Пропорции арболита: Состав арболита и правильные пропорции

Содержание

состав, пропорции, технология изготовления в домашних условиях

Арболитовые блоки – это строительный материал, применяемый для возведения малоэтажных домов (не более 2 этажей), хозяйственных построек, перегородок и в качестве теплоизоляции. Для его изготовления используются такие компоненты как портландцемент, древесные отходы, добавки и вода. Пропорции зависят от требуемой марки. Он бывает теплоизоляционным и конструкционно-теплоизоляционным. В отличие от опилкобетона для арболита не нужен песок.

Компоненты и пропорции

В состав входит цемент, заполнитель, добавки и вода. Для изготовления качественных блоков рекомендуется использовать портландцемент марок М300-М500, но не ниже. Для теплоизоляционных понадобится М300, конструкционно-теплоизоляционных – от М400. Расход зависит от требуемой марки по прочности и вида наполнителя.

В качестве заполнителя используется щепа хвойных и твердолиственных пород деревьев, также может добавляться кора и хвоя, но в небольших количествах – 5-10 %. Щепки могут быть заменены на костру льна. Нельзя использовать отходы от лиственниц или только изготовленные. Щепки можно разбавлять опилками или древесной стружкой в соотношении 1:1. Перед применением свежей щепы ее оставляют на 3 месяца вне помещения, чтобы разрушились вещества, содержащие сахар, или обрабатывают известью.

Главное требование к наполнителю – это размер. Он не должен быть слишком крупным, так как при попадании на него воды он начинает разбухать. В итоге щепки разламываются. Оптимальным размером является длина до 2,5 см, ширина 1 см, толщина от 2 до 5 мм, форма игольчатая.

Если используется костра льна, то следует сначала ее подготовить, так как она содержит большое количество сахара, который ухудшает адгезионные характеристики цементного порошка. Для этого ее поливают известковым молоком в пропорции 1 часть извести к 4 частям костры. После чего оставляют на двое суток. 2 раза в день кучу перемешивают, чтобы вся костра льна равномерно пропиталась известковым молоком. Эта обработка не только улучшает адгезию наполнителя с вяжущим компонентом, но и уменьшает расход последнего.

Для достижения необходимой прочности и плотности в состав смеси из щепы и портландцемента вносятся химические добавки. Благодаря им разрушаются сахара, находящиеся в древесных отходах, и значительно ускоряется процесс схватывании раствора, улучшается показатель водонепроницаемости и увеличивается срок эксплуатации.

К добавкам относятся хлористый кальций, жидкое стекло, известь и сернокислый алюминий. Чаще всего используется хлористый кальций и сернокислый алюминий. Если добавить алюминий, то прочность блоков значительно возрастает, так как этот компонент устраняет все негативные последствия сахара.

Пропорция добавок не должна превышать 2-4% от всего объема вяжущего наполнителя. Их можно использовать как по отдельности, так и комбинировать, например, хлористый кальций с алюминием в соотношении 1:1. Перед тем как добавить в состав, их разводят водой. Расход материалов зависит от требуемой марки по прочности.

Воду для замешивания смеси можно брать практически любую, главное, чтобы она была без грязи и других подобных примесей. Температура должна быть не ниже +15°С. Иначе значительно снизится скорость процесса гидратации цемента.

Перед тем как сделать арболитовые блоки своими руками, нужно рассчитать пропорции. Для этого рекомендуется умножить число требуемой марки на 17, например, если необходим М25, то 17*25=425 кг цемента потребуется для изготовления 1 м3.

Приблизительное соотношение компонентов следующее: 1 часть древесных отходов, 1 часть вяжущего порошка и 1,5 части добавок, разведенных водой. Для замешивания смеси арболита марки М15 потребуется около 270 кг портландцемента, 280 кг щепы, примерно 12 кг добавок и 280 л воды. Для М20 – 330 кг цементного порошка, 300 кг древесных отходов, столько же химических добавок и 40 л воды.

Технология производства

Чтобы изготовить блоки в домашних условиях, потребуется самому сделать формы, причем лучше всего разборные, тогда во время вытаскивания меньше риск повредить материал. Сооружаются формы из деревянных досок или фанеры. Внутри рекомендуется отделать их линолеумом или другим подобным материалом, чтобы смесь не присохла к стенкам. Размеры могут быть любыми, в зависимости от назначения.

Формы устанавливаются на ровном месте, чтобы состав распределился равномерно. Приступают к приготовлению раствора своими руками. Древесные отходы засыпают в бетономешалку, вносят цементный порошок и воду с добавками. Все перемешивается в течение 10 мин до однородной консистенции. Химические добавки лучше всего вносить методом распыления, так они распределятся по всем щепкам равномерно.

Как только смесь готова, ее разливают по формам. Во время заливки ее нужно постоянно утрамбовывать, чтобы удалить все пустоты. Из-за оставшегося внутри блока воздуха сильно снижается прочность. Удалять пустоты лучше всего специальным оборудованием, например, вибропрокатом.

Готовые формы оставляют для затвердевания, накрыв пленкой. При температуре +15°С арболитовая смесь достигнет 50%-ной прочности за 5 суток, а при +40°С схватится полностью за 2 дня. Во время замешивания не стоит всыпать сразу всю дозировку компонентов, лучше всего делать это частями. Это поможет избежать появления комков.

Преимущества:

  • низкий коэффициент теплопроводности;
  • устойчивость к огню;
  • невысокая стоимость;
  • хороший показатель на изгиб.

При движении фундамента во время пучения грунта арболит не растрескивается, а при повышенных нагрузках лишь слегка продавливается. Различается марками по прочности. Маркируется она буквой М и числом после нее: М5, М10, М15, М25, М35 и М50. От М5 до М15 – теплоизоляционный, М25-М50 – конструкционно-теплоизоляционный.

Главный недостаток – в условиях повышенной влажности обязательно необходима пароизоляция и защита от атмосферных осадков. Снаружи блоки окрашивают, а изнутри закрывают пароизоляционной пленкой.

состав, пропорции по ГОСТ, изготовление своими руками

Арболитовые блоки все чаще стали использовать при возведении одноэтажных домов, внутренних перегородок в них, гаражей, хозяйственных построек. Впервые о них как о строительном материале для изготовления временного и постоянного жилья заговорили в середине 20 века.

Оглавление:

  1. Состав арболита
  2. Пропорции
  3. Как сделать своими руками?

Несмотря на то, что основным компонентом является дерево, по многим характеристикам арболит не уступает традиционным материалам, он сохраняет тепло и комфортабельную обстановку в построенных из него помещениях.

Из чего состоят блоки?

Компонентный состав арболита рассчитан так, что он способствует сохранению его прочности, огнестойкости и долговечности. В него входят: вода, наполнители, цемент, химические добавки.

1. Наполнители. Применяются отходы переработки сельскохозяйственных культур (чаще костры льна) и деревообработки (щепа).

  • Древесная щепа – самый распространенный компонент. При производстве блоков из арболита берется щепа длиной до 15 см и шириной не более 2 см, без присутствия листьев и примесей. Вместе со щепой можно добавить опилки или стружку в соотношении 1:1. Используются в основном хвойные породы древесины, намного реже – лиственные.
  • Костры льна. Являются полноценным материалом для арболита. Используются в том виде, в каком они были на предприятии: их не надо дополнительно измельчать. При длине частиц льна 15-20 см и ширине до 5 см качество получаемых блоков высокое.

2. Все наполнители содержат в составе сахара и смоляные кислоты, препятствующие адгезии цемента с их частичками. Для уменьшения их количества и минерализации щепы (костр льна) применяются: сернистый глинозем, хлорид кальция, жидкое стекло, известь. Эти компоненты повышают биологическую устойчивость, снижают водопроницаемость, увеличивают срок эксплуатации блоков. Их можно использовать как самостоятельно, так и сочетать между собой: хлорид кальция и сернокислый глинозем (1:1), жидкое стекло и гашеную известь (1:1). Каждую добавку перед применением необходимо растворить в воде.

3. Вода – берется обычная техническая.

4. Цемент – используется с маркой 400 или 500 (можно выше).

 Пропорции компонентов

При изготовлении арболита следует строго соблюдать соотношение всех ингредиентов между собой. Расход материалов в процентном содержании:

  • соотношение наполнителей составляет 80-90%;
  • примерный объем цемента в общей массе – 10-15%;
  • объем воды – 60-70%;
  • химические добавки – 2-4%.

Для производства 1 м3 материала берутся следующие пропорции компонентов в арболитовых блоках: по 300 кг наполнителя и цемента, 400 л воды.

При обработке наполнителей используется чаще всего известковый раствор. Он готовится в пропорции: 2,5 кг извести, 150-200 л воды на 1 м3 древесной щепы (костр льна). Чтобы ускорить затвердевание и улучшить свойства материала, добавляются хлористый алюминий, жидкое стекло, хлористый кальций в соотношении: на 1 м3 арболита – до 10 кг. Такой состав смеси является классическим, а изменение пропорции компонентов может негативно сказаться на качестве.

Изготовление арболита

Сделать блоки из арболита можно самому, а не приобретать готовые. При этом нет необходимости вкладывать большие финансовые средства на покупку дорогого спецоборудования и сырья.

Перед тем как сделать арболитовые блоки своими руками необходимо приготовить:

  • лоток для замешивания смеси или бетономешалку;
  • разъемные формы;
  • лопату;
  • крупное сито;
  • поддон металлический.

Предварительно следует позаботиться о формах для выработки блоков из арболита. Их можно приобрести или сделать своими руками. Для изготовления используются доски до 2 см толщиной, скрепленные по требуемым размерам. С внешней стороны их отделывают пленкой (фанерой).

Перед тем как делать блоки из арболита, наполнитель выдерживается около 40 дней на улице. Это очищает его состав от сахаров и смоляных кислот. В течении всего времени его следует переворачивать и «тормошить» до 4 раз в день, чтобы дать возможность воздуху свободно проникать в нижний слой. Для достижения максимального эффекта и ускорения процесса распада сахаров и кислот наполнители рекомендуется поливать 15% раствором извести. Она же является прекрасным антисептиком. Затем отлежавшийся состав просеивается ситом с крупными ячейками, что избавляет его от остатков земли и постороннего органического мусора.

Вся работа выполняется в такой последовательности:

1. Очищенный наполнитель замачивается в воде. В этот состав добавляется жидкое стекло и перемешивается бетономешалкой или вручную (при небольшом объеме).

Смесь для изготовления арболитовых блоков готовится в пропорции: 6:2:1, это означает, что на 6 мешков наполнителя потребуется 2 просеянного песка и 1 цемента. При замешивании не надо все компоненты сразу загружать в бетономешалку. Их лучше закладывать порциями, не выключая агрегат. Частями заливается и вода. Такой способ даст возможность избежать образования комков и повысит конечное качество материала.

2. Подготовить формы для заливки. Для этого их внутренняя сторона обмазывается известковым молочком. Чтобы не было прилипания массы к стенкам, их можно обшить линолеумом.

3. Арболитовая смесь заливается в формы. Чтобы не допустить образования завоздушленных участков, после заполнения вся масса взбалтывается, стенки простукиваются.

4. Смесь уплотняется электрической (пневматической) трамбовкой, можно использовать вибропресс. Выдерживается около суток.

Формы ставятся в затененное место, укрываются пленкой и выдерживаются около трех недель на воздухе при температуре не меньше 15 С. Изготавливая блоки своими руками, специалисты советуют первую партию сделать небольшой, чтобы проверить качество и правильность взятых пропорций всех компонентов.

Блоки из арболита готовы к возведению строения после того, когда достаточно хорошо схватятся. Главное условие – это обязательная внешняя отделка.

Состав арболита, пропорции компонентов, характеристики, плюсы и минусы

Арболит является одним из представителей легкого бетона и используется при строительстве зданий и сооружений любого предназначения. Возведение загородных домов, дач и надворных построек станет бюджетным мероприятием, если в качестве основного материала выбрать арболит. Его применяют в виде блоков для устройства наружных несущих стен и внутренних перегородок, а также из него изготавливают различные плиты и панели.

Оглавление:

  1. Из чего состоит арболит?
  2. Пропорции компонентов и нюансы изготовления
  3. Плюсы и минусы

Технические характеристики:

  • плотность: 600-650 кг/м3;
  • прочность на сжатии: до 1 МПа;
  • прочность на изгибе: до 1 МПа;
  • теплопроводность: 0,07-0,17 Вт/мхК;
  • морозоустойчивость: 50 циклов;
  • звукопоглощение: 126-2000 Гц;
  • поглощение влаги: 40-85%;
  • усадка: 0,5%.

Состав блоков

Арболит производят из древесного наполнителя, связующего, химических составляющих и воды. Древесный заполнитель присутствует в виде отходов деревообработки (ель, пихта, осина, сосна, береза, тополь) и растениеводства (льняная костра, рисовая солома, стебли хлопчатника). Очень крупные частицы после намокания увеличиваются в объеме, это может привести к последующему разрушению, а мелкие возьмут на себя больше цементного раствора. Оптимальный их размер – 40х10х5 мм. Его химическая активность является основным недостатком, поэтому введение древесины свежесрубленных деревьев в состав арболитовых блоков крайне не рекомендуется.

Наиболее востребованным органическим составом считается стружка древесная и щепа в пропорции 1:1 или 1:2. Помимо опилок можно брать отходы льна. Костра должна быть игольчатой формы, шириной 2-5 мм и длиной 15-25 мм. В составе сырья недопустимо присутствие инородных частиц, признаков плесени и гнили, а в зимний период – льда и снега.

Находящийся в льне сахар разрушает цемент, поэтому необходимо ввести в состав арболита химические вещества. Для улучшения качества легкого бетона, костру нужно обработать известковым молочком (2,5 кг извести растворить в 150-200 литров воды на 1 м3 наполнителя) выдержать 2 суток и перемешивать каждый день. Использование этой технологии снизит расход цемента до 100 кг на куб бетона. Еще один способ нейтрализовать сахар – это поместить костру 3-4 месяца на свежем воздухе, что придаст блокам дополнительную прочность.

Минеральным связывающим в составе смеси является портландцемент марки 400, 500 и выше. Чтобы рассчитать количество цемента на 1 куб арболита 16, нужно увеличить его значение в 17 раз. Получается: 16х17= 272 кг. Химические добавки определяют свойства арболитового блока. Независимо от климатического пояса, где будет возводиться сооружение или здание из этого строительного материала, введение их в состав обязательно. Благодаря способности нейтрализации сахара, химические вещества сделают возможным использовать древесные наполнители без ее обработки.

Такими добавками могут служить: растворимое стекло, K2SO4, гашеная известь и CaCl2. Сернокислый алюминий, соединяясь с сахарами, нейтрализует их действие увеличивая при этом прочность готового изделия. Химические вещества применяют как отдельно, так и в сочетании: Al2(SO4)3 и CaCl2 в пропорции 1:1, гашеная известь и растворимое стекло – 1:1. Перед использованием их разводят в воде, после чего соединяют с арболитовой смесью. Общая масса присадок в 1 кубометре не должно превышать 4% от всего веса цемента.

Арболит марки 30 включает добавки: Al2(SO4)3 и CaCl2 – 1:1; Na2SO4 и CaCl2 – в таком же соотношении и в количестве 4 % от всего веса цемента. Na2SO4 и AlCl3 – 1:1 в 2 % от массы связывающей части. При производстве арболита пропорции на 1 м3 замеса должны быть строго соблюдены.

Технология изготовления

Арболитовые блоки можно делать своими руками. Если нужно большое их количество, приобретают бетономешалку, трамбовку, пресс-формы и печь для сушки. Бюджетный вариант предполагает самостоятельное изготовление форм и покупку смесителя составных частей раствора. Пропорции компонентов в арболитовых блоках были рассмотрены выше, поэтому:

1. В бетономешалку постепенно насыпаем древесный наполнитель и заливаем его водой с химическими добавками, тщательно все перемешиваем.

2. Засыпаем портландцемент и, понемногу вливая воду, снова все мешаем.

3. Обрабатываем форму внутри известковым раствором.

4. Готовую смесь накладываем в формы, плотно трамбуя каждый слой. Объем заполняется до уровня 2 см от края.

5. На свободное место укладываем раствор для штукатурки. Разравниваем поверхность при помощи шпателя.

Полученный блок должен находиться в форме около 24 часов, после чего его вынимают и размещают на две недели под навес для постепенной просушки.

Как видно, технология изготовления арболитовых блоков своими руками довольно проста, а соблюдение необходимых пропорций позволит получить на выходе строительный материал, полностью соответствующий его техническим характеристикам.

Преимущества и недостатки блоков

  • высокая звуко- и теплоизоляция;
  • повышенная пожароустойчивость;
  • устойчивость к появлению плесени и к гниению;
  • обладает достаточной прочностью;
  • отсутствует необходимость в мощном фундаменте;
  • легкость и простота монтажа;
  • экологичный, невысокая стоимость.

Обладая определенной влагопроницаемостью, конструкции из арболита могут эксплуатироваться в условиях сухого режима. Во всех остальных случаях стены должны быть защищены от влаги изоляционным материалом. При строительстве стен в подвалах и цокольных этажей применение арболитных блоков не рекомендуется. Защитой от воздействия атмосферных осадков служит их гидрофобная окраска или оштукатуривание стен с двух сторон.

Прежде чем самому приступить к изготовлению арболитовых блоков, необходимо все правильно рассчитать и обдумать. При точном соблюдении технологии производства дома из этого строительного материала получатся комфортными, теплыми и недорогими.

Состав смеси и пропорции для арболитовых блоков

По мере того как технический прогресс двигается вперед, появляются все новые материалы для строительства домов своими руками. Если раньше дело ограничивалось деревом, камнем или кирпичом, то сегодня существуют различные виды бетона, которые превосходят другие материалы по характеристикам. Одним из таких материалов является арболит. Это уникальный материал, который вместил в себе преимущества как бетона, так и древесины. Его состав достаточно прост, и вы можете приготовить раствор своими руками. Примечательно, что он может использоваться как обычный бетон, путем заливки смеси в опалубку, а может быть, сделан в виде блоков, для обычной кладки. Арболитовые блоки можно купить в специализированном магазине, или приготовить раствор своими руками, сделав блоки из готовой смеси.

Все что нужно – знать точный состав арболита, пропорции для смешивания смеси и технологию его приготовления. Давайте рассмотрим все детальней.

Арболитовый блок – из чего он состоит

Арболит, из которого формируют арболитовые блоки для кладки, состоит из 3 основных компонентов:

  • заполнитель;
  • минеральное вяжущее;
  • химические добавки и вода.

Путем соединения всех этих элементов получается арболитовый раствор, который впоследствии используется для формирования блоков. Состав достаточно простой и каждый сможет сделать материал для своих целей. Сам по себе материал легкий, поэтому блоки идеально подходят для кадки. Их достоинством, по сравнению с газоблоками и пеноблоками, является большая граница прочности. Они стойкие к трещинам и ударам.

