Соотношение бетона: Как приготовить бетон: требования, пропорции и расчет состава. полезнные статьи

Содержание

Как приготовить бетон: требования, пропорции и расчет состава. полезнные статьи

Бетон – строительный материал, состоящий из связующего вещества, песка и наполнителей, который в результате затвердевания превращается в камень. Без бетона не обходится ни одна современная стройка, будь то возведение небоскребов или создание садовых дорожек. Благодаря своим свойствам и долговечности, бетоны давно используются человеком с целью получить конструкцию необходимой формы и прочности. Однако есть один нюанс: только правильно изготовленный бетон будет соответствовать всем требованиям. Как сделать бетон, который будет не только прочный, но и долговечный? Давайте вникнем в суть этого вопроса, и выясним все тонкости изготовления правильной бетонной смеси.

Самый важный ингредиент – цемент

В бетоне любой марки в качестве связующего вещества обязательно выступает цемент. На сегодняшний день много разновидностей цементов, такие как портландцемент, шлакопортландцемент, быстротвердеющие цементы и прочие.

Все они отличаются как качеством связывания, так и условиями использования конечного изделия. Чаще всего в строительстве используется портландцемент. Все цементы, использующиеся для строительства, подразделяются на марки, которые обозначают предельную нагрузку на готовое изделие в мегапаскалях.


При изготовлении бетонов высоких марок, 300 и выше, по экономическим соображениям необходимо использовать марку цемента, которая выше марки бетона в 2 – 2,5 раза.

В бытовом строительстве зачастую используют портландцемент марки 400 – его прочности вполне хватает для этих целей. В промышленном возведении – чаще используют цементы марки 500, а там, где ожидаются большие нагрузки – специальные цементы высоких марок. Для того чтобы верно рассчитать пропорции бетона, необходимо владеть точной информацией о марке и качестве цемента, из которого вы собираетесь строить.

Другим важным аспектом является свежесть – цемент имеет срок годности, и со временем теряет свои свойства. Свежий цемент – рассыпчатая пыль, без комков и уплотнений.

Если вы видите, что в массе цемента есть плотные куски, то такой цемент использовать в работе не стоит – он впитал влагу, и уже потерял свои связывающие свойства.

Песок – какой бывает и какой необходим

Песок тоже может быть разным. Причем от качества этого компонента напрямую зависит конечный результат.

По гранулометрическому составу пески делят на:

При изготовлении бетона используют все виды песков, однако если в песке много пыли или глинистых частиц, то это может значительно ухудшить характеристики смеси. Особенно это касается тонкого песка, содержащего в составе значительный процент пыли, он малопригоден для приготовления бетона и его используют в самом крайнем случае.

Как приготовить бетон хорошего качества, и при этом не прогадать с песком? Все просто – следует использовать морской или речной песок – это наиболее чистые виды стройматериала, которые не несут в себе ни пылевых частиц, ни глины. Необходимо следить за тем, чтобы песок был чистым и не содержал органических загрязнений.

Карьерный же песок может быть очень грязным – зачастую его не используют в стройке без предварительной подготовки, включающей мойку и отстаивание. Также в нем может содержаться множество органического мусора – корней, листьев, веток и коры деревьев. При попадании таких примесей в бетон, возможно появление пустот в толще, вследствие чего, страдает прочность.

Еще одним важным параметром, который нужно учесть – влажность песка. Даже сухой по виду материал может содержать до 2% воды, а мокрый – все 10%. Это может нарушить пропорции бетона, и вызвать снижение прочности в дальнейшем.

Щебень и гравий – наиболее популярные наполнители для бетона

Основным наполнителем для бетонов всех марок является щебень или гравий – измельченная горная порода. Чаще всего используется щебень. Он также делится по фракциям, и имеет шероховатую, неровную поверхность. При подборе состава бетона следует также учесть, что морская или речная галька не может служить заменой щебню, так как гладкая, отполированная водой поверхность значительно ухудшает сцепление камня с остальными компонентами смеси.


Щебень подразделяется на следующие фракции:

Очень мелкий – 3 – 10 мм.

Мелкий – 10 – 20 мм.

Средний – 20 – 40 мм.

Крупный – 40 – 70 мм.

Чтобы ваш бетон простоял долгие годы и не разрушился, следует помнить, что максимальный размер камней в щебенке не должен превышать 1/3 от минимальной толщины будущего изделия. 

Еще берут в расчет такой показатель, как пустотность наполнителя – объем пустого пространства между камнями щебня. Вычислить его просто – взять ведро известного объема, заполнить его щебнем до краев, и мерной емкостью лить в него воду. Зная, сколько вошло жидкости, мы можем вычислить пустотность щебня. К примеру, если в 10 литровое ведро щебня влезло 4 л воды, то пустотность этой щебенки – 40%. Чем меньше пустотность наполнителя, тем меньше расход песка, и, что немаловажно – цемента.

Для максимального заполнения пустот следует применять различные фракции щебня: мелкий, средний, крупный. При этом необходимо учитывать, что мелкой фракции должно быть не менее 1/3 от общего объема щебня.

Помимо гранитного щебня и гравия, в зависимости от назначения бетона, используют керамзит, доменный шлак, а также другие наполнители искусственного происхождения. Для легких бетонов применяют древесную стружку, и измельченный пенополистирол. Для сверхлегких бетонов – газы и воздух. Однако создание легких и сверхлегких бетонов сопряжено с рядом сложностей, и правильно изготовить такой продукт вне промышленного цеха вряд ли удастся.

В зависимости от плотности, все наполнители для бетона подразделяют на пористые (<2000 кг/м3) и плотные (>2000 кг/м3). Также не стоит забывать, что природные наполнители имеют небольшой радиационный фон, который присущ всем гранитным породам. Конечно, это не источник радиационного загрязнения, но все-таки стоит помнить о таком свойстве натурального камня в качестве наполнителя бетона.

Вода – требования для приготовления бетона

Вода не менее важный компонент, нежели цемент или песок. Можно взять себе за правило одну простую истину – любая вода, пригодная для питья пригодна и для затворения бетона. Ни в коем случае нельзя применять воду из неизвестного источника, отработанную воду после производства, болотную и прочую воду, в качестве которой вы не уверены. Химический состав и прочие показатели воды могут сильно повлиять на прочностные характеристики готового бетона.

Таблица № 1. Расход воды (л/м3) при различном зерне наполнителя:

Уровень пластичности бетонаГравийЩебень
10 мм20 мм40 мм80 мм10 мм20 мм40 мм80 мм
Очень пластичный215200185170230215200185
Средне пластичный205190175160220205190175
Малой пластичности195180165150210195180165
Не пластичный185170 155140200185170155

Важно помнить, что расчет состава бетона включает в себя всю влагу, присутствующую в стройматериалах до их смешивания. Если, к примеру, у вас в качестве наполнителя запланирован доменный шлак, то его влажность также имеет значение – по сути, это «лишняя» вода, которую трудно учесть, но ею просто испортить готовый раствор.

От количества воды зависит еще один важный показатель – пластичность готового бетона. Для получения пластичного бетона вода должны бать добавлена строго по норме. Превышение необходимой нормы также вредно, как и недостаток воды – бетон расслаивается, и теряет свои качества. При затворении бетонной смеси пластичность бетона определяют на “глаз”. Если бетон самопроизвольно сползает с горизонтально расположенной штыковой лопаты, то он считается очень пластичным. Если с лопаты он сползает только при небольшом ее наклоне, то бетон считается средне пластичным. При не сползании бетона даже с наклоненной лопаты он считается мало пластичным. Когда бетон лежит на лопате бугорком, он считается не пластичным. Делать бетон слишком жидким нельзя так как он теряет свои качества.

Набор прочности и марка бетона

Марка бетона – это способность готового изделия выдерживать нагрузку на 1 см2 без повреждений. Марку бетона определяют на 28 сутки после его изготовления. Все дело в том, что быстрее всего прочность бетон обретает в течении 7 суток. За это время он может обрести до 40 % прочности. После 7 суток, хороший набор прочности идет до 28 суток. После прохождения 28 суток набор прочности резко снижается, но продолжается еще некоторое время. 

Как рассчитать состав бетона

Чтобы правильно произвести расчет состава бетона, важно обладать определенными данными.

Сюда входят:

  • Требуемая марка бетона;
  • Нужная пластичность смеси;
  • Марка цемента;
  • Данные о гранулометрическом составе песка и щебня.

Можно выделить два способа расчета состава бетона – по весовому соотношению цемента, песка и щебня и объемному соотношению этих материалов. И в первом и во втором случае цемент всегда принимают за единицу (за одну часть), а все остальные составляющие бетонной смеси в виде части веса или объема цемента. 

Расчет состава бетона по весу

Произведем расчет состава, для получения бетона средней пластичности, марка прочности которого на 28 сутки будет М200.  

Предположим, что мы имеем:

  • Портландцемент М400;
  • Щебень средней фракции;

Для начала нам необходимо определить водоцементное отношение (В/Ц). В/Ц – это пропорция веса воды и цемента, которая необходима для приготовления бетона определенной прочности. Определяют этот показатель по формулам или опытным путем. Мы предлагаем уже найденные значения В/Ц, которые собрали в виде таблицы.

Таблица № 2. Значения В/Ц для различных марок бетона. 

Марки 
цемента
Марки бетона
100150200250300400
3000,750,650,550,500,40– 
0,800.700.600.550.45 –
4000,850,750,630,560,500,40
0,900,800,680,610,550,45
5000,850,710,640,600,46
0,900,760,690,650,51
6000,950,750,680,630,50
10,800,730,680,55
 – показатели для гравия.   – показатели для щебня.

Зная необходимую марку бетона и используемую марку цемента находим значение В/Ц. В данном случае оно составит 0,63.

Теперь из таблицы № 1 находим необходимо количество воды для получения бетона средней пластичности, при размере щебня 40 мм. В результате получаем значение 190 л/м3

После этого мы можем рассчитать необходимое нам количество цемента на 1м3 бетона. Для этого 190 л/м3 разделим на 0,68 и получим 279 кг. цемента. Из таблицы № 3 находим пропорции бетонной смеси, для необходимой марки бетона М200 и марки цемента М400. 

Таблица № 3. Весовые соотношения цемента, песка и щебня.

Марка бетонаМарки портландцемента
400500
Пропорции по массе, Цемент : Песок : Щебень
1001 : 4,6 : 7,01 : 5,8 : 8,1
1501 : 3,5 : 5,71 : 4,5 : 6,6
2001 : 2,8 : 4,81 : 3,5 : 5,6
2501 : 2,1 : 3,91 : 2,6 : 4,5
3001 : 1,9 : 3,71 : 2,4 : 4,3
4001 : 1,2 : 2,71 : 1,6 : 3,2
4501 : 1,1 : 2,51 : 1,4 : 2,9

Соотношение Ц:П:Щ будет 1 : 2,8 : 4,8. Если цемента нам необходимо 279 кг, то 279 × 2,8 = 781 кг. песка и 279 × 4,8 = 1339 кг. щебня. Итого получается, что для приготовления 1 м3 бетона средней пластичности и марки М200 из портландцемента М400 и щебня средней фракции, необходимо:

279 кг. цемента.

781 кг. песка.

1339 кг. щебня.

190 л. воды.

В домашних условиях для измерения различных сыпучих материалов часто используют 10 литровое ведро. Чтобы вам было проще замерять материалы, мы приведем данные о массе того или иного материала содержащегося в одном 10 литровом ведре:

  • Цемента – 13 – 15 кг, зависит от уплотнения.
  • Песка – 14 – 17 кг, зависит от влажности.
  • Щебня или гравия – 15 – 17 кг, в зависимости от размера фракции.

Необходимо понимать, что методика этого расчета немного уступает методикам применяемым при строительстве крупных объектов, но это куда лучше принципа – давай цемента побольше, чтобы получилось покрепче.

Кроме применения пропорций по массе применяют и пропорции состава бетона по объему. Однако этот способ менее точен. 

Таблица № 4. Объёмные соотношения цемента, песка и щебня для бетона разных марок:

Марка портландцементаМарка бетонаПропорции по объему, лОбъем бетона, л, при 
расходе 10 л. цемента
ЦементПескаЩебня
40010014,16,178
15013,25,064
20012,54,254
25011,93,443
30011,73,241
40011,12,431
45011,02,229
500       10015,37,190
15014,05,873
20013,24,962
25012,43,950
30012,23,747
40011,42,836
45011,22,532
 Количество воды не указанно и зависит от требуемой консистенции и пластичности бетона.

Как правильно замесить бетон

Существует как ручной способ замеса, так и механизированный, – при помощи бетономешалок и миксеров. 

Ручной способ замеса бетона

Давайте рассмотрим ручной способ замеса, как наиболее популярный в приусадебном строительстве. Для правильного замеса смеси, необходима емкость, в которой будет производиться смешение всех составляющих. Это может быть как обычное жестяное корыто, так и собранная специально емкость. В нее насыпают весь необходимый для замеса песок и в борозду посередине засыпают цемент. После тщательно вмешивают песок с цементом, до получения однородной серой массы. Затем получившийся материал смачивают водой, и снова хорошенько мешают. Позже добавляется щебень, и смесь мешается до состояния, когда раствор покроет каждый камень наполнителя. При этом понемногу добавляется вода, количество которой зависит от необходимой пластичности. После того, как смесь станет однородной, и все камни наполнителя покроются раствором, бетон готов к укладке.

При ручном способе замеса есть один важный момент, а именно – скорость укладки бетона. Даже при незначительной задержке, бетон в корыте может расслоиться (это выглядит как выступившая сверху вода), и потерять часть своих свойств. Поэтому важно быстро укладывать бетон в опалубку. 
Лучшим вариантом того, как приготовить бетон будет механический способ замеса при помощи бетономешалки. Плюсами подобного способа будет получение гарантированно однородной смеси и высокое качество полученного бетона.

Замес бетона в бетоносмесителе

Для замеса в бетономешалке сначала насыпают цемент, и заливают минимум воды. Получив однородную эмульсию, в миксер добавляют песок из расчета пропорции. Далее раствор вмешивается с добавлением необходимого количества воды. После получения раствора, в бетономешалку можно засыпать наполнитель.

Плюсом механического способа замеса будет то, что бетон не расслоится, и может оставаться во вращающемся миксере до одного часа без потери своих свойств. Однако миксер не стоит располагать далеко от места укладки – во избежание потери бетоном своих свойств во время доставки.

Следуя этим несложным правилам, вы получите надежный конструкционный материал, который с годами будет становиться все крепче!

Компания Трак-Бетон предлагает Вам: бетон и бетонные смеси по адекватным ценам

Facebook

Twitter

Вконтакте

Google+

Пропорции бетона на 1 м3 таблица

Состав бетона м300 на 1м3 — таблица: пропорции, приготовление своими руками

Приготовление бетона – очень важная и ответственная задача, от правильности выполнения которой напрямую зависят эксплуатационные характеристики, прочность и надежность, долговечность конструкций и зданий. Бетон используется при выполнении самых разных задач, рецептов с точным указанием пропорций компонентов множество и важно найти тот, что актуален для конкретного типа ремонтно-строительных работ.

Качественные характеристики бетона зависят от объемов и вида компонентов, правильного смешивания. Разные пропорции составляющих бетона дают возможность приготовить раствор с нужными показателями прочности (определяется маркой и классом), морозостойкости, пластичности, плотности и т.д. Несмотря на важность всех показателей, основополагающими считаются марка (обозначается буквой М и цифровым индексом) и класс (буква В и цифра).

Бетонный раствор замешивается на базе двух основных компонентов – цемента в качестве вяжущего и воды для затворения. Эти два ингредиента позволяют создать твердый цементный камень, который на практике используется очень редко. Для применения в разных сферах замешивают бетон, куда, кроме цемента и воды, для прочности добавляют наполнители – мелкие (песок) и крупные (гравий, щебень). Также усилить материал можно арматурными прутьями, каркасом или сеткой.

Любой рецепт бетона предполагает указание марки – в зависимости от того, какой показатель указан в проектной документации или СНиПе, ТУ, согласно которым осуществляются ремонтно-строительные работы, подбирается правильный рецепт.

Часто для получения нужной марки важно не только соблюсти объемы компонентов из расчета на 1 м3 раствора, но и учесть пожелания касательно качества, фракции составляющих (цемент должен быть определенной марки, песок и щебень нужной величины).

Работать с бетоном лучше всего при температуре +5 градусов и выше. Далее раствор застывает в течение 12 часов, потом твердеет и набирает прочность в течение 28 суток. Лишь после этого конструкция или элемент готовы к эксплуатации, проведению дальнейших работ и т.д.

Технические характеристики бетона

В соответствии со степенью прочности выделяют классы (В10, В15) и марки (М200, М300, М400 и т.д.). Чем выше числа возле обоих индексов, тем более прочным и стойким к разным нагрузкам является бетон. Именно класс и марка определяют сферу применения материала. Любая таблица пропорции бетона указывает, исходя из марки и класса.

Обычно эти два показателя взаимодействуют между собой (конкретной марке отвечает соответствующий класс). В проектной документации чаще всего указывается марка, а в разного типа инструкциях, ТУ – классы.

Соответствие марки применению бетона

Бетонные растворы разных марок используют в определенных сферах, для тех или иных конструкций, объектов, зданий. Так, к примеру, состав бетона М400 не актуален для выполнения подбетонки или черновой стяжки (обойдется дорого, а технические характеристики смеси просто не нужны). В то время, как бетон М100 не подойдет для сооружений гидротехнической конструкции.

Ниже в таблице представлено соответствие марок бетона сфере использования:

Специалисты не советуют менять указанную в проекте или просто соответствующую типу работ марку бетона на другую ни в сторону понижения, ни в сторону повышения. Более низкая марка бетона – это меньше прочности и стойкости к разным воздействиям, что может привести к быстрой деформации монолита, появлению трещин, полному разрушению конструкции из-за неспособности выдерживать возложенные нагрузки.

С другой же стороны, надеясь на более высокое качество здания или элемента, иногда готовят раствор более высокой марки, что совершенно неоправданно с точки зрения финансов. Так, состав бетона М200 предполагает использование цемента определенной марки и в нужном объеме, наполнителей подходящих фракций и качества.

Если же взять более дорогой цемент в большем количестве, потратиться на высококачественный наполнитель (в котором нет необходимости по рецепту), бетонный монолит получится более прочным и стойким. Но сфера применения не позволит использовать по максимуму все эти показатели и приготовление материала обернется просто неоправданными расходами.

Основные компоненты бетонной смеси

Для получения рецепта приготовления бетонного раствора лучше всего использовать таблицы – в них указывается, сколько и каких компонентов нужно взять на 1 куб раствора. Так, к примеру, для бетона М200 на 1 куб нужно меньше цемента (и, возможно, более низкой марки), чем в случае с приготовлением бетона М400 на 1м3.

Кроме пропорции, немаловажно изучить как общие, так и специфические требования к материалам. Специфические касаются точной величины (фракции) наполнителя, марки цемента и т.д. Общие же относятся ко всем видам цементного раствора и учитываются вне зависимости от того, готовят ли цемент на заводе или на объекте своими руками.

Требования к компонентам бетонного раствора:

  1. Цемент – должен быть произведенным как можно ближе к дате приготовления раствора. Лучше, если меньше 3-4 месяцев тому, в противном случае цемент наверняка уже потерял часть своей прочности (при условии правильного хранения). Если же материал хранился неправильно, в нем могут быть комки, которые уже не вернутся в исходное состояние и значительно ухудшат качество раствора. Лучше покупать цемент непосредственно перед использованием у проверенного производителя или поставщика, обязательно проверив дату изготовления.
  2. Вода – пресная, без примесей (после тщательной очистки). Многие мастера игнорируют данный компонент, считая, что воду можно брать любую, но это не так. Качество смеси во многом зависит и от этой составляющей, которая отвечает за прохождение реакции схватывания, затвердевания.
  3. Песок – обязательно очищенный, без каких-либо примесей (особенно опасна глина, которая ухудшает свойства адгезии), белого или серого цвета (но не желтого, что говорит о наличии глины в материале).
  4. Щебень – чистый, без дополнительных включений, мелкого мусора и пыли. Желательно, чтобы это был гранитный щебень. Также могут подойти гравий либо известняк, но гранит считается лучшим выбором ввиду высокой морозостойкости и низкого водопоглощения.
  5. Дополнительные добавки – вводятся для изменения в лучшую сторону определенных характеристик бетонной смеси или уже застывшего монолита: пластификаторы улучшают пластичность и делают материал более комфортным в работе, гидроуплотнители защищают от повышенной влажности, противоморозные присадки дают возможность работать при минусовой температуре, обеспыливатели повышают прочность сырья и понижают его истираемость, замедлители твердения продлевают время застывания смеси.

Цемент и вода – основные связующие компоненты в растворе, поэтому считаются главными составляющими. Очень важно верно учесть отношение цемента к воде в соответствии с уровнем влажности мелких и крупных наполнителей. Поглощающая способность также зависит от сорта компонентов. Вычислить это все самостоятельно очень трудно, поэтому проще посмотреть в таблице, сколько и чего должно содержаться в одном кубе бетона определенной марки.

Расход материалов: таблица, пропорции бетона на 1м3

Чтобы приготовить куб бетона, важно знать, какая марка смеси нужна для выполнения конкретной задачи, а потом посмотреть в таблице пропорции и требования к компонентам. Ниже представлены таблицы – в них можно отыскать и компоненты для смеси М100, и состав бетона М300 на 1м3 (таблица предоставляет информацию по самым распространенным маркам):

Стандартная бетонная смесь, которая часто используется в частном строительстве для заливки фундамента, монолитных перекрытий и прочего, предполагает такие пропорции: 0. 5 части воды, 1 часть цемента, 2 части песка, 4 части щебня.

Важные факторы, которые учитывают при выборе пропорции:

  1. Способ укладки раствора в опалубку – с использованием строительной техники или собственными силами. Если своими руками, то состав должен быть пластичным, если с применением техники, смесь может быть более плотной.
  2. Бюджет – материалы для приготовления бетона стоят немало, поэтому нужно найти баланс между желаемым качеством и стоимостью, для основных работ (фундамент, перекрытия и т.д.) подбирая смеси высоких марок, а для ненагруженных конструкций и работ, где прочность не так важна, готовя раствор более низкого класса.
  3. Тип возводимой конструкции, условия эксплуатации – во многих случаях проектную марку бетона повышают из-за неустойчивости грунтов, каких-то отдельных требований и особенностей.

Ниже представлены пропорции бетона для замеса раствора марок М100, М200, М300, М400:

Получается, что если нужно приготовить бетон (1 м3) марки М200, то берут 1 часть цемента марки М400, 2. 7 части песка, 4.9 частей щебня. При этом, если взять для приготовление раствора той же марки М200 цемент М500, пропорции уже иные: на 1 часть цемента понадобится 3.5 части песка и 5.2 части щебня. Другие соотношения работают для остальных марок бетонного раствора.

Чтобы получить данные в ведрах, достаточно знать плотность материалов. Так, одно ведро емкостью 10 литров будет весить 12 килограммов цемента (10 х 1200, так как насыпная плотность цемента составляет 1200 кг/м3), 14 килограммов песка (плотность 1400 кг/м3), 15 килограммов гравия и т.д. Достаточно просто поделить взятое число килограммов по пропорции на число килограммов, вмещаемое в ведро и мерять все этой емкостью.

Пропорции состава бетона для фундамента

При выборе соотношения компонентов для приготовления раствора с целью заливки фундамента не берут каких-то особых значений. Просто для основания и других ответственных (нагруженных) конструкций выбирают бетон высоких марок – как минимум М300, а то и М400, М500. Смесь готовится по обычному алгоритму, с четким соблюдением пропорций в соответствии с таблицей.

Порядок приготовления раствора

Если бетонную смесь не планируется заказывать на заводе (в Москве и практически во всех регионах есть возможность заказать нужный объем раствора указанной марки с доставкой на объект), то до начала замеса следует изучить основные правила.

Основные правила приготовления бетонной смеси в домашних условиях:

  • Ведро для отмеривания и лопата для смешивания компонентов должны быть сухими.
  • Чтобы получить более точные пропорции, щебень и песок в ведре аккуратно уплотняют, ровняют по краю емкости.
  • Сначала отмеряют песок и щебень, их тщательно смешивают в широкой таре, делают канавки, в них высыпают цемент, снова все смешивают, пока масса не станет однородной и ровного цвета.

  • Из массы формируют конус, внутри делают углубление, в него заливают нужный объем воды (сначала лучше порцию, потом добавить по необходимости). Смесь с краев емкости постепенно ссыпают в средину, чтобы вода полностью пропитала всю массу. Далее заливают вторую порцию и так до тех пор, пока смесь не приобретет нужную консистенцию.
  • Водоцементное отношение, указанное в рецепте, лучше не нарушать (иногда мастера делают слишком жидкий раствор, с ним легче работать), так как лишняя влага при испарении будет оставлять пустоты, понижая прочность монолита.

Если делать все по рецепту и технологии, то получить качественный раствор с нужными характеристиками для выполнения любой задачи вполне реально самостоятельно. Главное – не экономить на компонентах, следовать инструкции и пропорциям.

Таблица «Пропорции бетона на 1м3». Качественные бетонные смеси

Ни одна площадка промышленного и жилого строительства не обходится без использования бетона. Качество этого искусственно полученного материала напрямую зависит от последовательности смешивания и соотношения используемых компонентов. Таблица «Пропорции бетона на 1м3» сориентирует в максимально правильном распределении составных частей раствора для использования его в тех или иных конструкциях.

В зависимости от предназначения, могут использоваться различные пропорции приготовления бетонного раствора

Технические характеристики бетона

Цемент и вода, входящие в состав бетона, образуют при смешивании массу, которая, затвердевая, превращается в цементный камень. В таком виде этот материал легко деформируется, в нем образуется множество микротрещин, что приводит к значительной усадке.

Добавление в состав цементной смеси наполнителей (щебня, песка, гравия и др.) способствует образованию своеобразной арматуры, которая принимает на себя внутреннее напряжение. Благодаря этому улучшаются показатели прочности, ослабевает подвижность смеси и деформация от усадки.

Различные наполнители придают бетону прочность и увеличивают его технические характеристики

Учитывая степень прочности бетона, материал делится на классы (обозначается «В») и марки (обозначается «М»). Чем выше числовые значения марок бетона (например, М200, М300 или М400), тем более прочным считается материал. От класса и марки зависит, в каких видах конструкций он будет применяться.

Если строительство вашего объекта подкреплено проектом, то в нем уже предопределены марки бетона, необходимые для устройства фундамента или других конструкций.

Таблица показателей прочности бетона:

Марка бетонаМ75М100М150М200М250М300М350М400
Нагрузка (нормативная), кгс/см 26598131196262294327393

Соответствие марки применению бетона

Бетонные смеси с разными марками используются для разнотипных сооружений.

В таблице приведена сфера возможного использования бетона в зависимости от марки:

Марка
М100-М150
Марка
М200-М250
Марка
М300
Марка
М350
Марка
М400
Основа (подложка) под стяжку, фундамент, плитку или дорожку из бетона.Фундаменты одноэтажных зданий, стяжка, отмостка, площадки, лестницы.Ленточные фундаменты, монолитные стены,
стяжка, отмостка,
площадки, лестницы.
Отливка ж/б конструкций
(балки, опорные колонны, ригеля, перемычки, плиты перекрытий,
бассейны).
Гидросооружения (дамбы, мосты), фортификационные объекты (бункеры, хранилища).

Расход и пропорции основных ингредиентов бетона зависит от многих факторов. Что касается песка, то следует учитывать его влажность, крупность, содержание примесей. Для щебня и гравия имеет значение показатели влажности, загрязнения, пустотности, нестандартных включений (мусора).

Для цемента учитывается его марка. Также учитывается вид работ, для которых готовится бетонный раствор: бетонная стяжка, заливка фундамента, возведение стен и др.
Основная составляющая бетонного раствора — цемент. Соотношение расхода этого материала выражает марку бетона. Марка бетона выше, чем больше в его составе цемента.

Для приготовления бетонной смеси используются различные марки цемента

Традиционно бетонирование производят в период, когда температура воздуха имеет плюсовое значение. Это способствует качественному затвердеванию раствора.

Полезный совет! Не рекомендуется выполнять бетонные работы при отрицательных температурах, ввиду возможной вероятности получения некачественного по прочности материала.

Работая с бетоном в холодный период года есть вероятность, что вода в составе раствора заледенеет и станет источником разрушения внутри материала. Таким образом, снизится прочность.

Схватывание бетона происходит в период 12 ч, в двухнедельный срок бетон накапливает 80% прочности. Эксплуатация готовой конструкции становится возможной через месяц.

Испытание готовой бетонной конструкции на скалывание с помощью специального прибора

Основные компоненты бетонной смеси

Приобретая составные ингредиенты для приготовления раствора, убедитесь (насколько возможно) в их качестве:

  • вода: применяется пресная;
  • песок: не должен в своем составе содержать глину, визуально проверить можно по цвету. Если песок желтого насыщенного цвета — значит содержание глины в нем велико. Для раствора используется белый или серый песок;
  • цемент: на ощупь мешки с цементом не должны иметь затвердевшие части и материал должен быть изготовлен не раньше четырех месяцев от даты приобретения;

Полезный совет! Приобретая цемент, обращайте внимание на маркировку. Только у проверенных производителей маркировка на мешке соответствует качеству содержащегося в нем цемента.

Цемент — первая и главная составляющая бетонного раствора

  • щебень: используется чистый материал, без пыли и других включений. В противном случае сцепление с раствором будет недостаточным, что негативно скажется на прочности бетона. Идеально подойдет щебень гранитной породы;
  • кроме щебня, в качестве крупного наполнителя для бетонной смеси, используют гравий (обычно применяется для марки 450), известняк (подходит для марок 100 и 300), гранит (отличается прочностью, морозоустойчивостью и низким поглощением воды).

Для приготовления смеси используют чистый щебень, без загрязнений и посторонних примесей

Расход материалов. Таблица «Пропорции бетона на 1м3»

Расходование компонентов для приготовления 1м 3 бетона напрямую зависит от назначения конструкций и марки цемента, участвующего в изготовлении. Для этого обобщили значения пропорций состава 1м 3 бетона.

Ниже представлены две таблицы пропорций бетона на 1м3.

Таблица №1 — пропорции бетона для марок М100, М200, М400 и М400:

Марки бетона: М100, М200, М300, М400

Таблица №2 — пропорции бетона для марок М150, М250, М350 и М450:

Марки бетона: М150 — М450

Таким образом, если необходимо произвести бетон М200, пропорции будут составлять на
1 м³ раствора — 1 / 3,5 / 2,6 (кг), для бетона М300, пропорции составят — 1 / 2,4 / 4,3 (кг), пропорции бетона М400 — 1 / 1,6 / 3,2 (кг).

Для примера можно рассчитать количественный состав компонентов, учтенных таблицей пропорций для приготовления бетона М400 с использованием цемента М500. Возьмем 20 ведер цемента. Песок по пропорциям будет составлять (20 х 1,6) = 32 ведра. Щебень соответственно — (20 х 3,2) = 64 ведра. И вода — (20 х 0,5) = 10 ведер. Зная плотность всех компонентов можно легко перевести требуемое количество ведер в те единицы измерения, по которым происходит реализация материалов. Так, ведро емкостью 10 литров, наполненное цементом, будет весить 12 кг (10 х 1200), где 1200 кг/м³ — плотность цемента при насыпании, ведро песка — 14 кг (10 х 1400), где 1400 кг/м³ — плотность песка, такой же объем гравия будет весить 15 кг, учитывая его плотность.

Заливка ленточного фундамента бетонной смесью

Пропорции состава бетона для фундамента

Если бетонные работы производятся в малых объемах, например, при частном строительстве или разовых мелких работах, целесообразно придерживаться пропорций бетона в ведрах. Такие количественные меры применяются, если нет возможности расположить на строительном участке специальную технику, а также когда раствор заливают небольшими порциями.

При производстве бетона под конструкцию фундамента, необходимо придерживаться следующих пропорций бетона на фундамент, приведенных ниже.

Таблица пропорций бетона на фундамент в ведрах, для марок М100, М200, М300 и М400:

При использовании цемента марки 400 и 500 на объем 10 литров

Порядок приготовления раствора

В условиях индивидуального строительства бетонный раствор для фундамента готовят, отмеряя части компонентов ведрами. Следует учитывать, что ведро и лопата для цемента должны быть исключительно сухими. Для получения более точных пропорций, состав песка и щебня в ведре немного уплотняют и ровняют по краю ведра. Отмеренные щебень с песком хорошо перемешивают в удобной широкой таре, формируя канавки, куда высыпают подготовленный цемент. Все ингредиенты (количество которых подобрано из таблицы пропорций) изрядно перемешивают до получения равномерной по цвету массы.

Статья по теме:

Сколько весит куб бетона? Основные характеристики и состав. Определение веса. Разновидности бетонов в зависимости от материала. Виды бетонов (легкие и тяжелые). Что влияет на вес бетона?

Полученную массу формируют под конус, в середине устраивают углубление, куда и заливают воду. Постепенно ссыпают смесь с краев в середину, пока вода полностью не впитается. Как только первая порция воды пропитается, процедуру с водой повторяют до образования нужной консистенции бетонного раствора.

Приготовление цементного раствора своими руками путем замешивания

Полезный совет! Не рекомендуется нарушать водоцементное отношение, стремясь получить более жидкий раствор. Избыток воды будет оставлять пустоты, в результате чего уменьшится прочность бетона.

Придерживаясь таблицы пропорций приготовления бетона, можно получить состав из однородной, пластичной смеси. Это послужит залогом прочности и долговечности бетона в эксплуатации.

Выполнение технических норм в приготовлении бетонных смесей способствует сохранению основных показателей, необходимых в строительстве.

Как создать качественные бетонные смеси: таблица пропорции бетона на 1м3

Время чтения: 7 минут Нет времени?

Отправим материал вам на e-mail

В любом строительстве промышленного и индивидуального значения применяется бетон. Качественные характеристики материала зависят от правильного использования компонентов и верного их смешивания. Представленная таблица пропорции бетона на 1м3 поможет подобрать соотношения всех компонентов смеси для определенных конструкций.

Особенности работы бетоном

Технические характеристики и свойства бетона

Бетон образуется при смешивании двух компонентов: воды и цемента. При этом получается твердый цементный камень.

Замес раствора требует основательного подхода

Для более крепкого состава требуется добавление специальных наполнителей. Гравий, песок и щебень позволяет создать материал, как бы усиленный арматурой. Это влияет на улучшение прочности. При этом ослабевает свойство деформации. Без дополнительных компонентов в цементном составе образуются микротрещины.

Самый простой ручной замес

В зависимости от прочности бетона, он делится на определенные классы. Числовое значение марки и разновидность по классам определяет, для какого типа конструкции подходит данный материал.

Замешанный раствор выкладывается в более мелкую тару

Марка бетона определяется еще на этапе составления проекта.

Марки бетона и сферы их применения

Различные марки смесей применяются для определенных разновидностей строений. Расход бетона на 1 м3 бетона зависит от разнообразных факторов. При выборе песка необходимо учитывать состав его примесей и размер частиц. Для щебня значение имеет показатель плотности и содержание посторонних включений.

Марка бетона имеет значение для вида работ, для которых будет готовиться раствор. Различные виды используются для заливки фундамента, возведения стен и для бетонной стяжки.

Для разных работ требуется определенная марка

Для высококачественного затвердевания монтажные работы нужно проводить при плюсовых температурах. В течение 12 часов после заливки раствор затвердевает. Через две недели материал набирает большую часть своей прочности, а через месяц конструкция полностью готова к эксплуатации.

Подача готового раствора

Полезная информация! Не производятся работы при отрицательных температурах, так как вода в составе смеси заледенеет и утратится прочность материала.

Основные составляющие бетонного раствора

Воспользовавшись таблицей пропорции бетона на 1м3, необходимо уделить внимание составным компонентам раствора. Значение имеют их качественные характеристики:

  • Цемент не должен иметь большой срок хранения. Оптимальный показатель – менее четырех месяцев. Мешки с сырьем не должны иметь затвердевших элементов.

  • Воду следует использовать только пресную.

Используется чистейшая вода

  • В песке не должно быть примесей глины. Такая смесь будет иметь желтоватый цвет. Для раствора лучше использовать серый или белый песок.

Для строительных работ подходит определенный тип песка

Статья по теме:

Сколько весит куб песка? Какие существуют виды? Сколько весит один куб? Сколько помещается в кузове КАМАЗа? Подробнее читайте в отдельной публикации нашего портала.

  • Щебень не должен содержать дополнительных включений. Оптимальным вариантом считается использование щебня с гранитным содержанием.

Для бетонного раствора может применяться известняк или гравий. Гранит характеризуется небольшим поглощением воды и морозостойкостью. Чтобы улучшить некоторые характеристики бетона в смесь добавляются специальные добавки:

  • Пластификаторы позволяют повысить пластичность материала. Гидроуплотнители защищают конструкцию от лишней влажности.
  • Обеспыливатели позволяют повысить прочность сырья и уменьшить риск его истирания.
  • Противоморозные добавки позволяют использовать смесь при низких температурных значениях.
  • Замедлители затвердевания помогают регулировать время застывания состава.

Специальные добавки позволяют сделать состав прочнее

Расход материала: таблица пропорции бетона на 1 м3

На качество использованного бетона оказывает влияние марка цемента и назначение конструкции. Таблица пропорции бетона на 1м3 позволяет определиться с необходимым расходом материала.

Таблица расчета пропорций

Для производства бетона разных марок потребуется различное количество составляющих компонентов. Для примера можно рассчитать состав бетона м200 на 1 м3. На 10 ведер цемента понадобится 35 ведер песка, а щебня 26 ведер. Воды понадобится 5 ведер. Зная плотность каждого вещества можно вычислить его вес в ведре.

Вариант расчета в ведрах

Видео: соотношение компонентов бетона М300

Особенности приготовления раствора для фундамента

При строительстве небольших объектов стоит рассчитывать материал по ведрам. Подобный метод пригодится, если раствор используется небольшими порциями.

Расчет пропорций для качественного основания

Определяя состав бетона для фундамента, пропорции можно взять из нижеприведенной таблицы. При этом бетон подбирается для фундамента в ведрах. Показатели будут отличаться в зависимости от используемых марок.

Вариант заливки для фундамента

Важно! Основную крепость фундаменту придает заполнение в виде щебня или гравия. Нельзя использовать различные виды речной или морской гальки, так как она обладает отполированной поверхностью, что затрудняет хорошее сцепление с раствором.

Калькуляторы расчета весового и объемного количества ингредиентов бетона для заливки фундамента

Бетон М200 (класс прочности В15)

Бетон М300 (класс прочности В22. 5)

Этапы приготовления раствора

После того, как определился расход материалов на 1 м3 бетона, можно приступать к основным работам. При индивидуальном строительстве бетонную смесь производят из компонентов, которые отмеряются ведрами.

Приготовление раствора ручным методом

Отмеряя нужное количество, стоит позаботиться о сухости лопаты и ведра для сухой смеси. Чтобы получить более точные пропорции, песок или щебень в ведре нужно немного придавить и сделать плотнее по краю емкости. Отмеренные компоненты рекомендуется перемешивать в объемной таре. При этом в смеси делаются небольшие углубления, куда засыпается также отмеренный цемент. Поможет определить количество всех компонентов, а также вес бетона в 1м3 – таблица. Все составляющие тщательно перемешиваются до получения однородной по цвету массы. Затем в образованной смеси необходимо сделать отверстие в виде конуса и залить туда воду. С краев смесь ссыпается к середине. При этом вода постепенно впитывается. После растворения первой порции жидкости, вливается дополнительное количество воды. Это делается до тех пор, пока раствор не станет требуемой консистенции.

Приготовление в бетономешалке

Замес раствора в бетономешалке состоит из следующих этапов:

  • Заливается посчитанное количество воды. Около 10 % оставляется на добавление позже.
  • Добавляется цемент.
  • Сыпется песок. Производится замешивание в течение нескольких минут.
  • Добавляются добавки: армирующие смеси или пластификаторы.
  • Засыпается наполнитель из щебня или гравия.

Особенности монтажа фундамента

При необходимости добавления воды, замешивается небольшое количество цемента и воды отдельно, а затем добавляются в основную смесь. Замес в бетономешалке длится не дольше чем 20 минут, чтобы смесь не схватилась внутри оборудования.

Варианты приготовления смеси

Полезная информация! Специалисты не рекомендуют делать слишком жидкий раствор. При этом в материале могут образоваться пустоты, что сильно повлияет на показатель прочности.

Полезные рекомендации

Некоторые советы от специалистов позволят повысить эффективность работы с материалом:

  • При некачественной заливке внутри состава появятся пустоты, которые поможет убрать только специальное оборудование.
  • Для небольших сооружений подойдет продукция марки 100.
  • При создании ленточного фундамента рекомендуется воспользоваться составом марки 200.
  • Нельзя возводить ленточное основание в периоды похолодания. Если жидкость замерзнет внутри бетона, то увеличится объем и конструкции разрушится.
  • При заливке фундамента летом, в течение нескольких дней после монтажа, его следует сбрызгивать водой. В результате конструкция не потрескается и схватится равномерно по всей поверхности.

Особенности возведения ленточного фундамента

Для равномерного просыхания бетонной конструкции, ее следует накрыть пленкой. Это предотвратит быстрое просыхание внешнего слоя, и состав будет затвердевать более равномерно. Время высыхания зависит от толщины бетонного слоя.

Правильные пропорции позволяют создать качественную смесь

Используя таблицу пропорций применения бетона, можно создать качественный и однородный раствор. Это станет гарантией долговечности и прочности бетонных конструкций. Значение имеет соблюдение технических норм при изготовлении строительной смеси.

Видео: изготовление бетонной смеси

Экономьте время: отборные статьи каждую неделю по почте

Приготовление бетона пропорции, таблица на 1 м3

Теоретическое соотношение компонентов, входящих в состав 1 куба бетона, отличается от реального, так как на стройплощадке никто не будет взвешивать добавки и заполнитель с точностью до грамма, а, скорее всего, взвешивать не будут совсем – добавят требуемое количество ведрами. Кроме того, нужные пропорции зависят от состояния компонентов – срока и места хранения, степени очистки, даже от воды. Конкретный состав и расход цемента на 1 куб бетона рассчитывается по ситуации на стройке – какой будет использован песок и портландцемент, какая стоит погода, и т.д.

Пропорции бетонной смеси для одного метра кубического бетона

Но придерживаться расчетных данных нужно в любом случае, чтобы соблюдать правильный состав бетона м200 на 1 м3 или для другой марки. Ниже приведена таблица, в которой видно, сколько цемента на 1 м3 бетона необходимо расходовать:

МатериалБетон, маркаКоэффициент подвижностиРасход компонентов в составе бетона
Цемент, кгЩебень, кгПесок, кгВода, кг
Портландцемент марки M 300M 1001-2200120,0800150
3-50210121,8756165
6-80,220121,0748285
9-12225119,87400,185
M 1501-2255121,1726155
3-5270121,5701165
6-8290121,5675245
9-12305122,0656185
Портландцемент марки M 400M 1001-2215122,5750155
3-5230121,5747165
6-8245120,0724175
9-12260120,9676185
M 1501-2255118,8750155
3-5265121,5704165
6-8280120,2685175
9-12300120,0660186
M 3001-2335122,0636155
3-5360120,2630165
6-8380121,5588175
9-12400120,0560185

Любой портландцемент имеет такую характеристику, как класс прочности по сжатию, который обозначается символом «B». Чем выше марка и класс портландцемента, тем лучше качество бетона. Так удельный вес бетона м200 зависит от марки – она должна быть ≥ M 300. Это дает возможность получить бетон с заданными параметрами. Марки бетона по прочности

Бетон PЗПортландцементПесокЩебень Ø 5-20 ммВода, л
Класс и маркаРасход, кг/м 3
B7,5; M100230850120140
B12,5; M150270835118140
B15; M200305825117140
B20; M250368775116140
B25; MЗ00425735108140
BЗ0; M400483695110140

Кроме того, свойства и качество бетона зависят от твердых заполнителей – щебня или гравия, коэффициент прочности которых должна быть в ≥ 2 раза марки портландцемента. Это условие необходимо соблюдать из-за того, бетон набирает 70% начальной прочности через четыре недели, но с этим значение прочности не стабилизируется, а продолжает усиливаться, только медленнее. Поэтому прочность заполнителей должна быть выше, чтобы с течением времени процесс набора прочности не останавливался. Также на набор прочности влияет и объем заполнителя в смеси – это до 50% на 1 м 3 бетона м200.

Свойства бетона

Ниже приведена таблица, в которой отражены основные характеристики разных марок бетона:

СвойстваЕдиница измеренияТротуарная плиткаБетонный растворПрессованное изделие из бетона
Маркакг/см 2M 300M 400M 400
Прочность по сжатиюМПаM 300M 300M 450
Морозостойкость, циклыЕдиничный цикл200M 200M 300
Влагопроницаемость%≤ 6≤ 6≤ 0,5
Коэффициент истираемостиг/см 20,80,70,4
Прочность по растяжениюМПа5,05,57,0

Минеральные наполнители в бетоне

Традиционные твердые заполнители минерального происхождения, которые добавляют в бетон м200 и/или выше:

  1. Известняк с прочностью по сжатию не больше 600-800 кГс/см 2 годен для приготовления бетонного раствора с маркой не больше м300;
  2. Гравий с прочностью по сжатию не больше 1000 кГс/см 2 – с ним готовится бетонный раствор марок M 200-M 450 любого объёма;
  3. Крошка гранита с прочностью по сжатию не больше 1400 кГс/см 2 – для высших марок цементобетона.

Заполнители для бетона

Очищенный или речной песок с диаметром зерен ≥ 2,5 мм, пропорции такие же, как и у заполнителя. Пропорции песка и –щебня могут изменяться в диапазоне 45-60 %, и, чем выше марка бетона в растворе, тем меньше понадобится песка на 1м 3 раствора.

Бетон, маркаКомпоненты в килограммах (частях)
Цемент, марка M 400ЩебеньПесокВода, в литрах
M 75170 (1)1053 (6)945 (5,4)210 (1,2)
M 100210 (1)1080 (5)870 (4)210 (1)
M 150235 (1)1080 (4,6)855 (3,6)210 (0,9)
M 200236 (1)1080 (3,8)795 (2,8)210 (0,7)
M 250332 (1)1080 (3,3)750 (2,3)215 (0,65)
M 300382 (1)1080 (2,8)705 (1,9)220 (0,6)

Вода добавляется маленькими объемами, смесь должна быть сухой, но все компоненты должны быть тщательно перемешаны. Так как портландцемент набирает воду в течение 1-2 часов, рекомендуется контролировать вязкость раствора и объем воды.

Класс прочностиМарка по прочностиКласс прочностиМарка по прочности
B 3,5M 50B 35M 450
B 5M 75B 40M 550
B 7,5M 100B 45M 600
B 10M 150B 50M 700
B 12,5M 150B 55M 750
B 15M 200B 60M 800
B 20M 250B 65M 900
B 22,5M 300B 70M 900
B 25M 350B 75M 1000
B 27,5M 350B 80M 1000
B30M 400

Марки портландцемента

Марки цемента

  1. Марка цемента M 200 чаще других применяется в индивидуальном строительстве и ремонте частных домов, так как стоимость бетона м200 за куб – самая низкая, а цемента на куб бетона м200 понадобится меньше. Кроме того, на цену влияет и вес 1 кубического метра цемента, а в марке M 200 этот показатель ниже. Также стоимость бетона м200 складывается и из логистических расходов, которые буду меньше за счет улучшенной сыпучести материала при погрузке и разгрузке, а также за куб с доставкой. Для Правильного приготовления раствора необходимо знать, сколько весит куб бетона, и соблюдать пропорции компонентов (смотрите таблицу выше). Как узнать, сколько нужно цемента на куб бетона M 200? К параметру 200 необходимо добавить коэффициент 30, то есть, Примерный вес куба бетона м200 будет около 230 кг;
  2. Цемент трёхсотой марки обладает оптимальным соотношением качества и стоимости. Он подходит для сооружения фундаментов разных конструкций, монолитных армированных перекрытий, дорожных полотен и тротуарных дорожек. Для приготовления одного кубического метра такого бетона нужен портландцемент массой примерно 350 кг;
  3. Более высокая марка бетона 400 получается из цемента M 400 – из нее готовят высокопрочный тяжелый бетон с увеличенной скоростью схватывания. Вместе с маркой M 400 в раствор добавляют гранитный щебень, пропорции компонентов были указаны выше. M 400 используется в строительстве стратегических объектов, гидротехнических сооружений, капитальных построек, рассчитанных на увеличенные механические нагрузки и давление веса;
  4. Марка M 500 предназначена для приготовления бетона специального назначения, поэтому его стоимость намного выше цен на остальные марки. Раствор на базе марки цемента M 500 применяют для строительства метро, в производстве массивных балок из железобетона, колонн и перекрытий, работающих под повышенными нагрузками, и гидротехнических объектов.

Как приготовить раствор

Приготовление бетона любой марки на стройплощадке всегда сопровождается некоторым нарушением соотношений компонентов по массе, так как самая популярная единица измерения сыпучих и жидких компонентов – ведро.

Как правильно и точно узнать пропорции компонентов, чтобы вычислить, сколько цемента содержит один куб бетона марки M 200 из цемента марки M 300:

  1. 25 ведер портландцемента весят 350 кг;
  2. Масса песка рассчитывается, как: 25 х 1,9 = 47,5 ведер или 670 кг;
  3. Вес щебня: 25 х 3,7 = 92,5 ведра или 1300 кг;
  4. 13 ведер с водой.

Таким образом, если известны пропорции и соотношение компонентов по массе и объему, необходимо всего лишь добавить требуемый объем песка, щебня, портландцемента и воды в ведрах, или любыми другими средствами.

Проверенные рецепты бетона-самомеса: распечатай и пользуйся

Когда нет возможности заказать миксер с бетоном, или вам требуется забетонировать конструкции небольших объёмов, на помощь приходит бетон-самомес. Вопрос лишь в том, как его приготовить? На первый взгляд кажется, что нет ничего проще. Берём «народную» пропорцию 1:3:5. Т.е., на одну часть цемента три части песка и пять частей щебня, воду добавим «по вкусу». Ещё плеснём в бетономешалку моющего средства. Ведь все так делают. И… вуаля, самомесный бетон готов. Не спешите! Чаще всего это приводит к проблемам. Фундамент залитый таким самомесом на следующий год осыпается. Отмостка трескается, а перемычки лопаются. Чтобы этого не произошло, читайте нашу статью, где собраны проверенные временем рецепты бетона-самомеса.

  • Пропорции прочного самомесного бетона
  • В каком порядке закидывать ингредиенты самомеса в бетоносмеситель
  • Сколько бетона за раз замесит бетономешалка
  • Почему бетон надо вибрировать, а не штыковать
  • Можно ли добавлять в бетон бытовые моющие средства

Рецепты для наполнения бетономешалки

По правилам, чтобы приготовить качественный самомесный бетон, нужно найти пустотность и влажность песка и щебня, который вам привезли на участок. Рассчитать насыпную плотность цемента и плотность цементного раствора. Скажите честно, кто этим будет заниматься на реальной стройплощадке? Особенно, если вам строят дом наёмные рабочие. Выход — распечатайте эту статью, и используйте как шпаргалку, при изготовлении самомесного бетона.

Хочу приготовить бетон-самомес. Есть бетономешалка на 132 л. Хочу узнать пропорции бетонной смеси для заливки фундамента на один замес, так чтобы не перегрузить бетоносмеситель.

На вопрос отвечают участники FORUMHОUSE.

Я делаю столбчатый фундамент под баню. Бетономешалка на 130 л. Пропорции смеси:

  • 2.5 совковых лопаты цемента марки М500;
  • 6 лопат песка;
  • 8 лопать гранитного щебня фракции 5-20;
  • немного воды.

Когда подрезал столбы по уровню, то бетон с трудом пилила мощная болгарка с алмазным диском диаметром 230 мм.

Я бетонировал столбы для забора. Бетон месил так:

  • 1 ведро цемента М500;
  • 2.5 ведра песка;
  • 4 ведра щебня фракции 5-20;
  • Воды меньше ведра.

Компоненты смеси брал из таблицы ниже.

Для себя сделал вывод — на самомес цемента не жалейте! Мои пропорции:

Бетон получается такой прочный, что его с трудом берёт перфоратор.

При изготовлении самомесного бетона самый важный фактор — водоцементное соотношение! В/Ц — это пропорция веса цемента и воды, которые используются для приготовления бетонной смеси. Наряду с маркой цемента, В/Ц определяет марку бетона на выходе. Водоцементное соотношение для бетонной смеси приведены в таблице ниже.

Ещё один вопрос задал пользователь с ником Serejik1987. У него есть бетономешалка на 155 л. Как приготовить в ней бетон М200, и сколько засыпать вёдер компонентов для полной загрузки.

Если мерить в вёдрах, то на грушу такого объёма советуют засыпать: 1:2,8:4,8, (цемент-песок-щебень), но я рекомендую другую пропорцию — 1:2:3. В крайнем случае — 1:2,5:4. Главное — не перелить воды! Чтобы смесь была удобоукладываемая, добавьте пластификатор.

А мне интересно, зачем в пропорции выше, уменьшать количество заполнителей? Что это даёт?

В гравитационной бетономешалке сложно провернуть смесь с водоцементным соотношением менее 0,6. Жесткие смеси крутят бетоносмесители принудительного действия, но они дорого стоят. Вот и приходится специально выбирать пропорции с большим содержанием цемента, чтобы на выходе получить фундамент, который не развалится через несколько лет.

А я готовлю самомес по рецепту ребят, которые занимаются изготовлением бетонных бассейнов. Пропорции бетона М350, на гранитном щебне фракции 5-20:

  • Цемент М400 – 20 л или 25 кг.
  • Песок речной, мытый – 30 л или 42 кг.
  • Щебень – 50 л или 67,5 кг.
  • Вода – 12 л.
  • Суперпластификатор – 0.2 л.

Раньше я заливал фундамент в пропорции 1:3:5, сейчас бы делал самомес в пропорции 1,5:3:5.

В каком порядке закидывать ингредиенты самомеса в бетоносмеситель

Объём бетономешалки у Липоня – 180 л. Грушу он грузил так:

  1. Залил 11 литров воды.
  2. Потом кинул в грушу 20 литров щебня.
  3. Затем 10 литров цемента.
  4. Добавил 20 литров песка,
  5. Залил 0.2 л пластифицирующей добавки.
  6. Закинул ещё 20 литров щебеня.
  7. Теперь Липоня засыпал ещё 10 литров песка.

В процессе замеса смотрим на густоту бетона. Добавляем воду из оставшегося литра. На финише закидываем 10 литров щебня. Компоненты сыпал ведрами по 10 л.

Я месил бетон в бетономешалке на 160 л. Пропорции смеси – 1:3:4. Ингредиенты закидывал ведрами по 12 л. Месил так:

  • Залил 8 л воды в бетономешалку.
  • Добавил жидкий пластификатор в воду.
  • Высыпал весь щебень. Он промоется водой и обеспылится.
  • Засыпал весь цемент. Жду 3 мин. При необходимости меняю угол наклона груши.
  • Засыпал 1-е и 2-е ведра песка. Жду. Если смесь густая, добавляю чуть-чуть воды.
  • Высыпаю 3-е ведро песка.

Проверенным составом бетона и алгоритмом засыпки компонентов в бетономешалку поделился участник FORUMHОUSE 7profy.

Бетон марки М250 и делаю в бетономешалке на 180 л. Состав бетона по весу:

  • цемент М400 – 16 кг;
  • песок речной – 32 кг;
  • щебень фракции 5-20 – 62 кг;
  • вода – 8 л.
  • пластификатор – 250 мл.

Теперь, этот же бетон по объему в 8 л ведрах:

  • цемент – 1,5 ведра;
  • песок – 3 ведра;
  • щебень – 5 ведер;
  • вода – 1 ведро;
  • пластификатор – 1 мерный стаканчик.

Ингредиенты в бетономешалку я загружаю так:

Смесь из груши не вытекает. На выходе с одного замеса получается до 70 л бетона. Смесь жесткая. Заливал с глубинным вибратором. Если щебень и песок совсем сухие, то добавляю 0.5 л воды. Если песок и щебень после дождя, то тогда убавляю 0.5-1.0 л воды. Если смесь в бетономешалке переливается, а не пересыпается, то воды достаточно.

Я, после экспериментов, пришел к такому составу: 1 ведро цемента + полведра воды + 2 ведра речного песка + 3 ведра щебня фракции 5- 20 мм. После набора прочности при ударе молотка бетон звенит. Но без пластификатора жесткую смесь не перемешать. Учтите это!

Бетон-самомес: блиц ответы на самые популярные вопросы пользователей FORUMHОUSE

1. Что сначала засыпать в бетономешалку: цемент, щебень и песок, а потом добавлять воду или, в первую очередь лить воду?

Мне кажется, что компоненты в бетономешалке надо мешать на сухую и только потом заливать воду. Так можно?

А вы попробуйте! При такой последовательности смесь получится комками и продолжительность замеса сильно увеличивается. Если начинать с воды, то всё происходит проще и быстрее.

Точно! Если засыпать сухую смесь в сырую грушу после первого замеса, то она прилипнет к стенкам и водой потом не размоется. Приходится отковыривать её лопатой.

Сначала лейте воду, потом добавьте щебень, цемент и песок. Смотрите, что происходит: вода смывает с щебня пыль и грязь. Цемент затем дробится и перемешивается щебнем с водой в однородную кашицу. Далее все перемешивается уже с песком. При таком способе замешивания ингредиентов не образуются комки и непромесы. Только песок не весь сразу добавляйте, а небольшими порциями и следите, чтобы предыдущая порция хорошо перемешалась.

2. Сколько бетона выдаст за раз бетономешалка?

У меня бетоносмеситель на 63 л. Сколько бетона он за раз смешает и сколько грузить компонентов в грушу?

Если у вас бетоносмеситель с обычной грушей, то у неё полезный объем менее половины. Даже 30 л мешать уже неудобно.

В бетономешалке гравитационного типа, её полный объём разделите на 3. Если объём груши разделить пополам, то излишки бетона будут вываливаться из груши.

Я вычитала в книжке «Памятку бетонщика» за 1955 год такие рекомендации: “Цемент дозируйте по весу, а остальные части по объёму”. На 1 куб бетона уйдёт:

3. Штыковать или вибрировать бетон?

Штыковать бетон – бесполезное занятие. К лил столбы и думал обойтись подручными средствами. Прицепил к перфоратору прут и включил ударный режим. Тольку никакого. Поштыковал, чуть лучше, но, всё не то. Пошел и купил самый дешевый глубинный вибратор. Залил бетон в яму, включил инструмент и бетон разом ушел вниз и заполнил весь объём. Рекомендую!

Я тоже лил столбы под забор. Рабочие говорят: «Мы проштыкуем так, что вибратору и не снилось!». Хорошо. Вывалили в яму 4 ведра жесткого бетона. Говорю им: «Штыкуйте!». Они бились с бетоном до посинения. Умяли кое-как. Клянутся, что больше смесь не уплотнить. Включил вибратор и в…жик, бетон пошел вниз. Через минуту вывалили ещё полведра бетона в яму. С тех пор рабочие к штыкованию охладели.

Выводы

В статье мы коснулись основных вопросов связанных с бетоном-самомесом. Теперь вы сможете приготовить его самостоятельно и, взяв пропорцию 1:2:3 (цемент-песок-щебень фракции 5-20) с В/Ц 0,6 – 0,65 не прогадать с прочностью. В заключении ещё один совет от FORUMHОUSE:

Этот «народный» метод практикуют при кладке лицевого кирпича, где от раствора не требуется высокая прочность, но он совершенно не годится для бетона. Для повышения подвижности жесткого бетона используйте пластификаторы. Стоят они недорого, а эффект вы увидите сразу и без ущерба для качества бетона в долгосрочной перспективе.

Всё что нужно знать о бетоне-самомесе собрано в одной теме: Бетон своими руками: расчёт пропорций, армирование, опалубка.

  • Опалубка: какая конструкция лучше или, Как и из чего делать опалубку для фундамента, чтобы её не распёрло при заливке бетона.
  • Вас достали высолы на кирпичной кладке? Узнайте: от чего они появляются, как убрать высолы с облицовочного кирпича, и к чему приведёт игнорирование этой проблемы.
  • Делаем армопояс в доме из газобетона. FORUMHOUSE предлагает рецепт «пирога» опалубки для изготовления армопояса в газобетонном доме.


Как правильно рассчитать пропорции бетона на 1м3: таблица и описание

Качество возведенной конструкции во многом зависит от используемого в процессе строительства бетона. Имея представление обо всех основных характеристиках необходимых материалов, а также владея данными об их расходах, вы сможете самостоятельно изготовить бетон, который станет надежной основой для реализации любого проекта. Используйте предложенную информацию, чтобы рассчитать пропорции бетона на 1м3: таблица и схемы значительно облегчат процесс.

Состав 1м3 бетона. Пропорции и расчеты

Говоря о бетоне, имеют в виду смесь таких составляющих компонентов: песок, цемент и щебень (также используют гравий, гальку или шлак). Иногда в бетон добавляют специальные добавки, так называемые пластификаторы, цель которых придать готовой смеси какие-либо уникальные свойства. При этом связующим звеном является именно цемент.

Готовый бетон обладает рядом качественных характеристик, влияющих на его прочность и долговечность, например, жаростойкостью и влагостойкостью. Рассмотрим основные факторы, влияющие на свойства готового продукта, а также как правильно определить соотношение компонентов для хорошего замеса.

Нужно точно понимать какое бетонное изделие вы хотите получить в итоге. В зависимости от сферы применения, свойства, а соответственно и пропорции используемых материалов, будут отличаться. Существуют предписания ГОСТ и СНиП, которые регулируют состав компонентов в бетоне. Рассмотрим расчёты для всех стандартных видов изделий:

  • для простых изделий используется стандартный бетон М100. Чаще всего для его приготовления применяют цемент марок 300 или 400. Расчет производится из показателя 225 кг сухой смеси на 1м 3 бетона;
  • цемент марки М150 используется для производства железобетонных изделий. В этом случает также рекомендован цемент марок 300 и 400, однако его расход на 1м 3 бетона составляет 265 кг. Также нередко можно встретить изделия из бетона М200. Пропорции в этом случае составляют 310 кг цемента на 1 м 3 бетона;
  • следующий по характеристикам – бетон М300. Пропорции для этого вида смеси существенно отличаются. Для него уровень расхода цемента марки 500 или 600 составит 380 кг.

Полезный совет! Если вам необходимо изготовить напряженный армированный бетон, всегда используйте цемент марки 600, из расчета расхода 480-530 кг на 1м 3 .

Создание фундамента из бетона. Водоцементное соотношение и пропорции бетона на 1м3: таблица

Для расчета пропорций бетона на фундамент, необходимо учитывать такой показатель как водоцементное соотношение. Это расчет количества необходимой воды на 1 м 3 бетона.

Водоцементное соотношение для бетона М100 составляет 0,68 при условии использования цемента 200-й марки; 0,75 для марки 200 и 0,8 для 300-й. Для изготовления бетона М150 из 200-го цемента, водоцементное соотношение будет представлять 0,5 (если использовать марки цемента 250 и 300, то 0,57 и 0,66, соответственно).

Водоцементное соотношение для бетона М250 составляет 0,35 для 200-й марки; 0,43 для 250; 0,53 для 300; 0,58 для 400; 0,64 для 500 и 0,66 для 600. Пропорции бетона М400 предполагают использование цемента 400 в соотношении 0,35, или же 250 – 0,43; 300 – 0,53; 400 – 0,58; 500 – 0,64; 600 – 0,66.

Водоцементное соотношение вычисляется по формуле, однако используя предложенные цифры, вы без труда сможете определить необходимые пропорции состава бетона для фундамента.

Песок и щебень: таблица пропорций приготовления бетона

Еще один расчет, который необходимо произвести – объем песка или щебня для получения того или иного бетона. Это несложно вычесть путем простых математических действий: от 1м 3 готовой бетонной смеси отнимается сумма объемов цемента и воды.

Полезный совет! Помимо прочего, на состав и процентное соотношение будет оказывать крупность используемого материала (песка или щебня).

Пропорции бетона в ведрах

Нередко можно встретить вычисление пропорций бетона на фундамент в ведрах. Это означает, что в качестве измерительной тары используется обычное ведро. Такой метод нередко применяется для небольших замесов своими руками. Чтобы знать, сколько ведер того или иного материал вам понадобится, нужно понимать, что все составляющие компонента имеют разный вес. Так, масса ведра цемента – это примерно 15 кг, песка – 19 кг, а щебня — около 17,5 кг. Хотя не стоит забывать, что размер песка и щебня напрямую влияет на их массу.

Для того, чтобы бетонное изделие, сделанное своими руками, могло служить вам долгие годы, не теряя своей прочности и характеристик, в процессе приготовления бетона старайтесь максимально соблюдать пропорции и не использовать дешевые некачественные материалы.

Пропорции бетона | Статьи

В этой небольшой статье рассказывается об основных свойствах и характеристиках бетона, его укладке, сроках схватывания и других потребительских качествах этого незаменимого в строительстве материала.

Состав бетона.

Готовая бетонная смесь, она же товарный бетон — подвижный состав из четырёх основных компонентов, замешиваемых в определенной пропорции: цемент, щебень, песок, вода. Аналогичная смесь, но без использования щебня, называется цементным раствором либо пескобетоном, правда в пескобетоне применяется песок более крупной фракции (модуль крупности). Весовое соотношение компонентов для приготовления бетонной смеси примерно таково: Цемент -1 часть, Щебень 4 части, Песок — 2 части, Вода — 1/2 части. Например: цемент — 330 кг., щебень — 1250 кг., песок — 600 кг., вода — 180 литров. Естественно, эти цифры весьма приблизительны и на деле зависят от многих факторов таких как: требуемая марка бетона, марка цемента, характеристики щебня и песка, использования пластификаторов других добавок, и т.д. и т.п.
Например: при использовании цемента м-400, бетон с таким составом покажет марку м-250. При цементе м-500, марка бетона будет уже м-350. Цифры условны! При производстве бетона на бетонном заводе, учитывается не один десяток параметров и характеристик.

Цемент и вода — главные компоненты бетона. Собственно на них возложена основная функция — связать все компоненты в единую монолитную структуру. Соблюдение правильной пропорции этих двух компонентов (водоцементное отношение) — главнейшая задача в производстве бетона. Речь ведь не только о количестве воды и цемента, введённых в бетон. С этим, как раз, всё просто. Важно учесть все нюансы: влажность щебня и песка, их влагопоглощение и т.д. и т.п. Цемент, взаимодействуя с водой (гидратация цемента), способен схватываться и твердеть, образуя так называемый цементный камень. Многие наверно сталкивались с этим самым камнем, когда откупоривали мешок цемента, оставшийся лежать в сарае с прошлого лета 🙂 Ну и что же получается. Цемент и вода — сами себе камень. Как-будто — вполне самодостаточный материал. А вот и нет. Цементный камень при затвердевании деформируется. Объемная усадка достигает 2 мм/м. Вроде и не много, но из-за неравномерности этих усадочных процессов, возникают внутренние напряжения, появляются микротрещины. Эти микротрещины практически не видны, но прочность и долговечность цементного камня снижается. Для того, чтобы уменьшить эти деформации, в состав вводят заполнители:


Крупные заполнители: щебень


Мелкие заполнители: песок

Роль этих заполнителей — создать структурный каркас, который воспринимает усадочные напряжения, и в результате — готовый бетон даёт меньшую усадку. Также увеличивается прочность и модуль упругости бетона (снижение деформаций конструкции под нагрузкой), уменьшает ползучесть (когда бетон необратимо деформируется при длительных нагрузках). Заполнители существенно удешевляют бетон. Ведь цемент стоит значительно дороже чем щебень и песок.

В начале статьи Вы читали о примерных пропорциях основных компонентов бетонной смеси. Давайте теперь переведём весовые доли в объемные и посчитаем:


Цемент 0.25 куб.м (330 кг. Насыпная плотность цемента в среднем 1300 кг на куб.м)


Вода 0.18 куб.м. (180 литров.)


Щебень 0.9 куба (1250 кг. При насыпной плотности 1350 кг на куб.м.)


Песок 0.43 куба (600 кг. При насыпной плотности 1400 кг/куб.)

Итого, если всё разложить и разлить по разным посудинам, мы получим общий объем 1.76 кубометра! Как же это всё помещается в один куб бетона. Просто. Берём литровую банку и засыпем её щебёнкой по горлышко. Между отдельными зернами будет много свободного места (межзерновая пустотность). И вот эту саму пустотность мы засыпаем двумя стаканами песка, одним стаканом цемента, и стаканом воды, при этом, потряхивая и помешивая. И всё влезет! В результате подобных манипуляций мы получаем совершенно плотную субстанцию. Все поры заполнены, все заполнители упёрлись друг в друга. Если бетон не шевелить и не трогать, он довольно быстро начинает твердеть (застывать). При вибрировании, перемешивании, бетон снова переходит в пластичное состояние. (тиксотропия). Как Вы только от него отстанете — он снова начнёт превращаться в плотную упругую массу.

Прочность (марка) щебня должна быть примерно в 2 раза больше, нежели расчётная марка бетона. Делается это из-за того, что проектная (28 суточная) марка бетона — всегда значительно ниже, чем его реальная прочность, которую он наберёт через полгода или год. Прочность же щебня — не растёт со временем. Вот их и нивелируют. В любом случае, всё это делается в виде не нормируемого проектными требованиями запаса прочности. Как говорится — на всякий пожарный. Вот выкладка из ГОСТ 26633-91, про соотношение марки щебня и марки бетона.

Кратко об основных видах щебня.


Известняк. Средняя прочность (марка) 500-600. Отдельные виды известняковых наполнителей (до 800) вполне пригодны чтобы изготовить бетон вплоть до марки М-350, но в виду более низкой морозостойкости, известняк как правило используют для производства бетонов марок м-100 — м-300.


Гравий. Прочность основных видов гравия (800-1000) достаточна для изготовления марки бетона вплоть до М-450. (обычно, не выше м-400) Самый распространённый вид наполнителя. Обладает всеми хорошими качествами, необходимыми для получения большинства бетонных смесей. Для индивидуального строительства я выбрал бы его. Бетон на гравии — дешевле. Для тех марок бетона, которые используют в частном строительстве — прочность более чем достаточна. Да и радиационный фон меньше чем у гранита.


Гранит. Наиболее прочный из перечисленных наполнителей. Из дополнительных преимуществ перед предыдущими имеет более высокие показатели (м до 1400), низкое водопоглощение и в следствие этого — повышенную морозостойкость. Например, при строительстве дорог, современными ГОСТ-ми разрешено использовать только гранитный щебень.

Конечно, не всё так просто со щебнем. Есть ещё много нюансов, вносящих свои коррективы: лещадность, % зерен слабых пород и т.д. и т.п. Но об этом, как-нибудь в следующий раз.

Во всех информационных материалах, прайс-листах и т.д. бетон указывается с цифровым и буквенным индексом. Обязательно указываются марка М-, класс В-, подвижность П-, водонепроницаемость W-, морозостойкость F-. Давайте вкратце расскажу про каждый из этих параметров.

Прочность, марка, класс бетона. Методы определения. Контрольные пробы.

Выбор и покупка конкретного вида и марки (класса) бетонной смеси определяется Вашим проектом. Если проекта нет, то можно доверится рекомендациям Ваших строителей. Они могут посоветовать бетон той или иной марки или класса. Если у Вас есть некоторые сомнения в компетентности Ваших строителей, можно попытаться разобраться самостоятельно.

Цифры марки бетона (м-100, м-200 и т.д) обозначают (усреднённо) предел прочности на сжатие в кгс/кв.см. Проверку соответствия необходимым параметрам осуществляют сжатием специальным прессом кубиков или цилиндров, отлитых из пробы смеси, и выдержанных в течение 28 суток нормального твердения.

В современных проектах бетон обозначается в классах. В общем и целом, класс бетона — параметр сродни марке, но с небольшими нюансами: в марках используется среднее значение прочности, в классах — прочность с гарантированной обеспеченностью с коэффициентом вариации 13%. Впрочем, для Вас это не имеет какого-либо значения. Не буду Вам морочить голову с коэффициентами вариации прочности, и прочими техническими нюансами. В проектной документации, если она у Вас конечно имеется, должно быть указано: бетон какого класса должен использоваться. В соответствии со СТ СЭВ 1406, все современные проектные требования к бетону указываются именно в классах. Уж не знаю — насколько это соблюдается, потому как 90% строительных организаций почему-то заказывают бетон в марках :-).

Для Вас главное — чтобы привезённый Вам бетон соответствовал той марке, которую Вы собственно заказывали. Проверить конечно можно, но не сразу. Что стоит сделать.

При разгрузке бетона, взять пробу и отлить пару-тройку кубиков размером 10х10х10 см. или 15х15х15 см. Для этого можно сколотить из дощечек специальные формы нужного размера. Перед тем как залить бетон в формы, ящички желательно увлажнить, дабы сухое дерево не забрало много влаги из бетона, тем самым отрицательно воздействуя на процесс гидратации цемента. Залитую смесь необходимо проштыковать куском арматуры или чем-то подобным: потыкать в смесь, как толкут картошку пюре, чтобы в залитой пробе не образовались незаполненные места (раковины), вышел лишний воздух, и смесь уплотнилась. Так же можно уплотнить смесь ударами молотка по бокам ящичков. Отлитые кубики храните при средней температуре (около 20 градусов) и высокой влажности (около 90%).

Через 28 дней Вы можете с чистой совестью принести всё это великолепие в любую независимую лабораторию. Вам там всё это подавят и вынесут вердикт — соответствует ли бетон заявленной марке или не соответствует. Впрочем, не обязательно ждать 28 дней, для этого существуют промежуточные стадии твердения в возрасте 3, 7, 14 суток. В течение первых 7 дней бетон набирает около 70% расчётной прочности (естественно при условии нормальной температуры) В сырое и холодное время года сроки схватывания бетона и период его твердения существенно увеличиваются.

Какие нюансы могут возникнуть при заборе и хранению проб-кубиков:


Не разбавляйте бетон водой в автобетоносмесителе.


Берите пробы непосредственно с лотка бетоносмесителя.


Тщательно уплотняйте бетонную смесь в формах штыкованием


Храните пробы в надлежащих условиях: лучше в прохладном подвале, или просто в тени.

Вот и всё про кубики. Если Вы вдруг забыли взять пробы, а знать, что у Вас всё в порядке хотелось бы, — обратитесь в независимую лабораторию, которая может провести замер прочности на месте. Для этого существуют так называемые неразрушающие методы исследования прочности: проверка методами ударного импульса прибором склерометром. В народе называется — простучать бетон. Так же используются ультразвуковые и иные методы определения прочности.

Удобоукладываемость, подвижность, осадка конуса.

Все эти термины, в общем, говорят об одном и том же. Обозначение в накладных и паспортах бетонной смеси в виде буквы П с коэффициентом от 1 до 5 ( пример: П-3) либо так: осадка конуса 10-15 см. Для практического применения важно знать следующее:
Для стандартных монолитных работ применяется бетон подвижности П-2 — П-3. При заливке густоармированных конструкций, узких опалубок, колонн и прочих подобных узких полостей, труднодоступных для заполнения бетоном, желательно использовать бетон с подвижностью п-4 и выше (осадка конуса 16-21 см). Подобная бетонная смесь может называться — литой бетон. (в эпоху развитого социализма литым считался бетон с осадкой конуса от 12 см.- чуть больше чем п-2) Подобные виды бетонной смеси хорошо переносят укладку в опалубку, без использования вибратора. Аналогичную подвижность бетона стоит выбрать, если для укладки бетонной смеси используется бетононасос

Есть ещё такое понятие как — жесткость бетона. Обозначается буквами Ж1-Ж4. В основном, когда говорят о жестком, имеют в виду тощий бетон, используемый, в основном, в дорожном строительстве. Он отличается пониженным содержанием воды и цемента. Про сверхжесткие виды я писать не буду. Вряд ли Вам это понадобится.

Для облегчения заливки и при отсутствии на объекте вибраторов, прорабы и строители зачастую увеличивают подвижность, разбавляя бетон в бетоносмесителе водой, что делать категорически не стоит! Ибо, водоцементное отношение — одна из ключевых пропорций, от которой напрямую зависит окончательная прочность бетона. Причём, даже незначительное разбавление смеси водой способно существенно снизить прочность на одну-две марки. Бетон расчётной марки м300, в результате разбавления водой, может легко показать м100 м200.

Увеличение подвижности бетонной смеси до показателей П4, П5, осадка конуса более 16 см. достигается исключительно за счёт применения на заводе добавок пластификаторов. Только так можно получить литой бетон, предназначенный для укладки в опалубку с плотным каркасом из арматуры, либо при монолитных работах с применением бетононасоса. Разбавив бетонную смесь водой, Вы непременно ухудшите его качество.

Коэффициент морозостойкости бетона.

Обозначается буквой F с цифрой от 25 до 1000 и говорит о количестве циклов замораживания-размораживания, при котором бетон сохраняет свои изначальные прочностные характеристики (с допустимыми отклонениями). Какую практическую ценность этот параметр имеет для Вас? Ну если кратко, то: циклы замораживания оттаивания — это переходы влагонасыщенной бетонной конструкции из мокрого состояния, в состояние замерзшее и обратно.

Чем это чревато. Возьмём стандартную картину: увлажнение бетонных конструкций на примере капиллярного подсоса влаги из земли фундаментом дома. Вода, тающий снег, влажная земля и т.д., заполняет микропоры бетона по принципу, сродни фитилю в керосинке. Бетон здесь выступает в роли впитывающей губки. Затем эта вода в микропорах замерзает, а замерзнув — расширяется, раздирая всё, что ей мешает. Вот тут то и происходят изменения в структуре бетона: микротрещины и т.д. Причём, в следующий раз, вода, заполнив эти микротрещины и замерзнув, разорвёт их ещё больше.

Безусловно, всё происходит не так страшно, как я тут расписал, ведь фундаменты, как правило, защищены гидроизоляцией, отмостками, гидрофобизаторами. Увлажнение происходит не так интенсивно, не на всю толщину бетона и т.д. Но хотелось бы, чтобы Вы более-менее понимали природу процесса. На бетонных заводах и бетоносмесительных узлах различных комбинатов, производящих ЖБИ, испытания контрольных образцов проводятся в критических режимах. Бетонный кубик буквально вымачивают в воде ( или спец растворе) с влагонасыщением по полной программе, и замораживают разом до -18. И так — с промежуточными замерами, до достижения критической точки, а именно — потери расчётной прочности. Количество таких циклов вода-лёд и есть коэффициент F. В таком режиме частично работают фундаменты на влагонасыщенных грунтах, опоры мостов, стоящие в воде, ну и прочие гидротехнические сооружения.

Для увеличения морозостойкости, бетонные заводы используют различные добавки в бетон, например воздухововлекающие и т.д. Но морозостойкость, увеличенная воздуховолекающими добавками (сверх нормы для этой марки бетона) — уменьшает его прочность. Там нашли тут потеряли. Наиболее хороших результатов в увеличении морозостойкости можно добиться, используя в затворении бетона гидрофобный или напрягающий цемент. Все основные циклы происходят осенью и весной, когда перепады температур происходят каждый день из плюса в минус и обратно. В обычном строительстве, среднестатистическая морозостойкость F100-F200.

Коэффициент водонепроницаемости.

Обозначается в накладных или паспортах на бетон, как коэффициент с буквой W. (W4,W8,W12, от 2 до 20). Водонепроницаемость бетона — способность не пропускать через себя воду под давлением. Если интересно узнать про методы опеределения водонепроницаемости — почитайте ГОСТ 12730.5—84. Для увеличения водонепроницаемости (сверх стандартной нормы для этой марки), в бетон, при его изготовлении вводят уплотняющие и гидрофобизирующие добавки, либо используют в затворении смеси всё тот же гидрофобный или напрягающий цемент. В чем актуальность данного параметра для частного строительства? У бетона с высоким коэффициентом W есть пара плюсов таких как:


Возможность изготовления, без дополнительной гидроизоляции, подвалов в районах с высоким уровнем грунтовых вод. Актуально, если заливка полов и стен произведена грамотно, без швов и перерывов в бетонировании. Вроде бы казалось, почему бы не проще сделать стандартную гидроизоляцию? Однако, качественно и технично её сделать — не так просто. Я не беру в расчёт профессионалов этого дела. Их мало, услуги их недёшевы. Чаще всего заказчику приходится иметь дело со всезнающими и всеумеющими строителями, от которых и стоит ожидать различных сюрпризов в процессе эксплуатации построенного. Скорее всего, косяки Вам налепят в области сопряжения пола и стен. Потому как — сначала сделают, а потом подумают, как всё это склеить.


Такой бетон, в принципе не боится морозов-оттепелей. Коэффициенты морозостойкости у него, очень высоки и рассчитаны на многолетнее использование в обычных условиях. Это может быть особо актуально для открытых, незащищённых конструкций, таких как бетонные дорожки, отмостки, ленты заборов, а так же, для свайных фундаментов на влагонасыщенных грунтах.

Есть альтернатива в виде самостоятельного использования специальных добавок, но где гарантия, что добавки введены в нужной пропорции, что они тщательно перемешались в бетоне. Опять же сомнение — добавлялись ли они вообще, или строители про них забыли, а затем вылили под кустик… Довольно часто, сам процесс строительства контролируется заказчиком весьма поверхностно. В основном контролируют результат, а что и как там внутри — мало кому известно. Об этом узнают лишь потом — в процессе эксплуатации: там потекло, а тут лопнуло. Ну да не будем о грустном.

В принципе, я упомянул лишь основные, но на мой взгляд — самые главные свойства бетона, которые могут быть актуальны для частного застройщика. На самом деле, бетон обладает ещё множеством различных свойств и характеристик.


В результате разбавления бетона водой на объекте. Сиё действо является родовой болячкой кустарей-прорабов и их подопечных. Густой бетон укладывать тяжелее чем жидкий. Как говорят на стройке: Водички добавь, он сам разольётся. Этого делать категорически не стоит. Избыточная вода в бетонной смеси не вступает в в хим. реакцию с цементом (цемент забирает столько воды, сколько ему необходимо для гидратации). Эта лишняя вода остается в бетоне в свободном виде. В дальнейшем, она испаряется, высыхает, а в структуре бетона образуются пустоты и поры. Они и снижают марочную прочность бетона.


В результате так называемого сваривания бетона, что чаще всего происходит из-за увеличенного времени миксера в пути, несвоевременной разгрузки, жаркой погоды и т.д.


В результате некачественного уплотнения бетонной смеси (укладка без вибрирования). В не уплотнённой бетонной смеси содержится существенное количество воздуха. Эти воздушные поры, пустоты, раковины, если их не ликвидировать вибрированием, могут существенно снизить марку бетона.

Пропорция бетона для перекрытия: марки, состав

За качество и надежность плит перекрытия отвечают правильные пропорции бетона, которые строго регламентируются государственным нормативом СП 82—101—98 «Приготовление и применение растворов строительных». Грамотно подобранное соотношение компонентов для бетонной смеси отвечает за технические характеристики материала, такие как прочность, стойкость перед специфическими условиями и длительность эксплуатационного срока.

Марки: какие используются?

Применение существующих сортов бетонных смесей для замеса раствора зависит от целевого назначения сооружаемого объекта. Чаще всего в производстве перекрытий используются марки М300—350. Маркировка в виде цифр на уже готовом продукте несет информацию о количестве использованного цемента и информирует об уровне прочности материала на сжатие. М300 основывается на крупных типах наполнителя, таких как гравий или гранит. Основа раствора — цемент, выступающий в роли вяжущего вещества, популярным считается портландцемент с маркировкой М400. Марка бетона и сфера актуального использования готового строительного продукта:

Марка бетона подбирается в зависимости от целевого использования готового сооружения, например, М350 применяется для создания фундамента.
  • М250. Используется при изготовлении деталей перекрытия, эксплуатация которых не предполагает больших силовых нагрузок. А также целесообразно применять для монолитного фундамента, возведения лестничных прогонов, вспомогательных стен.
  • М350. Идеальный вид сорта, применяемый при производстве плиты перекрытия, организации фундаментальных основ. Смесь марки М350 имеет свойства выдерживать довольно большие механические нагрузки и не терять при этом начальных свойств.
  • М400. Сверхпрочный бетон, который отличается от других видов высочайшими характеристиками и достаточно высокой ценовой политикой. Для отстроя жилых помещений не применяется, сфера применения — перекрытия для укладки аэродромных полос, гоночных трасс и дорог с повышенной нагрузкой.
  • М450—500. Вид прочнейшего материала, применяется для производства деталей перекрытия для сооружений зданий, эксплуатируемых в специфических условиях, например, гидротехнических конструкций.

Состав: специфика рецептуры

Плита перекрытия — это основная конструкция возведенного здания. Качество изготовленной детали напрямую зависит от сорта бетона и правильно подобранных ингредиентов во время замеса раствора для предполагаемой заливки.

Для получения качественного раствора рекомендовано пропорционально включать в замес необходимые вещества.

На качество материала для создания конструкций перекрытия влияют многие аспекты. Прочностные особенности материала напрямую зависят от марки и количества основных и вспомогательных ингредиентов. Немаловажный фактор — применение точно указанного в рецептуре объема воды, чрезмерное влагонасыщение приведет к тому, что бетон будет долго застывать, слишком малое грозит растрескиванием отстроенной конструкции в период эксплуатации. Непропорциональное включение других компонентов, таких как песок, щебень, гравий или портландцемент способствует быстрому износу отстроенного объекта. Бетон без щебня для производства перекрытий, что будут эксплуатироваться в специфических условиях, включает такие связывающие компоненты, как:

  • гипс;
  • разновидности жидкого стекла;
  • металлургические шлаки от продуктов переработки;
  • компоненты, содержащие щелочь;
  • известь.

Состав смеси для деталей перекрытия определяет тип материала, который бывает:

  • Тяжелым. Тип наполнительного ингредиента — щебень, гранит, известняк.
  • Легким. Заполнитель пористой структуры для производства пенобетона и газобетона.

В состав растворов для организации элементов перекрытий, эксплуатация которых предполагает специфические условия, добавляются различные модификаторы, которые наделяют материал морозоустойчивыми и влагоустойчивыми эффектами. Марка бетона для фундамента габаритного здания проходит обязательную процедуру армирования, для одноэтажных помещений такой момент необязательный.

Расчеты: подробная информация

При строительстве перекрытий используются пропорции для бетонов различной маркировки, представленные в таблице:

Марка бетонаПропорции (в соотношении цемент, песок, щебень)
М2501: 2,6: 4,5
М3001: 2,4: 4,3
М3501: 2: 4
М4001: 1,6: 3,2
М450—5001: 1,4: 2,9
При расчете компонентов ориентируются на такие показатели, как фракционность заполнителя и текучесть смеси.

Для правильного расчета компонентов при производстве элементов перекрытий учитываются показатели таких параметров, как:

  • фракционность наполнителей;
  • плотность образовавшегося раствора;
  • устойчивость к предполагаемым нагрузкам;
  • текучесть смеси;
  • влагоустойчивые и морозоустойчивые возможности.

Расчет нужной пропорции основывается на удельной массе вяжущего вещества — цемента. Например, 42 литра бетона М300 получается из 10 л цементной смеси при соблюдении частей 1:1,7:3,8. Ту же массу основного вещества выдаст 32 л раствора М400 при соотношении 1:1,3:2,6.

Приготовление раствора

Многие предпочитают при строительстве малогабаритных построек самостоятельно изготавливать все требующиеся элементы для проведения работ, в том числе фундаментные и другие детали перекрытия. Кроме грамотно примененной пропорции для производства бетона, важно еще и качественно замесить раствор. Вручную добиться качественного результата сложно, поэтому лучше использовать бетономешалку.

различных марок бетона, их прочность и выбор для строительства

Какая марка бетона?

Марка бетона определяется как минимальная прочность, которой должен обладать бетон после 28 дней строительства при надлежащем контроле качества. Марка бетона обозначается приставкой M к желаемой прочности в МПа. Например, для марки бетона с прочностью 20 МПа она будет обозначаться как M20, где M означает Mix.

Эта марка бетона перерабатывается в различные пропорции смеси.Например, для бетона M20 пропорция смеси будет 1: 1,5: 3 для цемента: песка: крупных заполнителей.

Как выбрать подходящую марку бетона для строительства?

Марка бетонной конструкции выбирается исходя из требований проектирования конструкции. Есть два типа бетонных смесей: номинальная смесь и расчетная смесь.

Бетонные смеси номинального размера — это бетонные смеси, которые обычно используются для мелкомасштабного строительства и небольших жилых домов, где расход бетона невысок.Номинальная смесь обеспечивает запас прочности против различных проблем контроля качества, обычно возникающих при строительстве бетона.

Конструкционные бетонные смеси — это бетонные смеси, пропорции смеси которых получены в результате различных лабораторных испытаний. Использование бетонной смеси для дизайнерских смесей требует хорошего контроля качества при выборе материалов, смешивании, транспортировке и укладке бетона. Этот бетон предлагает пропорции смеси, основанные на местном доступном материале, и обеспечивает экономию при строительстве, если выполняется крупномасштабное бетонное строительство.

Таким образом, в крупных бетонных строительных проектах используется дизайнерская бетонная смесь.

Таким образом, можно выбрать подходящую марку бетона, исходя из требований конструкции. Номинальные смеси для марок бетона, таких как M15, M20, M25, обычно используются для мелкомасштабного строительства.

Большие конструкции имеют высокие требования к прочности, поэтому они подходят для более высоких марок бетона, таких как M30 и выше. Пропорции смеси этих бетонов основаны на дизайне смеси.

Обычные марки бетона и их применение

Обычные марки бетона — М15, М20, М25 и др.Для обычных цементно-бетонных работ обычно используется М15. Для железобетонных конструкций используется бетон марки не ниже М20.

Марка бетона Соотношение смеси Прочность на сжатие
МПа (Н / мм 2 ) фунт / кв. Дюйм
Бетон нормальный
M5 1: 5: 10 5 МПа 725 фунтов на кв. Дюйм
M7.5 1: 4: 8 7,5 МПа 1087 фунтов на кв. Дюйм
M10 1: 3: 6 10 МПа 1450 фунтов на кв. Дюйм
M15 1: 2: 4 15 МПа 2175 фунтов на кв. Дюйм
M20 1: 1.5: 3 20 МПа 2900 фунтов на кв. Дюйм
Стандартная марка бетона
M25 1: 1: 2 25 МПа 3625 фунтов на кв. Дюйм
M30 Дизайн Микс 30 МПа 4350 фунтов на кв. Дюйм
M35 Дизайн Микс 35 МПа 5075 фунтов на кв. Дюйм
M40 Дизайн Микс 40 МПа 5800 фунтов на кв. Дюйм
M45 Дизайн Микс 45 МПа 6525 фунтов на кв. Дюйм
Марка высокопрочного бетона
M50 Дизайн Микс 50 МПа 7250 фунтов на кв. Дюйм
M55 Дизайн Микс 55 МПа 7975 фунтов на кв. Дюйм
M60 Дизайн Микс 60 МПа 8700 фунтов на кв. Дюйм
M65 Дизайн Микс 65 МПа 9425 фунтов на кв. Дюйм
M70 Дизайн Микс 70 МПа 10150 фунтов на кв. Дюйм

Подробнее:

Какие типы бетона? Каковы их приложения?

Калькулятор бетона — расчет бетона для перекрытий, балок, колонн и опор

Бетон — определение, компоненты, производство, конструкция и изделия

Почему выбирают железобетон в качестве строительного материала для конструкции?

Что такое фундамент в строительстве? Назначение и функции фондов

Количество материалов на кубический метр пропорций бетона и растворной смеси

Соотношение бетонной смеси

| Что такое соотношение бетонной смеси

Самый важный момент в этой статье

Что такое соотношение бетонной смеси?

При производстве бетона важно использовать правильные пропорции смешивания бетона, чтобы производил прочную, долговечную и прочную бетонную смесь.

Для изготовления бетона вам понадобятся четыре основных материала : цемент, песок, заполнитель, вода и добавочная смесь .

Это соотношение заполнителя, песка и цемента в бетонной смеси является важным фактором при определении прочности на сжатие бетонной смеси .

Эта бетонная смесь с соотношением из 1 части цемента, 1 части песка и 3 частей заполнителя даст бетонную смесь с плотностью приблизительно от 2500 до 3000 фунтов на квадратный дюйм.

При смешивании воды с цементом, песком и заполнителем образуется паста, которая связывает материалы вместе до тех пор, пока смесь не затвердеет.

Эти прочностные свойства бетона обратно пропорциональны водоцементному соотношению .

По сути, это означает, что чем больше воды вы используете для смешивания этого бетона, тем слабее бетонная смесь.

Чем меньше воды вы используете для смешивания бетона, тем прочнее бетонная смесь.

Точные пропорции смешивания бетона могут быть достигнуты путем измерения этого сухого материала с помощью ведер или другого измерительного устройства.

Измеряя пропорции смешивания, вы получите однородную бетонную смесь на протяжении всего проекта.

Соответствующий код: IS 456-2000 для таблицы соотношений бетонных смесей

Также прочтите: Методы проектирования | Разница между методом рабочего напряжения и методом предельных состояний

Тип бетонной смеси.

В соответствии с Кодексом IS 456-2000 три разные части соотношения бетонной смеси

Номинальное соотношение бетонной смеси

Стандартное соотношение смеси

Высокопрочное соотношение бетонной смеси

4 Номинальное соотношение бетонной смеси

Соотношения

Спецификации для бетона предписывают эти пропорции цемента, песка, заполнителей и воды.

Эти смеси с фиксированным соотношением цемента, песка и заполнителя , обеспечивающие достаточную прочность, называются номинальными смесями.

Номинальные бетонные смеси отличаются простотой и в нормальных условиях имеют запас прочности выше указанного.

Однако из-за изменчивости ингредиентов смеси номинальный бетон для данной удобоукладываемости сильно различается по прочности.

Это номинальное соотношение смешивания обычно используется для небольших конструкций.

В этих типах смесей эти номинальные соотношения бетонной смеси и пропорции компонентов бетона указаны с префиксом и указаны как .

Пример формулы бетонной смеси:

Пропорция смешивания бетона M 15 бетона (1: 2: 4) здесь (1 количества цемента, 2 количества отправляемого материала, 4 количества заполненного количества, Здесь количество, измеренное коробкой для смешивания), также называемые рецептами для бетона

Например, M15 (1: 2: 4), количество цемента, песка (мелкого заполнителя) и крупного заполнителя дозируется по объему в соответствии с фиксированным соотношением 1: 2: 4.От приведенной выше таблицы до марки М25 эти пропорции бетона называются номинальной бетонной смесью.

Различные типы марок бетона, как показано ниже

MPR

903 (Н / мм 2 )

Марка бетона

Соотношение смешивания

psi
Нормальный класс бетона
M5 1: 5: 10 5 МПа 725 psi
M7.5 1: 4: 8 7,5 МПа 1087 psi
M10 1: 3: 6 10 МПа 1450 psi
M15 1: 2: 4 15 МПа 2175 psi
M20 1: 1.

Отношение пролета / глубины для бетонных балок и плит

Инженер-строитель Vol. 61A № 4, апрель 1983 г.

Отношение пролета к глубине для бетонных балок и плит

А.Н. Бил Бакалавр (Eng) CEng MICE, R.H. Thomason & Partners

Сводка

Хотя обработка прогиба в CP110 в целом приветствуется как усовершенствование довольно грубых правил для пролета / глубины и в CP114, применять их на практике очень сложно. Проектировщик не может проверить соотношение пролета / глубины до тех пор, пока проектирование секции не будет почти завершено, и, если возникает проблема, у него / нее мало указаний относительно того, какие возможности существуют для ее решения путем перепроектирования с уменьшенным напряжением стали.

Изменяя коэффициенты модификации CP110 в единицах M / bd², а не As / bd², можно значительно упростить представление и отделить влияние фронта расчетных напряжений стали от различных M / bd². Это позволяет заранее проверить соотношение пролета / глубины при расчете, а также проясняет влияние проектирования на различные напряжения стали. Представлены таблицы для определения отношений пролета / глубины для конструкций по CP114 и CP110, а также таблица приблизительных соотношений пролета / глубины для предварительного проектирования плит.

Введение

Контроль прогиба бетонных балок и плит — это приблизительный бизнес, который традиционно охватывался применением соотношений пролета / глубины. В CPI 14 [1] это простой вопрос — соответствующее соотношение пролета / общей глубины выбирается из таблицы 13, в зависимости от концевых или краевых условий, напряжения стали и бетона и от того, проектируется ли балка или плита. Такой подход в большинстве случаев дает удовлетворительные результаты; однако при определенных обстоятельствах возникали проблемы, и в результате в CP110 [2] был предложен новый, более сложный подход.В CP110 по-прежнему указаны базовые отношения пролета к эффективной глубине (таблицы 8 и 9), но затем они изменяются с помощью ряда факторов, которые относятся к напряжению в стали и количеству стали. Существует дополнительная таблица факторов, учитывающих влияние любой присутствующей компрессионной стали (Таблица 11).

Подход CP110 обычно приветствуется как более правильный, но это очень громоздкий процесс для использования при проектировании. В идеале требуемый пролет / эффективная глубина должны быть доступны в начале расчета, чтобы можно было выбрать правильный размер сечения в самом начале, а проектирование было быстрым и экономичным.За счет довольно грубой готовности — и — , CP114 действительно достигает этого. Однако в CP110 допустимый пролет / эффективная глубина известна только тогда, когда известны предоставленная площадь стали и напряжение стали — , поэтому его можно проверить только после того, как проектирование секции практически завершено. На практике это означает, что проектировщик работает над двумя или тремя модификациями секции для достижения оптимальных результатов или же следует излишне консервативному подходу, превышающему сейчас довольно часто можно увидеть плиты, спроектированные без надобности с пролетом / эффективной глубиной из 20 просто для того, чтобы избежать проблем, возникающих позже при проектировании.Поскольку уменьшенное напряжение стали увеличивает допустимое соотношение, но сопутствующее увеличение площади стали снижает допустимое соотношение, разработчику также далеко не ясно, какие возможности (если таковые имеются) существуют для решения проблемы прогиба путем проектирования с использованием стали с уменьшенным содержанием. стресс.

Подход, позволяющий определять глубину сечения на ранних этапах расчета и проясняющий взаимосвязь между расчетным напряжением стали и допустимым пролетом / эффективной глубиной, будет явным улучшением.

Как соотношение пролета / глубины контролирует отклонение?

Для симметричной упругой балки, поддерживающей распределенную нагрузку, прогиб можно рассчитать исключительно на основе экстремального напряжения изгиба волокна, глубины сечения и пролета. Если допустимое напряжение изгиба известно, а предел прогиба составляет некоторую часть пролета (например, L / 360), то можно установить постоянное соотношение пролета / глубины, которое обеспечит соблюдение этого предела. Предел пролета / глубины напрямую зависит от напряжения изгиба.

Таким образом можно спроектировать стальные балки

, и соответствующие соотношения пролета / глубины приведены в таблице в BCSA / Constrado Handbook [3] (таблица, стр. 16). Однако в железобетоне ситуация сложнее:

* не ведет себя строго эластично;

* глубина нейтральной оси не постоянна, но зависит от количества арматуры;

* Хотя бетон в зоне растяжения мало влияет на предел прочности, он может значительно уменьшить прогиб.

В этих обстоятельствах коэффициенты, приведенные в CP114, Таблица 13, могут рассматриваться как очень приблизительные; переменные коэффициенты в таблице 10 CP110 предназначены для более полного охвата возможных вариаций. Однако, как указывалось ранее, это достигается только за счет больших неудобств конструкции.

Упрощенное отношение пролета CP110 к эффективной глубине

Коэффициенты, приведенные в таблице 10 CP110, зависят от напряжения стали и площади стали.Для прямоугольного сечения их можно пересчитать и представить в единицах M / bd², а не 100As / bd для заданного напряжения стали. (Коэффициенты рассчитываются по формуле 1 / (0,225 + 0,00322fs — 0,625 log (bd / l00As)) с примененным пределом 20, где fs — растягивающее напряжение стали.) Результаты приведены в таблице 1 для 140N. / мм² (низкоуглеродистая сталь CP114), 145 Н / мм² (низкоуглеродистая сталь CP110), 230 Н / мм² (высокопрочная сталь CP114) и 267 Н / мм² (высокопрочная сталь CP110). M — рабочий (неучтенный) момент, но конечное (факторное) значение можно принять равным 1.В 5 раз больше.

Если мы вычтем коэффициенты 1,25, 1,24, 1,04 и 0,96 из значений для 140 Н / мм², 145 Н / мм², 230 Н / мм² и 267 Н / мм², соответственно, результаты будут такими, как в Таблице 2.

Можно видеть, что один набор коэффициентов можно использовать для всех напряжений стали с небольшой ошибкой, при этом базовые отношения пролета / глубины указаны для основных расчетных напряжений стали.Это позволит выбрать сечение перед проектированием арматуры и четко покажет влияние изменения расчетного напряжения стали.

Компрессионная арматура редко используется для контроля прогиба; он почти всегда используется как средство увеличения момента сопротивления секции при тяжелой арматуре. CP110 Таблицы 10 (сталь на растяжение) и 11 (сталь на сжатие) показывают, что, когда присутствует сталь с высоким пределом текучести на растяжение более 0,75%, любое снижение коэффициента, вызванное увеличением стали на растяжение, будет приблизительно отменено, если соответствующее количество сжатия была представлена ​​сталь.Таким образом, для стали с растяжением 0,75% при 238 Н / мм² (fy = 410 Н / мм²) коэффициент равен 1,09; для 2% стали на растяжение плюс 1,25% стали на сжатие коэффициент будет 0,84 x 1,29 = 1,08. Аналогично, для стали 1,5% при 238 Н / мм² коэффициент равен 0,9; для 2% стали на растяжение и 0,5% стали на сжатие коэффициент будет 0,84 x 1,14 = 0,96. Если вспомнить, что компрессионная сталь используется в качестве средства контроля прогиба очень редко (и дорого!), Становится очевидным, что в этих случаях было бы вполне достаточно рассчитать эффективное M / bd² для прогиба как Mc) / bd ², где Mc — моментное сопротивление сжатой стали.Это достаточно быстро и точно для всех обычных целей, при условии, что результирующее эффективное значение M / bd² не будет меньше 1,5. CP110 Table 11, конечно, может использоваться вместо нее, если это более удобно.

Второе соображение, связанное с компрессионной сталью, заключается в том, что любая сильно армированная балка обязательно будет иметь звенья и, следовательно, несколько резьбовых стержней в зоне сжатия. Таким образом, несмотря на то, что соотношение пролета / глубины для одинарной армированной балки с M / bd² = 4 было представлено, оно представляет только академический интерес и может быть исключено из практических таблиц.Тем не менее, это может быть необходимо, если эффект сжатия стали рассчитывается с использованием таблицы 11 CP110, и поэтому он включен в скобки в следующих таблицах.

Описанный подход дает результаты, которые полностью согласуются с требованиями CP110, и поэтому таблицы 3 и 4 могут использоваться непосредственно для проектирования вместо CP110, таблиц 8, 9, 10 и 11, с определенными преимуществами в удобстве и скорости для проектировщика.

ПРИМЕЧАНИЕ. Для пролетов более 10 м они должны быть уменьшены в 10 м / пролет.

ПРИМЕЧАНИЕ: Если присутствует компрессионная сталь, ее момент сопротивления можно вычесть при расчете Mu / bd² для прогиба, при условии, что результирующее значение Mu / bd² не меньше 2,5. В качестве альтернативы можно использовать таблицу 11 CP110.

Требования

CP114 быстро и легко применить в существующем виде, но в некоторых случаях они считаются подозрительными, а в других могут быть более чем ограничений. Таблицы 5 и 6 предоставляют удобные средства проверки конструкции CP114 на соответствие критериям CP110.

ПРИМЕЧАНИЕ: Для пролетов более 10 м их следует уменьшить в 10 м / пролет.

ПРИМЕЧАНИЕ. Если присутствует компрессионная сталь, ее момент сопротивления можно вычесть при расчете M / bd² для прогиба, при условии, что результирующее значение M / bd² будет не менее 1,5. В качестве альтернативы можно использовать таблицу 11 CP110.

Т- балки и плиты оребрения

Поскольку вышеизложенное состоит только из пересмотренного представления данных в CP110, оно может применяться непосредственно для разработки этого Кодекса.Однако есть еще один аспект конструкции отклонения, который следует учитывать — , и здесь можно улучшить подход CP110. Это касается балок и ребристых плит Т-.

Пункт 3.3.8.2

CP110 требует, чтобы допустимое отношение пролета к эффективной глубине было уменьшено до 0,8 от нормального значения для балок с шириной ребра br менее 0,3 ширины полки b. Это постоянное сокращение вряд ли будет полностью правильным как для балок с легким армированием () (где важна жесткость бетона), так и для балок с сильным усилением (где это не так).

На отклонение влияют три вещи:

  • смещение нейтральной оси при разном% стали;
  • кривизна усадки;
  • повышение жесткости из-за бетона в зоне растяжения.

(1) и (2) более или менее независимы от br / b (при условии, что нейтральная ось находится во фланце). (3) можно считать прямо пропорциональным br / b. Таким образом, если значения сведены в таблицу для br / b = 0 и br / b = 1, промежуточные значения могут быть получены линейной интерполяцией.

В статье, где были получены таблицы пролета / глубины CP110, Биби [4] вычислил эффект игнорирования жесткости зоны растяжения бетона. В результате множители уменьшаются в диапазоне от 0,75 (0,25% стали) до 0,98 (3% стали). Благодаря упрощенному представлению, приведенному здесь, они теперь могут быть включены в практические таблицы вместе с рассчитанными ранее. Они представлены в таблице 7.

Ширина промежуточных ребер может быть интерполирована.

Как можно видеть, коэффициент уменьшения CP110 0,8 для br / b = 0,3 является разумным для нижнего диапазона значений, но более- консервативным для более высоких (M / bd²> 1,0). С более простым представлением, приведенным здесь для коэффициентов модификации, довольно легко представить и использовать эту более точную трактовку. Казалось бы, это улучшение метода, приведенного в CP110.

Отношения пролета / эффективной глубины для предварительного проектирования

Прогиб влияет на конструкцию балок только в некоторых случаях, и для них указанные базовые соотношения должны быть удовлетворительными для предварительного проектирования.Однако конструкция плит почти всегда зависит от прогиба, и очень важно иметь возможность оценить толщину плиты на ранней стадии подготовки схемы. Хотя подход, изложенный в этой статье, более удобен для проектирования, чем в CP110, ему все еще не хватает простой непосредственности отношения пролета плиты к толщине в CP114 для подготовки структурной схемы. Толщина плиты зависит от расчетного напряжения стали, а также от приложенной нагрузки.

В Таблице 8 приведены приблизительные отношения пролета к эффективной глубине для различных форм конструкции и нагрузки для целей предварительного проектирования.Толщина плиты, определенная на основе этих данных, не потребует небольшой корректировки в окончательном проекте. Они были рассчитаны для пролетов до 10 м, как для «легкой» нагрузки 2,5 кН / м² (эквивалент внутренней нагрузки плюс легкие перегородки на непосредственно готовой плите), так и для «тяжелой» нагрузки 10 кН / м². (эквивалент нагрузки складского помещения 7,5 кН / м² плюс стяжка 5 кН / м² плюс легкие перегородки). Значения для непрерывных перекрытий основаны на моментах из таблицы 15 CP114, а значения для двустенных плит и плоских плит основаны на моментах из таблиц 12, 13 и 18 CP110.Предполагается, что (а) прочность стали составляет 460 Н / мм² или 425 Н / мм² в зависимости от размера стержня и (b) покрытие составляет 15 мм или размер стержня, в зависимости от того, что больше. Значения были рассчитаны для плит толщиной 100 мм, 200 мм и 300 мм, и представленные результаты представляют собой округленные средние значения отношения допустимого пролета к эффективной глубине, определенного в соответствии с таблицами 3, 4, 5 и 6 настоящего документа. Принимая во внимание разницу между общей и эффективной глубиной, можно видеть, что эти отношения довольно близки к значениям CP114, немного ниже для простых опор и выше для непрерывных плит.

ПРИМЕЧАНИЯ:

  • Двухсторонние перекрытия были рассчитаны для квадратной панели. Для панели 2 x 1 следует использовать значение односторонней панели — , а значения интерполировать для промежуточных пропорций.
  • Конструкция плоской плиты должна основываться на размерах большего пролета. Для наружных панелей, примыкающих к стенам, используйте 85% — 90% указанного соотношения.
  • Для ребристых плит используйте 85% — 90% указанных соотношений.
  • Для расчета напряжений из низкоуглеродистой стали передаточные числа могут быть увеличены на 15%.

Благодарности

Выражаем благодарность доктору А. В. Биби из Ассоциации цемента и бетона за его сотрудничество и помощь, а также господину В. Е. А. Скиннеру.

Список литературы

1. CP114 Использование железобетона в конструкциях зданий, Лондон, Британский институт стандартов, 1969.

2. CP110 Использование бетона в конструкциях: Часть 1, Лондон, Британский институт стандартов, 1972 г.

3. Справочник по металлоконструкциям — таблиц свойств и безопасных нагрузок , BCSA & Constrado, Лондон, 1978.

4. А. В. Биби: «Модифицированные предложения по контролю прогибов с помощью отношения пролета к эффективной глубине», Технический отчет, Ассоциация цемента и бетона, апрель 1971 г.

«Верулам», инженер-строитель, Vol.62А № 3, март 1984 г.

Контроль прогиба в железобетоне

Короткая статья «Отношения пролета / глубины для бетонных балок и плит» г-на Аласдера Била, опубликованная в журнале «Structural Engineer» за апрель 1983 г., посвящена обработке прогиба в CP 110 и 114. Г-н Фрэнсис Бил написал нам, выражая Большой интерес к документу и предположение о том, что в Таблицу 8 потребовались некоторые изменения. В своем письме, которое цитируется ниже, г-н Бил представил пересмотренную таблицу, показывающую в целом более низкие значения рекомендуемых соотношений пролета / глубины, вместе с некоторыми дополнительными комментариями:

Я воспользовался возможностью изменить некоторые рисунки, чтобы отразить состояние торцевых панелей или угловых панелей во всех случаях, так что доступен готовый инструмент для проектирования, а в случае плоских плит я предполагал, что они будут опираться на колонны.

Мое внимание было привлечено к необходимости значимого сравнения CP114 и CP110 из-за кажущейся невозможности спроектировать плоские плиты для CP110 и получить результаты, к которым привыкли. Плоская плита, разработанная для CP114, требует плиты 250, но для требований CP110 будет иметь толщину 300 при использовании стали 460.

Я использовал нагрузку 10 кН / м² для сравнения, потому что она достаточно распространена, разрешена CP114 (то есть любая нагрузка) и устраняет искажение при более низких нагрузках, вызванное точкой отсечки таблиц CP110.

Следует отметить, что во всех случаях CP110 является более обременительным, и эффект может быть очень большим (увеличение толщины плиты на 25%) для двухканальных плит с простой опорой.

Во время написания, я думаю, настало время упомянуть о практическом эффекте Таблицы 19 «Номинальное покрытие до усиления» CP110. Чтобы получить разумное покрытие в плитах (15 мм), необходимо использовать бетон марки 30, эффективно как минимальную марку бетона, независимо от того, требуется ли это по другим соображениям или нет.Можно спроектировать очень большое количество рабочих мест с использованием бетона 21 Н / мм². Если принять во внимание другие соображения, это означает, что в типичном контракте на плоскую плиту будет использоваться примерно на 40 Н / мм² больше цемента при проектировании по CP110.

Г-н Бил завершает свое письмо вопросом, не пора ли выбросить CP114. Мы передали поднятые вопросы г-ну Билу для комментариев. Он ответил следующее:

(1) Более низкие отношения пролета к глубине, вычисленные мистером Билом, в основном связаны с использованием им условий «концевого пролета» и «углового пролета» для непрерывных плит.На значения для более низких нагрузок также влияет тот факт, что таблица 10 CP110 дает значения множителя только до процентного содержания стали 0,25%, хотя предел множителя 2,0 достигается только при гораздо меньшем процентном содержании, чем это для стали с высокой текучестью. Использование истинных значений для стали менее 0,25% во многих случаях дает гораздо лучшие результаты.

(2) Это хороший вопрос, должны ли соотношения для непрерывных плит основываться на внутренних или краевых отсеках. Испытательные расчеты показывают, что соответствующие соотношения для концевых и угловых пролетов непрерывных плит составляют от 87% до 93% от соотношения для внутренних пролетов.Лучшим решением может быть табулирование значений внутренних пролетов с учетом того, что соотношения для концевых пролетов и угловых пролетов непрерывных плит могут быть приняты равными 90% от этих значений с незначительной ошибкой.

(3) При сравнении CP110 с CP114, нагрузка, приложенная мистером Билом в 10 кН / м², является высокой, а соотношение толщина / эффективная глубина 1,15 является более подходящим.

(4) Вероятно, было бы лучше, если бы, как предлагает г-н Бил, можно было указать точное, а не приблизительное соотношение пролета / глубины.Это можно сделать, если таблица представлена ​​с точки зрения общей, а не наложенной нагрузки обслуживания плиты; Биби [1] представил предложения такого рода, и они были включены в проект пересмотренной CP110 [2]. Однако ими все еще довольно неудобно пользоваться. Лучшим решением может быть таблица отношений пролета / глубины для общих (постоянных + динамических) нагрузок (скажем) 5, 10, 20 кН / м² при предпочтительном рабочем напряжении стали. Рассчитанные значения представлены в Таблице Vl.

Примечания:

(i) Двусторонние плит перекрытия были рассчитаны для квадратной панели.Для панели 2 x 1 следует использовать значение односторонней панели и значения, интерполированные для промежуточных пропорций.

(ii) Коэффициенты для всех непрерывных плит указаны для внутренних пролетов. Для концевых и угловых проемов передаточные числа должны быть уменьшены до 90% от заявленных значений.

(iii) Для конструкции с напряжениями из низкоуглеродистой стали коэффициенты могут быть увеличены на 15%. Для стали с пределом текучести 425 Н / мм², с рабочим напряжением 210 Н / мм² (CP114), 247 Н / мм² (CP110), соответствующие соотношения могут быть увеличены на 3%.

(iv) Для ребристой плиты это соотношение следует уменьшить на 85- 90%, в зависимости от ширины ребра.

(v) Конструкция плоских перекрытий должна основываться на размерах более длинных панелей.

(vi) Для не предусмотренных нагрузок и схем конструкция должна быть основана на таблицах 3 или 5 и 7 в исходном документе.

(5) Если мы возьмем общую (постоянную + приложенную) нагрузку на плиту 10 кН / м² в качестве типичной и соотношение толщины / эффективной глубины 1,15 и рассмотрим угловые пролеты и концевые пролеты, как предлагает г-н Бил, то тогда сравнение с CP114, с Напряжение из низкоуглеродистой стали (140 Н / мм²) дает результаты, показанные в Таблице V2 для отношений пролета / толщины.

Как видно, различия небольшие. Если, как обычно, значения CP114 для высокопрочной стали приняты равными 85% от значений для низкоуглеродистой стали, различия здесь также будут небольшими. (Плоские плиты для CP114 являются аномалией, где, похоже, не делалось допуска для повышенных напряжений в стали.) Однако, как указывает г-н Бил, значения CP110 становятся более консервативными при больших нагрузках.

(6) Влияние CP110 на толщину плиты, покрытие и бетонные смеси, упомянутые г-ном Билом, поднимают несколько новых вопросов, некоторые из которых выходят за рамки данной статьи.Некоторые изменения в CP110 понятны, а другие нет — , поэтому его увеличение толщины сляба в основном требуется для уравновешивания влияния повышенных эксплуатационных напряжений стали на прогиб. Эти повышенные эксплуатационные нагрузки стали также увеличивают покрытие, необходимое для соответствующей огнестойкости — , таким образом, экономия стали CP110 в некоторой степени компенсируется увеличением количества бетона. Тем не менее, требование CP110 о повышенном номинальном укрытии с использованием бетона 21 Н / мм², используемого внутри помещений, трудно понять из-за отсутствия наблюдаемых проблем с обслуживанием (вероятно, большинство используемых плит имеют бетон 1: 2: 4 (21 Н / мм²), с крышкой ½ дюйма (13 мм).Проект пересмотра CP110 пошел дальше — было указано, что это фактически запретит бетон 1: 2: 4 в строительных работах!

Следует ли выбросить CP114? Это гораздо более широкая дискуссия, включающая множество вопросов, некоторые из которых обсуждались в другом месте [3]. Если представленные здесь предложения будут приняты, они могут быть использованы как в CP110, так и в CP114.

Список литературы

1. Биби, A.W .: «Отношения пролета / эффективной глубины: преобразование метода CP110», Concrete, 13, No.2 февраля 1979 г.

2. CSB / 39 Использование бетона в конструкциях, Лондон, Британский институт стандартов, февраль 1982 г.

3. Бил, А. Н .: «Что не так с расчетом коэффициента нагрузки?», Proc. ICE, Часть 1, ноябрь 1979 г.

Коэффициент Пуассона для высокоэффективного бетона

  • Исследование цемента и бетона 29 (1999) 16471653

    0008-8846 / 99 / $ см. Предварительную статью 1999 Elsevier Science Ltd. Все права защищены. PII: S 0 0 0 8 — 8 8 4 6 (9 9) 0 0 1 5 9 — 3

    Коэффициент Пуассона высокоэффективного бетона

    Бертил Перссон *

    Лундский технологический институт, Отдел строительных материалов, Лундский университет, П.О. Box 118, SE-221 00 Lund, Sweden

    Получено 21 октября 1998 г .; принята к печати 6 июля 1999 г.

    Реферат

    В этой статье излагается экспериментальное и численное исследование коэффициента Пуассона высокоэффективного бетона, подвергнутого воздушному или герметичному отверждению. Были изучены восемь качеств бетона (около 100 цилиндров и 900 кубов) как в молодом, так и в зрелом состоянии. Бетоны содержали от 5 до 10% микрокремнезема, а два бетона дополнительно содержали воздухововлекающие вещества. Параллельно проводились исследования прочности и внутренней относительной влажности.Результаты показывают, что коэффициент Пуассона высокопрочного бетона немного меньше, чем у бетона нормальной прочности. Также представлены анализы влияния зрелости, типа заполнителя и влажности на коэффициент Пуассона. Проект проводился с 1991 по 1998 год. 1999 Elsevier Science Ltd. Все права защищены.

    Ключевые слова:

    Ползучесть; Модули упругости; Долгосрочная работа; Механические свойства; Высокопроизводительный бетон

    1. Введение

    При низком напряжении (до 60% прочности на сжатие) за упругой деформацией в бетоне нормальной прочности (NSC) параллельно следует поперечная деформация величиной от 0 до 0.15 и 0,20. При высоком напряжении микротрещины начинают развиваться параллельно направлению напряжения. Из-за этого микротрещины поперечная деформация увеличивается при повышении напряжения. Близко к пределу прочности коэффициент Пуассона быстро увеличивается, пока не произойдет разрушение. Поперечное расширение увеличивает податливость (т.е. деформацию единичного напряжения,

    e

    /

    s

    ) НБК во время ползучести. Боковое напряжение также влияет на величину модуля упругости.С учетом Пуассона ra-

    tio,

    n

    этот модуль будет уменьшен на

    n

    2

    .

    (1) где

    y

    обозначает коэффициент Пуассона,

    e

    ax

    обозначает осевую деформацию образца, а

    e

    lat

    обозначает поперечную деформацию образца во время испытание на ползучесть.

    Существует немного отчетов о коэффициенте Пуассона высокоэффективного бетона (HPC).Брукс [1] и Брукс и Хайнс [2] изучали коэффициент Пуассона для Compresit, формально известного как компактно-армированный композит (CRC), о котором сообщил Бач [3]. Расчеты проводились на основе экспериментов на простом HPC с прочностью 159 МПа и модулем упругости 58 ГПа и на армированном волокном CRC с прочностью на сжатие 195 МПа и модулем упругости

    n

    e late ax

    — —— =

    62 ГПа. Соотношение вода / цемент в HPC составляло 0,22. Содержание паров кремнезема составляло 24% в расчете на содержание цемента.Был рассчитан коэффициент Пуассона (

    n

    5

    0,19 для простого HPC и

    n

    5

    0,22 для усиленного HPC). В настоящей работе изучалась аналогичная HPC, поэтому результаты предыдущих исследований, упомянутых выше, представляют большой интерес.

    2. Методы

    2.1. Материал и подготовка образцов

    Химический состав и характеристики цемента указаны в таблице 1 [4]. Характеристики агрегатов приведены в таблице 2 [5].Составы смесей представлены в таблице 3 [4]. Условием хорошей обрабатываемости была линейно-логарифмическая градуированная кривая частиц в свежем HPC. В таблице 4 показано количество исследованных особей (всего 1002). Все цилиндры имели диаметр 0,055 м и длину 0,30 м. Запечатанные образцы были покрыты бутилкаучуком толщиной 3 мм. Таким же образом были приготовлены кубики диаметром 100 мм для исследования прочности и относительной влажности (RH). Измерительное оборудование было подключено к стальным деталям, отлитым в цилиндрах, как показано на рис.1. Окружающий климат поддерживался при температуре 20

    8

    ° C и относительной влажности 55%.

    2.2. Методы

    2.2.1. Условия

    Были исследованы как отверждаемые на воздухе, так и герметичные HPC. Термопары непрерывно регистрировали внутреннюю температуру

    * Корреспондент. Тел .:

    1

    46-46-222-4591; факс:

    1

    46-46-222-4227.

    Адрес электронной почты

    : [email protected]

  • 1648

    B.Persson / Cement and Concrete Research 29 (1999) 16471653

    образец. Внутренняя температура варьировалась от 19 до 21,

    ,

    , 8,

    ,

    ° С. Измерители точки росы провели испытание на относительную влажность после калибровки в соответствии с ASTM E 104-85 [6]. В начале испытаний возраст HPC составлял 1 или 2 дня (напряжение / кубическая прочность

    5

    0,6) или 2 или 28 дней (напряжение / кубическая прочность

    5

    0,3). Окружающая относительная влажность поддерживалась на уровне 55%.

    2.2.2. Нагрузка и оптимизация машины MTS (Material TestingSystem, Миннеаполис, Миннесота, США)

    Боковая деформация, а также осевая деформация были изучены в ходе 66-часовых краткосрочных испытаний на ползучесть (рис. 1). Боковая деформация измерялась в одной точке, а осевые деформации наблюдались с трех сторон образца. Данные о деформации собирались быстро во время процедуры загрузки и разгрузки. Данные были собраны в течение первых 2 с продолжительности нагрузки, чтобы получить коэффициент Пуассона. Боковые и осевые деформации также наблюдались во время разгрузки краткосрочного тестирования.Таким образом, были получены два коэффициента Пуассона,

    n

    , для каждого состава смеси HPC и каждого возраста (таблица 3), один при загрузке и один при разгрузке после 66 часов ползучести. Обычно измеренное значение

    n

    стабилизировалось в пределах 0,4 с при нагрузке и 0,7 с после разгрузки [7,8]. Чтобы избежать динамических эффектов на

    n

    , расчет

    n

    был выполнен для измерений через 1,5 с после загрузки и 1,8 с после разгрузки (время ограничено).

    Перед началом испытаний на ползучесть, прочность была получена на кубиках из той же партии HPC, что и цилиндры. Прочность из той же партии HPC была также записана, когда HPC был 28 дней (таблица 3). Мощность машины МТС была доведена до достаточного уровня. В качестве подготовки к процедуре загрузки дополнительный идентично подготовленный образец был помещен в машину MTS. Скорость нагружения составляла 1800 МПа / с. Использовалась специальная процедура:

    Таблица 1 Химический состав цемента (%) [4]

    CaO SiO

    2

    Al

    2

    O

    3

    Fe

    2

    O

    3

    MgO K

    2

    O Na

    2

    O SO

    3

    Удельная поверхность (Блейн) Плотность

    64.9 22,2 3,36 4,78 0,91 0,56 0,04 2,00 302 м

    2

    / г 3220 кг / м

    3

    Таблица 2 Характеристики агрегатов [4,5]

    Материал / характеристики

    Модуль упругости (ГПа)

    (МПа)

    Предел прочности при разделении (МПа)

    Потери воспламенения (%)

    Кварцитовый песчаник, Хардеберга 60 330 15 0,3

    Гранит, Норркпинг 61150 10 1,7 Дробленый песок, Блста 59 230 14 2

    Таблица 3 Пропорции смеси и основные пропорции характеристики ГПВ (кг / м

    3

    сухой материал) [4] Номер смеси

    Материал 1 1 (3) 2 3 4 5 6 7 8 Кварцит (811 мм) 460 440 Кварцит (1116 мм) 460 440 965 910 1010 985 1065 Песок, storp (08 мм) 800 780 820 790 750 75 5690 Гранит, Norrkping (1116 мм) 1030 Gravel, Toresta (816 мм) 1095 Природный песок, Blsta (08 мм) 780 780 Cement, Degerhamn Std.430 410 440 445 455 495 530 490 545 Гранулированный микрокремнезем 21 21 44 45 50 51 55 Суспензия микрокремнезема 23 49 Воздухововлекающий агент 0,02 0,04 0,02 Суперпластификатор 2,6 2,8 4,5 3,8 5,1 4,6 7,6 8,6 10,8 Соотношение вода / цемент 0,38 0,38 0,37 0,37 0,33 0,31 0,30 0,30 0,25 Содержание воздуха (% по объему) 4,8 7,0 1,1 4,0 0,9 1,1 1,2 1,0 1,3 Содержание заполнителя 0,74 0,74 0,73 0,72 0,75 0,71 0,70 0,72 0,70 Соотношение заполнитель / цемент 4 4 4,1 3,8 4,1 3,6 3,3 3,7 3,2 Плотность (кг / м

    3

    ) 2335 2245 2440 2360 2510 2465 2480 2500 2490 Кусок (мм) 140140160170 45200130 45 45 Прочность при высыхании за 28 дней (МПа) 69 50 85 69 89 99106112 Прочность при высыхании за 1141 год (МПа) 70 54 89 76 97109 112121 Прочность при высыхании за 1253 года (МПа) 69 91 97 115121 127 Прочность в герметизированном состоянии (МПа) за 28 дней (МПа) 89 62105 95 101121126122 Прочность в герметизированном состоянии за 1291 год (МПа) 101 65 117 98 115 129 145 131 Прочность в герметизированном корпусе за 1542 года (МПа) 112115 Прочность в герметичном корпусе за 13 лет (МПа) 123102141 Прочность в герметичном корпусе за 1454 года (МПа) 102113129

    Com Прочность на сжатие наблюдается для куба 100 мм.

  • B. Persson / Cement and Concrete Research 29 (1999) 16471653

    1649

    Положение образца было измерено в машине MTS, чтобы убедиться в его правильности.

    Нагрузка 0,1 кН и колебания

    z

    1 Гц были приложены к образцу дополнительного цилиндра.

    Устанавливались усиление, скорость загрузки и скорость торможения нагружения в машине MTS.

    Погрузка в машине МТС зафиксирована.Линейно-регулируемые дифференциальные трансформаторы (LVDT)

    зафиксировали деформацию цилиндрического образца в компьютере.

    И нагрузка, и деформации были нанесены на карту, чтобы гарантировать отсутствие перегрузки.

    Перед окончательной загрузкой был проведен краткий анализ предварительного испытания.

    2.2.3. Начало испытаний

    Для начала испытаний было выполнено несколько шагов:

    LVDT были прочно соединены со стальными деталями, отлитыми в цилиндр (рис.1).

    Положение цилиндра в машине MTS было отрегулировано во избежание эксцентриситета.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *