкающей к этим двум зданиям, были использованы гипсовые плиты.Включение гипсокартона в стеновую систему — еще один пример сборки. Использование гипсокартона при строительстве сборок наружных стен — это один из способов, которым некоторые горючие материалы для сайдинга могут соответствовать требованиям для использования в зонах, подверженных лесным пожарам.
Рис. 6. Проект таунхауса, в котором общая стена между блоками достигает рейтинга огнестойкости «один час» за счет использования гипсокартона. Фотография любезно предоставлена компанией Richard Avelar and Associates, Окленд, Калифорния.
Испытания, используемые для определения огнестойкости крыш, также предоставляют информацию о огнестойкости. В этом случае класс A (наивысшая степень огнестойкости), B или C дает относительную информацию о способности кровельного покрытия и сборки противостоять проникновению огня в результате стандартного воздействия огня (ASTM E 108 ). Схема испытательного оборудования, используемого для оценки проникновения пламени, показана на рисунке 7. Относительные размеры стандартных марок показаны на рисунке 8.Марки классов A и B больше обычных размеров углей (головней), поднимаемых во время лесных пожаров, но они обеспечивают постоянный и, возможно, консервативный источник огня, с помощью которого можно оценить сопротивление кровельного покрытия проникновению огня в область под ним. . Стандартное испытание крыши также оценивает распространение пламени по материалу и склонность покрытия (например, черепицы) к образованию тлеющих углей.
Рис. 7. Испытательное оборудование, используемое для определения огнестойкости кровельных покрытий.
Рис. 8. Сверху справа, против часовой стрелки: марки класса A (12 дюймов x 12 дюймов), класса B (6 дюймов x 6 дюймов) и класса C, используемые в стандартных испытаниях крыши.
Сводка
Различия в огнестойкости различных материалов можно оценить, сравнив рейтинги распространения пламени (класс A — это наибольшее сопротивление, за которым следуют B и C) и скорость тепловыделения.
Негорючие материалы либо определены как таковые в строительных нормах, либо соответствуют требованиям стандартных испытаний.
Устойчивые к воспламенению материалы прошли 30-минутное испытание на распространение пламени после того, как подверглись ускоренному циклу атмосферных воздействий, который состоит из 12 недель попеременного смачивания и высыхания. Материалы, устойчивые к возгоранию, горючие.
Огнестойкость обычно связана со сборной конструкцией и, следовательно, учитывает характеристики ряда материалов, которые могут быть включены в стену, пол или крышу. Внешний материал (то есть тот, который подвергается воздействию огня) может быть горючим, стойким к возгоранию или негорючим, поскольку весь узел влияет на рейтинг.Хотя огнестойкость выражена в единицах времени (например, 20 минут, один час, два часа), они представляют только относительные характеристики (т.е. двухчасовая стена лучше, чем часовая стена, но они могут или не могут противостоять данному воздействию огня в те периоды времени). Номинальная «часовая» стена использовалась как один из путей для стены с горючей обшивкой, которая будет использоваться в зоне, подверженной лесным пожарам. В то время как информация о огнестойкости может использоваться для оценки способности противостоять проникновению пламени в здание, она не обязательно дает информацию о распространении пламени.Это особенно верно, поскольку этот тип конструкции используется только тогда, когда в качестве внешнего материала используется горючий сайдинг.
С учетом использования этих терминов вы можете ранжировать ожидаемые характеристики строительных материалов следующим образом:
- Негорючие — Наилучшие характеристики как для распространения пламени, так и для проникновения.
- Огнестойкость — Огнестойкая конструкция — Положитесь на рейтинг сборки для устойчивости к проникновению огня, а также на внешний материал (т.е. тот, который будет подвергаться воздействию огня) для получения информации о распространении пламени.
- Устойчивость к возгоранию — Предоставляет информацию о распространении пламени. Можно ожидать, что материалы с этой классификацией будут работать лучше, чем горючие материалы, но не так хорошо, как негорючие.
- Горючие материалы — материалы с этой классификацией не будут работать так хорошо, как другие, обсуждаемые в этой статье, при сопоставимом воздействии огня.
Цитируемая литература
Американское общество испытаний и материалов.2007. Стандартные методы испытаний кровельных покрытий на огнестойкость. Обозначение ASTM E-108, Vol. 4-07. Западный Коншохокен, Пенсильвания. pp 576-588.
Американское общество испытаний и материалов. 2007. Стандартная терминология пожарных норм. Обозначение ASTM E-176, Vol. 4-07. Западный Коншохокен, Пенсильвания. pp 631-650.
Американское общество испытаний и материалов. 2007. Стандартная практика ускоренного атмосферного воздействия на огнестойкую древесину для испытаний на огнестойкость, ASTM Обозначение D-2898, Vol. 4-10. Западный Коншохокен, Пенсильвания.pp 392-394.
Американское общество испытаний и материалов. 2007. Стандартный метод испытаний поведения материалов в вертикальной трубчатой печи при 750 ° C, ASTM Designation E-136, Vol. 4-07. Западный Коншохокен, Пенсильвания. С. 611-620.
Американское общество испытаний и материалов. 2007. Стандартный метод испытаний характеристик горения поверхности строительных материалов, ASTM Designation E-84, Vol. 4-07. Западный Коншохокен, Пенсильвания. pp 555-575.
Beitel, J.J. 1995. Текущие споры об испытаниях на огнестойкость.В кн .: Стандарты пожарной безопасности на международном рынке / Под ред. A.F. Grand, ASTM STP 1163, Филадельфия, Пенсильвания. С. 89-99.
Строительный кодекс Калифорнии. 2007. Свод правил Калифорнии, раздел 24, часть 2, том 1 из 2. На основании Международного строительного кодекса 2006 года
.Калифорния Управление государственного пожарного маршала. 2010. Справочник по продукту WUI. http://osfm.fire.ca.gov/strucfireengineer/pdf/bml/wuiproducts.pdf
Лаборатория лесных товаров, 1999. Справочник по древесине: древесина как технический материал.ГТР-113. Лаборатория лесных товаров лесной службы Министерства сельского хозяйства США, Мэдисон, Висконсин. 463 с.
Круппа, Дж. 1997. Кодекс огнестойкости, основанный на характеристиках: первая попытка Еврокодов. В: Труды Международной конференции 1996 г. по кодам, основанным на характеристиках, и методам проектирования пожарной безопасности, Под ред. Д. Питер Лунд. Общество инженеров противопожарной защиты, Бостон, Массачусетс, стр. 217-228.
Qunitiere, J.G. 1998. Принципы поведения при пожаре. Издательство Delmar, Олбани, Нью-Йорк. 258 стр.
Сечкин, Н.П. 1952 г.Испытания на горючесть 47 образцов материалов ASTM, Проект 1002-43-1029 Национального бюро стандартов (NBS), отчет 1454, 6 февраля 1052 г., Вашингтон, округ Колумбия
Приложение A
Международный кодовый совет
В Кодексе городской среды диких земель, опубликованном Международным советом кодов (2009 г.), используются следующие определения:
Конструкция с рейтингом огнестойкости — Использование материалов и систем при проектировании и строительстве здания или сооружения для защиты от распространения огня внутри здания или сооружения и распространения огня на здания или сооружения или от них в дикие земли. -городная стыковочная зона.
Индекс распространения пламени — сравнительная мера, выраженная в виде безразмерного числа, полученная на основе визуальных измерений распространения пламени в зависимости от времени для материала, испытанного в соответствии с ASTM E-84.
Устойчивый к возгоранию строительный материал — Тип строительного материала, который устойчив к возгоранию или устойчивому горению пламенем в достаточной степени, чтобы уменьшить потери от пожаров на границе с дикими землями и городами в наихудших погодных и топливных условиях с воздействием лесных пожаров с горящими углями и небольшим пламенем, как предписано в Разделе 503 [Примечание автора: Раздел 503 описывает расширенное (30-минутное) испытание на распространение пламени по стандарту E-84 Американского общества испытаний и материалов (ASTM), которое проводится после подвергания испытываемого материала ускоренной процедуре воздействия погодных условий, определенной в Стандарт ASTM D-2898.Процедура выветривания включает смачивание, сушку и воздействие ультрафиолета.]
Устойчивая к возгоранию конструкция — Кодекс предусматривает ряд требований для различных компонентов здания в зависимости от ожидаемой пожарной опасности — Класс 1 (экстремальный), 2 (высокий) или 3 (умеренный).
Негорючие — применительно к строительному строительному материалу означает материал, который в том виде, в котором он используется, является одним из следующих:
- Материалы, ни одна из частей которых не воспламеняется и не горит под воздействием огня.Любой материал, соответствующий стандарту ASTM E 136, считается негорючим в смысле этого раздела.
- Материалы, имеющие структурную основу из негорючего материала, как определено в пункте 1 выше, с поверхностным материалом толщиной не более дюйма (3,2 мм), который имеет индекс распространения пламени 50 или меньше. Используемый здесь индекс распространения пламени относится к индексу распространения пламени, полученному в соответствии с испытаниями, проведенными в соответствии со стандартом ASTM E 84 или стандартом Underwriters Laboratory (UL) 723.
Кровельное негорючее покрытие. Одно из следующих:
- Цементная черепица или листы.
- Открытая кровля из бетонной плиты.
- Гонт или листы из железа или меди.
- Сланцевая черепица.
- Глиняная или бетонная черепица.
- Одобренное кровельное покрытие из негорючего материала.
Национальная ассоциация противопожарной защиты
Стандарт 1144 Национальной ассоциации противопожарной защиты (NFPA) «Стандарт по снижению опасностей возгорания конструкций от лесных пожаров» (2008 г.) дает аналогичные определения для этих терминов, в том числе:
Fire Resistive — Конструкция, обеспечивающая разумную защиту от огня.
Устойчивый к возгоранию материал — любой продукт, предназначенный для внешнего воздействия, который при испытании в соответствии с применимыми стандартами имеет распространение пламени не более 25, не показывает признаков прогрессирующего горения и фронт пламени которого не распространяется более чем на 10 ½ футов. (3,2 м) за осевой линией горелки в любой момент во время испытания.
Негорючий — Любой материал, который в том виде, в котором он используется, и при ожидаемых условиях, не воспламеняется и не горит, а также не добавляет заметного тепла к окружающему пожару.
Строительный кодекс Калифорнии
В главе 7A Строительного кодекса Калифорнии даны некоторые определения этих терминов.
Из 704A.2 Материал, устойчивый к возгоранию. Устойчивый к воспламенению материал должен быть определен в соответствии с процедурами испытаний, изложенными в SFM 12-7A-5 «Устойчивый к воспламенению материал» или в соответствии с этим разделом.
Примечание автора: Стандарт 12-7A-5 Управления пожарной охраны штата Калифорния ссылается на стандартные методы испытаний ASTM E-84 и ASTM D-2898.Этот раздел строительных норм совпадает с определением, используемым Советом по международным кодексам.
Негорючие [раздел 202 Строительного кодекса Калифорнии] — материал, который в той форме, в которой он используется, является одним из следующих:
- Материал, никакая часть которого не воспламеняется и не горит под воздействием огня. Любой материал, соответствующий ASTM E 136, считается негорючим.
- Материал, имеющий структурную основу из негорючего материала, как определено в # 1, с поверхностным материалом не более 1/8 дюйма (3.2 мм) толщиной 50 и менее.
704A.3 Альтернативные методы определения огнестойкого материала. Любой из следующих вариантов считается отвечающим определению огнестойкого материала:
- Негорючие материалы. Материал, соответствующий определению негорючих материалов в разделе 202 .
- Древесина, обработанная антипиреном. Древесина с антипиреновой обработкой, предназначенная для наружного применения, соответствующая требованиям раздела 2303.2.
- Деревянная черепица, обработанная огнезащитными составами. Огнестойкая деревянная черепица и тряпка, как определено в разделе 1505.6 и внесенные в список государственного пожарного маршала для использования в качестве кровельного покрытия «Класса B», должны быть приняты в качестве огнестойкого материала для покрытия стен при установке на твердую обшивку.
Примечание автора. В этом разделе указано, что негорючие материалы, огнестойкие обработанные древесные материалы для наружных работ и деревянные черепицы, обработанные антипиренами для наружного применения, могут использоваться везде, где требуются «огнестойкие материалы».
Центр CE — Проектирование противопожарной защиты
Несущая рама
Хотя горючесть строительных материалов важна для определения уровней безопасности, ожидаемая реакция здания в случае пожара имеет жизненно важное значение для определения эквивалентного риска, который является фундаментальным для IBC. Код классифицирует конструкции по типу конструкции, чтобы учесть ожидаемую реакцию строительных элементов на пожар.IBC определяет пять основных типов конструкций: типы I, II, III, IV и V. Для каждого из них указываются разрешенные материалы и минимальные показатели огнестойкости, связанные с различными элементами конструкции.
▶ Строительство типов I и II должно иметь только негорючие строительные элементы, за исключением случаев, разрешенных в Разделе 603.
▶ Конструкция типа III должна иметь наружные стены из негорючей или огнестойкой древесины (FRTW), в то время как для внутренних элементов могут использоваться горючие или негорючие материалы.
▶ Тип IV, часто называемый конструкцией из тяжелой древесины (HT), имеет внешние стены из негорючих материалов, поперечно-клееной древесины (CLT) или FRTW, а внутренние строительные элементы из массивной или клееной древесины без скрытых пространств.
▶ Конструкция типа V позволяет использовать как негорючие, так и горючие материалы в конструктивных элементах, а также в элементах интерьера и наружных стенах.
В IBC 2018 года конструкции типов I, II, III и V подразделяются на две категории (IA и IB, IIA и IIB, IIIA и IIIB, а также VA и VB) с разницей в степени огнестойкости, необходимой для различные строительные элементы и агрегаты.Например, в конструкции типа VA все внутренние и внешние несущие стены, полы, крыши и конструктивные элементы должны иметь минимальную огнестойкость в течение 1 часа. Для конструкции типа VB класс огнестойкости не требуется.
Установление огнестойкости
Таблица 601 IBC показывает требуемую огнестойкость строительных элементов (каркас, стены, перекрытия и крыши) для каждого типа конструкции. Рейтинги даны в часах.Исключением является тип IV, где предполагается, что деревянные конструктивные элементы обладают присущей им огнестойкостью из-за их требуемых минимальных размеров (класс огнестойкости не требуется, за исключением наружных стен). Требуемая огнестойкость основана на ожидаемой интенсивности пожара, который возникает в здании в результате его пожарной нагрузки, и уровне риска, связанном с размером здания и его занятостью.
Огнестойкость описывает скорость разложения строительного материала или сборки из-за пожара.Сопротивление основано на том, насколько быстро на прочность элемента или сборки влияет огонь, и может ли элемент или сборка сохранять свою расчетную прочность, предотвращая прохождение тепла или пламени. Огнестойкость деревянных элементов и сборок может быть установлена путем испытаний в соответствии с Разделом 703.2 или любым из шести способов, перечисленных в Разделе 703.3 IBC, которые основаны на критериях воздействия огня и приемлемости, указанных в ASTM E119, Стандартные методы испытаний на огонь. Испытания строительных строительных материалов или Стандарты UL 263, для огнестойких испытаний строительных конструкций и материалов. Наиболее распространенные методы — проверенные сборки и расчетная огнестойкость — обсуждаются на следующих страницах.
Архитектор: Лорд Эк Сарджент. Фото: Ричард Лубрант.
В Crescent Terminus в Атланте лестницы спроектированы с двойными каркасными стенами, обеспечивающими 2-часовое разделение огня. Команда определила конструкцию из бетонных блоков в шахтах лифта и использовала стену из деревянного каркаса, чтобы отделить шахту лифта от остальной конструкции.Они также заполнили пространство между этажами выдувной изоляцией вместо использования спринклеров, что позволило избежать технических проблем, связанных с размещением спринклеров в труднодоступных местах.
Предоставлено: American Wood Council
NFPA 72 — NFPA Journal Сентябрь / октябрь 2020 г.
Соответствует | NFPA 72
Упростите требования кода для обеспечения живучести
УЭЙН Д. МУР
В рамках своих усилий по упрощению понимания и применения требований к живучести в NFPA 72, Национальном кодексе пожарной сигнализации и сигнализации, технический комитет Главы 24 предлагает важные изменения в редакцию кодекса 2022 года.
Многие проектировщики и подрядчики не включают прочные кабели или огнестойкие кожухи в свои проекты для проводки внутренних систем пожарной сигнализации / речевого оповещения (EVACS), как требуется в кодексе — или, по крайней мере, до тех пор, пока орган, обладающий юрисдикцией, не примет меры. требование, потому что дизайнер пропустил его в первый раз. Частично это может быть связано с некоторой путаницей в отношении того, где в первую очередь требуется живучесть. Живучесть траектории требуется не для всех систем EVACS; это требуется только в том случае, если люди будут оставаться в здании во время чрезвычайной ситуации (т.е., переселение или частичная эвакуация). Намерение состоит в том, чтобы гарантировать, что мы все еще сможем получать последующие инструкции этим жильцам, если ситуация ухудшится. Для тех систем, где требуется выживаемость путей, это не обязательно должно применяться во всей системе; его следует применять только в том случае, если канал проходит через несколько зон уведомления, чтобы пожар в одной зоне уведомления не повлиял на возможность связи с жителями в другой. Кроме того, текущая редакция NFPA 72 позволяет установщику использовать Уровень 1, Уровень 2 или Уровень 3, что означает, что засыпанное здание (т.е., уровень живучести тракта 1) не требует использования огнестойких кабелей или кожуха. Неудивительно, что подрядчик или установщик может не включить огнестойкий кабель в первоначальный проект.
Причиной требований к живучести является поддержание эксплуатационной надежности системы EVACS во время пожара. Живучесть путей для систем связи в чрезвычайных ситуациях (включая EVACS) рассматривается в 24.3.14; Раздел 12.4.5 включает определение выживаемости пути уровня 4.
Предыдущие требования к живучести говорили только о том, что кабель должен быть рассчитан на два часа или быть установлен в корпусе, рассчитанном на два часа. Технический комитет изменил требование, и теперь оно связано с рейтингом огнестойкости конструкции здания. Это соотношение важно, потому что список двухчасового огнестойкого кабеля должен быть прикреплен к бетонной стене или полу, сконструирован с минимальным двухчасовым рейтингом или иным образом определен сборкой систем UL FHIT.
Кроме того, как указано в Приложении А к кодексу, «установка дорожки живучести Уровня 2 или Уровня 3 в здании, построенном менее чем за два часа, не будет устанавливаться в списке продукта».
Для строительства зданий с рейтингом огнестойкости один час, но менее двух часов технический комитет предложил новый уровень живучести пути 4.
При более распространенном использовании деревянных конструкций для больших зданий ожидается, что эти здания будут классифицированы как одночасовые пожарные.Двухчасовой кабель, как он сейчас указан, не будет разрешен при использовании предлагаемой проводки уровня 4 или с проводкой, которая соответствует предлагаемым требованиям разделения. Этот запрет связан с опасением, что пожар, вызывающий обрыв, замыкание на землю или короткое замыкание в цепях связи и управления между комнатами или ограждениями, может повлиять на работу оборудования для оповещения о пожаре / аварийного оповещения внутри здания. эти комнаты или вольеры.
Хорошо известно, что изоляция кабелей пожарной сигнализации может расплавиться под воздействием тепла и пламени, что приведет к короткому замыканию проводов.Когда возникает это условие, возможен отказ всей цепи сигнальной линии, серьезно влияющий на цепи связи и управления. Чтобы защитить себя от таких катастрофических отказов, предложенный код потребует использования изоляторов цепи неисправности, чтобы гарантировать, что вся цепь не будет отключена во время пожара.
Эти предлагаемые изменения в кодексе 2022 года будут содержать руководство в Приложении A, чтобы помочь проектировщикам, подрядчикам и AHJ в правильном разделении цепей, а также в расположении изоляторов цепей неисправности, чтобы обеспечить соответствие нормам и высокую степень защиты. эксплуатационная надежность.Важно помнить, что для систем пожарной сигнализации, предназначенных для перемещения и частичной эвакуации, во время пожара связь должна оставаться работоспособной на всех этажах, кроме противопожарного. Основная цель противопожарной защиты — надежная связь во время пожара.
Уэйн Д. Мур — вице-президент Jensen Hughes. Члены NFPA и AHJ могут использовать вкладку «Технические вопросы», чтобы отправлять запросы о NFPA 72 на nfpa.org/72.
Огнестойкие стены
Огонь был другом и врагом человечества.Ограниченный и управляемый, он обогревает жилища, приводит в действие машины и делает возможным производство новых материалов. Когда он покидает контролируемые пределы, огонь уничтожает жизни, имущество и предприятия. Примеры разрушительного потенциала неконтролируемых пожаров варьируются от исторических пожаров, которые фактически уничтожили большие города, такие как Рим, Лондон и Чикаго, до недавних пожаров на границе между городскими и дикими территориями в Южной Калифорнии (Ссылка: «Пожары на стыке городских и диких земель — аргументы в пользу Негорючие конструкции », Masonry Today , Vol.6, No. 1, лето 1996 г.). Подобные события побудили людей изучить причины, оценить средства минимизации повторения и принять меры по противопожарной защите. Элементы противопожарной защиты, которые могут минимизировать человеческие и имущественные потери, включают использование негорючих строительных материалов, использование огнестойких строительных конструкций, установку устройств автоматического обнаружения и спринклеров, а также разработку улучшенных методов пожаротушения. Положения современных строительных норм и правил по противопожарной защите представляют собой довольно сложную смесь этих требований активной и пассивной противопожарной защиты, при этом для обеспечения безопасности жизни все чаще используются автоматические детекторы и спринклеры.Однако нельзя упускать из виду или преуменьшать роль негорючих строительных материалов и огнестойких сборок в обеспечении противопожарной защиты.
Огнестойкость — это способность материала или конструкции противостоять огню или обеспечивать защиту от него. От стен может потребоваться обеспечение барьера для распространения огня или выполнение структурных функций при воздействии огня, или и то, и другое. Коды моделей ссылаются на способность материала или сборки сохранять свои особые огнестойкие свойства как на рейтинг огнестойкости, выраженный в часах.Классы огнестойкости традиционно определялись стандартными испытаниями на огнестойкость, проводимыми в соответствии с ASTM E119, Стандартные методы огнестойких испытаний строительных конструкций и материалов. Однако из-за большого количества данных, которые были собраны в течение многих лет испытаний ASTM E119, сегодня кодексы признают аналитические методы для определения рейтингов огнестойкости (см. «Новый стандарт для расчета огнестойкости» в этом выпуске Masonry Today ).
Важно помнить, что термин «рейтинг огнестойкости» — это юридический термин, используемый модельными кодексами для регулирования строительства.Хотя рейтинги основаны на одном и том же воздействии на огнестойкость, сборки, имеющие одинаковый рейтинг, но изготовленные из разных материалов, часто работают совершенно по-разному. Например, требование огнестойкости в течение одного часа может быть достигнуто за счет использования деревянных стоек, облицованных гипсокартоном с обеих сторон, или бетонной кладкой толщиной четыре дюйма. Однако разница в целостности системы между ними очень очевидна. Конструкция с деревянным каркасом подливает масла в огонь, а система кладки из негорючего бетона — нет.Из-за этого каменная кладка будет по-прежнему демонстрировать более высокую структурную огнестойкость, чем ее деревянная копия. Фактически, структурная огнестойкость каменной стены обычно превышает ее огнестойкость барьера. Следовательно, кирпичная стена обычно продолжает нести нагрузку даже после достижения установленного срока огнестойкости.
Несоответствие рабочих характеристик, допустимое для этих сборок, в значительной степени связано с условиями испытаний, установленными в ASTM E119.Конечная точка определения огнестойкости стенового блока определяется временем, необходимым для достижения первого из следующих показателей:
- Возгорание хлопковых отходов из-за прохождения пламени через трещины или трещины.
- Повышение температуры на 325 градусов по Фаренгейту (одна точка) или 250 градусов по Фаренгейту (в среднем) на неэкспонированной поверхности сборки.
- Неспособность выдержать приложенную расчетную нагрузку, то есть обрушение конструкции.
Как отмечалось выше, конструктивные огнестойкие характеристики каменных стен обычно превышают конечные значения теплопередачи.Это часто не относится к конструкции деревянного или стального каркаса.
Для стен образцы необходимо дополнительно подвергнуть испытанию струей из шланга, которое долгое время оставалось источником разногласий. Целью испытания струей из шланга является определение прочности или живучести сборки после воздействия огня. В попытке смоделировать суровые условия эксплуатации, которые часто возникают при пожаре (например, удар из-за падающих обломков), стандарт определяет процедуру испытания для воздействия на стеновую конструкцию удара, эрозии и охлаждающего воздействия шланга. потоковый тест.Однако имеется несоответствие в том, что процедура позволяет провести испытание струей шланга либо на испытуемом образце после завершения части испытания на огнестойкость, либо на дублированном испытательном образце, подвергнутом сокращенному периоду воздействия огня. Продолжительность воздействия огня на дубликат образца составляет половину желаемого периода огнестойкости сборки, но не более одного часа.
Бетонные и каменные конструкции с классом огнестойкости обычно подвергаются испытанию струей из шланга после воздействия огня в течение всего периода огнестойкости.Другие сборки обычно подвергаются процедуре дублирования образца. Признавая важность того, чтобы противопожарные стены могли противостоять суровым условиям эксплуатации во время пожара, строительные нормы в Нью-Йорке и Северной Каролине теперь требуют, чтобы рейтинги соответствующих стен основывались на испытаниях, в которых часть испытания с потоком шланга применяется при окончание периода полной огнестойкости.
Следует отметить, что коды моделей в первую очередь сосредоточены на минимальных положениях, обеспечивающих безопасность жизни, а второстепенное внимание уделяется ограничению материальных потерь.Тем не менее, владельцы и разработчики должны быть осведомлены о преимуществах, предлагаемых негорючими каменными и бетонными конструкционными системами по сравнению с другими системами, имеющими эквивалентные показатели огнестойкости. Нельзя упускать из виду дополнительную защиту, обеспечиваемую как жизни, так и собственности.
Пожарный-ветеран встает на защиту (2007)
Структурная целостность во время пожара более надежна при использовании негорючих конструкций. Один ветеран пожарной части оценил легкость строительных материалов.Винсент Данн, 42-летний ветеран пожарных Нью-Йорка, пишет, что обрушение горящих зданий является основной причиной смерти пожарных, а широкое использование легких строительных материалов усиливает эту опасность. Его колонка «Почему рушатся горящие здания?» появляется в мартовском выпуске журнала Firehouse Magazine за 2007 год.
Понимание рейтингов огнестойкости кровли | Buildings
В недавней рубрике по кровельным материалам мы сосредоточили внимание на технической информации, которую можно найти на обертках кровельного материала, которые могут подтвердить соответствие различным строительным нормам. В этом месяце давайте подробнее рассмотрим один конкретный тип — рейтинг пожарной безопасности.
Класс A не означает класс A
Кровельные системы оцениваются по результатам реальных испытаний на огнестойкость. Однако мы должны подчеркнуть, что отдельные элементы кровли вообще не оцениваются! Наши кровельные системы имеют классификацию по внешней огнестойкости, воздействию под палубой и термостойкости.Одна из целей этой колонки — улучшить ваше понимание каждого из этих рейтингов, а также того, что он делает, а что нет для вашего спокойствия.
Внешнее воздействие огня — класс A, B или C
При катастрофических пожарах, таких как большие пожары в Чикаго или Лондоне, непосредственная близость соседних зданий в сочетании с горючими крышами приводила к тому, что квартал за кварталом сгорел каждый город. Сегодняшние нормы при установлении требований к огнестойкости учитывают близость, а также использование здания и плотность населения.
Согласно методу испытаний ASTM E-108 , наивысшая степень огнестойкости обозначена как класс A, при этом B немного уступает, а класс C еще ниже. Для зданий с повышенным риском, таких как театры, больницы и школы, код может потребовать рейтинг класса A, в то время как смежные, менее важные конструкции могут потребовать только соответствия менее строгим требованиям B или C. Помните, однако, что класс A не имеет ничего общего с делать с кровлей качество или долговечность. Некоторый компромисс мог быть достигнут, например, в количестве слоев в мембране BUR, которые будут скрипеть в соответствии с требованиями испытаний.Код соответствия необходим, но его превышение может привести к получению более тонкой и менее устойчивой к атмосферным воздействиям крыши.
Пожар на крыше может привести к возгоранию нижележащего горючего настила крыши, если масса покрытия, мембраны и изоляции недостаточна для термической защиты настила от достижения температуры возгорания. В этом отношении хорошо подходят кровли из заполнителя и балласта, а также многие кровельные изоляционные материалы, такие как минеральное волокно, перлит, стекловолокно, кровельная изоляция из пеностекла и гипсовые покрывающие плиты.
Для конструкций с негорючими настилами, такими как сталь, бетон и гипс, сопротивление прожогу не оценивается. Однако горение поверхности проверяется независимо от того, является ли настил горючим или нет. Характер покрытия и наклон крыши сильно влияют на распространение пламени. На коммерческих сооружениях с очень низким уклоном даже глазурь из чистого асфальта может соответствовать классу распространения пламени А. Волокнистые покрытия и асфальтовые эмульсии сохраняют класс А до более высоких уклонов, как и системы FR Modified и FR однослойные.
Еще один тест для определения устойчивости к температуре и времени — это ASTM E119: Установление устойчивости к внутреннему пожару в здании . При одночасовом рейтинге внутренняя тепловая нагрузка составляет 1600 градусов по Фаренгейту. UL использует туннель Штайнера для определения распространения пламени под палубой. Конструкция UL № 143: классификация по пожарной безопасности устанавливает жесткие требования для каждого компонента материалов кровельного покрытия.
Обычно в обязанности квалифицированного инспектора по обеспечению качества кровли входит проверка того, что проект кровли ведется в соответствии с бухгалтерской книгой.
Как начался этот пожар?
Во время строительства существует много возможностей для случайного возгорания, включая сварку стали и использование горелок на модифицированных битумных кровельных мембранах. В некоторых строительных юрисдикциях теперь требуется дежурство при пожаре в течение как минимум одного часа после того, как был потушен последний кровельный факел. Когда горелки не используются, оператор должен сжечь пропан в трубопроводе, сначала закрыв вентиль баллона. 50-футовый шлангопровод может содержать много топлива, что может вызвать проблемы, если линия разорвется или возникнет утечка, даже чуть позже обеденного перерыва.
Поджоги и терроризм также являются потенциальными источниками возгорания. Крыши из заполнителя, вероятно, обеспечивают лучшую защиту от коктейля Молотова, но очевидно, что мешки с песком использовались в военное время для той же цели.
Менее очевидным источником возгорания является использование здания, характер истощенного материала на крыше и даже выброшенные окурки. Вандалы, которые забираются на крышу, могут обнаружить, что ведра с клеем являются неотразимой и привлекательной неприятностью: что-то, что нужно понюхать, чтобы получить кайф, а затем что-то, во что можно бросить сигареты.Ограничение количества горючих материалов, оставленных на крыше, может быть единственной защитой от подобных происшествий.
По мере того, как солнечные панели на крышах становятся все более распространенными, движение на крышах будет увеличиваться, а методы пожаротушения на крышах еще не установлены.
Внутреннее возгорание
Подпалубное возгорание может также происходить от поджигателя, технологического пожара и т.п. Хотя стальная кровля считается негорючей, она легко проводит тепло. Это, в свою очередь, может привести к псевдоожижению или испарению горючих компонентов кровли, которые просачиваются в конструкцию, распространяя огонь под настилом крыши.И FM Global, и Underwriters Laboratories проводят тесты для оценки этого типа воздействия. FM называет свои системы приемлемого риска Классом 1, в то время как UL называет их классифицированными конструкциями с изолированными металлическими настилами.
Рейтинги времени-температуры
Третье крупное испытание системы крыши на огнестойкость — это ASTM E-119 . Это системное испытание, которое включает в себя такие элементы конструкции, как балки, фермы и настил крыши. UL и FM перечисляют в своих публикациях множество кровельных систем. При обрушении башни World Trade Tower можно предположить, что тепловая нагрузка на соединения стальных ферм.Это может привести к изменениям в методе E-119 в будущем. К счастью, наши кровельные системы расположены снаружи и, как правило, мало влияют на огнестойкость в условиях испытаний E-119 .
Ричард (Дик) Л. Фриклас
Ричард (Дик) Л. Фриклас, получил Премию за выслугу лет и стипендию от RCI в 2014 году в знак признания его вклада в обучение трех поколений профессионалов в области кровли.Исследователь, писатель, журналист и педагог, Фриклас ушел в отставку с должности заслуженного технического директора Образовательного института кровельной промышленности в 1996 году. Он является соавтором Руководства по кровельным системам с малым уклоном (теперь его четвертое издание) и вел семинары по кровле в Университет Висконсина, помимо помощи в разработке учебных программ RCI. Его награды включают премию выдающегося педагога от RCI, премию Уильяма К. Каллена и премию Уолтера К. Восса от ASTM, премию Дж. А. Пайпера от NRCA и премию Джеймса К.Премия МакКоули от MRCA. Дик является почетным членом ASTM и RCI Inc.
Последнее слово о противопожарных характеристиках
Владельцы должны знать о расчетных противопожарных характеристиках и должны гарантировать, что установленная система действительно соответствует этим требованиям. Соответствующие ярлыки должны быть прикреплены к кровельным материалам, когда они прибывают на строительную площадку, а конструкция должна соответствовать определенному списку FM или UL в своем каталоге. Установка еще одной кровельной системы над существующей может привести к аннулированию рейтингов.Это может сделать даже нанесение неуказанного кровельного покрытия.
Также настоятельно рекомендуется работать с подрядчиком по кровельным работам над пересмотром мер безопасности. Спросите о факелах, наличии легковоспламеняющихся жидкостей или пропана и дайте информацию о пожарных. Осмотрите внутренние складские помещения, особенно горючие поддоны или другие предметы инвентаря, которые могут создать тепловую нагрузку на настил крыши. Привлекайте свою страховую компанию к этой инвентаризационной оценке и получите вознаграждение, которое может даже снизить страховые взносы.
Азбука огнестойкости крыш
Соответствует ли ваша крыша нормам и требованиям страхования?
Что на этикетке на крыше?
Сохранение упаковки продукта добавит ценной информации к вашему файлу кровли.
Ресурсы по замене крыши
Куда обратиться, когда пришло время установить новую крышу.
Разница между реакцией и сопротивлением огню
По соображениям безопасности очень важно понимать разницу между реакцией и сопротивлением огню. Поэтому мы подчеркнем важность предотвращения и защиты пожарных систем.
СИСТЕМЫ ПОЖАРНОЙ ЗАЩИТЫ
Системы защиты предназначены для предотвращения пожаров. Существует активных или пассивных систем .
Активные системы связаны с локализацией и тушением и требуют активации человеком или автоматической активации; это системы активной защиты. Например, огнетушители, детекторы дыма, система оповещения для пассажиров и пожарной части и т.д. повреждение возможного пожара.Примеры пассивной защиты:
- Анализ отсеков
- Безопасные расстояния
- Огнестойкие стены, двери и дымовые завесы
- Безопасные пути эвакуации
- Огнестойкость конструкций
- Реакция строительных материалов на огонь.
Отдельные европейские государства-члены устанавливают технические нормы и государственные законы, которые существенно регулируют и определяют уровни производительности и безопасности строительных материалов.Более того, они признают требование противопожарной защиты в зданиях одним из семи основных европейских правил для строительных материалов. Что касается внешних «оберточных» компонентов здания, оценивается ПОЖАРНАЯ УСТОЙЧИВОСТЬ конструкции и поведение отдельного материала РЕАКЦИЯ НА ПОЖАР.
ПОЖАРУСТОЙЧИВОСТЬ КОНСТРУКЦИИ И ОТДЕЛЬНЫХ ОТДЕЛЕНИЙ ЧТО ТАКОЕ ПОЖАРУСТОЙЧИВОСТЬ?Огнестойкость — это способность конструкции или отдельного отсека (наружная стена, балки, двери, противопожарные преграды и т. Д.).), чтобы противостоять определенному количеству времени его ‘: стабильности, целостности и способности изоляции. Выражение в минутах (15, 20, 30, 40, 60, 90, 120, 180, 240 и 360) номинальной кривой горения.
Маркировка REI определяет степень огнестойкости конструкции. Маркировка REI состоит из следующих элементов:
- R = Несущий. Способность конструктивного элемента сохранять свои механические характеристики и соответствующую несущую способность во время обычного пожара.
- E = Целостность. Другими словами, способность конструкции НЕ допускать проникновения или образования газа или пара в зону, НЕ подвергающуюся воздействию огня.
- I = Теплоизоляция. Чтобы уточнить, способность конструкции снижать в пределах температуры ограничивает передачу тепла на неэкспонированную (холодную) сторону. Температурный предел обычно составляет 140 ° C.
- REI (за которым следует номер n , указывающий на классификацию).Конструктивный элемент должен сохранять в течение определенного времени n свою механическую прочность, целостность пламени и газов, а также теплоизоляцию.
- RE (за ним следует номер n , обозначающий классификацию). Конструктивный элемент должен сохранять в течение определенного времени n свое механическое сопротивление, целостность пламени и газов.
- R (за ним следует номер n , обозначающий классификацию).Конструктивный элемент должен сохранять в течение определенного времени n свое механическое сопротивление.
Для классификации элементов, не соответствующих критерию R, этого автоматически достаточно, если выполняются E и I. Для каждого элемента, отвечающего критериям, проводятся испытания и получаются результаты. Затем классификация присваивается путем проверки значения времени, полученного для механической огнестойкости, с номинальной эталонной кривой горения.
Кроме того, результаты испытаний, аналитические расчеты или поверочные таблицы определяют рейтинг огнестойкости.
Реакция материала на огонь
РЕАКЦИЯ НА ПОЖАР ДЛЯ ИЗОЛЯЦИОННЫХ МАТЕРИАЛОВРеакция на огнестойкость должна показывать поведение изоляционного материала при воздействии прямого пламени воспламенения. После этого в норме изоляционные материалы подразделяются на контрольные классы в зависимости от метода испытаний. Поскольку степень воздействия материала на пожар сильно зависит от типа и условий испытания, необходимо различать изоляционный материал с маркировкой CE согласно нормам европейской серии EN13xxx и 14xxx от материалов без маркировки CE. .
МАТЕРИАЛЫ С МАРКИРОВКОЙ СЕДля материалов с маркировкой СЕ система EUROCLASS (EN 13501-01) определяет класс огнестойкости. Обычно он сочетает в себе различные согласованные тесты (EN11925-2 и EN 13823). Система делит изоляционные изделия на семь классов (A1, A2, B-F):
- Во-первых, испытания присваивают класс F изделиям без определенной реакции на огнестойкость. К этому классу также могут принадлежать продукты с хорошей реакцией на огнестойкость, спаренные (соединенные) или покрытые (с облицовкой) горючим материалом.
- Во-вторых, испытания присваивают классы E-B продуктам органической или неорганической природы с высоким содержанием органических веществ. Для получения класса E необходимо провести небольшое испытание пламенем. Согласованная европейская норма EN 13823 (SBI) определяет дополнительное испытание для получения класса DB, а также необходимо провести небольшое испытание пламенем продолжительностью 30 секунд. .
- Наконец, испытания присваивают класс A (A1-A2) продуктам неорганической природы. В этом случае испытание SBI сочетается с измерением счетчика мощности (тепла) (EN 1716) и анализом негорючести (EN 1182).
Для классов A2-D тест оценивает количество выделяемого дыма. В то время как для классов A2-E тест оценивает капли (капающие) и горящие частицы. Гармонизированные нормы серии EN 13xxx и 14xxx учитывают реакцию на огонь зданий, содержащих теплоизоляцию, в реальных условиях эксплуатации или конечного использования.
В случае применения, когда конструкция имеет внешнюю изоляцию, как, например, система внешней теплоизоляции, она учитывает, например, все испытание на одной стене образца.
ЗАКЛЮЧЕНИЕ
Подводя итоги статьи, мы подготовили подробное видео, где объясняем разницу между реакцией и сопротивлением огню.
СВЯЗАТЬСЯ С НАМИ
Чтобы узнать больше о разнице между реакцией и сопротивлением огню, вы можете связаться по телефону +44 7887 884768. Вы также можете связаться с нами через [email protected] или заполнив контактная форма ниже. Как только вы обратитесь к нам, мы сможем предоставить вам бесплатное ценовое предложение, а также обсудить наши продукты и услуги.
Понимание-Строительство-Строительство-Для-Противопожарных-Операций | Пожарная часть
Развивающаяся и быстро меняющаяся динамика строительных конструкций и помещений включает новое строительство, а также реконструкцию и адаптивное повторное использование старых зданий и помещений.
Фото Кристофера Дж. Наума
Сегодняшнее развитие пожарного поля требует большего понимания зданий, профилирования рисков занятости (ORP) и строительной анатомии всеми компаниями, работающими на пожарном поле.Идентификация, оценка, вероятность, предсказуемость и присущие характеристики здания в условиях пожара должны быть не только поняты, но и постулированы в адаптивной модели управления пожарами и гибком плане действий при инцидентах (IAP).
Типы и классификации зданий являются формулировкой для прогнозирования переменных структурной целостности и устойчивости к воздействию экстремального поведения при пожаре, ускоренных темпов роста пожарной нагрузки и уровней интенсивности во время начального и длительного тушения пожара.Понимание конструкции и использования здания является неотъемлемой частью эффективных и действенных операций по тушению пожара и важно для всех этапов боевого применения и подавления огня. Изучение основных представлений о том, каким образом здания традиционно классифицируются с точки зрения строительства и соответствия нормам, приведет нас к оспариванию общепринятых сегодня взглядов.
NFPA 220: Стандарт по типам строительства зданий, издание 2012 года, обнародованный и опубликованный Национальной ассоциацией противопожарной защиты (NFPA), определяет стандартные типы строительных конструкций на основе горючести и рейтинга огнестойкости структурных элементов здания.Противопожарные стены, ненесущие наружные стены, ненесущие внутренние перегородки, противопожарные стены, ограждения шахт и проемы в стенах, перегородках, полах и крышах не относятся к типам конструкции здания и регулируются другими стандартами и правилами, в которых соответствующий.
Идеи и история
• В 1952 году Комитет NFPA по строительству зданий обеспечил предварительное принятие NFPA 220 «Стандарт по типам строительных конструкций» с последующими пересмотрами в 1954 и 1955 годах.Определение негорючести и редакционные изменения в описании рейтинга огнестойкости конструктивных элементов (в соответствии с определением огнестойкости конструкции) были впервые приняты в 1956 году.
• В 1958 году с развитием использования пластмасс в при строительстве зданий впервые были приняты рекомендации по видам стандартных испытаний на огнестойкость, которые будут использоваться при оценке пожарной безопасности этих материалов.
• В 1975 году было добавлено более фундаментальное определение негорючего, включая введение определения ограниченно-горючего, основанное на потенциальных ограничениях по теплотворной способности и более общих определениях типов строительства.
• В 1979 году стандарт был сильно переписан, чтобы ввести номенклатуру, относящуюся к типу конструкции I — тип V, которая включала в скобках почасовые обозначения огнестойкости структурных компонентов, помещенные в скобки.
Традиционные типы зданий
Здания и сооружения обычно классифицируются в соответствии с их типом конструкции на основе одного из пяти основных типов:
• Тип I (или Тип 1) — Обычно называется огнестойкой конструкцией
• Тип II (или Тип 2) — Обычно обозначается как негорючая конструкция
• Тип III (или Тип 3) — Обычно упоминается как обычное строительство
• Тип IV (или Тип 4) — Обычно именуется тяжелой деревянной конструкцией
• Тип V (или Тип 5 ) — Обычно обозначается как конструкция с деревянным каркасом
Варианты включают использование терминов Класс I, II, III, IV и V.См. NFPA 220, издание 2012 г., Таблица 4.1.1 для получения дополнительных сведений и подробностей, связанных с рейтингами огнестойкости (часы) для внешних несущих стен, внутренних несущих стен, колонн, балок, балок, ферм и арок, сборок перекрытия и потолка, кровля-потолок, внутренние ненесущие стены и наружные ненесущие стены.
Эта система обозначения типов строительства также разбивает типы строительства за счет использования арабских чисел; например, Тип I (442), Тип II (111), Тип III (200) — и указать требования к классу огнестойкости для определенных элементов конструкции:
1.Первое арабское число — Наружные несущие стены
2. Второе арабское число — Колонны, балки, балки, фермы и арки, несущие стены, колонны или нагрузки с более чем одного этажа
3. Третье арабское число — Полы
Тип I. Пожар резистивный. В этом типе конструкции конструктивные элементы состоят из негорючих материалов, обычно из стали или бетона, которые обладают классом огнестойкости, который обеспечивает заданную огнестойкость против воздействия огня.
• Эти конкретные характеристики определяются строительными нормами модели для конкретного типа конструкции.
• Эти конкретные характеристики применяются к конструкциям крыши и пола, а также к любым внешним или внутренним несущим стенам.
• Внутренние перегородки должны быть построены из разрешенные негорючие материалы
• Классы огнестойкости обеспечиваются различными конструкциями, которые соответствуют минимальным характеристикам
Тип II: негорючие. Те же требования, которые применяются к конструкции типа I, также применяются к этому типу конструкции с некоторыми отличиями.
• Этот тип конструкции может не обеспечивать какой-либо рейтинг огнестойкости для открытых конструктивных элементов.
• Если предусмотрена какая-либо противопожарная защита конструктивных элементов, она будет на более низком уровне, чем требуется для конструкции типа I; в этом типе здания структурные элементы обычно сделаны из стали, скреплены болтами, склепаны или сварены вместе
• Этот тип конструкции подвержен расширению, деформации или ослаблению стальных элементов, что приводит к преждевременному разрушению во время пожара
• Опять же, внутренние перегородки должны быть построены из негорючих или разрешенных материалов с ограниченной горючестью.
Тип III: Обычный. В конструкции этого типа все или часть внутренних конструктивных элементов могут быть горючими. Наружные стены должны быть выполнены из негорючих материалов. Они могут иметь класс огнестойкости в зависимости от горизонтального разделения и от того, являются ли они несущими или ненесущими стенами.
• Эта категория обычно делится на защищенные и незащищенные подтипы; в здании будут каменные наружные стены и деревянные конструктивные элементы, а также внутренняя конструкция из горючего материала.
• Здание, как правило, не будет превышать шести этажей и чаще всего будет двух- или трехэтажным в высоту.
• Опоры пола и крыши обычно из дерева, но из других материалов, такие как стальные балки, могут быть найдены
• Настилом пола и крыши чаще всего будет фанера или композитная плита
• Общие стены между зданиями могут иметь общие стенные розетки для балок перекрытий и стропил
Тип IV: Тяжелая древесина. Конструкционные элементы из тяжелой древесины — колонны, балки, арки, перекрытия и крыши — представляют собой незащищенную древесину с большими площадями поперечного сечения.
• Требуется минимальный размер восьми дюймов для конструкционных деревянных опор (колонн, балок, арок и балок).
• Вся остальная открытая древесина должна иметь минимальный размер два дюйма; скрытые пространства обычно не допускаются.
• Эти здания состоят из каменных (негорючих) наружных стен и конструктивных элементов из прочной деревянной конструкции.
• Обычно этот тип конструкции встречается на старых заводах и заводах; тем не менее, наблюдается возрождение их использования в различных новых типах помещений.
• Деревянные полы обычно имеют минимальную толщину три дюйма и могут пропитаться маслом за годы смазывания тяжелого оборудования
• Опоры крыши будут деревянными с минимальными размерами четыре на шесть дюймов и минимальная толщина настила крыши 11/8 дюйма.
Тип V: Деревянный каркас / горючие материалы. Этот тип конструкции использует конструктивные элементы полностью из горючих материалов, обычно древесины, и делится на две подгруппы: защищенные (элементы конструкции защищены по мере необходимости) и незащищенные (требования огнестойкости отсутствуют).
• Стойко-балочная конструкция имеет деревянную раму значительных размеров и имеет легкую обшивку, такую как древесные плиты или фанера, покрытая алюминиевым или ПВХ сайдингом; этот тип конструкции обычно используется для сараев, сараев и других складских зданий, но также может встречаться в жилых домах и других помещениях.
• В конструкции с баллонным каркасом шпильки проходят от фундамента до чердака (этот тип конструкции был распространен во многих частях страны до конца 1930-х годов для жилых и легких коммерческих зданий.Это обеспечивает непрерывное воздушное пространство сверху вниз. Балки перекрытия крепятся к стене, что позволяет распространять огонь в любом направлении. Тушение пожара не было обычной практикой.)
• В конструкции платформы-каркаса стены каждого последующего этажа строятся на платформе, образованной предыдущим этажом (Балки перекрытия могут быть изготовлены из пиломатериалов в натуральную величину или из легких материалов. пол или настил стоит на месте, на него ставят стены с подоконником внизу стены и тарелкой вверху.Платформа-каркасная конструкция обеспечивает естественный противопожарный барьер для вертикального расширения внутри стен, но отверстия в стенах для труб водоснабжения, канализации, вентиляции или отопления / кондиционирования воздуха могут создать пространство для распространения огня.)
• В современном строительстве используются узлы и конструкционные системы. состоит из спроектированных компонентов с постоянным совершенствованием новых материалов, дизайна и структурной и архитектурной интеграции.
Стратегии и тактика
С конца 1940-х годов пожарная служба использовала классификации типов зданий для определения или установления предписанных стратегических или тактических методов развертывания, основанных на предсказуемости площади возгорания и характеристик здания.Пожарная служба раньше с некоторой предсказуемостью определяла, как определенные типы зданий будут работать в большинстве пожарных условий. Внедрение установленных основ противопожарных операций, основанных на девяти десятилетиях проверенных стратегий и тактик, позволило сформировать современные традиционные модели операций по тушению пожаров.