Несмотря на то что главным компонентом является древесные опилки (щепа), арболит высоко ценится и не уступает по характеристикам традиционным материалам. Наоборот, арболитовые блоки хорошо сохраняют тепло и создают хороший микроклимат в помещении.

Органический заполнитель  

Львиную долю в составе арболитных блоков занимает древесная щепа. Это основной материал, который входит в его состав. Такой органический заполнитель легко можно приобрести за небольшие деньги. Стоит обратиться в местную пилораму, где есть отходы деревообработки и договориться с работниками. Преимущественно используют хвойные породы дерева и твердолиственные. Пихта, сосна, ель, осина, бук, береза и тополь идеально подходят, чтобы сделать из них арболитовый раствор. Также можно использовать костру льна.

Чаще всего применяется древесный заполнитель: дробленка, стружка с опилками, в пропорции 1:1 или 1:2, щепа, стружка и опилки, в пропорции 1:1:1. Все пропорции измеряются в объеме. К примеру, если нужно добиться соотношения 1:2, то берется 1 ведро древесных опилок и 2 ведра стружки. Опилки легко заменяются кострой льна или конопляными стеблями, на состав это не повлияет.

Какие требования к заполнителю? Прежде всего, важно правильно подобрать их размер. Крупные опилки использовать не рекомендуется, ведь когда изделия вступят в контакт с водой, они могут увеличиться в объеме. В результате блок может разрушиться. Если же использовать слишком мелкие частицы, то увеличивается расход цементной смеси. Рекомендуемый размер частиц – 15 или 25 мм длинной и не больше 2–5 мм шириной. Сырье не должно иметь листья и другие примеси.

Предупреждение! Лиственница и свежесрубленная древесина любых пород в состав арболитовых растворов не добавляется. Это запрещено!

Костра льна

Полноценным заполнителем, добавляющимся в раствор, является костра льна. Так как в ней присутствует сахар, обязательно применяются химические добавки. Чтобы улучшить качества готовой смеси для блоков, костра заранее обрабатывается известняковым молоком, в пропорции: 200 кг костры на 50 кг извести. Затем все выдерживается несколько дней в куче, после чего все готово для производства арболита. Благодаря такой технологии расход цемента значительно уменьшается. На 1 м

3 арболита требуется 50–100 кг цемента.

Важно! Если костра льна используется в обычном виде, то конопляные стебли требуют некой обработки. Их нужно предварительно измельчить.

За счет того, что в составе отходов органики есть вещества, растворимые водой, среди которых смоляные кислоты и сахар, это препятствует хорошей адгезии между частицами. Для устранения сахара, древесные щепки требуется выдержать на воздухе 3 или больше месяцев, или обработать его известняком. Во втором случае смесь выдерживается 3–4 дня. Содержимое перемешивается 2 раза на день.

Минеральное вяжущее

Вам никак не сделать раствор своими руками без вяжущего компонента. Он делает арболитовые блоки прочными и пригодными для кладки. В качестве вяжущего вещества используется портландцемент марки М400, М500 или еще выше.

Его расход зависит от вида заполнителя, крупности частиц, марки цемента, характеристик и т. д. Чтобы немного ориентироваться, можно определить расход таким образом: коэффициент 17 нужно умножить на требуемую марку арболита. К примеру, вам нужно приготовить раствор, маркой 15 (B1). В таком случае на 1 м

3 арболита потребуется 255 кг цемента.

Химические добавки

Свойства, которые имеют арболитовые блоки, напрямую зависят от химических добавок. Их использование обязательно в любом случае, неважно, в каком климате выполняются работе. Благодаря добавкам, заполнитель можно использовать без выдержки, ведь они нейтрализуют сахар и другие вещества, что улучшает качество готовых блоков.

В качестве таких добавок может использоваться:

  • жидкое стекло (силикат натрия). Закрывает все поры в древесине, поэтому влага не попадет внутрь. Используется после удаления сахара;
  • гашеная известь. Она расщепляет сахар и убивает микроорганизмы в опилках;
  • сернокислотный алюминий. Отлично расщепляет сахар. Благодаря компоненту состав быстрее набирает прочность;
  • хлористый кальций. Убивает все микроорганизмы и придает древесине противогнилостных свойства.

Сернокислотный алюминий и хлористый кальций считаются лучшими добавками. Пропорции добавок – 2–4% от массы цемента, или от 6 до 12 кг на 1 м3. Добавки можно сочетать между собой.

Пропорции для арболитовых блоков

Чтобы сделать арболитовые блоки своими руками важно знать не только состав, но и пропорции. Соотношение всех компонентов между собой следующее: 4:3:3 (вода, древесная щепа, цемент). Химические добавки – 2–4% от общей массы.

Для изготовления 1 м3 арболита своими руками, из которого будут сделаны блоки для кладки, вам потребуется:

  • 300 кг древесных отходов;
  • 300 кг портландцемента;
  • 400 л воды.

В раствор добавляется хлористый кальций или другой химикат. Это классический состав, который легко можно сделать своими руками. Все что потребуется: бетономешалка или большая емкость для размешивания, ведра, лопаты, вилы (для перемешивания вручную) и все компоненты арболита. Процесс выполнения работ следующий:

  1. Наполнитель (щепу) засыпают в емкость и смачивают водой. Тогда сцепление с цементом будет лучше.
  2. Затем, постепенно добавляется цемент с добавками. Содержимое тщательно перемешивается в бетономешалке или своими руками, при помощи вил.
  3. Настало время добавлять воду, в которой уже растворены химические добавки. Все снова перемешивается.
  4. Как цемент, так и воду требуется добавлять не сразу, а понемногу, небольшими порциями. Так смесь будет легче перемешивать и компоненты будут лучше соединяться между собой.
  5. После того как сделан раствор, его нужно поместить в подготовленные формочки, чтобы они обрели вид блоков для кладки.

 

Это состав и пропорции смеси арболитовых блоков, которые можно сделать своими руками. Все что требуется – быть внимательным и четко придерживаться инструкций по его приготовлению. Ниже приводится таблица, которая поможет вам разобраться в том, какие есть марки арболита и каковы пропорции компонентов для его приготовления.

Какой раствор используется для кладки

Это логичный вопрос. Ведь если арболит специфический материал, то может для кладки арболитовых блоков потребуется специфический раствор? Нет. Арболитовые блоки кладутся на обычный цементный раствор, который под силу сделать любому. Он состоит из цемента, песка и воды. Соотношение компонентов – 3:1. Вода добавляется до тех пор, пока раствор не приобретет нужной консистенции. Эта смесь идеально подходит для кладки блоков своими руками.

Итак, зная состав, пропорции и технологию замешивания арболитового раствора, вы можете делать блоки для ваших целей.

Подбор состава арболитобетона для производства качественных арболитовых блоков

Подбор состава арболита для изготовления арболитовых блоков на вибростанках Вибромастер производится в лабораторных условиях  любым проверенным  на  практике способом. Производственный   состав  арболита  утверждается  главным  инженером  предприятия  и контролируется  лабораторией.

На подбор состава арболита дается задание, в котором указывается заданная средняя плотность (марка по средней плотности) и марка по прочности на сжатие (класс по прочности при сжатии). Могут быть указаны дополнительные требования  к стеновым  строительным блокам по морозостойкости и теплопроводности.

Предварительно, перед подбором состава арболита, устанавливают характеристики всех используемых материалов.

Для цемента устанавливают марку и активность, нормальную густоту, минералогический состав, среднюю плотность, истинную плотность р0.  Для заполнителя определяют насыпную среднюю плотность р3, плотность в куске рх, водопоглощение по массе W.  Качество химических добавок (ХД) устанавливается паспортом или на основании данных их непосредственного испытания.

Наиболее распространенным и удобным способом  подбора и назначения исходного состава арболитовой смеси является способ подбора по разработанным таблицам.

Средняя плотность арболита в высушенном состоянии в зависимости от класса (марки) и вида используемых органических заполнителей должна находиться в пределах, указанных в таблице.

Заполнитель Расход цемента кг/м3, в зависимости от класса (марки) арболита
Дробленка из отходов: 80,35(5) В,75(10) В1  (15) В2 (25) 82,5(35)
— лесопиления и деревообработки хвойных пород 260 280 300 330 360
— лесозаготовок хвойных пород 280 300. 320 350 380
— лесопиления и деревообработки смешанных пород 290 310 330 360 390
— лесозаготовок смешанных пород 310 330 350 380
— дробленка рисовой соломы 300 370 400
— костра конопли и льна 220 310 360 450
— дробленые стебли хлопчатника 260 290 320 360

Примечание: приведенные расходы цемента рекомендуются лишь для приготовления первого исходного замеса при подборе состава арболитовой смеси и не могут служить нормами расхода цемента в производственных условиях.

При применении цемента иных марок (отличного от марки 400) величина расхода цемента умножается на коэффициенты,  приведенные в таблице.

Коэффициенты изменения расходов цемента в арболите при изменении марки цемента (расход цемента марки 400 принят за 1)
Марка цемента Коэффициенты изменения расхода цемента для арболита класса (марки)
  В0,35(5) В,75(10) B1(15) В2 (25) В2,5(35)
300
1,05
1,05
1,05
1,10
1,16
400 1 1 1 1 1
500 0,96 0,96 0,95 0,95 0,94
600 0,93 0,93 0,92 0,92 0,9

Расход органического  заполнителя  в  сухом  состоянии и назначается по следующей таблице..

Расход сухого органического заполнителя на 1 м3 арболита (цемент марки 400)
Заполнитель Расход сухого органического заполнителя, кг/м, арболита класса (марки)
  В0,35(5) В,75(10) В1(16) В2(26) В2,5(35)
Дробленка из отходов:          
— лесопиления и деревообработки хвойных пород 160 180 200 220 240
— лесозаготовок хвойных пород 170 190 210 230 250
— лесопиления и деревообработки смешанных пород 180 200 220 240 250
— лесозаготовок смешанных пород 160 180 200 220 240
— дробленка рисовой соломы 180 220 250
— костра конопли и льна 200 190 180 170
— дробленые стебли хлопчатника 200 210 220 230

Расходы воды определяются по по следующей таблице.

Расходы воды на 1 м3 арболитовой смеси при сухих, органических заполнителях
Заполнитель Расход воды, л/м в смеси при классе (марке) арболита
В0,35(5) В,75(10) В1  (15) В2 (25) В2,5(35)
Дробленка из отходов:          
— лесопиления и деревообработки хвойных пород 280 300 330 360 400
— лесозаготовок хвойных пород 300 330 360 400 440
— лесопиления и деревообработки смешанных пород 330 360 390 430 460
— лесозаготовок смешанных пород 330 360 390 430 460
— дробленка рисовой соломы 350 400 450
— костра конопли и льна 400 470 450 420
— дробленые стебли хлопчатника 400 460 480 510

Расходы цемента, воды и органических заполнителей при производстве арболитовых блоков зависят от многих факторов и, в первую очередь, от способа уплотнения арболитовой смеси. Их необходимо устанавливать опытным путем в зависимости от производственных условий.

Предварительный расход химических добавок  назначается по следующей таблице.

Расход химических добавок в пересчете на сухое вещество
Химическая добавка Расход химической добавки, кг/м3, в зависимости от вида заполнителя
древесная дробленка костра конопли или льна дробленые стебли хлопчатника
Кальций хлористый технический 8 6 11
Стекло натриевое жидкое 8 9
Комплексная добавка:  сернокислый алюминий + известь-пушенка 20
25
15
20

Рассчитанные составы проверяют в лабораторных или производственных условиях , путём изготовления и испытания контрольных образцов. Опытные образцы для определения класса (марки) арболита по прочности при сжатии твердеют в течение 28 суток при температуре при температуре 20 +/- 2°С и относительной влажности воздуха 70 +/- 10%. Для установления распалубочной и отпускной прочности изготавливают и испытывают образцы в возрасте 1-х, 3-х и 7-и суток.

Рабочий состав арболитобетона назначается по результатам испытания контрольных образцов.

Пример подбора состава арболита

Требуется подобрать состав конструкционно-теплоизоляционного арболита класса В2 для производства арболитовых блоков, средней плотностью не более 650 кг/м3 (в высушенном состоянии) для стеновых строительных блоков.

Имеется заполнитель — дробления из отходов деревообработки хвойных пород. Зерновой состав дроблеики удовлетворяет требованиям стандарта. Насыпная средняя плотность дробленки в сухом состоянии 120 кг/м3, влажность по массе — 50%. Вяжущее — портландцемент марки 400. Подбор состава арболита производим расчетно-экспериментальным методом. Расход цемента определяем по табл.1, Ц=330 кг/м3.  По табл.3 расход сухой дробленки Дсух.=220кгД|3, с учетом влажности — расход дробленки составит 330 кг/м3. Для назначенного расхода цемента по табл.6 определяем предварительный расход воды  В=360 л/м3.

Расход химической добавки (ХД) устанавливаем по табл.5 — это 8 кг/м3 хлорида кальция. Хлорид кальция берется 10%-ной концентрации. Содержание соли в 1 л. такого раствора (с плотностью 1,084) составляет 0,108 кг. Следовательно, для введения в арболит необходимого количества соли в виде 10%-ного раствора на 1 м3 арболитовой смеси его потребуется: 8:0,108=74,07 л. В найденном количестве раствора соли воды содержится 1,084×74,07-8=72,3 л.

С учетом воды, содержащейся в древесной дробленке и в растворе добавки, количество воды для приготовления 1 м3 арболитовой смеси будет равно 360-72,3=217,7 л. Средняя плотность свежеуложенной арболитовой смеси составит: 330+220+360+8=918 кг/м3.

Средняя плотность арболита в сухом состоянии определяется по формуле:
1,15Ц — масса цементного камня с учетом химически-связанной воды, кг на 1 м3 арболита.

Для установления оптимального расхода цемента необходимо изготовить и испытать три серии образцов с разным расходом цемента: одну с намеченным исходным расходом 330 кг/м3 и две дополнительные серии с расходом цемента на 15% меньше и больше принятого, т.е. 280 и 380 кг/м3.

Для каждого расхода цемента принимаем три предварительных расхода воды — установленный по табл.4 (360 л/м3) и на 5% больше и меньше, т.е. с учетом воды в растворе ХД и заполнителе. Расход древесного заполнителя оставляем неизменный. Для проведения опытных замесов для всех трех составов определяем расходы материалов на 15 литров по формулам, для первого состава (исходного):

Расход цемента Ц1 = (Ц*15)/1000=(380+15)/1000=4.96кг

Расход дробленки Дсух1=(Дсух*15)/1000=(220*15)/1000=3.30кг

Расход воды В1 = (В*15)/1000=(360*15)/1000=5,4кг

Расход химической добавки ХД1= (ХД*15)/1000=(8*15)/1000=0.12кг

Для остальных двух составов расходы материалов рассчитываются аналогично. Химические добавки растворяются в воде затворения опытного замеса.
Проводятся опытные замесы, в процессе которых проверяется жесткость арболитовой смеси по техническому вискозиметру. Жесткость арболитовой смеси должна соответствовать — 60 сек. и регулируется предварительным расходом воды. Если рассчитанное количество воды не обеспечивает получение требуемой жесткости, его увеличивают или уменьшают. Подогнав жесткость арболитовой смеси под требуемую, определяют среднюю плотность смеси, для этого заполняют стандартный мерный цилиндр объемом 5 л. Мерный цилиндр вместе с насадкой устанавливают на вибростол и закрепляют, а затем заполняют арболитовой смесью до половины насадки, устанавливают сверху на поверхность смеси пригруз, обеспечивающий давление, равное принятому при производстве стеновых строительных блоков, но не менее 0,004 МПа и вибрируют в течение 30-60 сек. до прекращения оседания пригруза. После этого снимают пригруз и насадку, срезают избыток смеси и заглаживают поверхность. Затем взвешивают. Среднюю плотность арболитовой смеси в кг/м3, вычисляют как среднюю двух определений по формуле:

Pcm= (m-m1)/V,

где         m — масса мерного сосуда с бетонной смесью, гр;
m1 — масса мерного сосуда без смеси, гр;
V — объем мерного сосуда, см3.

Определив  среднюю   плотность, определяем  объем приготовленной арболитовой смеси — Vсм по формуле:

Vom= СуммаP/pm,

где  SР=Ц1  +Дсух 1  +В1 +ХД1 сумма   материалов используемых при опытном  замесе.
Определив     объем      приготовленной     смеси,      вычисляю фактические расходы материалов в кг/мпо формулам:    

Фактический расход цемента Цф = (Ц1/Vcm)*1000

Фактический расход дробленки ДсухФ= (Дсух1/Vom)*1000

Фактический расход воды Вф = (В1/Vom)*1000

Фактический расход ХД = ХДср=(ХД1/Vom)*1000

Для остальных двух составов средняя плотность и фактические расходы   материалов   определяются   аналогично.   Из   подобранных смесей изготавливаются контрольные кубы размером 15x15x15 см в количестве 3 шт. для каждого состава. Укладка арболитобетонной смеси в формы   производится   так   же,   как   и   при   определении   средней плотности смеси.  Отформованные кубы в течение 1-х суток твердеют в формах и еще 27 суток  (при  температуре  20 +/- 2С и относительной влажности воздуха 70 +/- 10%) после распалубки.  После твердения на кубах определяют среднюю плотность и прочность при сжатии в Мпа.

Средний предел прочности при сжатии образцов для каждого из трех расходов цемента с оптимальным для каждого из них расходом воды наносим на график. По оси абсцисс откладываем расходы цемента на 1 м арболита, по оси ординат — предел прочности образцов арболита при сжатии в МПа. Проводим через полученные точки прямую и получаем зависимость прочности арболита при сжатии от расхода цемента. По графику определяем требуемый расход цемента для получения арболита заданного класса В2 при принятых условиях уплотнения и твердения. Расходы остальных материалов определяются по фактическим расходам трех составов арболита по интерполяции. После проверки подобранного состава в производственных условиях он рекомендуется для массового производства.

Вы также можете посмотреть следующие разделы

  1. Вяжущие вещества
  2. Заполнители
  3. Микрозаполнители
  4. Химические добавки
  5. Вода для бетонов
  6. Условия твердения строительных стеновых блоков
  7. Способы определения жесткости бетонной смеси
  8. О цементно-грунтовых строительных стеновых блоках
  9. Основные характеристики грунтов для производства стеновых строительных блоков
  10. Цементы для изготовления стеновых строительных блоков
  11. Подбор составов цементогрунта
  12. Основные требования к строительным стеновым блокам из грунтобетона
  13. Об арболитовых блоках
  14. Классификация арболитовых стеновых блоков
  15. Материалы для производства строительных арболитовых блоков: Органический целлюлозный заполнитель
  16. Материалы для производства строительных арболитовых блоков: Вяжущие вещества
  17. Материалы для производства строительных арболитовых блоков: Химические добавки
  18. Твердение и тепловая обработка стеновых арболитовых блоков
  19. Требования к стеновым блокам из арболита
  20. Арболитовые блоки и опилкобетонные блоки – отличия
  21. Дом из арболитовых блоков или дерева: что выбрать?
  22. О саманных блоках
  23. Основные требования к блокам из самана
  24. Материалы для производства саманных стеновых блоков: Вяжущее — глинистые грунты
  25. Материалы для производства саманных стеновых блоков: Заполнители
  26. Методы испытания глинистых грунтов для производства самана: Методика определения содержания глинисты
  27. Методы испытания глинистых грунтов для производства самана: Методика определения содержания глинисты
  28. Методы испытания глинистых грунтов для производства самана: Методика определения вязкости глинистого
  29. Подготовка грунта к производству саманных строительных блоков
  30. Сушка и хранение саманных строительных блоков
  31. Мероприятия по повышению прочности и водостойкости стеновых саманных блоков
  32. Особенности производства саманных строительных блоков в зимнее время
  33. Изготовление блоков из бесцементных бетонов
  34. Про шлакощелочной бетон
  35. Требования к материалам для изготовления шлакощелочного бетона
  36. Подбор состава шлакощелочного бетона
  37. Рекомендуемые ориентировочные составы тяжелых шлакощелочных бетонов
  38. Изготовление стеновых бетонных блоков из легких шлакощелочных бетонов
  39. Изготовление стеновых бетонных блоков из мелкозернистых шлакощелочных бетонов
  40. Изготовление стеновых бетонных блоков из арболита на шлакощелочном вяжущем
  41. Изготовление блоков с декоративным слоем
  42. Приготовление и нанесение декоративных растворов
  43. Составы декоративных растворов

состав и пропорции на 1м3, видео технологии изготовления

В 30-е годы прошлого столетия голландские строители попробовали смешать цемент со старыми опилками. Свойства деревобетона оказались вполне приличными, но технология не выстраивалась. Блоки не хотели застывать, их поверхность шелушилась, а спустя пару лет, особенно на улице, они начинали потихоньку разрушаться. Однако энтузиасты не оставляли попыток и придумали новые схемы.

Оглавление:

  1. Технические параметры
  2. Нюансы изготовления и добавки
  3. Инструменты и приспособления
  4. Ингредиенты и пропорции

Дерево и камень

Арболитовые блоки сочетают простоту обработки дерева с прочностью каменных изделий. Основной состав смеси – опилки и цемент? yо кроме «классики» его готовят и на основе других древесных материалов, порой самых неожиданных: песок, древесные стружки (ЦСП), резаная солома, шкурки семечек подсолнуха, шелуха риса и даже высушенные водоросли.

Диапазон прочности – М5-М50, варианты от М5 до М15 относят к утеплителям, с маркой от 15 кг/см2 и выше называют конструкционными. Применяют в виде готовой продукции (блоки, плиты, перемычки, подоконные доски), а также в монолитном варианте. Практически полное отсутствие подвижности и малый объемный вес не позволяет выполнять полноценную заливку. Рыхлый и рассыпчатый раствор уплотняют трамбовкой либо укатывают.

Характеристики арболита

Готовые, даже высокомарочные конструкции легко обрабатываются. Их можно резать даже обычной ножовкой, строгать рубанком. Материал отлично держит шурупы, в него хорошо вбиваются гвозди. Еще одно полезное свойство: в отличие от обычного бетона сопротивляется растяжению немногим хуже, чем сжатию, что позволяет порой обходиться без армирования.

ГОСТ 19222-84 регламентирует технологию изготовления, расписывает соотношения ингредиентов. Согласно этому документу наружные стены требуется укрывать от влаги оштукатуриванием, либо облицовкой (плитка, сайдинг). Стальные изделия и арматуру необходимо защитить от коррозии. Неплохой эффект дает применение стеклопластика, но их свойства на достаточно долгий временной промежуток толком не изучены, а регламенты носят поверхностный характер.

Еще одно важное требование технологии: работа в отличие от обычного бетона разрешена при температуре не ниже +15°С.

Изнанка процесса

Изготовить арболит своими руками несложно. Просто насыпав в ведро цемент, воду и опилки, мы его не получим. Он не будет торопиться затвердеть, а если все же схватится, вскоре начнет разрушаться. Причина – наличие в древесине особых веществ, которые химики относят к классу сахаров. Они негативно влияют на цемент, сильно замедляют, а иногда даже совсем останавливают процесс твердения.

Чтобы этого не происходило, поступают одним из двух способов:

1. Дают опилкам «вылежаться» под открытым небом, периодически перемешивая. Процесс небыстрый, занимает полтора-два года. За это время все ненужные вещества вымываются либо переходят в нерастворимое состояние.

2. В рецептуру арболитовой смеси вводят специальные нейтрализующие сахара составы: гашеную известь с жидким стеклом (силикат натрия) или хлористый кальций плюс сульфат алюминия (сернистый глинозем). Есть и другие варианты, но эти две пары наиболее популярны.

Добавки и их подборка

Вариант хлорида кальция с глиноземом имеет приятный бонус в виде ускорения схватывания, что немаловажно при производстве своими силами. Что касается сочетания извести с жидким стеклом, оно заметно дешевле, но главное менее чувствительно к качеству исходного сырья. То, что щепа и опилки имеют разброс по влажности – еще полбеды. Содержание пресловутых сахаров сильно зависит от породы дерева, его возраста, времени и даже места где оно было срублено.

Чтобы выдержать технологию и пропорции для смешивания смеси, приходится уточнять ее подбором при каждой перемене заполнителя. Поэтому если вы самостоятельно решили заняться изготовлением, сырье желательно завозить по принципу «больше — лучше», чтобы не делать замеры и не пересчитывать соотношения каждый раз при завозе очередной партии. Тем более, что уходит на это как минимум неделя.

Готовим оснастку

Привлекает арболит еще тем, что открыть производство можно самостоятельно буквально «на коленке». Для небольшого цеха, рассчитанного на изготовление до полутысячи стандартных (19х19х40 см) блоков за смену понадобится:

  • Гравитационная или лопастная мешалка с рабочим объемом 140-180 литров.
  • Пластиковые емкости, ведра для обработки, переноски и дозирования сырья.
  • Весы, рассчитанные не менее чем на 10 кг.
  • Лопаты.
  • Формы. Их можно изготовить из тонкой листовой стали или сколотив из гладких досок. Чтобы раствор не лип к опалубке, ее смазывают эмульсией из воды, мыла и машинного масла.

Состав и пропорции компонентов

Для варианта хлорид кальция + сульфат алюминия на м3 готовой смеси: 500 кг цемента М400, столько же по весу или чуть больше опилок, по 6,5 кг каждого вида химиката, около 300 литров воды. Если вы планируете использовать известь с силикатом натрия, соотношение соответственно будет 9 + 2,5 кг при прочих равных.

Для удобства пересчитаем на 1 м3 эти пропорции для замеса в ведрах по 10 л: цемент – 80; опилки – 160; добавки – хлор и кальций чуть больше половины ведра, глинозем – треть. Перемешав все это, получим чуть больше кубометра мокрых опилок, а после того как уплотним их в опалубке и дадим схватиться — куб арболита марки 25.

Технология производства организована по схеме:

  • Разводим реактивы в приблизительно третьей части (0,1 м3) всего количества воды.
  • Перемешиваем с опилками, даем вылежаться пару дней, укрыв пленкой.
  • Начинаем перемешивать, постепенно добавляя цемент.
  • Вымешиваем как минимум 5-7 минут. Вываливаем, раскладываем по формам, хорошо уплотняем.

На следующий день опалубку аккуратно снимаем. Через неделю блоки уже можно использовать для кладки. При тех пропорциях, что мы привели выше, их марочная прочность составит порядка 25-28 кг/см2. Изделиям дают полностью схватиться и высохнуть в течение трех-четырех недель.


 

Cостав арболита: пропорции, химдобавки, технология изготовления

Общая характеристика арболита

Арболит – строительный материал, являющийся разновидностью легкого бетона, в нашей стране еще недостаточно широко распространен. В то время как за границей он существует под названиями дюризол и велокс и служит теплоизоляционным и конструктивно — теплоизоляционным материалом.

Основу арболита составляет древесный заполнитель и цемент. Его не следует путать с опилкобетоном, потому что щепа для него изготавливается специально и имеет свою фракцию и геометрию. Эти особенности утверждены ГОСТОМ 19222-84 «Арболит и изделия из него». Изделия из этого материала производят в виде блоков, плит, панелей.

Изделия из арболита классифицируют, в зависимости от назначения:

  • для теплоизоляции и конструктивной теплоизоляции;
  • армирования – армированные и неармированные;
  • наружного профиля – гладкие и из сложного профиля;
  • отделки поверхности — фактурные и нефактурные.

Арболит разделяется в зависимости от марок: 5; 10; 15; 25; 35; 50. Марки означают прочность арболитовых блоков, в зависимости от их предназначения. Теплоизоляционный имеет плотность до 500 кг/м3, конструкционный — плотность свыше 500 до 850 кг/м3. К теплоизоляционному относится арболит М 5,М 10, М15; к конструктивному М 25, М 35, М50.

Арболит используется при возведении жилых, гражданских, производственных зданий не более двух этажей, в качестве наружных несущих конструкций и внутренних стен помещений, теплоизоляции.

Преимущества и недостатки арболита

  • высокий уровень тепло и звукоизоляции;
  • высокая пожароустойчивость;
  • устойчив к гниению;
  • экономичен и недорог в строительстве;
  • достаточно прочен, при нагрузке не ломается, а только продавливается. экологически чистый материал;
  • в нем надежно крепятся гвозди, шурупы без дополнительного применения деревянных основ.

Однако, арболитовые конструкции без применения пароизоляции допущены к эксплуатации только в условиях сухого и нормального влажностного режима. При относительной влажности воздуха внутри помещения более 60% стены из него должны быть защищены пароизоляционным материалом.

Арболит не применяют для строительства цокольных этажей, карнизов, стен подвалов. Арболит следует защищать от атмосферных осадков путем гидрофобной окраски.

Состав арболита

Арболит изготавливается из древесного заполнителя, минерализатора, химических добавок и воды.

Органические составляющие

В качестве древесного наполнителя используют отходы древесины (сосна, ель, пихта, береза, осина, тополь) камыш, костру конопли, льна. Наиболее используемым древесным составом является деревянная щепа или дробленка и древесная стружка в соотношении 1:1 или 1:2. Вместо опилок можно использовать конопляные стебли или костру льна. Костру льна, из-за содержания в ней сахаров, разрушающих цемент, необходимо предварительно погрузить в известковое молоко (расход 50 кг извести на 200 кг костры) и выдержать 1-2 дня в куче. Другим способом является — выдерживание костры конопли, льна на открытом воздухе в течение 3-4 месяцев, тогда арболитовые блоки будут соответствовать показателям прочности. Форма костры имеет важное значение — она должна быть игольчатой длиной от 15 до 25 мм, шириной в 2-5 мм.

Минеральные вяжущие составляющие

Минерализатором в составе арболита выступает портландцемент 400, 500 или более высоких марок. Его расход зависит от его марки заполнителя арболита.

Обычно расход цемента рассчитывают следующим образом: для приготовления 1м3 арболита марки 15, необходимо умножить его значение на на коэффициент 17, например, 15 х 17 = 255 кг.

Химические составляющие арболита

Технические и строительные свойства арболита определяются химическими добавками. Их применение обязательно вне зависимости от климатических условий, в которых будет сооружаться здание из арболита. Именно химические вещества позволят использовать любой древесный наполнитель без предварительной обработки и выдержки, благодаря их способности нейтрализовать сахара.

В производстве арболита используют следующие химические добавки: хлористый кальций, гашеная известь, сернокислый алюминий, растворимое стекло. Наиболее эффективными являются хлористый кальций и алюминий. Сернокислый алюминий в соединении с сахарами нейтрализует их, обеспечивая возрастание прочности арболита.

Общее количество химических добавок в 1 м3 арболита составляет 2-4 % от общего веса цемента (около 6-12 кг). Добавки применяют как отдельно, так и смешивая алюминий с хлористым кальцием в пропорции 1:1, либо соединяя гашеную известь и растворимое стекло (1:1). Перед соединением с арболитовой смесью эти добавки необходимо растворить в воде.

Необходимые пропорции добавок зависят от вида арболита. Для арболитовых блоков марки 30 соотношение добавок следующее: сернокислый алюминий и хлористый кальций (1:1) в пропорции 4% от веса цемента; сернокислый натрий и хлористый кальций (1:1) в объеме 4% от веса цемента; сернокислый натрий и хлористый алюминий (1:1) в пропорции 2% от веса цемента; хлористый алюминий и хлористый кальций (1:1) в пропорции 4% от веса цемента.

Для арболитовой смеси марки 35 хлористый кальций добавляют в пропорции 2% от всей массы цемента. Использование хлористого кальция повышает прочность арболита. Для этого применяется жидкое стекло — силикат натрия или кальция, растворенные в горячей воде в количестве 8—10 кг на 1 м3 арболита.

Технология изготовления арболита

Производственная схема содержит следующие стадии:

  1. Дробление и придание необходимой формы заполнителю.
  2. Предварительная обработка органического заполнителя химическими составами.
  3. Дозирование составляющих компонентов для арболитовой массы.
  4. Подготовка арболитовой смеси.
  5. Формирование арболитовых блоков.

Дробление и придание необходимой формы заполнителю.

Перед дроблением куски и отходы древесины складываются в кучи и выдерживаются под навесом около месяца при положительной температуре. Затем эти отходы необходимо превратить в щепу на специальных машинах.

Отходы от деревопереработки, лесопиления подаются на приемную площадку, там они складируются, потом направляются в принимающую воронку рубильного механизма (ДУ-2). Для измельчения древесины рекомендуют пользоваться барабанной рубительной машиной, имеющей широкий спектр применения. Она может обработать практически каждый тип древесных отходов — рейки, кругляки, горбыль, обрезки, отторцовку, кривоствольную древесину. Обработанная таким образом щепа направляется в бункер, а затем идет в молотковую дробильную машину (ДМ-1), после этого древесная дробленка отправляется на вибрационный грохот, в целях отсеивания отходов и слишком крупных частиц.

На выходе дробленка представляет собой фракции древесины игольчатого или пластинчатого вида длиной от 2 до 20 мм, шириной от 2 до 5 мм, толщиной не больше 5 мм.

Предварительная обработка органического заполнителя химическими составами

Измельченная щепа с необходимым гранулометрическим составом направляется через промежуточный бункер в бак с водой для вымачивания и удаления, вредных для производства сахаров и веществ. Туда же направляют хлорид кальция. Вымачивание щепы при гидромодуле 1:10 продолжается 6 часов при температурном режиме 20°С. Применение предварительной гидротермической обработки улучшает физико-механические качества арболита. В воде древесина разбухает и этот процесс происходит до насыщения влагой волокна на 30%, при этом объем древесины и отдельные ее составляющие увеличиваются.

Дозирование составляющих компонентов для арболитовой массы

Важным условием однородности состава арболитовой массы и ее высокой стабильности является точное дозирование и качественное смешивание всех компонентов. Древесную щепу дозируют с помощью объемно — весового способа, с учетом коррекции насыпной плотности материала. Дробленке перед подачей на дозирование нужно иметь положительную температуру.

Для дозирования воды и химических добавок (хлорида кальция) используют автоматические дозаторы турбинного типа, работающие в цикличном либо непрерывном режиме. Возможен вариант дозирования добавок с помощью весового дозатора воды. При расчете дозировки воды и химических наполнителей учитывается влажность органического заполнителя и, соответственно, корректируются объемы добавляемой жидкости. Расчет доз цемента производится с помощью автоматических весовых дозаторов.

Загрузка и дозирование составляющих арболитовой смеси должна идти в следующей последовательности:

1) Древесный органический заполнитель.

2) Цемент.

3) Вода или водный раствор химических компонентов, регулируемый через расходомер.

4) Химические добавки, поступающие в течение всего процесса.

Подготовка арболитовой смеси

После вымачивания, дробленные деревянные фракции направляют в циклический смесительный механизм, являющийся бетономешалкой с принудительным действием. В смеситель подают из дозаторов вяжущие компоненты, воду, химические добавки. Там происходит смешивание всех составляющих до однородного состояния. Во время смешения вводят хлорид кальция с помощью метода дождевания и дозирования из перфорированных труб-распылителей. Данный способ точно вводит хлорид кальция и равномерно распределяет его, улучшая технологические свойства арболита. Все составляющие примешиваются в течение 10 минут. После смешивания из массы можно формировать арболитовые блоки. 

Формирование арболитовых блоков

Приготовленная арболитовая смесь направляется через специальные бункеры-укладчики в металлические формы или разборные деревянные формы, там смесь утрамбовывается и уплотняется, с помощью пресса, силового вибропроката и виброштампования. Чтобы арболит, произведенный на стандартном портландцементе , достиг 50% прочности от марки, его выдерживают в формах 5 суток при температуре 15° С и относительной влажностью воздуха около 60-70%.

Можно также залить арболитовую массу в формы и выдержать ее в течение 24 часов при температуре 40° С и аналогичной влажностью. В таких условиях блоки выдерживаются 2 суток с сохранением постоянной температуры не ниже 15° С.

Далее происходит распалубка смеси на блоки, панели и изделия поступают на склад.

Наряду с описанной выше технологией, существует вариант приготовления арболитовых блоков, с древесным заполнителем из одубины — щепы древесины дуба, являющейся отходом производства экстрактов дуба.

Процесс производства арболита из одубины более прост, так как данный заполнитель не нуждается в дополнительном измельчении. Также существует технология изготовления арболита из высокопрочного гипса, которая гораздо проще, чем на базе цемента. Это происходит из-за того что гипс, взаимодействуя с водой, образует нейтральную среду, а не щелочную, которая вызывает выделение сахара из дерева. Так как нет факторов, снижающих отвердение цемента, то использование минерализующих добавок в производстве не требуется. Технология упрощается еще и в связи с тем, что используя высокопрочный гипс, можно применять дробленку гораздо крупнее по фракции, прошедшую только одно измельчение в рубильном механизме.

Таким образом, производство арболита на основе гипса менее затратное, чем при использовании цемента.

Щепа для арболита своими руками Арболит: недостатки и достоинства строительного материала Достоинства и недостатки кремнегранитных блоков

Влияние пород древесины, обработки частиц и пропорции смеси

8 MR Garcez et al .: Цементно-древесные композиты: влияние пород древесины, обработки частиц и пропорции смеси

Цементная матрица

зависит от содержания влаги из-за

сниженная прочность на изгиб влажного волокна, что делает его более гибким и с меньшей вероятностью препятствует растрескиванию в матрице цемента

[3]. Таким образом, учитывая гигроскопичность древесины

, модуль упругости цементно-древесного композита

ниже, чем у самого цементного теста, и имеет тенденцию к уменьшению

, чем выше процентное содержание древесины.

4. Выводы

Результаты показали, что порода древесины, обработка частиц

и пропорции смеси могут влиять на физические и механические свойства

композитов древесины и цемента.

Смеси опилок Eucalyptus grandis и Pinus ellioti

привели к промежуточным значениям плотности, средним и низким значениям прочности на сжатие

и средним и высоким значениям

динамического модуля упругости.Композиты с

100% Eucalyptus grandis показали более высокие значения прочности на сжатие

. Были получены более легкие композиты

с опилками Pinus ellioti.

В целом, результаты подтверждают, что опилки эвкалипта и цемент

естественно совместимы и не требуют предварительной обработки частиц

во избежание проблем совместимости.

СПИСОК ЛИТЕРАТУРЫ

[1] К. Юргенсен, В. Коллерт, А. Лебедис, 2014, Оценка производства промышленного круглого леса

из лесонасаждений,

Серия рабочих документов по лесам и деревьям

, ФАО

FP / 48 / Э.

[2] Н. Солтани, А. Бахрами, М.И. Печ-Канул, Л.А. Гонсалес,

2015, Обзор физико-химической обработки рисовой шелухи

для производства современных материалов, Химическая инженерия

Journal, 264, 899-935.

[3] S. Frybort, R. Mauritz, A. Teischinger, U. Muller, 2008,

Цементно-связанные композиты — механический обзор,

BioResourches, 3 (2), 602-626.

[4] Р. М. Ронким, Ф. С. Ферро, Ф. Х. Ичимото, К.И. Кампос, М. с.

Бертолини, А. Л. Кристофоро, Ф. А. Р. Лар, 2014, Физические и

Механические свойства древесно-цементного композита с

лигноцеллюлозными отходами, International

Journal of Composite Materials, 4 (2), 69-72.

[5] M. Fan, MK Ndikontar, X. Zhou, JH Ngamveng, 2012,

Цементно-связанные композиты из тропической древесины:

Совместимость дерева и цемента, строительства и

строительных материалов, (36) , 135–140.

[6] X. Lin, MR Silsbee, DM Roy, R. Kessler, PR

Blankenhorn, 1994, Подходы к улучшению свойств

цементных композитов, армированных древесным волокном, Цемент и

Concrete Research, 24 (8 ), 1558-1566.

[7] Дж. Л. Пеханича, П. Р. Бланкенхорна, М. Р. Силсбиб, 2004,

Влияние уровня обработки поверхности древесного волокна на выбранные

механические свойства древесно-волокнистых композитов,

Исследования цемента и бетона, 34, 59–65.

[8] М. С. Бертолини, К. И. Кампос, А. М. Соуза, Т. Х. Панзера, А.

Л. Кристофоро, Ф. А. Р. Лар, 2014 г., Древесно-цементные

композиты из отходов Pinus sp. дерево: Эффект обработки

частиц. International, Journal of Composite

Materials, 4 (2), 146-149.

[9] А. Ашори, Т. Табарса, Ф. Амоси, 2012, Оценка использования деревянных железнодорожных шпал

в древесно-цементных композитных материалах

, Строительство и строительные материалы, 27, 126–129.

[10] А. Бахрами, Н. Солтани, М.И. Печ-Канул, К.А. Gutiérrez,

2016, Разработка композитов с металлической матрицей из

промышленных / сельскохозяйственных отходов и их производных,

Critical Reviews in Environmental Science and Technology,

46, 143-208.

[11] Ф. К. Хорхе, К. Перейра, Дж. М. Ф. Феррейра, 2004, Древесно-цементные

Композиты

: обзор, Holz Roh Werkst, 62, 370–377.

[12] ABNT. Бразильская ассоциация технических стандартов.NBR

5733: Портландцемент высокой ранней прочности. Рио-де-Жанейро,

1991.

[13] С. А. Коста, «Incorporação de serrim em argamassas

cimentícias», M. Eng. Диссертация, Universidade do Minho,

Guimarães, Portugal, 2012.

[14] ABNT. Бразильская ассоциация технических стандартов. NBR

7115: Гидроксид кальция для строительных растворов — Требования. Рио-де-

Жанейро, 2003.

[15] ABNT. Бразильская ассоциация технических стандартов.NM 248:

Распределение частиц по размерам. Рио-де-Жанейро, 2003.

[16] ABNT. Бразильская ассоциация технических стандартов. NBR

7215: Прочность цемента при сжатии. Рио-де-Жанейро, 1996.

[17] ABNT. Бразильская ассоциация технических стандартов. NBR

15630: Растворы — Определение динамического модуля упругости

путем распространения ультразвуковых волн. Рио-де-Жанейро,

2008.

[18] М. Р. Гарсес, Т. Сантос, Д. А. Гатто, 2013, Avaliação das

propriedades físicas e mecânicas de concretos pre-moldados

com adição de serregão em replace miúdo,

Ciência & Engenharia, 22, 95-104.

[19] S. Iwakiri, ABM Stinghen, EL Silveira, EHC

Zamarian, JG Prata, M. Bronoski, 2008, Influência da

massa específica sobre as propriedades mecânicas de painéis

aglorestais

aglo ) 487-493.

[20] В. Кастро, Р. Д. Араужо, К. Парчен, С. Ивакири, 2014,

Avaliação dos efeitos de pré-tratamentos da madeira de

Eucalyptus benthamii Maiden & Cambage no grau de

obilidland com , Árvore, 38 (5),

935-942.

[21] A. L. Beraldo, J. V. Carvalho, 2004, Compósito de

Eucalyptus Grandis — cimento Portland, Scientia Forestalis,

65, 150-161.

[22] AL Christoforo, SLM Ribeiro Filho, TH Panzerai, FA

R. Lahri, 2013, Metodologia para o cálculo dos módulos de

elasticidade longitudinal e transversal em vigas de madeira de

sizes, Rsiesural Estrutura 43 (4), 610-615.

[23] А. Л. Гутьеррес, М. Ф.Кановаз, Модуль упругости

высокоэффективного бетона, 1995, Материалы и конструкции,

28, 559-568.

Экспериментальное исследование добавления стружки в строительный раствор и статистическое моделирование отдельных эффектов

В рамках расширенной исследовательской программы по использованию древесной стружки в строительном растворе был разработан набор процедур для проверки эффектов добавления древесной стружки к определенному строительному раствору характеристики. Были приготовлены смеси, содержащие древесную стружку, заменяющую мелкие заполнители на 0, 30, 50 и 70% их объема.Технологичность, вес единицы свежего строительного раствора, скорость ультразвуковых импульсов (UPV), а также прочность на изгиб и сжатие были определены на основе измерений при разном возрасте отверждения. Результаты измерений и анализ показывают, что снижение прочности на сжатие, вызванное добавлением древесной стружки, может быть предсказано. Результат был стандартизирован в форме многофакторной сигмоидальной модели. Также стало очевидным, что доля цемента в смеси увеличивается, когда древесная стружка используется как объемная замена обычных мелких заполнителей, из-за низкого значения удельного веса древесины по сравнению с обычными заполнителями.Предлагается другая процедура, основанная на измерениях массы и объема, с целью проверки пропорций смеси в окончательной растворной смеси.

1 Введение

Было проведено множество исследований по использованию сельскохозяйственных или промышленных отходов в бетоне. В связи с тем, что бетон широко используется и имеет длительный срок службы, использованные в нем отходы на длительный период удаляются из потока отходов. Поскольку количество заполнителей, необходимых в строительной отрасли, велико, экологические выгоды от замены природных заполнителей отходами связаны не только с их безопасным удалением, но и со смягчением воздействия на окружающую среду, возникающего в результате добычи заполнителей, т.е.е. визуальное вторжение и потеря сельской местности. Исследования [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11] были проведены для оценки физико-механических свойств бетона, содержащего стружку или опилки в качестве заполнителей. Стружка и опилки — это отходы деревообрабатывающей промышленности, образующиеся при резке, фрезеровании и сверлении в процессе подготовки изделий из дерева. Свойства древесной стружки и опилок могут значительно различаться в зависимости от таких факторов, как географическое происхождение древесины, тип древесины, часть дерева, тип производственного процесса, в результате которого получается стружка, и т. Д.Как и в большинстве случаев легких заполнителей, замена обычных заполнителей древесной стружкой или опилками в основном производится на основе критерия замещения «по объему». Замена обычных крупных или мелких заполнителей таким же объемом древесной стружки или опилок [1], [6] обычно выражается в процентах (%).

Из-за (а) изменчивости заменяемых материалов, (б) их значительных отличий от природных заполнителей и (в) изменчивости параметров, влияющих на свойства самого бетона или раствора, данные, полученные в результате испытаний механических свойств бетона или раствора образцы, содержащие стружку, основаны на многофакторном процессе.Когда эти результаты поступают из совершенно разных лабораторных процессов, их метрологическая прослеживаемость имеет большое значение для достижения взаимной сопоставимости. Необходим стандартизированный протокол для экспериментального плана и ссылки на все существенные относительные данные (как предложено в [12] для традиционной замены заполнителя пластиком), чтобы облегчить любую попытку составить результаты исследований, когда древесная стружка различного происхождения и характеристик используются, и процент замены заполнителя варьируется.Различное представление общей экспериментальной процедуры вызывает трудности при сравнении результатов, полученных из разных лабораторий, и статистических выводов о влиянии замены природных заполнителей древесной стружкой.

Настоящее исследование посвящено изучению использования древесной стружки как части обычных заполнителей в растворах, и особенно созданию статистических моделей для прогнозирования механических свойств раствора, содержащего древесную стружку, в качестве частичной замены обычных мелких заполнителей.Результат стандартизирован, поэтому любой, кто использует этот протокол, даст результаты, которые будут сопоставимы с другими аналогичными исследованиями.

2 Материалы и методы

Цемент типа IV / B (P-W) 32,5 N и щебень известняка с максимальным размером 4,5 мм использовались во всех смесях. Объемная плотность мелких заполнителей составляла 1740 кг / м 3 (стандартная неопределенность 2,7%, основанная только на стандартной ошибке среднего). Древесная стружка, используемая в этом исследовании, была произведена на фабрике путем механической обработки двух видов необработанной древесины, айуса (рис. 1А) и бука (рис. 1В).Бук — древесина, широко используемая в мебельной промышленности. Ayous был выбран как совершенно другая, более легкая порода дерева. Насыпная плотность белой стружки составила 43 ± 1 кг / м 3 , а насыпная плотность буковой стружки — 64 ± 2 кг / м 3 . Процедуру измерения объемной плотности повторяли 10 раз, что обеспечивало точность метода в условиях повторяемости [13]. Было обнаружено, что эта стандартная неопределенность типа А является репрезентативной для всех вносящих вклад параметров неопределенности; его сравнивали с результатом относительной стандартной неопределенности типа B, основанной как на разрешающей способности мерной трубки, так и на интервале поверочной шкалы (e) используемых весов (все термины определены в JCGM 200: 2012 [14]).Наблюдаемая погрешность измерения объемной плотности объясняется сильной зависимостью этой характеристики от метода обработки древесины, используемого для производства стружки. Ожидается, что это будет внутренняя характеристика этого материала. Если древесная стружка предназначена для использования в качестве строительного материала, атрибут насыпной плотности должен быть строго учтен в любом соответствующем исследовании. В качестве суперпластификатора использовался суперпластификатор на основе простого поликарбонового эфира второго поколения.

Рисунок 1:

Древесная стружка, использованная в исследовании: (A) Айус, (B) бук.

Обычно распределение частиц в материалах оценивается ситовым анализом. В случае стружки возникает важный вопрос, какой реальный размер соответствует номинальному размеру сита. Чтобы оценить это, образец, который был взят для анализа с помощью ситового анализа, также изначально был измерен совершенно другим методом. С помощью этого метода приблизительно все стружки длиной более 3 мм (фактически подлежащие оптическому различению) были измерены с помощью высокоточного цифрового штангенциркуля.Для каждого бритья измеряли два размера: длину, которая принималась за максимальный размер, и ширину, которая принималась за размер бритья на оси, перпендикулярной длине. Как показано на рисунке 2, ширина бритья статистически не связана с его длиной (Ayous: r = 0,04, бук: r = 0,20). Стружки размером менее 3 мм были выбраны для того, чтобы не измерять их штангенциркулем, потому что (а) их измерение было невозможно из-за их очень маленького размера и очень большой популяции, и (б) было замечено, что при таких размерах стружки не было значительной дискриминации между длиной и шириной бритья.Существенный вопрос заключался в том, проходит ли стружка через сито в зависимости от ее длины или ширины, что, очевидно, является избыточным для такой мелкой стружки. Затем на тех же образцах, которые были частично измерены штангенциркулем, был проведен ситовый анализ, как и для мелких агрегатов. Результаты анализа гранулометрического состава двух типов древесной стружки и мелких заполнителей представлены на рисунке 3. Как видно из этого рисунка, почти вся стружка проходит через сито 5 мм.Поскольку в обоих образцах было измерено, что большая популяция имеет длину более 5 мм, можно сделать вывод, что во время ситового анализа критическим размером стружки является ширина, а не длина. Это также подтверждается (рис. 2) тем фактом, что только небольшая часть самых крупных стружек была измерена и имела ширину более 5 мм, что означает, что можно сказать, что распределение ширины стружки сильно связано с результатом ситового анализа. . Следует также отметить, что этот результат ситового анализа следует использовать только в качестве критерия для качественной оценки бритвенного материала перед смешиванием [2], поскольку нет доказательств того, что эта геометрия бритья остается неизменной даже после того, как этот материал добавлен в смесь.

Рис. 2:

Зависимость ширины от длины для двух типов стружки.

Рисунок 3:

Результаты ситового анализа.

Сначала была приготовлена ​​эталонная смесь с отношением заполнителя к цементу, равным 3, отношением воды к цементу, равным 0,5, и 1% по массе суперпластификатора цемента. Затем были использованы три уровня замены мелкого заполнителя: 30, 50 и 70% по объему. Испытания на удельную массу (плотность) были выполнены после смешивания и перед заливкой строительного раствора в формы.Удельный вес ( D ) определяли путем измерения массы строительного раствора ( м u ), содержащегося в известном объеме ( V u ) образца свежего строительного раствора, как описано в ASTM. C138:

(1) D = muVu

Расчет был использован для иллюстрации изменений пропорции цемента в смеси и того, остается ли она практически постоянной. Этот расчет использовался также для оценки влияния степени уплотнения древесной стружки, поскольку воздух в исходном количестве этого «рыхлого» материала (перед смешиванием) был вытеснен всеми другими составляющими смеси (во время смешивания).Это особенно необходимо в случае древесных стружек, поскольку этот материал представляет собой легкий материал с типичной изогнутой формой (рис. 1), отличной от обычных заполнителей. После измерения веса единицы свежего строительного раствора использовались соотношения начальных масс смешиваемых компонентов, чтобы оценить пропорцию смеси каждого компонента. Распределение измеренной массы единицы между составляющими составляющими было рассчитано на основе разумного предположения, что конечная смесь была однородной по всему объему.Массовое соотношение для каждого компонента равно первоначально определенному для свежего раствора, приготовленного путем смешивания (отношение заполнителя к цементу 3, отношение воды к цементу 0,5 и 1% по массе суперпластификатора цемента) (уравнение 2).

(2) mi, init / ∑imi, init = mi / ∑imi

, где m i , init — масса составляющей i , первоначально определенная перед смешиванием, и m i — масса компонента и в любом образце (части) свежего раствора.В любом случае для образца свежего строительного раствора м u соответствует ∑imi, как в формуле. 1. Соотношение компонентов смеси i (MP i ) определяется как:

(3) (MP) i = mi / Vu = mi / (mu / D) = D⋅ (mi / ∑ imi) = D⋅ (mi, init / imi, init)

Расчетные пропорции смеси показаны в Таблице 1. После регрессии для подгонки кривой для значений изменения пропорции цементной смеси (CMPC) в зависимости от замены мелких заполнителей согласно формуле.(4) установлено, что для древесины дуба h 1 = 0,49 ± 0,11 и h 2 = 0,0053 ± 0,0017 (R 2 = 0,9997) и для древесины бука h 1 = 0,51 ± 0,04 и h 2 = 0,00041 ± 0,0007 (R 2 = 0,999).

Таблица 1:

Пропорции смеси.

Суперпластификатор (кг / м 3 ) 9066
Образцы Порода древесины Замена Цемент (кг / м 3 ) Мелкие заполнители (кг / м 3 ) Вода (кг / м 3 )
% кг / м 3
Арт. 0 0 481 1444 241 4,8
A30Sh Ayous 30 13 578 1214 50 20 659 989 330 6,6
A70Sh 70 35 772 695 7386 903.7
B30Sh Бук 30 21 572 1201 286 5,7
B50Sh 906 6,6
B70Sh 70 60 750 675 375 7,5

(4) CMPC = h2 · x + h3 · x2

В соответствии с расчетной пропорцией , доля цементной смеси значительно увеличивается по мере увеличения процентной доли замены обычных заполнителей по объему (Рисунок 4).Ожидается, что этот результат будет более значительным, когда замещающий материал имеет более низкий удельный вес и / или более «пушистый». Это следует учитывать каждый раз, когда легкий и / или «пушистый» материал используется для замены обычных заполнителей.

Рисунок 4:

Процент изменения пропорции цементной смеси (CMPC) по сравнению с процентом замены мелких заполнителей.

Из-за высокого водопоглощения древесных стружек они впитывают часть воды из смеси, поэтому остается недостаточно воды для удобоукладываемости и схватывания цемента.По этой причине в некоторых исследованиях [1], [2], [4], [6], [7] используются водонасыщенные стружки или дополнительная вода. В обоих этих случаях окончательное и фактическое отношение воды к цементу неизвестно, поскольку используемое избыточное количество воды нелегко оценить по тому, остается ли она внутри пористости древесины или не абсорбируется для вышеупомянутых случаев, соответственно. В качестве альтернативы, в рамках этого исследования было решено использовать древесную стружку в необработанном виде, и в смесь не добавляли лишнюю воду. Предполагалось, что преимущество этого варианта состоит в том, что даже если часть воды абсорбируется древесной стружкой во время смешивания, она будет в виде водоцементной подсмеси, которая гарантирует, что вероятность взаимодействия этой воды с цемента было максимум.

Составляющие смешивали в смесителе на медленной скорости для достижения хорошей гомогенизации. Сначала происходило перемешивание цемента и заполнителей. Затем добавляли воду с разведенным в ней суперпластификатором. Испытание раствора на текучесть проводилось согласно ASTM C 1437 [15]. Образцы из каждой смеси были отлиты размерами 40 × 40 × 160 мм для проведения всех испытаний. Неразрушающий контроль скорости ультразвуковых импульсов (UPV) проводился в возрасте 28 и 365 дней с использованием метода, описанного в ASTM C 597 [16], в частности, с использованием портативного ультразвукового неразрушающего цифрового индикаторного тестера (PUNDIT).Испытания на прочность проводились через 7, 14, 28 и 365 дней отверждения. Испытание на прочность при изгибе проводилось путем нагружения в центральной точке, как описано в ASTM C 293 [17]. Концевые части призм, которые остались нетронутыми после разрушения при изгибе, использовали для проведения эквивалентного кубического испытания путем приложения нагрузки через квадратные стальные пластины размером 40 мм. Приведенные результаты испытаний на изгиб и неразрушающие испытания соответствуют среднему значению для трех испытанных образцов. Результаты эквивалентного куба на сжатие — это среднее значение шести испытанных образцов.

3 Результаты

3.1 Свежий строительный раствор

Обычно древесная стружка впитывает больше воды по сравнению с обычными мелкими заполнителями. По этой причине удобоукладываемость смеси снижается по мере увеличения процентного содержания мелких заполнителей по объему (Таблица 2). Эталонная смесь, а также A30Sh и A50Sh, были самоуплотняющимися смесями, и измеренный диаметр был не после 25 капель таблицы, как указано в ASTM C 1437 [15]. Из-за разницы в объемной плотности двух типов древесины (айуса и бука) одинаковые мелкие заполнители по процентному содержанию объемного замещения приводят к разным пропорциям смеси для каждого вида древесины.Это означает, что при использовании бука пропорция смеси древесных стружек для определенного процентного содержания по объему имеет большее значение, чем при использовании ayous. Возможно, это приводит к большему водопоглощению древесной стружкой и, как следствие, к снижению удобоукладываемости свежего раствора.

Таблица 2:

Результаты теста потока.

Арт. A30Sh A50Sh A70Sh B30Sh B50Sh B70Sh
Расход без откидного столика 24.8 22,3 21,8 n.s n.s n.s n.s
Расход с опусканием стола o.f. оф. оф. 22,4 22,2 21,1 20,1

Вес агрегата уменьшился по мере увеличения объема замещения мелких заполнителей (Рисунок 5). Это снижение объясняется тем, что древесная стружка имеет меньший удельный вес, чем обычные заполнители.

Рис. 5:

Удельный вес свежего строительного раствора в сравнении с заменой обычных заполнителей в% по объему.

3.2 Затвердевший раствор

Результаты испытаний на изгиб и эквивалентную кубическую прочность на сжатие показаны в Таблице 3. Прочность на изгиб и сжатие раствора, содержащего стружку, уменьшалась по мере увеличения замены мелких заполнителей. Это снижение объясняется более слабым сцеплением цементного раствора и стружки по сравнению со сцеплением цементного раствора и обычных заполнителей.

Таблица 3:

Результаты испытаний механических свойств.

Образцы Прочность на изгиб (МПа) Прочность на сжатие (МПа)
7 дней 14 дней 28 дней 365 дней 7 дней 14332 365 дней
Арт. 10,1 ± 0,4 9,3 ± 2,2 9,1 ± 0,9 12,3 ± 0,9 43.7 ± 0,9 49,2 ± 0,9 58,1 ± 2,1 74,4 ± 2,7
A30Sh 7,8 ± 0,1 8,5 ± 1,0 6,8 ± 0,9 9,9 ± 0,8 31,7 ± 0,6 39,4 ± 0,4 45,0 ± 0,9 53,5 ± 0,3
A50Sh 6,5 ± 0,1 7,3 ± 0,8 7,6 ± 1,4 9,3 ± 1,7 26,2 ± 0,3 32,9 ± 0,5 41,5 ± 0,3 46,0 ± 0,7
A70Sh 6.2 ± 1,0 7,2 ± 0,7 7,7 ± 0,1 9,2 ± 0,1 20,8 ± 1,1 23,8 ± 0,6 29,1 ± 0,8 32,2 ± 0,8
B30Sh 7,7 ± 0,1 7,9 ± 0,8 8,4 ± 2,6 9,9 ± 1,7 29,2 ± 0,7 34,9 ± 2,4 41,1 ± 0,4 46,3 ± 3,6
B50Sh 7,1 ± 1,7 8,0 ± 0,9 7,5 ± 1,5 8,4 ± 0,9 21,7 ± 1,8 26.8 ± 2,0 31,3 ± 1,5 33,7 ± 4,6
B70Sh 5,1 ± 0,1 7,1 ± 0,1 6,6 ± 0,9 7,3 ± 0,2 14,8 ± 1,3 21,7 ± 1,2 28,0 ± 0,8 26,9 ± 3,3

Показано, что результирующее снижение прочности раствора, содержащего древесную стружку, не связано только с влиянием замены мелких заполнителей древесной стружкой. Ожидается, что в результате значительное увеличение удельной доли цемента в готовой смеси положительно повлияет на значение прочности.Следовательно, результатом снижения значения прочности является сочетание одновременного и неблагоприятного воздействия двух вышеуказанных явлений. Кажется, что решение о замене мелкого заполнителя древесной стружкой не должно основываться только на расчетах в соответствии с объемами этих двух материалов в том виде, в каком они появляются до смешивания. Этот расчет должен производиться в соответствии с кажущимся объемом каждого составляющего объема смеси как условиями, в которых он появляется в смеси.

Как показано на Рисунке 6, во всех случаях прочность на сжатие раствора, содержащего стружку, была выше, чем прочность на сжатие раствора, содержащего буковую стружку.Средняя разница, рассчитанная для 12 групп по шесть образцов, каждая из которых имеет одинаковое значение для фракции мелких агрегатов и возраста образца, составила 20 ± 7%. Этот результат не имеет значимого статистического отношения ни к значениям фракции замещения мелких агрегатов (Пирсон r = 0,255, значимость p = 0,423), ни к значениям возраста образца (Pearson r = 0,217, значимость p = 0,498).

Рисунок 6:

Сравнение результатов испытаний на прочность при сжатии для групп из шести образцов с заданной долей мелких заполнителей и возрастом образцов (каждая группа соответствует одной цифре).

Согласно результатам экспериментов и уравнению, основанному на уравнении, первоначально предложенном Фрейслебеном Хансеном и Педерсеном [18], прочность на сжатие дается как функция от фракции замещения мелкозернистого заполнителя ( W ) и возраста образца ( t ) по формуле. (5):

(5) CS (t, W) = (CS∞, 1− kWn) exp [- (τ / t) a]

, где CS ( t , W ) равно прочность на сжатие в возрасте т (дни), когда фракция замены мелких заполнителей составляет W , CS , 1 — предельная прочность на сжатие для эталона (максимальное асимптотическое значение прочности для функции, которая соответствует данным), n — параметр формы для функции прочности на сжатие, когда доля замены мелких заполнителей составляет W , k — параметр снижения прочности на сжатие, такой, что кВт n равно уменьшению предельной прочности образца за счет замены мелкого заполнителя, равной W , τ — постоянная времени и a — параметр формы для сигмоидальной функции прочности на сжатие с возрастом образца t , CS ∞ 90 252, 1 кВт n соответствует предельной прочности на сжатие образца с долей замещения мелкозернистого заполнителя, равной W .

Это означает, что для данного возраста образца соотношение между прочностью на сжатие и заменой мелкого заполнителя является функцией доли замены мелкого заполнителя в степени n (рис. 7A). Одновременно для данной фракции замены мелких заполнителей прочность на сжатие является функцией возраста, что соответствует сигмоидальной кривой (рис. 7B).

Рисунок 7:

(A) Прочность на сжатие в зависимости от доли замены мелких заполнителей, (B) прочность на сжатие в зависимости от возраста образца.

Процедура регрессии с использованием уравнения. (2) на основе экспериментальных результатов настоящего исследования предоставили статистически значимую модель (Пирсон r = 0,96) со значениями параметров: CS , 1 = 74 ± 3 МПа, k = 55 ± 4 МПа, n = 0,8 ± 0,1, a = 0,7 ± 0,2 и τ = 3,1 ± 0,6 суток.

В уравнении. (5) параметр типа древесной стружки не исследовался, хотя статистическая значимость этого результата была достаточно удовлетворительной, чтобы его можно было использовать в качестве общей модели для прогнозирования потери предельной прочности при использовании любого вида древесной стружки для мелкозернистого заполнителя. замена.Сделав еще один шаг, параметр типа стружки был введен в формулу. (5), образуя уравнение. (6):

(6) CS (t, W) = [CS∞, 2− (k1m1 + k2m2) Wn] exp [- (τ / t) a]

где м 1 , m 2 равно единице, если тип стружки — айус или бук, соответственно, в противном случае каждый равен нулю. Комбинация м 1 = 0 и м 2 = 0 соответствует случаю контрольных образцов (без использования стружки). k 1 и k 2 — параметры формы, аналогичные k в уравнении. (5).

Это уравнение было опробовано только для одного типа древесины на смесь, а не для двух типов вместе в одной и той же строительной смеси. Когда два или более типа древесных стружек должны использоваться одновременно в одной и той же строительной смеси, тогда использование уравнения. (5) предлагается, но также предлагается провести дальнейшие исследования для нескольких видов древесных стружек в одной и той же строительной смеси, в основном для того, чтобы исследовать значимость, в которой этот фактор способствует неопределенности уравнения.(5) параметры. Любая комбинация значений м 1 или м 2 , кроме значений 0 и 1, не изучалась и предлагается для дальнейшего изучения.

Процедура регрессии с использованием уравнения. (6) на основе экспериментальных результатов настоящего исследования предоставили статистически значимую модель (Пирсон r = 0,976) со значениями параметров: CS , 2 = 74 ± 3 МПа, k 1 = 48 ± 3 МПа, k 2 = 60 ± 3 МПа, n = 0.76 ± 0,07, a = 0,7 ± 0,1 и τ = 3,1 ± 0,5 дня (рисунок 8).

Рис. 8:

Прочность на сжатие по сравнению с долей замены мелких заполнителей (A) только для стружки из старой древесины и (B) только для стружки из бука.

Результаты тестов UPV показаны на рисунке 9.

Рисунок 9:

Скорость ультразвукового импульса в зависимости от фракции замещения мелких заполнителей.

УПВ линейно уменьшается по мере увеличения доли замещения мелких заполнителей.Это объясняется различными свойствами древесины по сравнению со свойствами обычных мелких заполнителей. Важность УПВ заключается в том, что он в значительной степени коррелирует с эластичными свойствами строительного раствора. Модель регрессии была применена к экспериментальным данным с использованием уравнения. (7):

(7) UPV (t, W) = [UPV∞ + (l1m1 + l2m2) W] [1 − exp (−t / t0)]

, где UPV является ограничивающим UPV для эталона, которое является максимальным асимптотическим значением UPV для функции, которая соответствует данным, UPV · [1 − exp (- t / t 0 )] является UPV ссылка ( W = 0) для указанного возраста отверждения ( t ), м 1 и м 2 равны единице, если тип стружки древесины или бука, соответственно, равен ноль, l 1 , l 2 — параметры формы, а t 0 — постоянная времени.

Процедура регрессии с использованием уравнения. (4) на основе экспериментальных результатов настоящего исследования для UPV предоставили статистически значимую модель (Pearson r = 0,981) со значениями параметров UPV = (5,33 ± 0,08) · 10 3 м / с, l 1 = (- 1,73 ± 0,17) · 10 3 м / с, l 2 = (- 2,18 ± 0,16) · 10 3 м / с, t 0 = 11,4 ± 0,7 сут.

Наблюдение с помощью стереоскопа показывает однородную смесь, в которую хорошо намотаны стружки (рис. 10).

Рисунок 10:

Стереоскопические изображения строительного раствора с (A) 70% -ной заменой по объему мелких заполнителей большой стружкой и (B) 20% -ным замещением мелких заполнителей буковой стружкой.

4 Выводы

На основании представленных результатов можно сделать следующие выводы:

  • Прочность на сжатие и изгиб снижается по мере увеличения объемной доли замены обычных заполнителей, но конструкция смеси может компенсировать это снижение прочности.

  • Удельный вес свежего раствора, содержащего стружку, уменьшается по мере увеличения содержания стружки.

  • Поскольку доля цемента в смеси увеличивается, когда древесная стружка используется как объемная замена обычных мелких заполнителей, стоимость смеси следует тщательно контролировать.

  • Сделан вывод, что сигмоидальная кривая (модель) очень хорошо соответствует результатам для прочности на сжатие как функции возраста отверждения.

  • Сигмоидальная кривая без учета типа древесной стружки, используемой в качестве замены мелкозернистого заполнителя, является важным показателем прочности на сжатие.В зависимости от географического региона любого, кто желает использовать эту кривую, дальнейшее уточнение значений параметров кривой может быть выполнено путем повторения той же экспериментальной процедуры, что и в рамках настоящего исследования, с использованием типов древесины, в основном используемых в промышленных процессах в конкретном регионе. . В качестве дальнейших исследований можно провести дополнительные исследования для получения объединенных результатов относительно механических свойств, а также долговечности или термических свойств раствора, содержащего стружку, и замены обычных заполнителей смесями различных типов древесины.


Автор, ответственный за переписку: Стаматия Гавела, инженер-химик, доктор философии, сотрудник лаборатории, Школа педагогического и технологического образования, Департамент преподавателей гражданского строительства, кампус ASPETE, железнодорожная станция ISAP-EIRINI, GR-14121 Ираклион, Афины, Греция


Ссылки

[1] Коринальдези В., Маццоли А., Сиддик Р. Констр. Строить. Матер. 2016, 123, 281–289. Искать в Google Scholar

[2] Bederina M, Marmoret L, Mezreb K, Khenfer MM, Bali A, Queneudec M. Constr. Строить. Матер. 2007, 21, 662–668. Искать в Google Scholar

[3] Taoukil D, El bouardi A, Sick F, Mimet A, Ezbakhe H, Ajzoul T. Constr. Строить. Матер. 2013, 48, 104–115. Искать в Google Scholar

[4] Coatanlem P, Jauberhie R, Rendell F. Constr. Строить. Матер. 2006, 20, 776–781. Искать в Google Scholar

[5] Paramasivam P, Loke YO. Внутр. J. Lightweight Concr. 1980, 2, 57–71. Искать в Google Scholar

[6] Mohammed BS, Abdullahi M, Hoong CK. Constr. Строить. Матер. 2014, 55, 13–19. Искать в Google Scholar

[7] Bederina M, Laidoudi B, Goullieux A, Khenfer MM, Bali A, Queneudec M. Constr. Строить. Материал . 2009, 23, 1311–1315. Искать в Google Scholar

[8] Ganiron TU. Внутр. J. Adv. Sci. Technol. 2014, 63, 73–82. Искать в Google Scholar

[9] Bederina M, Gotteicha M, Belhadj B, Dheily RM, Khenfer MM, Queneudec M. Constr. Строить. Матер. 2012, 36, 1066–1075.Искать в Google Scholar

[10] Taoukil D, El-bouardi A, Ezbakhe H, Ajzoul T. Res. J. Appl. Sci. Англ. Tech. 2011, 3, 113–116. Искать в Google Scholar

[11] Belhadj B, Bederina M, Montrelay N, Houessou J, Queneudec M. Constr. Строить. Матер. 2014, 66, 247–258. Искать в Google Scholar

[12] Гавела С., Пападакос Г., Касселури-Ригопулу В. В Термопластические композиты: новые технологии, использование и перспективы , 1-е изд., Риттер Э, под ред., Nova Publications: New York, 2017, стр. 143–164. Искать в Google Scholar

[13] JCGM / WG1, JCGM 100: 2008 (GUM 1995 с небольшими исправлениями): Оценка данных измерений — Руководство по выражению неопределенности измерения, Первое издание, 2008. Поиск в Google Scholar

[14] JCGM / WG1, JCGM 200: 2012 (версия 2008 г. с небольшими исправлениями): Международный словарь метрологии — Основные и общие концепции и связанные термины (VIM), Третье издание, 2012 г. Поиск в Google Scholar

[15] ASTM C 1437-15, Стандартный метод определения текучести гидравлического цементного раствора, 2015 г.Искать в Google Scholar

[16] ASTM C 597-16, Стандартный метод испытания скорости импульса через бетон, 2016. Искать в Google Scholar

[17] ASTM C 293 / C293M — 16, Стандартный метод испытания прочности на изгиб Бетон (использование простого луча с нагрузкой на центральную точку), 2016. Поиск в Google Scholar

[18] Freiesleben Hansen P, Pedersen J. Информационный бюллетень CEB 1985, 166, 42. Поиск в Google Scholar

Опубликовано в Интернете : 2017-8-31

Опубликовано в печатном виде: 2017-4-25

© 2017 Walter de Gruyter GmbH, Берлин / Бостон

Эта статья распространяется на условиях некоммерческой лицензии Creative Commons Attribution , что разрешает неограниченное некоммерческое использование, распространение и воспроизведение на любом носителе при условии надлежащего цитирования оригинальной работы.

Влияние пород древесины, обработки частиц и пропорции смеси

[1] К. Юргенсен, В. Коллерт, А. Лебедис, 2014, Оценка промышленного производства круглого леса из лесонасаждений, Рабочий документ о лесонасаждениях и деревьях Серия, FAO FP / 48 / E.
[2] Н. Солтани, А. Бахрами, М.И. Печ-Канул, Л.А. Гонсалес, 2015, Обзор физико-химической обработки рисовой шелухи для производства современных материалов, Chemical Engineering Journal, 264, 899-935.
[3] С. Фриборт, Р. Мауриц, А. Тейшингер, У. Мюллер, 2008, Цементно-связанные композиты — механический обзор, BioResourches, 3 (2), 602-626.
[4] Р. М. Ронким, Ф. С. Ферро, Ф. Х. Ичимото, К. И. Кампос, М. с. Бертолини, А. Л. Кристофоро, Ф. А. Р. Лар, 2014 г., Физические и механические свойства древесно-цементного композита с вариациями отходов лигноцеллюлозной сортировки, Международный журнал композитных материалов, 4 (2), 69-72.
[5] M. Fan, MK Ndikontar, X. Zhou, JH Ngamveng, 2012, Цементно-связанные композиты из тропической древесины: Совместимость дерева и цемента, Строительные и строительные материалы, (36), 135 –140.
[6] X. Lin, MR Silsbee, DM Roy, R. Kessler, PR Blankenhorn, 1994, Подходы к улучшению свойств цементных композитов, армированных древесным волокном, Cement and Concrete Research, 24 (8), 1558-1566.
[7] J.Л. Пеханича, П. Р. Бланкенхорна, М. Р. Силсбиб, 2004, Влияние уровня обработки поверхности древесного волокна на отдельные механические свойства древесно-волокнистых композитов, Исследования цемента и бетона, 34, 59–65.
[8] М. С. Бертолини, К. И. Кампос, А. М. Соуза, Т. Х. Панзера, А. Л. Кристофоро, Ф. А. Р. Лар, 2014 г., Древесно-цементные композиты из отходов Pinus sp. дерево: Эффект обработки частицами. Международный журнал композитных материалов, 4 (2), 146-149.
[9] А. Ашори, Т. Табарса, Ф. Амоси, 2012, Оценка использования деревянных железнодорожных шпал в древесно-цементных композитных материалах, Строительство и строительные материалы, 27, 126–129.
[10] А. Бахрами, Н. Солтани, М.И. Печ-Канул, К.А. Гутьеррес, 2016, Разработка композитов с металлической матрицей из промышленных / сельскохозяйственных отходов и их производных, Critical Reviews in Environmental Science and Technology, 46, 143-208.
[11] F. К. Хорхе, К. Перейра, Дж. М. Ф. Феррейра, 2004 г., Древесно-цементные композиты: обзор, Holz Roh Werkst, 62, 370–377.
[12] ABNT. Бразильская ассоциация технических стандартов. NBR 5733: высокопрочный портландцемент. Рио-де-Жанейро, 1991.
[13] С. А. Коста, «Incorporação de serrim em argamassas cimentícias», M. Eng. Диссертация, Universidade do Minho, Гимарайнш, Португалия, 2012 г.
[14] ABNT. Бразильская ассоциация технических стандартов. NBR 7115: Гидроксид кальция для строительных растворов — Требования. Рио-де-Жанейро, 2003.
[15] ABNT. Бразильская ассоциация технических стандартов. NM 248: Распределение частиц по размерам. Рио-де-Жанейро, 2003.
[16] ABNT. Бразильская ассоциация технических стандартов. NBR 7215: Прочность цемента на сжатие. Рио-де-Жанейро, 1996.
[17] ABNT.Бразильская ассоциация технических стандартов. NBR 15630: Растворы — Определение динамического модуля упругости по распространению ультразвуковых волн. Рио-де-Жанейро, 2008.
[18] М. Р. Гарсес, Т. Сантос, Д. А. Гатто, 2013, Avaliação das propriedades físicas e mecânicas de concretos pré-moldados com adição de serragem em substituiçãúdo ao ag, Ciência & Engenharia, 22, 95-104.
[19] С. Ивакири, А. Б. М. Стинген, Э.Л. Силвейра, Э. Х. С. Замарян, Дж. Г. Прата, М. Броноски, 2008, Influência da massa específica sobre as propriedades mecânicas de painéis aglomerados, Флореста, 38 (3) 487-493.
[20] В. Кастро, Р. Д. Араужу, К. Парчен, С. Ивакири, 2014 г., Avaliação dos efeitos de pré-tratamentos da madeira de Eucalyptus benthamii Maiden & Cambage no grau de portbilidade com cic. , Árvore, 38 (5), 935-942.
[21] A.Л. Беральдо, Дж. В. Карвалью, 2004 г., Compósito de Eucalyptus Grandis — cimento Portland, Scientia Forestalis, 65, 150–161.
[22] AL Christoforo, SLM Ribeiro Filho, TH Panzerai, FAR Lahri, 2013, Metodologia para o cálculo dos módulos de elasticidade longitudinal e transversal em vigas de madeira de sizesões estruturais, 4ência Réncia , 610-615.
[23] А. Л. Гутьеррес, М. Ф. Кановаз, Модуль упругости высокоэффективного бетона, 1995, Материалы и конструкции, 28, 559-568.

Сталь, дерево и бетон: сравнение

ширина: 80%;
}
]]>

Какие материалы чаще всего используются в строительстве?

Конструктивное проектирование зависит от знания материалов и соответствующих им свойств, чтобы мы могли лучше предсказать поведение различных материалов при нанесении на конструкцию. Как правило, три (3) наиболее часто используемых строительных материала — это сталь , бетон и древесина / древесина . Знание преимуществ и недостатков каждого материала важно для обеспечения безопасного и экономичного подхода к проектированию конструкций.

Конструкционная сталь

Сталь — это сплав, состоящий в основном из железа и углерода. Другие элементы также примешиваются к сплаву для получения других свойств. Одним из примеров является добавление хрома и никеля для создания нержавеющей стали. Увеличение содержания углерода в стали имеет предполагаемый эффект увеличения прочности материала на разрыв. Увеличение содержания углерода делает сталь более хрупкой, что нежелательно для конструкционной стали.

Преимущества конструкционной стали

  1. Сталь имеет высокое соотношение прочности и веса.Таким образом, собственный вес металлоконструкций относительно невелик. Это свойство делает сталь очень привлекательным конструкционным материалом для высотных зданий, длиннопролетных мостов, сооружений, расположенных на земле с низким содержанием грунта и в районах с высокой сейсмической активностью.
  2. Пластичность. Перед разрушением сталь может подвергаться значительной пластической деформации, что обеспечивает большой резерв прочности.
  3. Прогнозируемые свойства материала. Свойства стали можно предсказать с высокой степенью уверенности.На самом деле сталь демонстрирует упругие свойства до относительно высокого и обычно четко определенного уровня напряжения. В отличие от железобетона свойства стали существенно не меняются со временем.
  4. Скорость возведения. Стальные элементы просто устанавливаются на конструкцию, что сокращает время строительства. Обычно это приводит к более быстрой окупаемости в таких областях, как затраты на рабочую силу.
  5. Простота ремонта. Стальные конструкции в целом можно легко и быстро отремонтировать.
  6. Адаптация заводской сборки.Сталь отлично подходит для заводского изготовления и массового производства.
  7. Многократное использование. Сталь можно повторно использовать после разборки конструкции.
  8. Расширение существующих структур. Стальные здания можно легко расширить, добавив новые отсеки или флигели. Стальные мосты можно расширять.
  9. Усталостная прочность. Металлоконструкции обладают относительно хорошей усталостной прочностью.

Недостатки конструкционной стали

  1. Общая стоимость. Сталь очень энергоемкая и, естественно, более дорогая в производстве.Стальные конструкции могут быть более дорогостоящими в строительстве, чем другие типы конструкций.
  2. Противопожарная защита. Прочность стали существенно снижается при нагревании до температур, обычно наблюдаемых при пожарах в зданиях. Сталь также довольно быстро проводит и передает тепло от горящей части здания. Следовательно, стальные конструкции в зданиях должны иметь соответствующую противопожарную защиту.
  3. Техническое обслуживание. Сталь, подвергающаяся воздействию окружающей среды, может повредить материал и даже загрязнить конструкцию из-за коррозии.Стальные конструкции, подверженные воздействию воздуха и воды, такие как мосты и башни, регулярно окрашиваются. Применение устойчивых к атмосферным воздействиям и коррозионно-стойких сталей может устранить эту проблему.
  4. Склонность к короблению. Из-за высокого отношения прочности к весу стальные сжимающие элементы, как правило, более тонкие и, следовательно, более подвержены короблению, чем, скажем, железобетонные сжимающие элементы. В результате требуется больше конструктивных решений для улучшения сопротивления продольному изгибу тонких стальных компрессионных элементов.

Программное обеспечение SkyCiv Steel Design

Рис. 1. Обзор стальных конструкций

Бетон железобетон

Бетон представляет собой смесь воды, цемента и заполнителей. Пропорция трех основных компонентов важна для создания бетонной смеси желаемой прочности на сжатие. Когда в бетон добавляют арматурные стальные стержни, эти два материала работают вместе с бетоном, обеспечивающим прочность на сжатие, и сталью, обеспечивающей прочность на растяжение.

Преимущества железобетона

  1. Прочность на сжатие. Железобетон имеет высокую прочность на сжатие по сравнению с другими строительными материалами.
  2. Прочность на разрыв. Благодаря предусмотренной арматуре железобетон также может выдерживать значительную величину растягивающего напряжения.
  3. Огнестойкость. Бетон обладает хорошей способностью защищать арматурные стальные стержни от огня в течение длительного времени. Это выиграет время для арматурных стержней до тех пор, пока пожар не будет потушен.
  4. Материалы местного производства. Большинство материалов, необходимых для производства бетона, можно легко найти на месте, что делает бетон популярным и экономичным выбором.
  5. Прочность. Система здания из железобетона более долговечна, чем любая другая система здания.
  6. Формуемость. Железобетон, изначально как текучий материал, можно экономично формовать в практически неограниченном диапазоне форм.
  7. Низкие эксплуатационные расходы. Железобетон является прочным, с использованием недорогих материалов, таких как песок и вода, которые не требуют обширного обслуживания.Бетон предназначен для того, чтобы полностью покрыть арматурный стержень, так что арматурный стержень не будет нарушен. Это делает стоимость обслуживания железобетонных конструкций очень низкой.
  8. В конструкции, такой как фундаменты, плотины, опоры и т. Д., Железобетон является наиболее экономичным строительным материалом.
  9. Жесткость. Он действует как жесткий элемент с минимальным прогибом. Минимальный прогиб хорош для удобства эксплуатации зданий.
  10. Удобство в использовании. По сравнению с использованием стали в конструкции, при строительстве железобетонных конструкций может быть задействована менее квалифицированная рабочая сила.

Недостатки железобетона

  1. Долгосрочное хранение. Бетон нельзя хранить после смешивания, так как цемент вступает в реакцию с водой и смесь затвердевает. Его основные ингредиенты нужно хранить отдельно.
  2. Время отверждения. Бетон выдерживает тридцать дней. Этот фактор сильно влияет на график строительства здания. Это снижает скорость возведения монолитного бетона по сравнению со сталью, однако ее можно значительно улучшить с помощью сборного железобетона.
  3. Стоимость форм. Стоимость форм, используемых для отливки ЖБИ, относительно выше.
  4. Увеличенное сечение. Для многоэтажного здания секция железобетонной колонны (RCC) больше, чем стальная секция, так как в случае RCC прочность на сжатие ниже.
  5. Усадка. Усадка вызывает развитие трещин и потерю прочности.

Программное обеспечение SkyCiv RC для проектирования

Рис. 2. Типичный пример железобетона

Древесина

Древесина — это органический, гигроскопичный и анизотропный материал.Его тепловые, акустические, электрические, механические, эстетические, рабочие и т. Д. Свойства очень подходят для использования, можно построить комфортный дом, используя только деревянные изделия. С другими материалами это практически невозможно. Очевидно, что дерево — это и распространенный, и исторический выбор в качестве конструкционного инженерного материала. Однако в последние несколько десятилетий произошел отход от дерева в пользу инженерных продуктов или металлов, таких как алюминий.

Преимущества древесины

  1. Прочность на разрыв.Поскольку дерево является относительно легким строительным материалом, он превосходит даже сталь по длине разрыва (или длине самонесущей конструкции). Проще говоря, он может лучше выдерживать собственный вес, что позволяет использовать большие пространства и меньше необходимых опор в некоторых конструкциях зданий.
  2. Электрическое и тепловое сопротивление. Он обладает естественным сопротивлением электропроводности при сушке до стандартного уровня содержания влаги (MC), обычно от 7% до 12% для большинства пород древесины. Его прочность и размеры также не подвержены значительному влиянию тепла, обеспечивая устойчивость готового здания и даже безопасность при определенных пожарных ситуациях.
  3. Звукопоглощение. Его акустические свойства делают его идеальным для минимизации эха в жилых или офисных помещениях. Дерево поглощает звук, а не отражает или усиливает его, и может помочь значительно снизить уровень шума для дополнительного комфорта.
  4. Из местных источников. Дерево — это строительный материал, который можно выращивать и повторно выращивать с помощью естественных процессов, а также с помощью программ пересадки и лесного хозяйства. Выборочная уборка и другие методы позволяют продолжить рост, пока собираются более крупные деревья.
  5. Экологически чистый. Одна из самых больших проблем многих строительных материалов, включая бетон, металл и пластик, заключается в том, что когда они выбрасываются, они разлагаются невероятно долго. В естественных климатических условиях древесина разрушается намного быстрее и фактически пополняет почву.

Недостатки бруса

Усадка и разбухание древесины — один из ее основных недостатков.

Дерево — гигроскопичный материал.Это означает, что он будет поглощать окружающие конденсируемые пары и терять влагу в воздух ниже точки насыщения волокна. Еще один недостаток — его износ. Агенты, вызывающие порчу и разрушение древесины, делятся на две категории: биотические (биологические) и абиотические (небиологические). Биотические агенты включают гниющие и плесневые грибы, бактерии и насекомые. К абиотическим агентам относятся солнце, ветер, вода, некоторые химические вещества и огонь.

Программное обеспечение SkyCiv Wood Design

Рисунок 3.Деревянный конструкционный каркас

Сводка

Для лучшего описания стали, бетона и дерева. Обобщим их основные характеристики, чтобы выделить каждый материал.

Сталь очень прочна как на растяжение, так и на сжатие и, следовательно, имеет высокую прочность на сжатие и растяжение. Сталь имеет предел прочности от 400 до 500 МПа (58 — 72,5 ksi). Это также пластичный материал, который поддается или прогибается перед разрушением. Сталь выделяется своей скоростью и эффективностью в строительстве.Его сравнительно легкий вес и простота конструкции позволяют сократить рабочую силу примерно на 10-20% по сравнению с аналогичной строящейся структурой на бетонной основе. Металлоконструкции также обладают отличной прочностью.

Бетон чрезвычайно прочен на сжатие и, следовательно, имеет высокую прочность на сжатие от 17 МПа до 28 МПа. С более высокой прочностью до 70 МПа или выше. Бетон позволяет проектировать очень прочные и долговечные здания, а использование его тепловой массы, удерживая его внутри оболочки здания, может помочь регулировать внутреннюю температуру.Также в строительстве все чаще используется сборный железобетон, что дает преимущества с точки зрения воздействия на окружающую среду, стоимости и скорости строительства.

Дерево устойчиво к электрическим токам, что делает его оптимальным материалом для электроизоляции. Прочность на разрыв также является одной из основных причин выбора древесины в качестве строительного материала; его исключительно сильные качества делают его идеальным выбором для тяжелых строительных материалов, таких как конструкционные балки.Дерево намного легче по объему, чем бетон и сталь, с ним легко работать, и его легко адаптировать на стройплощадке. Он прочен, дает меньше тепловых мостиков, чем его аналоги, и легко включает в себя готовые элементы. Его структурные характеристики очень высоки, а его прочность на сжатие аналогична прочности бетона. Несмотря на все это, древесина все шире используется для жилых и малоэтажных построек. Его редко используют в качестве основного материала для высотных конструкций.

Это самые распространенные строительные материалы, используемые для строительства.У каждого материала есть свой уникальный набор достоинств и недостатков. В конце концов, они могут быть заменены материалами, которые практически не имеют ограничений с технологическими достижениями будущего. Тем не менее, наши нынешние строительные материалы будут оставаться актуальными еще многие десятилетия.

бетонных смесей 101: какую смесь лучше использовать для вашего проекта?

Бетон — один из самых долговечных и экономичных строительных материалов. Известно, что он обладает многими полезными характеристиками, включая высокую прочность, долговечность и низкие эксплуатационные расходы.

Таким образом, бетон — это универсальный материал, который можно использовать для долговечных и прочных дорожек, красочных патио, уникальных конструкций столешниц и даже декоративных бетонных акцентов, а также для многих других применений.

Независимо от области применения, Sakrete предлагает широкий выбор качественных и однородных бетонных смесей для удовлетворения ваших индивидуальных потребностей.

Проект: Бетонные проезды, плиты, патио, пешеходные дорожки, лестницы, фундаментные стены или опоры
Лучшие продукты для использования: SAKRETE® 5000 Plus, SAKRETE MAXIMIZER® или SAKRETE Бетонная смесь, устойчивая к образованию трещин

Sakrete 5000 Plus и Sakrete MAXIMIZER — это прочные, универсальные бетонные изделия, которые обеспечивают профессиональную прочность не менее 5000 фунтов на квадратный дюйм, что делает их идеальными для создания прочных, устойчивых бетонных плит, проездов, проходов и многого другого.

Используйте высокопрочную бетонную смесь Sakrete 5000 Plus для ремонтных и строительных проектов, где толщина бетона составляет 2 дюйма или более и требуется отличная прочность. Это профессиональная смесь портландцемента, песка и гравия, обеспечивающая превосходную долговечность.

Sakrete MAXIMIZER Concrete Mix — это специально разработанная высокопрочная смесь конструкционного легкого заполнителя и цемента. Он обеспечивает отличную удобоукладываемость и большую укрывистость, чем стандартный бетон, а также обеспечивает высокую прочность для различных бетонных применений.

Чтобы снизить риск появления усадочных трещин, используйте Sakrete Crack Resistant Concrete Mix для проектов с толщиной бетона 2 дюйма или больше. Это профессиональная смесь цементных материалов, песка, камня и волокон, которая помогает устранить необходимость в проволочной сетке во многих некритических областях применения.

Совет по проекту: Добавьте оттенок цвета к вашим бетонным конструкциям с помощью SAKRETE Cement Colors, которые можно комбинировать с любой бетонной смесью.

Проект: Установка столбов для забора, почтовых ящиков или баскетбольных столбов
Лучший продукт для использования: Бетонная смесь быстрого схватывания SAKRETE

Sakrete Быстротвердеющая бетонная смесь — это предварительно замешанная смесь специальных вяжущих материалов, песка и крупного заполнителя, которая быстро схватывается в течение 30 минут. Он идеально подходит для проектов, требующих быстрой настройки для использования в тот же день. Бетонная смесь с быстрым схватыванием также позволяет устанавливать столбы и столбы без необходимости перемешивания или крепления.

Sakrete также предлагает бетонную смесь для столбов забора SAKRETE, которая представляет собой смесь песка, крупного заполнителя и вяжущих материалов, специально разработанную для установки столбов ограждений.

Совет по проекту: Sakrete предлагает полезные калькуляторы бетона, чтобы определить, сколько материала вам понадобится для вашего проекта.

Проект: Столешницы из бетона
Лучший продукт для использования: Смесь для столешниц Sakrete, Смесь для бетона Sakrete 5000 Plus

Высокопрочные бетонные смеси обладают исключительной прочностью и долговечностью.Обязательно выберите высокопрочную бетонную смесь, такую ​​как Sakrete 5000 Plus High Strength Concrete Mix или Sakrete Concrete Countertop mix для вашего проекта бетонной столешницы, чтобы гарантировать, что она останется прочной и долговечной в течение долгого времени.

Совет по проекту: Ознакомьтесь с нашим Руководством по планированию проекта бетонной столешницы, где вы найдете вдохновение и советы по созданию собственной индивидуальной конструкции бетонной столешницы.

Работаете над другим конкретным проектом? SAKRETE может помочь советом по проекту, информацией о продукте и обучающими видео.





Назад в блог

Как это работает: бетон

Сегодня кажется, что мы определяем цивилизацию с точки зрения мелочей, таких как декодированные нити ДНК, расщепление атомов и микроскопические неровности на пластиковых компакт-дисках. С такой тонкой фокусировкой легко забыть о больших и простых вещах, которые привели нас сюда, и продолжить определять нашу жизнь.Сделайте резервную копию и посмотрите, из чего сделан реальный мир. Там, где есть дерево, сталь и стекло, вы найдете другой материал, который все это спокойно поддерживает. Вы найдете бетон — и много его.

Бетон везде. Он идет под ногами, когда вы идете по улице, и удерживает ваш дом от земли. Это материал, из которого сделаны города, а также множество дорог и мостов. Вы найдете бетонные кирпичи и ванночки для птиц, бассейны и парусники. А в ближайшие годы мы можем даже строить из него на Луне.

Бетон — уникальный строительный материал. Он не гниет и не горит, как дерево. Он не ржавеет и тяжелый — когда вы строите что-то из бетона, вы знаете, что это будет еще какое-то время. Однако, прежде всего, бетон особенный, потому что он начинается как густая жидкость, которой можно придавать различные формы.

Как печь торт. Чтобы понять природу бетона, можно подумать о торте — кексе. Чтобы сделать один, вы смешиваете муку, разрыхлитель, масло и яйца, добавляете сухофрукты и орехи и выливаете все это в форму для торта.Немного нагрейте, и готово — эта неаппетитная паста внезапно становится чем-то новым. Первоначальное тесто изменилось, а фрукты и орехи остались прежними — просто подвешены и скреплены пирогом.

Ну, бетон — это не совсем кексы, но есть сходства. Вместо мучной смеси для бетона требуется портландцемент. Вместо сухофруктов и орехов у вас песок и гравий. А бетонная форма заменяет форму для торта. Наконец, вместо тепла, от которого выпекается пирог, в бетоне используется вода.В то время как тепло является основным двигателем, заставляющим тесто для торта изменить свои характеристики, в бетонной смеси именно вода заставляет все работать.

Возможно, самое важное, что нужно понимать в бетоне, — это роль воды. Во-первых, он обеспечивает пластичность, поэтому бетон можно заливать по форме. Однако его реальное значение заключается в процессе отверждения. Влажный бетон не затвердевает при высыхании. Вместо этого вода является химическим компонентом в процессе отверждения. Соединения, которые вступают в реакцию с водой, находятся в портландцементе.

Isle Of Portland Хотя цемент в той или иной форме существует уже много веков, используемый нами тип цемента был изобретен в 1824 году в Великобритании. Он был назван портландцементом, потому что выглядел как камень, добытый на острове Портленд.

Портландцемент производится путем смешивания измельченного известняка, глины или сланца, песка и железной руды. Эта смесь нагревается во вращающейся печи до температуры 1600 градусов Цельсия. Процесс нагрева заставляет материалы разрушаться и рекомбинировать с образованием новых соединений, которые могут вступать в реакцию с водой в процессе кристаллизации, называемом гидратацией.

Бетон затвердевает в несколько этапов — фактор, который позволяет транспортировать его на строительную площадку, оставаясь готовым к заливке. Когда бетон находится в форме, цемент начинает медленное отверждение, и смесь затвердевает. Примерно через 36 часов большая часть процесса гидратации будет завершена, но цемент будет продолжать отверждаться, пока присутствуют вода и негидратированные соединения. Хотя этот процесс может занять годы, испытания на прочность обычно проводят через 28 дней. Важно использовать правильное количество воды.Слишком много делает бетон более слабым. Однако при слишком малом количестве смесь трудно вылить. Лучшая смесь — это компромисс между прочностью и удобоукладываемостью.

От цемента к бетону Хотя цемент и вода являются активными компонентами, использовать их по отдельности неэкономично. Вместо этого добавляются заполнители, чтобы увеличить объем и приспособить бетон к его конечному использованию. Обычно от 60 до 80 процентов бетона составляет заполнитель. В большинстве случаев заполнители представляют собой песок и гравий. Когда используется только песок, получается строительный раствор.Когда присутствуют оба, результат конкретен. Однако могут использоваться и другие заполнители в зависимости от требуемых характеристик затвердевшей смеси. Например, заполнители вермикулита или перлита производят легкий бетон, который имеет хорошие изоляционные свойства и легко поддается пилению.

Улучшение характеристик Поставщики бетона часто используют добавки, называемые добавками, для изменения или улучшения качества смеси для конкретного применения. Когда важно иметь пригодный для обработки бетон, который легко разливается без добавления воды, добавляется минеральная добавка, такая как летучая зола.В качестве альтернативы, суперпластификаторы используются для улучшения обрабатываемости при одновременном увеличении прочности, поскольку требуется меньше воды. Замедляющие и ускоряющие добавки используются для изменения времени отверждения в зависимости от климатических условий.

Одна проблема с бетоном — это склонность к образованию трещин в результате циклов замораживания / оттаивания. Чтобы исправить это, добавляют воздухововлекающие агенты. Эти добавки создают дисперсию очень мелких пузырьков воздуха, которые смягчают бетон против воздействия замерзающей воды.

Покупка бетона Форма, в которой вы покупаете бетон, зависит от объема и характера вашей работы. Бетон обычно измеряется в кубических ярдах. Чтобы определить, сколько вам понадобится, представьте объем внутри ваших форм в кубических футах и ​​разделите на 27 (количество кубических футов в кубическом ярде). Например, плита толщиной 4 дюйма, покрывающая 90 кв. Футов, занимает 30 куб. футов или чуть более 1 кубического ярда. Для проектов, использующих до кубического ярда, можно использовать переносную бетономешалку, которую вы можете арендовать.Пропорции цемента, песка, гравия и воды могут варьироваться в зависимости от использования бетона. Например, для тонкой работы — от 2 до 4 дюймов — потребуется больше цемента, тогда как для заливки с большей массой можно использовать больше заполнителя. Средняя смесь 1: 2: 3 содержит одну часть цемента, две части песка и три части гравия. Чтобы сделать 1 кубический ярд бетона, вам понадобится семь 94-фунтовых мешков с цементом, около 1/2 кубического ярда песка и чуть более 3/4 кубического ярда гравия. Количество используемой воды зависит от влажности песка.Если он уже влажный, вам понадобится около 4-1 / 2 галлона. за мешок цемента.

Для небольших проектов вы можете купить предварительно приготовленные мешки, содержащие цемент и заполнитель — вы просто добавляете воду. Для больших работ лучше всего использовать товарный бетон. Помимо очевидного преимущества доставки бетона, ваш поставщик также может адаптировать смесь и добавки для вашей работы. Цены на готовую смесь варьируются в зависимости от расстояния доставки, типа смеси и размера заказа, поэтому лучше всего позвонить местному дилеру, чтобы узнать цену.Если ваш участок недоступен для грузовика, вы можете перекачивать бетон через шланг. Или вы можете просто возить бетон из грузовика на тачках.

Наконец, вы можете полностью избежать заливки, используя готовые бетонные изделия. Бетонные блоки доступны в различных размерах, структурных качествах и стилях поверхности для строительства стен, которые в противном случае могли бы быть залиты. Традиционные блочные стены строятся из раствора, но также доступны блоки, предназначенные для укладки в сухом виде.Кроме того, бетонная брусчатка, кирпичи и небольшие плиты доступны для озеленения и строительства пешеходных дорожек.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Влияние древесной золы как частичного заменителя цемента при изготовлении древесно-цементных панелей

Материалы (Базель).2019 сен; 12 (17): 2766.

Viet-Anh Vu

1 Департамент древесины и лесных наук, Университет Лаваля, Квебек, QC G1V 0A6, Канада

Ален Клотье

1 Департамент лесных и лесных наук , Университет Лаваля, Квебек, QC G1V 0A6, Канада

Бенуа Биссоннетт

2 Департамент гражданского строительства, Университет Лаваля, Квебек, QC G1V 0A6, Канада

Пьер Бланше

1 Департамент лесных наук , Университет Лаваля, Квебек, QC G1V 0A6, Канада

Josée Duchesne

3 Департамент геологии и инженерной геологии, Университет Лаваля, Квебек, QC G1V 0A6, Канада

1 Департамент древесины и лесных наук, Лаваль Университет, Квебек, QC G1V 0A6, Канада

2 Департамент гражданского строительства, Университет Лаваля, Квебек, QC G1V 0A6, Канада

3 Департамент геологии и геологии ологическая инженерия, Университет Лаваля, Квебек, QC G1V 0A6, Канада

Поступило 9 августа 2019 г .; Принята в печать 23 августа 2019 г.

Лицензиат MDPI, Базель, Швейцария. Эта статья — статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). Эта статья цитировалась другими статьями в PMC. .

Abstract

Целью данного исследования было рассмотрение использования древесной золы биомассы в качестве частичной замены цементного материала в древесно-цементных плитах. Древесно-цементно-древесно-стружечные плиты (WCAP) были изготовлены с 10%, 20%, 30%, 40% и 50% древесной золы в качестве частичной замены цемента древесными частицами и испытаны на прочность на изгиб, жесткость, водопоглощение, и тепловые свойства.Результаты испытаний показывают, что потребность в воде увеличивается с увеличением зольности, а механические свойства немного снижаются с увеличением зольности до 30% замены. С другой стороны, теплоемкость увеличивается с увеличением содержания древесной золы. WCAP может способствовать снижению потерь тепла стенами здания, учитывая их относительно низкую теплопроводность по сравнению с гипсовыми плитами. Было обнаружено, что замена цемента в количестве примерно 30% по весу дает оптимальные результаты.

Ключевые слова: биомасса, древесная зола, фиброцемент, прочность, раствор

1. Введение

Фиброцементные панели присутствуют на рынке давно. Первоначально в качестве армирующего материала использовался асбест, но из-за опасности для здоровья в 1980-х годах его заменили целлюлозой. В настоящее время эти панели используются в качестве наружного сайдинга, черепицы и черепицы для наружных работ. Древесно-цементная древесно-стружечная плита обладает рядом преимуществ, так как она устойчива к термитам, не гниет, ударопрочна и обладает огнестойкими свойствами.Однако исследования совместимости древесины с цементом [1,2,3] показывают, что не все породы одинаково подходят для производства древесно-цементных плит. Породы хвойных пород действительно обладают наибольшим потенциалом для этого типа применения. Результаты Tittelein et al. [4] показывают, что можно изготавливать древесно-цементные древесно-стружечные плиты низкой плотности (удельный вес около 0,7) с лучшими изгибными свойствами, чем гипсокартонные, и с сопротивлением выдергиванию, которое в 1,7 раза выше.Причем эти панели можно резать ножом так же, как и гипсокартон. Поэтому процесс установки панели по сути такой же. Благодаря высокой пористости теплопроводность древесно-цементных плит примерно в три раза ниже, чем у гипсокартонных плит.

Экологические проблемы и экономическое давление являются одними из движущих сил современного промышленного развития. Поэтому во всем мире проводится несколько исследовательских проектов по использованию отходов для снижения угроз для окружающей среды и оптимизации существующих методов удаления и переработки отходов, делая их более доступными [5].

Производство обычного портландцемента (OPC) занимает третье место в мире среди производителей антропогенного CO 2 после транспорта и энергетики. Выбросы CO 2 цементной промышленностью составляют 5–7% от общих мировых выбросов CO 2 от сжигания топлива и промышленной деятельности [6]. Использование добавок и заменителей OPC до сих пор было одним из наиболее успешных решений по снижению выбросов CO 2 , возникающих при производстве цемента.

Древесная зола (WA) образуется при сжигании древесины в домашних дровяных печах или на промышленных электростанциях. В конце 80-х годов целлюлозно-бумажная промышленность ежегодно производила 45 000 тонн древесной золы в провинции Квебек, Канада [7]. В 2006 году производилось более 300 000 тонн древесной золы в год, две трети приходилось на целлюлозно-бумажные комбинаты, а оставшаяся часть — на когенерационные установки, лесопилки и другие отрасли, связанные с древесиной. Химические характеристики WA различаются в зависимости от породы дерева, но в основном он содержит известь и кремнезем [8].Производство золы, вероятно, будет и дальше расширяться с ростом интереса к биоэнергетике.

В 2007 году 150 000 тонн остаточной золы было использовано в качестве удобрений в Квебеке [9]. Большая часть остаточной золы (54%) использовалась в сельском хозяйстве. Остальное использовалось для восстановления растительного покрова деградированных участков, производства почвенной смеси, компостирования и других целей. Половина ежегодно производимых ресурсов древесной золы по-прежнему вывозится на свалки [9]. При соблюдении благоприятных условий древесная зола может иметь некоторый пуццолановый потенциал, который можно использовать в системах на основе портландцемента.

Несколько исследований изучали пригодность древесной золы в качестве дополнительного цементирующего материала при производстве обычных и самоуплотняющихся бетонов. Субраманиам [10] сообщил об оптимальной дозировке 15% древесной золы при замене цемента (по весу) для производства бетона, имеющего достаточно высокую прочность на сжатие для заливки блоков. Абдуллади [11] нашел оптимальную степень замещения 20% и показал, что потребность в воде увеличивается с увеличением содержания древесной золы.Чоудхури и др. [12] охарактеризовал механическую прочность (сжатие, растяжение и изгиб) бетона с добавлением древесной золы. Присутствие необходимого пуццоланового соединения (как того требует стандарт ASTM C618-15), содержание в частицах небольшого размера и большая площадь поверхности частиц квалифицируют древесную золу, исследованную в их исследовании, как пуццолановый материал.

Целью настоящего исследования была оценка физических, термических и механических свойств древесно-цементных плит, изготовленных с использованием древесной золы в качестве дополнительного вяжущего материала.

2. Материалы и методы

2.1. Материалы

В качестве основного связующего использовался обычный портландцемент типа 10 (GU, General Use) CSA (Canadian Standards Association).

Древесная зола, отобранная для исследования, была поставлена ​​с завода по производству тепловой энергии в жилом комплексе La Cité Verte в Квебеке, Квебек, Канада.

Древесно-цементные смеси были приготовлены из высушенной на воздухе древесной щепы, полученной из деревьев белой ели ( Picea glauca (Moench), Voss, Норвегия), собранных в Исследовательском лесу Петавава в Маттаве (Онтарио), Канада.Древесная щепа очищалась на кольцевом рафинере Pallmann PSKM8-400 (Ludwig Pallmann K.G, Цвайбрюккен, Германия). Поставляемые частицы просеивали и оставляли частицы размером от 1 до 3 мм.

2.2. Древесно-цементные смеси

Все смеси древесно-цементных плит были приготовлены с соотношением древесины к связующему 0,35 по весу, где связующая фаза представляет собой сумму цемента и древесной золы. Всего было исследовано шесть смесей, переменными в основном являлись доля цемента, замещенная древесной золой.Оценка смесей с различным процентным содержанием древесной золы была предназначена для определения максимального количества древесной золы, которое можно было бы использовать без значительного влияния на свойства материала по сравнению со свойствами эталонной древесно-цементной смеси. Соответствующие смеси обозначаются как P0, P1, P2, P3, P4 и P5 соответственно. Контрольная смесь (P0) была приготовлена ​​только из цемента и древесных частиц, в то время как смеси P1, P2, P3, P4 и P5 были приготовлены путем включения древесной золы в качестве частичной замены цемента из расчета 10%, 20%, 30%. %, 40% и 50% соответственно.

Было замечено, что последовательность смешивания имеет решающее влияние на реологию материала с небольшими изменениями, которые значительно изменяют поведение свежей смеси. Последовательность перемешивания, сохраненная после предварительных испытаний, представлена ​​в.

Таблица 1

.Добавление воды 6 5. Конец перемешивания
Шаг Скорость ротора смесителя (об / мин) Суммарное время (с)
1. Добавление цемента и древесной золы 140 3 0
140 60
3. Добавление древесных частиц 140 120
4. Изменение скорости 285 180
0 270

Непосредственно после смешивания удобоукладываемость каждой смеси определялась с помощью теста на оседание в соответствии со стандартом ASTM C143 / C143M-15a [13].

2.3. Приготовление образцов для испытаний

После перемешивания в растворосмесителе (HOBART A-120, Hobart Canada Inc, Don Mills, ON, Canada) каждую смесь древесины, цемента, золы и воды заливали в деревянную плиту размером 450 × 330 × 15 мм. форма.После заливки смеси форма закрывалась крышкой, удерживаемой С-образными зажимами. Такая установка позволяла разливать материал толщиной до 15 мм. Влажную смесь вылили в форму, поверхность выровняли деревянной стяжкой и окончательно зафиксировали крышку. От давления крышки толщина панели уменьшилась до 14 мм. Затвердевшие панели снимали с формы в возрасте 3 дней и затем хранили в камере кондиционирования при 23 ° C и относительной влажности 60%.Различные образцы для испытаний были вырезаны из панелей (по 3 панели на смесь) в день испытаний.

2.4. Методы испытаний

Панели были отверждены и испытаны для определения их механических характеристик через 3, 7 и 28 дней отверждения в соответствии со стандартом ASTM D 1037-12 [14]. Модуль упругости при изгибе (MOR) и модуль упругости (MOE) были определены в одном и том же возрасте с помощью универсальных испытательных рам MTS QTest-5 (корпорация MTS systems, Эден-Прери, Миннесота, США) с использованием модульной системы управления Elite.Сопротивление выдергиванию, водопоглощение и набухание по толщине также были испытаны в соответствии со стандартом ASTM D 1037-12 [14]. Тепловые свойства древесно-цементных плит были измерены с помощью измерителя теплового потока FOX 314 (TA instruments-LaserComp Inc, Уэйкфилд, Массачусетс, США) в соответствии со стандартом ASTM C518 [15]. Плата была помещена между двумя пластинами с регулируемой температурой, и с каждой стороны был приклеен измеритель потока, чтобы можно было измерять температуру и тепловой поток на поверхности платы, которая может подвергаться температурным колебаниям.Теплоемкость и теплопроводность можно рассчитать по этим четырем параметрам (две температуры и два тепловых потока). Растворимость WA оценивали по потере массы, измеренной на 15 г WA, помещенных в 100 мл дистиллированной воды и перемешанных в течение одного часа при 23 ° C. Затем остаток фильтруют под вакуумом и промывают дистиллированной водой. Остаток WA помещают в печь на ночь, затем измеряют потерю массы. Растворимая доля соответствует средней потере массы образцов деревьев.Наконец, твердые образцы наблюдали с помощью сканирующего электронного микроскопа JEOL JSM-840A (JEOL USA Inc, Пибоди, Массачусетс, США) (SEM), оборудованного системой энергодисперсионного рентгеновского анализа (EDS). Для СЭМ-наблюдений образцы крепили целыми на двустороннюю липкую ленту и покрывали тонким сплавом Au-Pd. Условия эксплуатации были установлены на 15 кВ.

3. Результаты

3.1. Характеристика материала

3.1.1. Древесные частицы

Гранулометрический состав древесных частиц оценивали с использованием пяти сит: 1.19, 1,4, 1,7, 2,38, 2,8 и 3 мм. Согласно результатам, показанным на фиг.1, 100% частиц имели размер менее 3 мм, а частицы диаметром 1,7 мм составляли самую высокую массовую долю (57%).

Гранулометрический состав древесных частиц.

3.1.2. Древесная зола
Анализ размера и формы частиц

Анализ формы с помощью сканирующей электронной микроскопии показал, что частицы золы имели неправильную форму и сферическую форму (b). Древесная зола подходит для использования в качестве наполнителя / частичной замены цемента в высококачественном бетоне из-за усиленного эффекта «шарикоподшипника», создаваемого сферической формой WA.Эффект «шарикоподшипника» древесной золы создает смазывающий эффект, когда бетон находится в пластичном состоянии. Согласно результатам, показанным на, значения D10, D50 и D90 WA составляли 2,5, 18,5 и 114,1 мкм соответственно. Древесная зола содержит 18% сверхмелкозернистых частиц (диаметр частиц ϕ <5 мкм).

Сканирующая электронная микроскопия древесной золы с малым увеличением ( a ) и большим увеличением ( b ).

Анализ размера частиц WA.

Химический состав

Результаты химического анализа исследованной древесной золы представлены на рис.Найдено совместное содержание оксида железа (Fe 2 O 3 = 1,22%), оксида алюминия (Al 2 O 3 = 2,25%) и диоксида кремния (SiO 2 = 7,80%). составлять 11,27%, что значительно меньше минимального количества, необходимого для квалификации материала как пуццолана, установленного на уровне 70% [16].

Таблица 2

Физико-химические свойства древесной золы.

Свойства Значение Химический состав (%)
Условные параметры SiO 2 7.80
Органический материал (мг / кг) <10 Al 2 O 3 2,25
pH 13 Fe 2 O
MgO 7,47
Физические свойства CaO 46,70
Плотность (кг / м 3 ) 2970 Na 2 O 0.86
Удельная поверхность (м 2 / кг) 261 K 2 O 9,61
TiO 2 0,11
MnO 4.51
P 2 O 5 2,34
Cr 2 O 3 <0.01
В 2 O 5 <0,01
ZrO 2 <0,02
ZnO 0,04
Потери при возгорании 14,20

Зарегистрированные потери при возгорании при 950 ° C составили 14,2%, что превышает максимальное требование для пуццоланов в 12% [16].Это означает, что зола содержит значительное количество несгоревшего углерода, что снижает ее пуццолановую активность. Было обнаружено, что содержание щелочи (% Na 2 O + 0,658 ×% K 2 O) составляет 7,18%, что превышает максимальное содержание щелочи 1,5%, требуемое для пуццолана. Удельный вес древесной золы составил 2,97, что намного меньше плотности портландцемента (3,15). WA содержит более 99% (по весу) неорганического материала и дает поровый раствор с высоким pH.

Тест на растворимость

показывает процентную долю древесной золы, растворенной в воде во время теста на растворимость. Растворимость WA оценивается в 7%, включая гидроксиды извести и щелочных металлов, которые легко растворяются в воде в лабораторных условиях. Этот растворимый компонент играет важную роль в реакции гидратации.

Таблица 3

Тест на растворимость древесной золы в воде.

6
Древесная зола
(г)
Потеря массы
(г)
Растворенный материал
(%)
1 14.10 0,90 6,30
2 15,00 1,20 8,00
3 14,30 0,90 6,30
Среднее значение 6,90

3.2. Изменение плотности

Вес всех панелей регистрировали в начале и в конце периода отверждения (3 дня в форме) для определения изменений удельного веса панелей.За этот период она уменьшилась примерно на 5% из-за того, что используемая форма не была полностью непроницаемой. Часть воды, вероятно, впиталась самой формой, так как она была сделана из фанеры.

Масса панели достигла плато примерно через 6 дней после извлечения из формы, что означает, что к тому времени большая часть свободной воды в цементном тесте испарилась в камере кондиционирования при 23 ° C и относительной влажности 60%.

3.3. Технологичность

показывает результаты, полученные для теста на консистенцию.Результаты показывают, что потребность в воде увеличивается с увеличением содержания древесной золы. Древесная зола, вводимая в цемент, увеличивала содержание углерода, тем самым увеличивая количество воды, необходимое для достижения удовлетворительной обрабатываемости.

Таблица 4

Результаты теста на согласованность.

903 903 903 903
Соотношение масс P0 P1 P2 P3 P4 P5
Древесная зола / цемент 0.00 0,10 0,20 0,30 0,40 0,50
Дерево / связующее 0,35 0,35 0,35 0,35 0,35 0,35 0,35 1,00 1,04 1,08 1,12 1,16 1,20

3,4. Свойства изгиба древесно-цементной древесно-стружечной плиты

Как описано ранее, панели были испытаны на изгиб через 3, 7 и 28 дней после изготовления.Каждое испытание проводилось на трех образцах, и среднее значение представлено в.

Таблица 5

Результаты испытаний на среднюю прочность на изгиб древесно-цементно-древесно-стружечных плит (WCAP). Средние значения с одинаковым надстрочным индексом существенно не различаются для p = 0,05; стандартное отклонение указано в скобках.

9482 и показать поведение WCAP при изгибе при разном времени отверждения. Он показывает, что значения прочности на изгиб и жесткости образцов панелей увеличиваются со временем отверждения. Они мало изменились после 7 дней отверждения, как это обычно наблюдается для материалов на основе портландцемента. Результаты статистического анализа показали, что существует значительная разница между образцами в отношении прочности на изгиб и жесткости на всех этапах отверждения (3 дня отверждения: p <0.001, 7 дней отверждения: p <0,001, 28 дней отверждения: p <0,05). Прочность на изгиб и жесткость панелей P4 и P5 были значительно ниже, чем у других панелей на всех стадиях отверждения. Оптимальная прочность на изгиб, наблюдаемая в этих испытаниях, была получена при 30% замене древесной золы (P3) после 28 дней влажного отверждения.

Изменение модуля разрыва при изгибе WCAP в зависимости от продолжительности влажного отверждения.

3.5. Сопротивление выдергиванию шурупа

показывает сопротивление выдергиванию WCAP в зависимости от содержания WA.Это показывает, что сопротивление извлечению винта уменьшается с увеличением скорости замены WA. Результаты статистического анализа показывают, что сопротивление выдергиванию шнека незначительно снижается до степени замены 30% в древесной золе. Однако за пределами этого значения он быстро уменьшается.

Влияние степени замещения древесной золы на сопротивление извлечению шурупов WCAP (средние значения с тем же верхним индексом существенно не различаются для p = 0,05; стандартное отклонение указано в скобках).

3,6. Водопоглощение

Результаты теста на водопоглощение показаны на рис. Величина водопоглощения увеличивается с увеличением процента замены WA и времени погружения в воду. показывает, что набухание WCAP в воде по толщине невелико (<2%). Согласно результатам, водопоглощение всех плит, содержащих древесную золу, выше, чем у контрольного образца после 28 дней отверждения.

Водопоглощение и набухание WCAP в зависимости от содержания WA.

Таблица 6

Среднее водопоглощение и набухание WCAP в зависимости от содержания WA.

P0 P1 P2 P3 P4 P5
3 дня MOR (МПа) 0.92 (0,16) 0,85 (0,04) 0,75 (0,02) 0,68 (0,07) 0,53 (0,04) 0,35

MOE (ГПа)
1,04 (0,21) 0,90 (0,21) 0,84 (0,24) 0,75 (0,08) 0,58 (0,07) )
7 дней MOR (МПа) 1.35 (0,21) 1,28 (0,24) 1,22 (0,17) 1,15 (0,17) 0,74 (0,05) 0,43

(0,03) MOE (ГПа)
1,12 (0,14) 1,12 (0,15) 1,05 (0,13) 1,01 (0,18) 0,87 (0,03) (0,03) )
28 дней MOR (МПа) 1.36 (x) (0,32) 1,30 (x) (0,33) 1,24 (x) (0,21) 1,20 (x) ) (0,13) 0,78 (y) (0,25) 0,47 z) (0,21)
MOE (GPa) 1,40 (a) 65 (0,13 9025) 9025 9025 (а) (0,12) 1,07 (б) (0.07) 1,12 (b) (0,12) 0,82 (c) (0,14) 0,50 (d) (0,24)
1616316 9163 9,0 9,0 76,9 366 0,93
P0 P1 P2 P3 P4 P5
Водопоглощение (%) 2 ч 36,5
24 часа 38,8 42.7 47,5 52,0 61,6 76,1
Набухание по толщине (%) 2 h 0,4 0,8 0,5 0,9 2,0 0,9 0,7 1,6 1,6 0,8

3,7. Thermal Properties

показывает результаты испытаний на теплоемкость и теплопроводность WCAP.Интересно отметить, что теплоемкость увеличивается с увеличением содержания древесной золы. Он может способствовать снижению потерь тепла стенами здания, учитывая его относительно низкую теплопроводность при использовании в качестве внутренней перегородки. Уровень древесной золы P3 дает теплоемкость на 7% выше, чем у панели управления. И наоборот, теплопроводность существенно не меняется между уровнями замены древесной золы от 0% до 30%.

Таблица 7

Средние термические свойства и плотность WCAP в зависимости от содержания WA.

P0 P1 P2 P3 P4 P5
Удельный вес 0,63 0,61 0,59 0,57 0,43 0,39
Теплопроводность (Вт / м · К) 0,13 0,12 0,12 0,11 0,08 0,07
Теплоемкость (Дж / г · К) 1304 1334 1368 1390 1424 1470

3.8. Микроструктура строительных растворов

Согласно результатам, представленным в, нет явных различий в микроструктуре между двумя образцами. Оба они обладают низкой пористостью и размером пор менее 10 мкм. Появление сферических частиц, имеющих форму WA, можно наблюдать на b, как показано белыми стрелками.

Изображения, полученные с помощью сканирующей электронной микроскопии, контрольного цемента ( a ) и цемента + 30% WA ( b ).

4. Обсуждение

Хотя исследованная древесная зола не квалифицируется как пуццолан, ее можно использовать для замены цемента в значительных количествах без значительного влияния на физические и механические свойства древесно-цементных плит.В предыдущих исследованиях сообщалось о максимальных долях древесной золы порядка 15–20% [10,11]. По сравнению с контрольным образцом (P0) WCAP, приготовленный с использованием 30% древесной золы вместо цемента (P3), показал умеренное снижение механических свойств на 10% для MOR при изгибе и 21% для сопротивления выдергиванию. Значение pH увеличивается с гидратацией цемента. Сильный щелочной раствор способствует реакционной способности кремнезема, присутствующего в WA, что увеличивает пуццолановую активность на начальной стадии.Повышенный уровень pH способствует образованию водного кремнезема. Это соединение реагирует с ионами Ca 2+ и производит нерастворимые соединения, которые являются вторичными вяжущими продуктами [10]. Более того, WA может выступать в качестве наполнителя в смесях.

Обнаружено, что плотность образцов уменьшается по мере увеличения коэффициента замещения WA из-за немного меньшей плотности золы и, что наиболее важно, увеличения количества воды (и). В результате большего объема капиллярных пор механические и физические свойства, включая плотность, снижаются.Действительно, водопоглощение значительно увеличилось с 30% WA при замене. Это можно объяснить меньшим количеством частиц цемента при увеличении содержания древесной золы. Следовательно, реакция гидратации уменьшилась, и вода быстро испарилась в пористой среде с высокой пористостью из-за присутствия древесных волокон.

Часть золы около 7% растворяется в воде и способствует процессу гидратации. Большая площадь поверхности, связанная с частицами золы, также может быть фактором, поскольку она в некоторой степени действует как центры зародышеобразования для гидратации цемента.Действительно, на основе исследования SEM не было обнаружено значительных различий в микроструктуре смеси чистого цемента и смеси, содержащей 30% WA взамен, и обе они демонстрируют плотную и однородную микроструктуру.

Увеличение теплоемкости WCAP после замены цемента древесной золой показало, что он имеет потенциал для снижения тепловых потерь в стенах здания, учитывая улучшенную изоляцию, которую он обеспечивает. Действительно, WCAP имеет низкую теплопроводность, примерно в три раза ниже, чем у гипсокартона (0.32 Вт / м · К) [4]. Такая низкая теплопроводность в основном обусловлена ​​более высокой пористостью WCAP по сравнению с гипсом, поскольку теплопроводность пустых пустот очень мала (около 0,025 Вт / м · К).

5. Выводы

В рамках этого проекта изучались физические, термические и механические свойства древесно-цементных плит, содержащих древесную золу. Было обнаружено, что древесная зола имеет отличный потенциал для использования в качестве частичной замены портландцемента. Основываясь на результатах, полученных в этом исследовании, оптимальный коэффициент замены составляет около 30% по весу.На этом уровне замены инженерные свойства WPCA были умеренно снижены (MOR изгиба на 12%; MOE изгиба на 20%; сопротивление выдергиванию винта на 21%) по сравнению с чистым контрольным образцом из древесного цемента. При замене более 30% механические и физические свойства начинают ухудшаться со значительно большей скоростью (MOR при изгибе на 43%, MOE при изгибе на 41% и сопротивление выдергиванию винта на 60% при частоте замены 40%). Использование древесной золы улучшает теплоемкость WCAP на 11% по сравнению с чистым древесно-цементным контрольным образцом.

Работа, представленная в настоящем документе, является многообещающей с точки зрения производства экологически чистых древесноцементных панелей с улучшенными характеристиками по сравнению с характеристиками стандартных гипсовых плит. Дальнейшие работы должны включать измерение огнестойкости и акустических свойств этого материала. Состав и этапы обработки также могут быть дополнительно улучшены. Примечательно, что использование бумажного поверхностного слоя должно быть изучено для улучшения механических свойств панели.

Благодарности

Авторы также благодарны промышленным партнерам промышленной кафедры экологического деревянного строительства NSERC (CIRCERB) и страховой компании SSQ за предоставление древесной золы из «La Cité Verte».

Вклад авторов

Концептуализация, V.-A.V., A.C., B.B. и P.B .; Data curation, В.-А.В .; Формальный анализ, В.-А.В .; Финансирование, P.B .; Расследование, V.-A.V., A.C., B.B., P.B. и J.D .; Методология, V.-A.V., A.C., B.B., P.B. и J.D .; Администрация проекта, A.C. и P.B .; Надзор, A.C. и B.B .; Валидация, A.C., B.B., P.B. и J.D .; Письмо — черновик, В.-А.В .; Написание — просмотр и редактирование, A.C., B.B., P.B. и JD

Финансирование

Эта работа является частью исследовательской программы Кафедры промышленных исследований Совета по естественным и инженерным исследованиям Канады (NSERC) по экологическому строительству из древесины (CIRCERB) в рамках программ IRC (IRCPJ 461745-12) и CRD (RDCPJ 445200-12).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Ссылки

1. Соват Н., Селл Р., Мугель Э., Зулалян А. Исследование гидратации обычного портландцемента древесиной методом изотермической калориметрии. Holzforschung. 1999; 53: 104–108. DOI: 10.1515 / HF.1999.016. [CrossRef] [Google Scholar] 2. Ша В., О’Нил Э., Го З. Исследование обычного портландцемента методом дифференциальной сканирующей калориметрии. Джем. Concr. Res. 1999; 29: 1487–1489. DOI: 10.1016 / S0008-8846 (99) 00128-3.[CrossRef] [Google Scholar] 3. Морис Д., Клотье А., Бернар Р. Совместимость древесины и цемента некоторых восточно-канадских лесов по данным изотермической калориметрии. Для. Prod. J. 2004; 10: 49. [Google Scholar] 4. Титтелейн П., Клотье А., Биссоннетт Б. Дизайн древесно-цементной плиты низкой плотности для внутренней отделки стен. Джем. Concr. Compos. 2012; 34: 218–222. DOI: 10.1016 / j.cemconcomp.2011.09.020. [CrossRef] [Google Scholar] 5. Раджамма Р., Сенфф Л., Рибейро М.Дж., Лабринча Дж.А., Болл Р.Дж., Аллен Г.К., Феррейра В.М. Влияние летучей золы биомассы на свойства цементных оснований в свежем и затвердевшем состоянии. Compos. Часть B англ. 2015; 77: 1–9. DOI: 10.1016 / j.compositesb.2015.03.019. [CrossRef] [Google Scholar] 6. Барсело Л., Клайн Дж., Валента Г., Гартнер Э.М.Цемент и выбросы углерода. Матер. Struct. 2013; 47: 1055–1065. DOI: 10.1617 / s11527-013-0114-5. [CrossRef] [Google Scholar] 7. AIFQ. Pourquoi Gaspiller nos Déchets. Ассоциация лесной промышленности Квебека; Квебек, Квебек, Канада: 1990. [Google Scholar] 8.Сваптик К., Мишра М., Ом С. Включение золы древесных отходов в качестве частичного заменителя цемента для изготовления бетона конструкционного качества: обзор. Ain Shams Eng. J. 2015; 6: 429–437. [Google Scholar] 9. Эбер М., Бассе Г., Греневельд Э. Билан 2007 De La Valorisation Des Matières Résiduelles Fertilisantes. Правительство Квебека; Квебек, Квебек, Канада: 2008 г. [Google Scholar] 10. Subramaniam P., Subasinghe K., Fonseka W.R.K. Древесная зола как эффективное сырье для бетонных блоков. Int. J. Res.Англ. Technol. 2015; 4: 228–233. [Google Scholar] 11. Абдуллахи М. Характеристики древесной золы / бетона OPC. Леонардо Электрон. J. Pract. Technol. 2006; 8: 9–16. [Google Scholar] 12. Чоудхури С., Маниар А., Суганья О. Развитие прочности бетона с использованием цемента с добавлением древесной золы и использование моделей мягких вычислений для прогнозирования параметров прочности. J. Adv. Res. 2015; 6: 907–913. DOI: 10.1016 / j.jare.2014.08.006. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar] 13. ASTMC143-15. Стандартный метод испытаний на оседание гидравлического цементного бетона, Американский стандартный метод испытаний материалов.ASTM International; Вест Коншохокен, Пенсильвания, США: 2015. [Google Scholar] 14. ASTMD1037-12. Стандартный метод испытаний для оценки свойств древесных волокон и материалов панелей, Американский стандартный тест материалов. ASTM International; Вест Коншохокен, Пенсильвания, США: 2012 г. [Google Scholar] 15. ASTMC518-17. Стандартный метод испытаний устойчивых свойств теплопередачи с помощью прибора для измерения теплового потока, Американский стандартный тест материалов. ASTM International; Вест Коншохокен, Пенсильвания, США: 2017.[Google Scholar] 16. ASTMC618-15. Стандартные технические условия на угольную золу-унос и необработанный или кальцинированный природный пуццолан для использования в бетоне. Американский стандартный тест материалов. ASTM International; Вест Коншохокен, Пенсильвания, США: 2015. Американский стандартный тест материалов. [Google ученый] .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *