- Как подключить электродвигатель 380В на 220В
- Как осуществить однофазное подключение трехфазного двигателя к электрической сети
- Как подобрать конденсатор для трехфазного двигателя
- Схемы подключения трехфазного двигателя к однофазной сети
- Трёхфазный двигатель в однофазной сети
- Запуск 3х фазного двигателя от 220 Вольт
- Рис 1. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»
- Рис. 2. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»
- Рис. 3. Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором С
- Рис. 4. Изменение направления вращения ротора однофазного двигателя переключением пусковой обмотки
- Как подключить трехфазный двигатель к однофазной сети
- Трехфазные конфигурации Y и треугольника | Многофазные цепи переменного тока
- Способ подключения трехфазного двигателя к однофазной сети посредством резонансного эффекта
- Четырехпроводные схемы треугольника — Continental Control Systems, LLC
- Схема управления трехфазным двигателем от однофазной сети. Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети
- Схемы подключения
- Подключение электродвигателя через магнитный пускатель
- Для начала расшифровываем название электродвигателя
- Узнаем, как выполняется соединение обмоток трехфазных электродвигателей
- Попробуем подключить трехфазный электродвигатель к однофазной сети
- Повторное подключение с 380 вольт на 220
- Схема звезда-треугольник
- Как работает схема
- Другие подключения двигателя
- Включение трехфазного двигателя в однофазную сеть
- Использование магнитного пускателя
- Однофазный vs.Объяснение трехфазного питания
- Сравнение однофазных и трехфазных двигателей
- Трехфазная мощность, значения напряжения и тока
Как подключить электродвигатель 380В на 220В
В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».
Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?
Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.
Конструктивные особенности
Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).
Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).
Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.
Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.
При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.
Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.
Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.
Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.
Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.
Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.
Как подключить электродвигатель с 380 на 220В без конденсатора?
Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.
Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.
Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.
Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.
По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.
Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.
Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.
Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.
Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.
Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.
Схема №1.
Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.
В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).
Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.
Читайте также:Схема №2.
Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.
Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.
Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.
Делается это следующим образом:
- Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
- После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R
При реализации рассмотренных схем стоит учесть ряд особенностей:
- Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
- Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.
Как подключить через конденсаторы
Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).
Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».
Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).
Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.
Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.
Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.
Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:
- Рабочие конденсаторы подключаются параллельно;
- Номинальное напряжение должно быть не меньше 300 Вольт;
- Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
- Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.
Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.
Расчет емкости должен производиться с учетом номинальной мощности ЭД. Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.
Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.
Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.
Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.
Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:
- Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
- Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
- Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.
С конденсатором дополнительная упрощенная — для схемы звезда.
С конденсатором дополнительная упрощенная — для схемы треугольник.
Как подключить с реверсом
В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.
Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.
Для реализации схемы можно использовать переключатель с двумя положениями.
К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.
Как подключить по схеме «звезда-треугольник» (с тремя проводами)
В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.
Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.
Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.
Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.
К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.
Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».
Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».
Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.
Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.
Читайте также:Принцип работы схемы прост:
- При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
- Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
- Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.
Итоги
Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.
Как осуществить однофазное подключение трехфазного двигателя к электрической сети
Как осуществить однофазное подключение трехфазного двигателя к электрической сети
Трёхфазный двигатель — электродвигатель, конструктивно предназначенный для питания от трехфазной сети переменного тока.
Асинхронные электродвигатели широко применяются в промышленности благодаря относительной простоте конструкции, хорошим рабочим характеристикам, удобству управления.
Подобные устройства часто попадают в руки домашнего мастера и он, пользуясь знанием основ электротехники, подключает такой электродвигатель для работы от однофазной сети 220 вольт. Чаще всего его используют для наждака, обработки древесины, измельчения зерен и выполнения других простых работ.
Даже на отдельных промышленных станках и механизмах с приводами встречаются образцы различных двигателей, способных работать от одной или трех фаз.
Чаще всего у них используется конденсаторный запуск, как наиболее простой и приемлемый, хотя это не единственный способ, известный большинству грамотных электриков.
Принцип работы трехфазного двигателя
Промышленные асинхронные электрические устройства систем 0,4 кВ выпускаются с тремя обмотками статора. К ним прикладываются напряжения, сдвинутые по углу на 120 градусов и вызывающие токи аналогичной формы.
Для запуска электродвигателя токи направляют таким образом, чтобы они создали суммарное вращающееся электромагнитное поле, оптимально воздействующее на ротор.
Конструкция статора, используемая для этих целей, представлена:
1. корпусом;
2. магнитопроводом сердечника с уложенными в него тремя обмотками;
3. клеммными выводами.
В обычном исполнении изолированные провода обмоток собраны по схеме звезды за счет установки перемычек между винтами клемм. Кроме этого способа еще существует подключение, называемое треугольником.
В обоих случаях обмоткам назначено направление: начало и конец, связанное со способом монтажа — навивки при изготовлении.
Обмотки нумеруются арабскими цифрами 1, 2, 3. Их концы обозначаются К1, К2, К3, а начала — Н1, Н2, Н3. У отдельных типов двигателей подобный способ маркировки может быть изменен, например, С1, С2, С3 и С4, С5, С6 или другими символами либо вообще не применяться.
Правильно нанесенная маркировка упрощает подключение проводов питания. При создании на обмотках симметричной схемы расположения напряжений, обеспечивается создание номинальных токов, осуществляющих оптимальную работу электродвигателя. В этом случае их форма в обмотках полностью соответствует подводимому напряжению, повторяет его без каких-либо искажений.
Естественно, следует понимать, что это чисто теоретическое заявление, ибо на практике токи преодолевают различные сопротивления, незначительно отклоняются.
Наглядному восприятию происходящих процессов помогает изображение векторных величин на комплексной плоскости. Для трехфазного двигателя токи в обмотках, создаваемые приложенным симметричным напряжением, изображаются следующим образом.
При питании электродвигателя системой напряжений с тремя равномерно разнесенными по углу и одинаковыми по величине векторами в обмотках протекают такие же симметричные токи.
Каждый из них образует электромагнитное поле, сила индукции которого наводит в обмотке ротора собственное магнитное поле. В результате сложного взаимодействия трех полей статора с полем ротора создается вращательное движение последнего, обеспечивается создание максимальной механической мощности, вращающей ротор.
Принципы подключения однофазного напряжения к трехфазному двигателю
Для полноценного подключения к трем одинаковым статорным обмоткам, разнесенных по углу на 120 градусов, два вектора напряжения отсутствуют, имеется только один из них.
Можно подать его всего в одну обмотку и заставить ротор вращаться. Но, эффективно использовать такой двигатель не получится. Он будет обладать очень малой выходной мощностью на валу.
Поэтому возникает задача подключения этой фазы таким образом, чтобы она в разных обмотках создавала симметричную систему токов. Другими словами, нужен преобразователь напряжения однофазной сети в трехфазную. Подобная задача решается разными методами.
Если отбросить сложные схемы современных инверторных установок, то можно реализовать следующие распространенные способы:
1. использование конденсаторного запуска;
2. применение дросселей, индуктивных сопротивлений;
3. создание различных направлений токов в обмотках;
4. комбинированный способ с выравниванием сопротивлений фаз для образования одинаковых амплитуд у токов.
Кратко разберем эти принципы.
Отклонение тока при прохождении через емкость
Наиболее широко практикуется конденсаторный запуск, позволяющий отклонять ток в одной из обмоток за счет подключения емкостного сопротивления, когда создается опережение тока от вектора приложенного напряжения на 90 градусов.
В качестве конденсаторов обычно используются металлобумажные конструкции серий МБГО, МБГП, КБГ и подобные. Электролиты не приспособлены для пропускания переменного тока, быстро взрываются, а схемы, предусматривающие их использование, отличаются сложностью, низкой надежностью.
В этой схеме ток отличается по углу от номинальной величины. Он отклоняется всего на 90 градусов, не доходя на 30о (120-90=30).
Отклонение тока при прохождении через индуктивность
Ситуация аналогична предыдущей. Только здесь ток отстает от напряжения на те же 90 градусов, а тридцати недобирает. Кроме того, конструкция дросселя не такая простая, как у конденсатора. Его надо рассчитать, собрать, настроить под индивидуальные условия. Этот способ не получил широкого распространения.
При использовании конденсаторов или дросселей токи в обмотках электродвигателя не доходят до требуемого угла на тридцатиградусный сектор, показанный красным цветом на картинке, что уже создает повышенные потери энергии. Но, с ними приходится мириться.
Они мешают созданию равномерного распределения сил индукции, создают тормозящий эффект. Точно оценить его влияние сложно, но при простом подходе деления углов получается (30/120=1/4) потеря 25%. Однако, можно ли так считать?
Отклонение тока подачей напряжения обратной полярности
В схеме звезды принято фазный провод напряжения подключать на вход обмотки, а нулевой — на ее конец.
Если в две разнесенные на 120о фазы подать одно и то же напряжение, но разделить их, а во второй изменить полярность, то токи сдвинутся по углу относительно друг друга. Они станут формировать электромагнитные поля разного направления, влияющего на вырабатываемую мощность.
Только при этом способе по углу получается отклонение токов на небольшое значение — 30о.
Этим методом пользуются в отдельных случаях.
Способы комплексного применения конденсаторов, индуктивностей, изменения полярности обмоток
Первые три перечисленных метода не позволяют поодиночке создавать оптимально симметричное отклонение токов в обмотках. Всегда возникает их перекос по углу относительно стационарной схемы, предусмотренной для трехфазного полноценного питания. За счет этого происходит образование противодействующих моментов, тормозящих раскрутку, снижающих КПД.
Поэтому исследователи провели многочисленные эксперименты, основанные на разных сочетаниях этих способов с целью создания преобразователя, обеспечивающего наибольшую эффективность работы трехфазного двигателя. Эти схемы с подробным разбором электротехнических процессов приводятся в специальной учебной литературе. Их изучение повышает уровень теоретических знаний, но в своем большинстве они редко применяются на практике.
Хорошая картина распределения токов создается в схеме, когда:
1. на одну обмотку подается фаза прямого включения;2. на вторую и третью обмотки напряжение подключают через конденсатор и дроссель, соответственно;
3. внутри схемы преобразователя осуществляется выравнивание амплитуд токов за счет подбора реактивных сопротивлений с компенсацией дисбаланса активными резисторами.
Хочется обратись внимание на третий пункт, которому многие электрики не придают значения. Просто посмотрите на следующую картинку и сделайте вывод о возможности равномерного вращения ротора при симметричном приложении к нему сил одинаковых и разных по величине.
Комплексный метод позволяет создать довольно сложную схему. Она очень редко применяется на практике. Один из вариантов ее реализации для электродвигателя мощностью в 1кВт показан ниже.
Для изготовления преобразователя необходимо создать непростой дроссель. Это требует затрат времени и материальных средств.
Также трудности возникнут при поиске резистора R1, который будет работать с токами, превышающими 3 ампера. Он должен:
- обладать мощностью, превышающей 700 ватт;
- хорошо охлаждаться;
- надежно изолироваться от токоведущих частей.
Существует еще несколько технических сложностей, которые придется преодолеть для создания такого преобразователя трехфазного напряжения. Однако, он довольно универсален, позволяет подключать двигатели с мощностью до 2,5 киловатт, обеспечивает их устойчивую работу.
Итак, технический вопрос подключения трехфазного асинхронного двигателя в однофазную сеть решен посредством создания сложной схемы преобразователя. Но, он не нашел практического применения по одной простой причине, от которой невозможно избавиться — завышенное потребление электроэнергии самим преобразователем.
Мощность, затрачиваемая на создание схемы трехфазных напряжений подобной конструкцией, превышает минимум в полтора раза потребности самого электродвигателя. При этом суммарные нагрузки, создаваемые на подводящую питание электропроводку, сравнимы с работой старых сварочных аппаратов.
Электрический счетчик, к радости продавцов электроэнергии, очень быстро начинает перечислять деньги из кошелька домашнего мастера на счет энергоснабжающей организации, а это хозяевам совсем не нравится. В итоге сложное техническое решение создания хорошего преобразователя напряжения оказалось ненужным для практического применения в домашнем хозяйстве, да и на промышленных предприятиях тоже.
Допонительно
Схемы включения трехфазных асинхронных двигателей для работы от однофазных сетей:
Схемы а — е применяются в том случае, когда фазы обмотки статора жестко соединены в звезду или треугольник и у двигателя имеется только три выводных конца. Наилучшими из этих схем следует считать схемы в и е. При включении двигателя по этим схемам в случае правильного подбора емкости конденсатора он обладает вполне удовлетворительными пусковыми и рабочими свойствами.
Схемы ж и з применяются в случае, когда у двигателя имеется шесть выходных концов — начала и концы всех фаз. При таком соединении обмоток двигатель практически не отличается от обычного однофазного асинхронного двигателя с пусковым сопротивлением или емкостью.
Обмотки двух его фаз, соединенные последовательно, образуют рабочую обмотку, а обмотка третьей фазы — пусковую обмотку. Рабочая обмотка, как и в обычном однофазном двигателе с пусковым сопротивлением или емкостью, занимает 2/3 пазов статора, пусковая обмотка — 1/3 пазов.
При правильном выборе активного сопротивления или емкости этот двигатель может иметь примерно такие же пусковые и рабочие свойства, как и специально рассчитанный однофазный асинхронный двигатель с пусковой обмоткой. (Ю. М. Юферов. Электрические двигатели автоматических устройств)
4 заключительных вывода
1. Технически использовать однофазное подключение трехфазного двигателя можно. Для этого создано много разнообразных схем с различной элементной базой.
2. Практически применять этот способ для длительной работы приводов в промышленных станках и механизмах нецелесообразно из-за больших потерь энергии потребления, создаваемых посторонними процессами, ведущими к низкому КПД системы, повышению материальных затрат.
3. В домашних условиях схему можно использовать для выполнения кратковременных работ на неответственных механизмах. Длительно работать подобные устройства могут, но при этом оплата электроэнергии значительно возрастает, а мощность работающего привода не обеспечивается.
4. Для эффективной эксплуатации асинхронного двигателя лучше использовать полноценную трехфазную сеть питания. Если такой возможности нет, то лучше отказаться от этой затеи и приобрести специальный однофазный электродвигатель соответствующей мощности.
Ранее ЭлектроВести писали, что британская компания Swindon Powertrain предложила вариант преобразования любого топливного автомобиля в электрический, выпустив компактную и готовую к установке силовую установку High Power Density (HPD) мощностью 80 кВт.
По материалам: electrik.info.
Как подобрать конденсатор для трехфазного двигателя
К каждому объекту изначально подается трехфазный ток. Основная причина заключается в использовании на электростанциях генераторов с трехфазными обмотками, сдвинутыми по фазе между собой на 120 градусов и вырабатывающими три синусоидальных напряжения. Однако при дальнейшем распределении тока потребителю подводится только одна фаза, к которой и подключается все имеющееся электрооборудование. Иногда возникает необходимость в использовании нестандартных устройств, например как подобрать конденсатор для трехфазного двигателя. Как правило, требуется рассчитать емкость данного элемента, обеспечивающего устойчивую работу агрегата.
Принцип подключения трехфазного устройства к одной фазе
Во всех квартирах и большинстве частных домов все внутреннее энергоснабжение осуществляется по однофазным сетям. В этих условиях иногда необходимо выполнить подключение трехфазного двигателя к однофазной сети. Эта операция вполне возможна с физической точки зрения, поскольку отдельно взятые фазы различаются между собой лишь сдвигом по времени.
Подобный сдвиг легко организовать путем включения в цепь любых реактивных элементов – емкостных или индуктивных. Именно они выполняют функцию фазосдвигающих устройств когда используются рабочего и пускового элементов.
Следует учитывать то обстоятельство, что обмотка статора сама по себе обладает индуктивностью. В связи с этим, вполне достаточно снаружи двигателя подключить конденсатор с определенной емкостью. Одновременно, обмотки статора соединяются таким образом, чтобы первая из них сдвигала фазу другой обмотки в одну сторону, а в третьей обмотке конденсатор выполняет эту же процедуру, только в другом направлении. В итоге образуются требуемые фазы в количестве трех, добытые из однофазного питающего провода.
Таким образом, трехфазный двигатель выступает в качестве нагрузки лишь для одной фазы подключенного питания. В результате, в потребляемой энергии образуется дисбаланс, отрицательно влияющий на общую работу сети. Поэтому такой режим рекомендуется использовать в течение непродолжительного времени для электродвигателей небольшой мощности. Подключение обмоток в однофазную сеть может быть выполнено двумя способами – звездой или треугольником.
Схемы подключения трехфазного двигателя к однофазной сети
Когда трехфазный электродвигатель планируется включать в однофазную сеть, рекомендуется отдавать предпочтение соединению треугольником. Об этом предупреждает информационная табличка, закрепленная на корпусе. В некоторых случаях здесь стоит обозначение «Y», что означает соединение звездой. Рекомендуется переподключить обмотки по схеме треугольника, чтобы избежать больших потерь мощности.
Электродвигатель включается в одну из фаз однофазной сети, а две другие фазы создаются искусственным путем. Для этого используется рабочий (Ср) и пусковой конденсатор (Сп). В самом начале запуска двигателя необходим высокий уровень стартового тока, который не может быть обеспечен одним лишь рабочим конденсатором. На помощь приходит стартовый или пусковой конденсатор, подключаемый параллельно с рабочим конденсатором. При незначительной мощности двигателя их показатели равны между собой. Специально выпускаемые стартовые конденсаторы имеют маркировку «Starting».
Эти устройства работают только в периоды пуска, для того чтобы разогнать двигатель до нужной мощности. В дальнейшем он выключается с помощью кнопочного или двойного выключателя.
Виды пусковых конденсаторов
Небольшие электродвигатели, мощность которых не превышает 200-400 ватт, могут работать без пускового устройства. Для них вполне достаточно одного рабочего конденсатора. Однако при наличии значительных нагрузок на старте, обязательно используются дополнительные пусковые конденсаторы. Он подключается параллельно с рабочим конденсатором и в период разгона удерживается во включенном положении с помощью специальной кнопки или реле.
Для расчета емкости пускового элемента необходимо умножить емкость рабочего конденсатора на коэффициент, равный 2 или 2,5. В процессе разгона двигатель требует емкость все меньше и меньше. В связи с этим, не стоит держать пусковой конденсатор постоянно включенным. Высокая емкость при больших оборотах приведет к перегреву и выходу из строя агрегата.
В стандартную конструкцию конденсатора входят две пластины, расположенные напротив друг друга и разделенные слоем диэлектрика. При выборе того или иного элемента, необходимо учитывать его параметры и технические характеристики.
Все конденсаторы представлены тремя основными видами:
- Полярные. Не могут работать с электродвигателями, подключенными к переменному току. Разрушающийся слой диэлектрика может привести к нагреву агрегата и последующему короткому замыканию.
- Неполярные. Получили наибольшее распространение. Могут работать в любых вариантах включения за счет одинакового взаимодействия обкладок с диэлектриком и источником тока.
- Электролитические. В этом случае электроды представляют собой тонкую оксидную пленку. Они могут достигать максимально возможной емкости до 100 тыс. мкФ, идеально подходят к двигателям с низкой частотой.
Выбор конденсатора для трехфазного двигателя
Конденсаторы, предназначенные для трехфазного мотора, должны иметь достаточно высокую емкость – от десятков до сотен микрофарад. Электролитические конденсаторы не годятся для этих целей, поскольку для них требуется однополярное подключение. То есть, специально для этих устройств потребуется создание выпрямителя с диодами и сопротивлениями.
Постепенно в таких конденсаторах происходит высыхание электролита, что приводит к потере емкости. Кроме того, в процессе эксплуатации данные элементы иногда взрываются. Если все же решено использовать электролитические устройства, нужно обязательно учитывать эти особенности.
Классическим примеров служат элементы, представленные на рисунке. Слева изображен рабочий конденсатор, а справа – пусковой.
Подбор конденсатора для трехфазного двигателя выполняется опытным путем. Емкость рабочего устройства выбирается из расчета 7 мкФ на 100 Вт мощности. Следовательно, 600 Вт будет соответствовать 42 мкФ. Пусковой конденсатор как минимум в 2 раза превышает емкость рабочего. Таким образом 2 х 45 = 90 мкФ будет наиболее подходящим показателем.
Выбор осуществляется постепенно, исходя из работы двигателя, поскольку его реальная мощность напрямую зависит от емкости используемых конденсаторов. Кроме того, это можно сделать по специальной таблице. При недостатке емкости двигатель будет терять свою мощность, а при ее избытке наступит перегрев от чрезмерного тока. Если конденсатор выбран правильно, то двигатель будет работать нормально, без рывков и посторонних шумов. Более точно подбираем устройство путем расчетов, выполняемых по специальным формулам.
Расчет емкости
Емкость конденсатора для электродвигателя рассчитывается исходя из схемы соединения обмоток – звездой или треугольником.
В обоих случаях применяется общая расчетная формула: Сраб = к х Iф/Uсети, к которой все параметры имеют следующие обозначения:
- к – является специальным коэффициентом. Его значение составляет 2800 для схемы «звезда» и 4800 для схемы «треугольник».
- Iф – номинальный ток статора, указанный на информационной табличке. При невозможности прочтения, выполняются измерения с помощью специальных измерительных клещей.
- Uсети – напряжение питающей сети, величиной в 220 вольт.
Подставив все необходимые значения, можно легко рассчитать, какая емкость будет у рабочего конденсатора (мкФ). Во время расчетов необходимо учитывать ток, поступающий к фазной обмотке статора. Он не должен превышать номинальное значение, точно так же, как нагрузка двигателя с конденсатором должна быть не выше 60-80% номинальной мощности, обозначенной на информационной табличке.
Как подключить пусковой и рабочий конденсаторы
На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.
Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.
Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.
Схемы подключения трехфазного двигателя к однофазной сети
Трехфазные двигатели асинхронного типа широко применяются как в быту, так и в промышленности. Ими оборудованы станки, циркулярные пилы, бетономешалки, компрессоры.
Двигатели, которые применяются в производстве обычно питаются от трехфазной сети, что почти невозможно для обычных людей в домах. Поэтому возникает большая необходимость подключения трехфазных двигателей в однофазную сеть.
В данной статье я постараюсь как можно более детально описать, как решить данную проблему.
Содержание страницы
Что такое трехфазный двигатель
Итак, из чего же состоит трехфазный двигатель? Основными конструкционными элементами такого типа двигателей является подвижный ротор и неподвижный статор.
В пазы статора проложены проводники трех обмоток, концы которых выводятся в коробку распределения. Для соединения обмотки стартера используются две схемы: звезда (для 380 вольт) и треугольник (для 220 вольт).
В паспорте двигателя находится информация о рабочем напряжении обмоток, а также схемы их подключения. На корпусе также крепятся специальные таблички, на которых указана вся необходимая информация по подключению и характеристикам.
Если трехфазный двигатель подключен в сеть на три фазы, то в таком случае ток проходит по очереди по всех его обмотках. В результате этого возникает магнитное поле, которое действует на ротор, заставляя его вращаться. При подключении такого же двигателя в однофазную сеть, создать необходимый крутящий момент для работы мотора уже не получится.
Схемы подключения трехфазного двигателя
Схема подключения «Звезда» – это способ, при котором концы обмоток будут соединены в одной «нейтральной» точке. Преимуществом данной схемы является относительно небольшой нагрев корпуса, благодаря чему не обязательно применять его охлаждение, а также разгон двигателя будет достаточно плавным, в следствии чего напряжение будет более стабильным.
Схема подключения «Треугольник» – это способ, при котором обмотки соединяются последовательно (конец одного присоединяется к концу другого). Это позволяет ему работать с максимальной мощностью, поэтому повышается как вращательный момент, так и тяговые способности.
Теоретически можно проводить подключение трехфазного двигателя как схемой «Звезда», так и схемой «Треугольник», но в схеме «Звезда» есть один большой недостаток – это слишком большая потеря мощности, в следствии чего такой мотор может банально не справиться с возлагаемыми на него задачами, хоть и свои плюсы он все же имеет. Мотор со схемой «Треугольник» мощнее в три раза «Звездочного», поэтому он подойдет для решения большинства производственных задач.
Начала и концы обмоток (различные варианты)
Асинхронный трехфазный двигатель обладает шестью выводами, которые представляют собой три обмотки, у которых есть начало и конец. Чтобы правильно подключить двигатель необходимо правильно определить начало и конец каждой из обмоток. Таких вариантов есть достаточно большое количество, поэтому остановлюсь на наиболее популярных, которые применимы в домашних условиях.
Вариант 1
Итак, для определения начала и конца обмотки нам прежде всего нужно определить для каждой из обмоток выводы (определить каждую из обмоток). Для этого нам нужно найти цепь, которая будет между концом и началом обмотки, а помочь нам в этом сможет мультиметр, или если же такого под рукой не найдется, тогда можно применить двухполюсный указатель с функцией определения цепи. При использовании мультиметра один его конец подключаем к одному выводу, а другим концом мультиметра касаемся поочередно к каждому из пяти оставшихся выводов.
Между началом и концом одной обмотки в режиме измерения сопротивления значение у нас будет близким к нулю, а между остальными выводами – бесконечным. Далее определяем начало и кон
ец обмотки. Для начала рассмотрим статор.
В нем есть три обмотки, и если сделать соединение одного конца обмотки к концу другой обмотки и подать на один конец подать напряжение, то в месте подключения электродвижущая сила (ЭДС) будет примерно равна нулю, поскольку ЭДС одной обмотки компенсирует другую, причем в третьей обмотке ЭДС не будет наводится.
Вариант 2
Второй вариант – если вы соединили конец одной обмотки с началом другой. В этом случае в каждой из обмоток наводится ЭДС, в результате чего они суммируются. В следствии электромагнитной индукции в третьей обмотке наводится ЭДС.
При применении данного метода представляется возможным найти конец и начало каждой из обмоток. Чтобы это сделать нужно подключить к выводам одной из обмоток обычную лампочку, или вольтметр, затем выберите два любых других вывода и соедините их между собой. В результате у вас останется два вывода, которые подключаем в сеть 220 вольт. Если получилось так, что соединены конец одной обмотки с концом другой обмотки, вольтметр покажет близкое
к нулю значение.
В случае правильного подключения конца одной обмотки к началу другой, то вольтметр покажет значение в диапазоне от 10В до 60В, в зависимости от конструктивных особенностей двигателя. Повторяем данную процедуру еще дважды, до того момента, пока не определим конец и начало всех обмоток. Рекомендую результаты записывать, дабы не повторять процедуру, запутавшись в результатах.
Схемы подключения трехфазного двигателя в однофазную сеть
При бытовой сети для лучших показателей мощности более целесообразным является подключение по схеме «Треугольник». В таком случае показатель мощности может достигать до 70% от номинальной.
Для подключения 2 контакта распределительной коробки подключаются напрямую подсоединяются к проводам однофазной сети, третий же – через конденсатор к проводам сети или к одному из первых контактов. Возможен пуск двигателя и с помощью рабочего конденсатора, но есть риск того, что он будет очень медленно набирать обороты или не запустится вовсе в случае, если двигатель имеет нагрузку.
Для быстрого пуска тогда нужен еще один дополнительный пусковой конденсатор, но задействовать его можно только на 2-3 секунды, чтобы двигатель сам по себе запустился и набрал обороты. Более удобным способом является запуск двигателя с помощью специального выключателя, в котором несколько контактов замыкаются при нажатии этого выключателя, а при отпускании контакты размыкаются, но все, обеспечивая работу двигателя. Также можно управлять и направление вращения двигателя с помощью специального конденсатора и тумблера. За направление вращения двигателя отвечает контакт, к которому подсоединена третья обмотка.
По схеме «Звезда» подключаются электродвигатели, у которых сами обмотки рассчитаны на показатель напряжения 200/127В.
Есть возможность подключить также однофазный двигатель в однофазную сеть с помощью частотного преобразователя. Это специальное устройство, которое предназначено для регулирования и управления двигателей переменного тока. Он способен изменять и регулировать частоту вращения с помощью изменения напряжения.
Применяется для подключения двигателя в сеть 220В. Также он способен устранить некоторые недостатки запуска через конденсатор. Среди них:
- сильный шум;
- сильный нагрев;
- достаточно низкий КПД.
Преобразователь подключают в сеть только 220В, а запас мощности должен быть не менее 2кВт. Во время работы трехфазного двигателя в однофазной сети будут наблюдаться броски напряжения, а если у преобразователя показатель мощности будет достаточно низкий, привод будет работать нестабильно. Чтобы правильно подключить двигатель, нужно выполнить следующие действия:
- Проверьте визуальную составляющую двигателя. Все крышки должны плотно прилегать друг к другу, а внешние повреждения – отсутствовать. Измеряем сопротивление обмоток и определяем начала и концы обмоток.
- Соедините обмотки по схеме «Треугольник». Если используете для подключения преобразователь частоты, нужно достигнуть межфазного напряжения в 220В при соединении обмоток.
- Подключите сам двигатель к частотному преобразователю с помощью специальных экранированных кабелей, характеристики которых соответствуют требуемым мощностям.
- Преобразователь частоты обычно самостоятельно проведет настройку и корректировку показателей после запуска.
Обычно трехфазные двигатели не подключают в однофазную сеть, поскольку такая сеть существенно меняет набор характеристик двигателя. В промышленности такой способ подключения применяется только в крайних случаях, например для экстренного запуска оборудования и только маломощных двигателей.
Трёхфазный двигатель в однофазной сети
Трёхфазные движки используются для циркулярок, заточки различных материалов, станков для сверления и т.п.
Имеется много вариантов запуска трёхфазных двигателей в однофазной сети, но самый эффективный, это подключение третьей обмотки через фазосдвигающий кондесатор. Нужно учитывать, что конденсатор сдвигает фазу третьей обмотки на 90 градусов, между первой и второй фазами сдвиг очень мал, электромотор начинает терять мощность около 40 — 50% на включении обмоток по схеме треугольника.
Для того, чтобы Электродвигатель с конденсаторным пуском работал хорошо, нужно чтобы ёмкость конденсатора менялась в зависимоти от количества оборотов. На деле этого добиться довольно тяжело, поскольку двигателем обычно управляют двухступенчатым способом, сначала активируют с пусковым конденсатором (с помощью больших пусковых токов), а после того как движок разгонится его отсоединяют и остаётся только рабочий (рис.1).
Если нажать на кнопку SB1 (её можно снять со стиральной машины — пускатель ПНВС-10 УХЛ2) электромотор М начинает набирать оброты, когда он разгонится кнопку отпускают. SB1.2 размыкается, a SB1.1 и SB1.3 остаются в замкнутом состоянии. Их размыкают, чтобы остановить движок. Бывает такое, что SB 1.2 в кнопке не отходит, в таком случае подложите под него шайбу таким образом, чтобы он отошёл. Чтобы соединить обмотки электродвигателя по схеме «треугольник» ёмкость С2 (рабочего конденсатор) определим с помощью формулы:
С2=4800 I/Uгде I — ток, потребляемый двигателем, А;U — напряжение сети, В.Ток, который потребляет электродвигатель, можно измерить амперметром или использовать формулу:
где Р — мощность электромтора, Вт;U — напряжение сети, В;n— КПД ; cos? — коэффициент мощности
Ёмкость С1 (пускового конденсатор) нужно выбирать в 2 — 2.5 раза больше рабочего на большой нагрузке на вал, их допустимые напряжения должны быть в 1.5 раза больше напряжения сети. В нашём случае наиболее лучшие конденсаторы это МГБО, МБГП, МБГЧ, у которых рабочее напряжение 500 В и больше.
Пусковые конденсаторы нужно будет зашунтировать с помощью резистора R1 сопротивлением 200 — 500 кОм, через него выходит остаток электрического заряда.
Реверсировать электромотор нужно с помощью переключения фазы на его обмотке тумблером SA1 (рис. 1) типа ТВ1 — 4.
На холостом ходу по питаемой через конденсаторы по обмотке протекает ток па 20 — 40% больше номинального. Поэтому уменьшайте ёмкость конденсатора С2 если двигатель будет часто работать в недогруженом режиме или на холостм ходу. Для активации двигателя с мощностью 1,5 кВт будет достаточно использовать рабочий конденсатор ёмкостью 100 мкф, а пусковой — 60 мкФ. Ёмкости рабочих и пусковых конденсаторов зависят от мощности самого двигателя, эти значения представлены в таблице, которая указана выше.
Желательно конечно использовать бумажные конденсаторы в роли пусковых, но если такой возможности у вас нет, то можно в качестве альтернативы использовать оксидные, т.е. электролитические. На рис. 2 показано как производить замену бумажных конденсаторов на электролитические. Положительная полуволна переменного тока протекает через цепь VD1C1, а отрицательная — через VD2C2, по это причине электролиты можно использовать с меньшим допустимым напряжением, чем для бумажных конденсаторов. Для бумажных конденсаторов нужно напряжение 400 В и более, то для электролита вполне хватает 300 — 350 В, по той причине, что он проводит лишь одну полуволну переменного тока и поэтому к нему прикладывается только половина напряжения, для точной надежности он должен держать амплитудное напряжение однофазной сети, это около 300 В. Этот расчет аналогичен расчету бумажных конденсаторов.
Схема для включения трёхфазного двигателя в однофазную сеть, используя электролитические конденсаторы показана на рис. 3. Чтобы подобрать нужную емкость бумажных и оксидных конденсаторов, лучше всего измерить ток в точках а, в, с — эти токи в обязательном порядке должны быть равны между собой при оптимальной нагрузке на вал электродвигателя. Диоды VD1, VD2 подбирайте с обратным напряжением не меньше 300 В и 1пр. мах=10А. Если мощность дыижка больше, то диоды устанавливайте на теплоотводы, по два в плече, в противном случае может случиться пробой диодов и через оксидный конденсатор побежит переменный ток, после чего, спустя немного времени электролит скорее всего нагреется и разорвётся. Электролитические конденсаторы в роли рабочих использовать не рекомендуется, потому что длительный проход через них высоких токов, как правило приводит к их нагреву и взрыву. Лучше используйте их для пусковых.
В случае если ваш трехфазный электромотор будет использоваться на динамических (высоких) нагрузках на вал, лучше используйте схему подключения пусковых конденсаторов при помощи токового реле, которое будет при больших нагрузках на вал автоматически включать и выключать пусковые конденсаторы (рис.3).
Во время подключения обмоток трехфазного электродвигателя в однофазную сеть с помощью схемы, которая представлена на рис. 4, мощность электромотора составляет 75% от номинальной мощности в трехфазном режиме, это значит потери составляют около 25%, потому что обмотки А и В подключены противофазно на всё напряжение 220 В, напряжение вращения определяется включением обмотки С. Фазирование обмоток изображено в виде точек.
Самые более надёжные,практичные и удобные при работе с трехфазными электродвигателями резисторно-индуктивноемкостные преобразователи однофазной сети 220 Вольт в трехфазную сеть, с токами в фазах до 4 ампер и сдвигом напряжений в фазах приверно 120 градусов. Эти устройства универсальны, устанавливаются они в жестяном корпусе и позволяют подсоединять трехфазные электромоторы мощностью до 2,5 килловатт в однофазную сеть 220 Вольт почти без потерь мощности.
В преобразователе используем дроссель с воздушным зазором. Его устройство представлено на рис. 6. Если правильно подобраны R, С и соотношения витков в секциях обмотки дросселя, то такой преобразователь даёт нормальную длительную работу электромоторов, это независимо от их характеристик и уровня нагрузки на вал. Вместо индуктивности представлено индуктивное сопротивление XL, потому что его легче измерить, обмотка дросселя крайними выводами через амперметр подсоединяется к напряжению 100 — 220 Вольт, частотой 50 Герц, параллельно с вольтметром. Индуктивное сопротивление (активным сопротивлением можно пренебречь) определяется отношением напряжения в вольтах к току в амперах XL=U/J.
Конденсатор С1 должен жержать напряжение не меньше 250 Вольт, а конденсатор С2 — не меньше чем 350 Вольт. Если вы используете конденсаторы КБГ, МБГ-4, то в таком случае напряжение будет соответствовать номиналу, который указан на маркировке, а конденсаторы МБГП, МБГО при посоединении к цепи переменного тока должны быть с двухкратным запасом напряжения. Резистор R1 должен быть рассчитан на ток до ЗА, это значит на мощность около 700 Вт (наматывается никелево-хромовая проволока диаметром 1,3 — 1,5 мм на фарфоровой трубке с передвигающейся скобой, которая позволяет получать необходимое сопротивление для различных мощностей электродвигателя). Резистор обязательно должен быть защищен от перегрева и ограждён от остальных компонентов, токоведущих частей, а также от возможного конакта человека с ним. Металлическое шасси корпуса в обязательном порядке необходимо заземлить.
Сечение магнитопровода дросселя должно составлять S=16 — 18cm2, диаметр провода d=l,3 — 1,5 мм, общее число витков W=600 — 700. Форма магнитопровода и марка стали могут быть любыми, главное помнить о воздушном зазоре (это даст вам возможность изменять индуктивное сопротивление), которое устанавливаем при помощи винтов (рис. 6). Для того чтобы избежать сильного дребезжания дросселя, нужно между Ш-об-разными половинами магнитопровода проложить деревянный брусок и зажать винтами. В роли дросселя подойдут силовые трансформаторы от ламповых цветных телевизоров с мощностью 270 — 450 Ватт. Обмотка дросселя в целом производится в виде одиной катушки, которая имеет три секции и четыре вывода. Если вы будете использовать сердечник с постоянным воздушным зазором, то вам придется изготавливать пробную катушку,которая не имеет промежуточных отводов, сделать дроссель с примерным зазором, подключить в сеть и измерить XL. XL необходимо отмотать или домотать ещё немного витков. Выясните необходимое количество витков, мотайте необходимую катушку, разделите каркас на секции в отношении W1:W2:W3=1:1:2. Итак, если у нас общее колисество витков равно 600, то из этого исходит Wl =W2= 150, a W3=300. Для того чтобы поднять выходную мощность преобразователя и не допустить при этом несиметрии напряжений, необходимо поменять значения XL, Rl, Cl, С2, которые отталкиваются от того,что токи в фазах А, В, С должны быть равными при номинальной нагрузке на вал электромотора. В режиме недогрузки электродвигателя несимметрия напряжений фаз не представляет какой либо опасности, в том случае если наибольший из токов фаз не будет превышать номинальный ток электродвигателя. Для пересчета параметров преобразователя на иную мощность используется формула:
С1 = 80РС2 = 40РRl = 140/PXL = 110/PW = 600/ РS = 16Pd = 1,4P
где P — это мощность преобразователя (в киловаттах), а мощность двигателя по паспорту — это является его мощностью на самом валу электродвигателя. В том случае если КПД (т.е. коэффициент полезного действия) электродвигателя вам неизвестен, то в таком случае его можно считать в среднем около 75 — 80%.
Запуск 3х фазного двигателя от 220 Вольт
Запуск 3х фазного двигателя от 220 Вольт
Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель, а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.
Читаем подробно далее
Емкость применяемого конденсатора, зависит от мощности электродвигателя и рассчитывается по формуле
С = 66·Рном ,
где С — емкость конденсатора, мкФ, Рном — номинальная мощность электродвигателя, кВт.
То есть можно считать, что на каждые 100 Вт мощности трехфазного электродвигателя требуется около 7 мкФ электрической емкости.
Например, для электродвигателя мощностью 600 Вт нужен конденсатор емкостью 42 мкФ. Конденсатор такой емкости можно собрать из нескольких параллельно соединенных конденсаторов меньшей емкости:
Cобщ = C1 + C1 + … + Сn
Итак, суммарная емкость конденсаторов для двигателя мощностью 600 Вт должна быть не менее 42 мкФ. Необходимо помнить, что подойдут конденсаторы, рабочее напряжение которых в 1,5 раза больше напряжения в однофазной сети.
В качестве рабочих конденсаторов могут быть использованы конденсаторы типа КБГ, МБГЧ, БГТ. При отсутствии таких конденсаторов применяют и электролитические конденсаторы. В этом случае корпуса конденсаторов электролитических соединяются между собой и хорошо изолируются.
Отметим, что частота вращения трехфазного электродвигателя, работающего от однофазной сети, почти не изменяется по сравнению с частотой вращения двигателя в трехфазном режиме.
Большинство трехфазных электродвигателей подключают в однофазную сеть по схеме «треугольник» (рис. 1). Мощность, развиваемая трехфазным электродвигателем, включенным по схеме «треугольник», составляет 70-75% его номинальной мощности.
Рис 1. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»
Трехфазный электродвигатель подключают так же по схеме «звезда» (рис. 2).
Рис. 2. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»
Чтобы произвести подключение по схеме «звезда», необходимо две фазные обмотки электродвигателя подключить непосредственно в однофазную сеть (220 В), а третью — через рабочий конденсатор (Ср) к любому из двух проводов сети.
Для пуска трехфазного электродвигателя небольшой мощности обычно достаточно только рабочего конденсатора, но при мощности больше 1,5 кВт электродвигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применять еще пусковой конденсатор (Сп). Емкость пускового конденсатора в 2,5-3 раза больше емкости рабочего конденсатора. В качестве пусковых конденсаторов лучше всего применяют электролитические конденсаторы типаЭП или такого же типа, как и рабочие конденсаторы.
Схема подключения трехфазного электродвигателя с пусковым конденсатором Сп показана на рис. 3.
Рис. 3. Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором С
п
Нужно запомнить: пусковые конденсаторы включают только на время запуска трехфазного двигателя, подключенного к однофазной сети на 2-3 с, а затем пусковой конденсатор отключают и разряжают.
Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого возьмите любой из 6 наружных выводов электродвигателя и присоедините его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1, а его конец — С4. Аналогично найдем начало и конец второй обмотки и обозначим их C2 и C5, а начало и конец третьей — СЗ и С6.
Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигателя согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим двигатель в однофазную сеть с использованием конденсаторов.
Если двигатель без сильного гудения сразу наберет номинальную частоту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке поменяйте местами выводы С1 и С4. Если это не помогает, концы первой обмотки верните в первоначальное положение и теперь уже выводы C2 и С5 поменяйте местами. То же самое сделайте в отношении третьей пары, если двигатель продолжает гудеть.
При определении начал и концов фазных обмоток статора электродвигателя строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.
Для изменения направления вращения ротора трехфазного электродвигателя, включенного в однофазную сеть по схеме «треугольник» (см. рис. 1), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).
Чтобы изменить направление вращения трехфазного электродвигателя, включенного в однофазную сеть по схеме «звезда» (см. рис. 2, б), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V). Направление вращения однофазного двигателя изменяют, поменяв подключение концов пусковой обмотки П1 и П2 (рис. 4).
При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо детально осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, смазать их, очистить корпус двигателя от грязи и пыли.
Чтобы заменить поврежденные подшипники, удалите их винтовым съемником с вала и промойте бензином место посадки подшипника. Новый подшипник нагрейте в масляной ванне до 80° С. Уприте металлическую трубу, внутренний диаметр которой немного превышает диаметр вала, во внутреннее кольцо подшипника и легкими ударами молотка по трубе насадите подшипник на вал электродвигателя. После этого заполните подшипник на 2/3 объема смазкой. Сборку производите в обратном порядке. В правильно собранном электродвигателе ротор должен вращаться без стука и вибрации.
Рис. 4. Изменение направления вращения ротора однофазного двигателя переключением пусковой обмотки
Как подключить трехфазный двигатель к однофазной сети
Как подключить трехфазный двигатель к однофазной сети 220 Вольт
Благодаря простой конструкции и надежности, асинхронные двигатели широко применяются в промышленности, там, где 380 Вольт. Попадая же в руки к домашнему мастеру, трехфазные двигатели требуют переделки и подключения к однофазной сети с напряжением в 220 Вольт.
Асинхронные двигатели широко применяются для изготовления станков, дровоколов, при обработке древесины, и даже для измельчения зерна. Любой трехфазный двигатель можно заставить работать только от одной фазы. Как это сделать правильно, читайте дальше, в этой статье сайта «Электрик САМ» elektriksam.ru.
Как устроен трехфазный асинхронный двигатель
В большинстве случаев асинхронные двигатели используют конденсаторный запуск, однако бывают и другие способы пуска. В трехфазных электродвигателях в отличие от однофазных имеется три обмотки статора, которые сдвинуты под определённым углом. Угол намотки обмоток статора трехфазного двигателя — 120 градусов, что позволяет создавать вокруг ротора мощное магнитное поле.
Конструкция статора трехфазного электродвигателя состоит из таких элементов:
- Корпуса;
- Магнитопровода и сердечника с обмотками;
- Клеммной коробки.
Стандартное соединение обмоток трехфазного электродвигателя выполнено по схеме «звезда». Также существует менее распространённым способ соединения обмоток трехфазного двигателя, а именно — «треугольник». В любом случае, каждая обмотка статора имеет определённое направление, а также, начало и конец.
Для нумерации обмоток статора электродвигателя используются арабские цифры: 1, 2, 3. Концы обмоток обозначаются буквой и цифрой: К1, К2, К3, а их начало — Н1, Н2, Н3. В некоторых типах электродвигателей маркировка обмоток статора может иметь другое обозначение, например: С1, С2, С3 и С4, С5, С6.
Подключение трехфазного двигателя к 220 вольт через конденсатор
Чтобы эффективно использовать трехфазный электродвигатель в однофазной сети, обмотки статора нужно правильно подсоединить. Если подать напряжение всего лишь на одну обмотку статора из трех, то электродвигатель будет работать не на полную мощность, а его эффективность снизиться на треть.
Существует достаточно большое количество схем подключения трехфазного двигателя к сети 220 Вольт. Наиболее эффективная схема подсоединения трехфазного двигателя (поскольку его мощность упадёт менее всего), является способ с использованием фазосдвигающего конденсатора. Данный конденсатор подсоединяется к третьему контакту статора.
При подключении трехфазного двигателя через конденсатор практически не теряется частота вращения ротора. Этого нельзя сказать о мощности трехфазного двигателя, которая в любом случае падает при его подключении в однофазную сеть, и с этим приходится мириться.
Как подключить трехфазный двигатель к однофазной сети
Чтобы подключить трехфазный электродвигатель к сети 220 Вольт, сначала понадобится определиться с выводами статора. Если обмотки двигателя уже подсоединены в распределительной коробке по схеме «треугольник», то всё что останется сделать, так это подключить пусковой и рабочий конденсатор с токопроводящими проводами к клеммам двигателя согласно схеме подключения.
Если трехфазный двигатель подсоединён по схеме «звезда» и его можно переподключить на схему «треугольник», то при подсоединении к однофазной сети нужно сначала сделать именно так, используя для этих целей перемычки. Наиболее сложно с подключением трехфазного двигателя в том случае, когда провода статора не имеют никакой маркировки.
В таком случае приходится делать следующее:
- Искать модель двигателя в интернете и схему его подключения;
- Найти самостоятельным путём начало и конец обмоток статора;
- Определять пары проводов, которые относятся к одной обмотки из трех.
В подключении трехфазного двигателя к однофазной сети 220 вольт нет ничего сложного. Тем не менее, если вы в чем-то неуверенны, то лучшим вариантом будет более подробно изучить инструкцию или же обратиться за помощью к хорошему электрику.
Трехфазные конфигурации Y и треугольника | Многофазные цепи переменного тока
Трехфазное соединение звездой (Y)
Первоначально мы исследовали идею трехфазных систем питания, соединив три источника напряжения вместе в так называемой конфигурации «Y» (или «звезда»).
Эта конфигурация источников напряжения характеризуется общей точкой подключения, соединяющей одну сторону каждого источника. (Рисунок ниже)
Трехфазное соединение «Y» имеет три источника напряжения, подключенных к общей точке.
Если мы нарисуем схему, показывающую, что каждый источник напряжения представляет собой катушку с проводом (генератор переменного тока или обмотку трансформатора), и произведем небольшую перестановку, конфигурация «Y» станет более очевидной на рисунке ниже.
Трехфазное четырехпроводное соединение «Y» использует «общий» четвертый провод.
Три проводника, идущие от источников напряжения (обмоток) к нагрузке, обычно называются линиями , , а сами обмотки обычно называются фазами , .
В системе с Y-соединением нейтральный провод может быть или не быть (рисунок ниже) в точке соединения посередине, хотя это, безусловно, помогает облегчить потенциальные проблемы, если один из элементов трехфазной нагрузки выйдет из строя, поскольку обсуждалось ранее.
Трехфазное трехпроводное соединение «Y» не использует нейтральный провод.
Значения напряжения и тока в трехфазных системах
Когда мы измеряем напряжение и ток в трехфазных системах, мы должны уточнить , где мы измеряем.
Напряжение сети означает величину напряжения, измеренного между любыми двумя проводниками линии в сбалансированной трехфазной системе. В приведенной выше схеме линейное напряжение составляет примерно 208 вольт.
Фазное напряжение относится к напряжению, измеренному на любом одном компоненте (обмотка источника или сопротивление нагрузки) в сбалансированном трехфазном источнике или нагрузке.
Для схемы, показанной выше, фазное напряжение составляет 120 вольт. Термины линейный ток и фазный ток следуют той же логике: первый относится к току через любой один линейный проводник, а второй — к току через любой один компонент.
Источники и нагрузки, подключенные по схеме Y, всегда имеют линейные напряжения выше фазных, а линейные токи равны фазным токам. Если источник или нагрузка, подключенные по схеме Y, сбалансированы, линейное напряжение будет равно фазному напряжению, умноженному на квадратный корень из 3:
.Однако конфигурация «Y» не единственная допустимая для соединения трехфазного источника напряжения или элементов нагрузки.
Трехфазная конфигурация, треугольник (Δ)
Другая конфигурация известна как «Дельта» из-за ее геометрического сходства с одноименной греческой буквой (Δ).Обратите внимание на полярность каждой обмотки на рисунке ниже.
Трехфазное, трехпроводное соединение Δ не имеет общего.
На первый взгляд кажется, что три таких источника напряжения создают короткое замыкание, электроны текут по треугольнику, и ничто иное, как внутренний импеданс обмоток, сдерживает их.
Однако из-за фазовых углов этих трех источников напряжения это не так.
Закон Кирхгофа о напряжении при соединении треугольником
Для быстрой проверки этого можно использовать закон Кирхгофа, чтобы увидеть, равны ли три напряжения вокруг контура нулю. Если они это сделают, тогда не будет доступного напряжения для проталкивания тока вокруг этого контура и, следовательно, не будет циркулирующего тока.
Начиная с верхней обмотки и двигаясь против часовой стрелки, наше выражение KVL выглядит примерно так:
В самом деле, если мы сложим эти три векторные величины вместе, они в сумме дадут ноль.Другой способ проверить тот факт, что эти три источника напряжения могут быть соединены вместе в петлю без возникновения циркулирующих токов, — это разомкнуть петлю в одной точке соединения и рассчитать напряжение на разрыве: (рисунок ниже)
Напряжение на открытии Δ должно быть нулевым.
Начиная с правой обмотки (120 В ∠ 120 °) и продвигаясь против часовой стрелки, наше уравнение KVL выглядит следующим образом:
Конечно, на разрыве будет нулевое напряжение, говорящее нам о том, что ток не будет циркулировать в треугольной петле обмоток, когда это соединение будет выполнено.
Установив, что трехфазный источник напряжения, подключенный по схеме Δ, не сгорит дотла из-за циркулирующих токов, перейдем к его практическому использованию в качестве источника питания в трехфазных цепях.
Поскольку каждая пара линейных проводов подключается непосредственно к одной обмотке в цепи Δ, линейное напряжение будет равно фазному напряжению.
И наоборот, поскольку каждый линейный проводник присоединяется к узлу между двумя обмотками, линейный ток будет векторной суммой двух соединяемых фазных токов.
Неудивительно, что результирующие уравнения для Δ-конфигурации выглядят следующим образом:
Анализ цепи примера соединения треугольником
Давайте посмотрим, как это работает на примере схемы: (Рисунок ниже)
Нагрузка на источнике Δ подключена по схеме Δ.
Когда каждое сопротивление нагрузки получает 120 В от соответствующей фазной обмотки источника, ток в каждой фазе этой цепи будет 83.33 ампера:
Преимущества трехфазной системы Delta
Таким образом, каждый линейный ток в этой трехфазной системе питания равен 144,34 А, что значительно больше, чем линейные токи в системе с Y-соединением, которую мы рассматривали ранее.
Кто-то может задаться вопросом, не потеряли ли мы все преимущества трехфазного питания здесь, учитывая тот факт, что у нас такие большие токи в проводниках, что требует более толстого и более дорогостоящего провода.
Ответ — нет. Хотя для этой схемы потребуются три медных проводника калибра 1 (на расстоянии 1000 футов между источником и нагрузкой это составляет чуть более 750 фунтов меди для всей системы), это все же меньше, чем 1000+ фунтов меди, необходимых для Однофазная система, обеспечивающая одинаковую мощность (30 кВт) при одинаковом напряжении (120 В между проводниками).
Одним из явных преимуществ системы с Δ-соединением является отсутствие нейтрального провода. В системе с Y-соединением нейтральный провод был необходим на случай, если одна из фазных нагрузок выйдет из строя (или отключится), чтобы не допустить изменения фазных напряжений на нагрузке.
Это не обязательно (или даже возможно!) В схеме с Δ-соединением.
Если каждый фазовый элемент нагрузки напрямую подключен к соответствующей фазной обмотке источника, фазное напряжение будет постоянным независимо от обрывов в элементах нагрузки.
Возможно, самым большим преимуществом источника с Δ-подключением является его отказоустойчивость.
Возможно, что одна из обмоток трехфазного источника, подключенного по схеме Δ, откроется при отказе (рисунок ниже) без влияния на напряжение или ток нагрузки!
Даже при выходе из строя обмотки источника напряжение в сети по-прежнему равно 120 В, а напряжение фазы нагрузки по-прежнему составляет 120 В.Единственное отличие — дополнительный ток в оставшихся функциональных обмотках источника.
Единственным последствием разрыва обмотки источника для источника, подключенного по схеме Δ, является увеличение фазного тока в остальных обмотках. Сравните эту отказоустойчивость с системой с Y-соединением и обмоткой с открытым источником на рисунке ниже.
Разомкнутая обмотка источника «Y» снижает вдвое напряжение на двух нагрузках по Δ, подключенных к нагрузке.
При подключении нагрузки по схеме Δ два сопротивления испытывают пониженное напряжение, в то время как одно остается при исходном линейном напряжении, 208.Нагрузка, подключенная по схеме Y, постигает еще худшую судьбу (рисунок ниже) из-за того же отказа обмотки в источнике, подключенном по схеме Y.
Обмотка с открытым источником в системе «Y-Y» снижает вдвое напряжение на двух нагрузках и полностью теряет одну нагрузку.
В этом случае два сопротивления нагрузки испытывают пониженное напряжение, а третье полностью теряет напряжение питания! По этой причине источники с Δ-соединением предпочтительнее для надежности.
Однако, если требуется двойное напряжение (например,грамм. 120/208) или предпочтительнее для более низких линейных токов, предпочтительной конфигурацией являются системы с Y-соединением.
ОБЗОР:
- Проводники, подключенные к трем точкам трехфазного источника или нагрузки, называются линиями .
- Три компонента, составляющие трехфазный источник или нагрузку, называются фазами .
- Напряжение линии — это напряжение, измеренное между любыми двумя линиями в трехфазной цепи.
- Фазное напряжение — это напряжение, измеренное на отдельном компоненте трехфазного источника или нагрузки.
- Линейный ток — это ток через любую линию между трехфазным источником и нагрузкой.
- Фазный ток — это ток через любой компонент, содержащий трехфазный источник или нагрузку.
- В симметричных Y-цепях линейное напряжение равно фазному напряжению, умноженному на квадратный корень из 3, а линейный ток равен фазному току.
- В симметричных Δ-цепях линейное напряжение равно фазному напряжению, а линейный ток равен фазному току, умноженному на квадратный корень из 3.
- Трехфазные источники напряжения, подключенные по схеме Δ, обеспечивают большую надежность в случае отказа обмотки, чем источники с подключением по схеме Y. Однако источники, подключенные по схеме Y, могут выдавать такое же количество энергии при меньшем линейном токе, чем источники, подключенные по схеме Δ.
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
Способ подключения трехфазного двигателя к однофазной сети посредством резонансного эффекта
Автор
Включено в список:- Жарилкасин Искаков
(Алматинский университет энергетики и связи, Институт механики и машиноведения, Алматы)
- Коссов Владимир
(Алматинский университет энергетики и связи, Алматы)
Abstract
В этой статье мы предлагаем метод подключения трехфазного двигателя с обмотками, соединенными звездой, и фазовращающим конденсатором в качестве третьего контакта, к однофазной сети с эффективным использованием электроэнергии. за счет компенсации реактивной мощности и эффективного распределения напряжения перед колебательным контуром двигателя.Явление резонанса в колебательном контуре двигателя используется для компенсации реактивной мощности, то есть для увеличения коэффициента активной мощности до максимального значения. Конденсаторная батарея перед схемой используется для эффективного распределения напряжения на входе схемы двигателя с целью повышения напряжения двигателя от сетевого значения 220 В до номинального значения трехфазного двигателя 380 В. Для экспериментальных исследований была создана специальная установка. Результаты экспериментальных исследований, теоретические расчеты электрической схемы установки, а также векторная диаграмма напряжений цепи двигателя показывают, что в случае, когда напряжения на двигателе составляют U = 380 В (UL = UC5 = 325.4 B) и U = 392 B (UL = UC5 = 375,6 B) наиболее точно соответствует резонансному состоянию колебательного контура двигателя. Предлагаемый метод внедрен в учебный процесс в качестве лабораторных работ для студентов технических специальностей Алматинского университета энергетики и связи и может быть использован конструкторами, изобретателями, учеными и специалистами, интересующимися аналогичными вопросами, для создания устройств, соединяющих три -фазный двигатель, подключенный звездой к однофазной сети.
Предлагаемое цитирование
DOI: 10.12955 / cbup.v7.1475
Скачать полный текст от издателя
Исправления
Все материалы на этом сайте предоставлены соответствующими издателями и авторами.Вы можете помочь исправить ошибки и упущения. При запросе исправления укажите дескриптор этого элемента: RePEc: aad: iseicj: v: 7: y: 2019: i: 0: p: 920-927 . См. Общую информацию о том, как исправить материал в RePEc.
По техническим вопросам, касающимся этого элемента, или для исправления его авторов, заголовка, аннотации, библиографической информации или информации для загрузки, обращайтесь:. Общие контактные данные провайдера: https://ojs.journals.cz/index.php/CBUIC .
Если вы создали этот элемент и еще не зарегистрированы в RePEc, мы рекомендуем вам сделать это здесь.Это позволяет связать ваш профиль с этим элементом. Это также позволяет вам принимать потенциальные ссылки на этот элемент, в отношении которых мы не уверены.
У нас нет библиографических ссылок на этот товар. Вы можете помочь добавить их, используя эту форму .
Если вам известно об отсутствующих элементах, цитирующих этот элемент, вы можете помочь нам создать эти ссылки, добавив соответствующие ссылки таким же образом, как указано выше, для каждого элемента ссылки. Если вы являетесь зарегистрированным автором этого элемента, вы также можете проверить вкладку «Цитаты» в своем профиле RePEc Author Service, поскольку там могут быть некоторые цитаты, ожидающие подтверждения.
По техническим вопросам, касающимся этого элемента, или для исправления его авторов, названия, аннотации, библиографической информации или информации для загрузки, обращайтесь: Petr Hájek (адрес электронной почты указан ниже). Общие контактные данные провайдера: https://ojs.journals.cz/index.php/CBUIC .
Обратите внимание, что исправления могут занять пару недель, чтобы отфильтровать различные сервисы RePEc.
Четырехпроводные схемы треугольника — Continental Control Systems, LLC
Четырехпроводная схема подключения по схеме «треугольник» (4WD) — это подключение по схеме «трехфазный треугольник» с центральным ответвлением на одной из обмоток трансформатора для создания нейтрали для однофазных нагрузок.Нагрузки двигателей обычно подключаются к фазам A, B и C, а однофазные нагрузки подключаются к фазе A или C и к нейтрали. Фаза B, «высокая» ветвь, не используется для однофазных нагрузок.
Этот тип услуги, который также известен как услуга «высокая нога», «дикая нога», «стингер-нога» или «дикая фаза», распространен на старых производственных предприятиях, где в основном используются трехфазные моторные нагрузки и около 120 вольт однофазного освещения и розеток.
Загрузить: Four Wire Delta Service (AN-113) (PDF, 1 страница)
120/208/240 Вольт Сервис
Совместимые модели WattNode |
---|
Любая дельта 240 В (3D) модель |
Это наиболее распространенная четырехпроводная трехфазная схема подключения по схеме «треугольник» и по существу представляет собой трехфазную трехпроводную схему подключения по схеме «треугольник» с напряжением 240 В, при этом одна из центральных обмоток трансформатора на 240 вольт отводится для обеспечения двух цепей 120 В переменного тока, которые на 180 градусов не совпадают по фазе друг с другом.Напряжение, измеренное от этой центральной отводной нейтрали до третьего «дикого» плеча, составляет 208 В пер. Тока.
Эта услуга почти всегда имеет нейтральное соединение, но в некоторых редких случаях нейтральный провод недоступен. Обычно он находится у служебного входа, но может не доходить до панели или нагрузки. Теоретически четырехпроводный треугольник без нейтрали — это просто трехфазный треугольник, но есть одно отличие. В нормальном трехфазном треугольнике заземление будет либо центральным напряжением, либо одной ветвью, но трехфазная дельта, полученная от четырехпроводного дельта-трансформатора, будет иметь заземление на полпути между двумя ветвями.Измерители WattNode модели Delta — лучший выбор, так как они будут работать с нейтральным подключением или без него.
Сервисное напряжение 240/415/480 Вольт
Совместимые модели WattNode |
---|
Любая дельта 480 В (3D) модель |
Это встречается гораздо реже, но мы иногда получаем запросы на измерение этого типа услуги, которая по сути идентична услуге 120/208/240, но с удвоением всех напряжений.
Общие примечания
- Высоковольтная ветвь или фаза с более высоким напряжением, измеренным относительно нейтрали, традиционно называлась «фазой B». Изменения в NEC 2008 года теперь позволяют обозначать верхнюю часть четырехпроводной трехфазной дельта-сети как фазу «C», а не фазу «B».
- Кодекс NEC требует, чтобы верхняя часть ноги была обозначена оранжевым цветом (ее часто называли дельтой красной ноги) или другими эффективными средствами, и обычно это фаза «B».Однако, чтобы приспособиться к конфигурациям счетчиков коммунальных услуг, разрешается использовать верхнюю опору в фазе «C», когда счетчики являются частью распределительного щита или щитовой панели. Для изменения кода в этом разделе требуется четкая, постоянная маркировка полей на распределительном щите или щите управления.
- На этикетке коробки CAT III на текущих производимых счетчиках WattNode указано « Ø-N 140 В ~ » (или « Ø-N 277 В ~ »), но напряжение между фазой и нейтралью на высокой ветви будет 208 В пер. (или 416 В переменного тока). Это нормально и не повредит глюкометру.
- Фазовые углы (относительно нейтрали) будут A = 0 градусов, B = 90 градусов, C = 180 градусов. Это отличается от обычной схемы 3Y-208 или 3D-208, где фазовые углы составляют 0, 120, 240 градусов.
- Для точных измерений межфазного (или межфазного) напряжения настройте параметр PhaseOffset следующим образом:
- Для моделей BACnet установите объект PhaseOffset на 3 .
- Для прошивки Modbus версии 16 или более поздней установите для регистра PhaseOffset (1619) значение 90 .
- В версиях прошивки Modbus до версии 16 измерения межфазного напряжения неточны, но другие измерения будут работать нормально.
- Из-за необычных фазовых углов при измерении цепи 4WD с резистивной нагрузкой коэффициенты мощности будут равны 1,0, 0,87, 0,87. При нагрузке двигателя вы можете получить такие коэффициенты мощности, как 0.9, 0,5, 0,0 (или даже отрицательный на одной фазе). Следует ожидать очень несбалансированных показаний мощности (кВт) и изменения реактивной мощности от фазы к фазе. Но, если все подключено правильно, фазные токи должны почти совпадать.
- Средний измеренный коэффициент мощности может быть неточным для четырехпроводных схем, связанных треугольником.
См. Также
Схема управления трехфазным двигателем от однофазной сети. Бесконденсаторный пуск трехфазных электродвигателей от однофазной сети
Все электрики знают, что трехфазные электродвигатели работают эффективнее однофазных 220 вольт.Поэтому, если в вашем гараже есть трехфазный питающий кабель, то оптимальным вариантом будет установка любой машины с мотором на 380 вольт. Это не только эффективно с точки зрения операционной эффективности, но и с точки зрения стабильности. В этом случае нет необходимости добавлять какие-либо пусковые устройства в схему подключения, потому что магнитное поле будет формироваться в обмотках статора сразу после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня часто встречается на форумах электриков. Вопрос звучит так: как правильно подключить трехфазный электродвигатель к трехфазной сети?
Схемы подключения
Давайте начнем с рассмотрения конструкции трехфазного электродвигателя.Здесь нас будут интересовать три обмотки, которые создают магнитное поле, вращающее ротор двигателя. То есть именно так происходит преобразование электрической энергии в механическую.
Есть две схемы подключения:
Сразу оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной почти на 30%. В этом плане выигрывает соединение треугольником.Подключенный таким образом мотор не теряет мощность. Но есть один нюанс, касающийся текущей нагрузки. Это значение резко возрастает при запуске, что отрицательно сказывается на обмотке. Высокая сила тока в медном проводе увеличивает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробою изоляции и выходу из строя самого электродвигателя.
Обращаю ваше внимание на то, что большое количество европейского оборудования, вывезенного на просторы России, оснащено европейскими электродвигателями, которые работают под напряжением 400/690 вольт.Кстати, ниже фото шильдика такого мотора.
Значит, эти трехфазные электродвигатели необходимо подключать к бытовой сети 380В только по схеме треугольник. Если подключить звездой европейский мотор, то под нагрузкой он сразу сгорит. Отечественные трехфазные электродвигатели подключаются к трехфазной сети по схеме звезды. Иногда соединение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.
Производителисегодня предлагают трехфазные электродвигатели, в соединительной коробке которых сделаны выводы концов обмоток в количестве трех или шести штук. Если есть три конца, то это означает, что схема подключения звездой уже сделана внутри двигателя на заводе. Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети как по схеме звезды, так и по схеме треугольника. При использовании схемы звезды необходимо соединить три конца начала обмоток в одну скрутку.Остальные три (напротив) подключены к фазам трехфазной сети 380 вольт. При использовании схемы треугольник нужно соединять все концы между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения между концами обмоток. Ниже фото демонстрирует два типа подключения трехфазного двигателя.
Это подключение к трехфазной сети используется редко. Но он существует, поэтому есть смысл сказать о нем несколько слов.Для чего это используется? Весь смысл такого подключения основан на положении, что при пуске электродвигателя используется схема звезды, то есть плавный пуск, а для основной работы используется треугольник, то есть максимальная мощность агрегата составляет выдавил.
Правда, такая схема довольно сложная. При этом обязательно устанавливаются три магнитных пускателя в соединении обмоток. Первый с одной стороны подключается к электросети, а с другой стороны к нему подключаются концы обмоток.Противоположные концы обмоток подключаются ко второй и третьей. Второй стартер соединен треугольником, третий — звездой.
Внимание! Невозможно одновременно включить второй и третий стартеры. Между подключенными к ним фазами произойдет короткое замыкание, что приведет к сбросу автомата. Следовательно, между ними устанавливается блокировка. На самом деле все будет так — при включении одного размыкаются контакты другого.
Принцип работы следующий: при включении первого стартера временное реле также включает стартер №3, то есть подключенное по схеме звезда. Двигатель запускается плавно. Реле времени касается определенного периода, в течение которого двигатель вернется в нормальный режим работы. После этого стартер номер три отключается, а второй элемент включается, переводя в цепь треугольник.
Подключение электродвигателя через магнитный пускатель
В принципе, схема подключения трехфазного двигателя через магнитный пускатель практически такая же, как и через автомат.Он просто добавляет блок включения и выключения с кнопками «Старт» и «Стоп».
Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (нормально замкнута). То есть при ее нажатии контакты замыкаются, и ток начинает течь на электродвигатель. Но есть один момент. Если отпустить кнопку «Пуск», то контакты разомкнутся, и ток не будет течь должным образом. Поэтому магнитный пускатель имеет еще один дополнительный штыревой соединитель, который называется самозакрывающимся контактом.По сути, это блокирующий элемент. Это необходимо, чтобы при нажатии кнопки «Пуск» не прерывалась цепь питания электродвигателя. То есть отключить его можно было бы только кнопкой «Стоп».
Что можно добавить в тему, как подключить трехфазный двигатель к трехфазной сети через стартер? Обратите внимание на этот момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя перестает работать кнопка «пуск».Основная причина в том, что контакты кнопок перегорели, потому что при запуске двигателя появляется пусковая нагрузка с большим током. Решение этой проблемы может быть очень простым — очистить контакты.
Связанные записи:
Итак, в ваших руках промышленный трехфазный электродвигатель на 380 вольт. Как у вас это получилось — углубляться не будем, но что с ним можно сделать, и как подключить электродвигатель 380 в 220в, мы рассмотрим подробнее.
Для начала расшифровываем название электродвигателя
Для начала разберем надписи на табличке нашего двигателя.
Должно быть название с названием модели, например: двигатель асинхронный трехфазный 5AMX160M2BPU3 , стоит примерно как двигатель серии 5А модернизированный с алюминиевой рамой, высотой оси вращения 160 мм, количество полюсов равно 2 (3000 об / мин).
Еще он содержит несколько отдельных полей, из которых нас интересует наличие обозначения 380/220 — если оно есть, то это вполне подходит, так как его можно запустить в однофазной сети 220 вольт.Если, например, есть надпись 380/660 — в сеть 220в воткнуть такое устройство, к сожалению, нельзя. ИЗ
мы также видим скорость вращения — вполне приемлемую для бытовых целей от 1500 до 3000 об / мин, а мощность — для изготовления электрофаянса, например, нормальную будет 250..750 Вт. В надписях таблички значение номинальная емкость конденсатора для подключения к однофазной сети и / или ток, потребляемый блоком, могут все еще присутствовать, что будет полезно в дальнейшем для расчета пусковой емкости.Если в обозначении присутствует только надпись Электродвигатель 220 вольт, то это, скорее всего, коллектор постоянного тока.
Узнаем, как выполняется соединение обмоток трехфазных электродвигателей
Трехфазные асинхронные электродвигатели (в качестве генераторов переменного тока используются синхронные машины) всегда имеют три одинаковые катушки (по количеству фаз) и, соответственно, 6 выводов. Посмотрим, сколько проводов выходит из нашего блока. Для этого снимаем крышку барно (это такой ящик сверху, куда выводятся концы обмоток) и обращаем внимательный взгляд на то, как подключены выводы статора.Скорее всего, мы увидим следующее:
Начало выводов статора обозначено символами С1 С2 С3, концы — С4 С5 С6. В одну точку можно подключить как начало, так и концы обмоток, такая схема подключения называется «звездой». Если 6 проводов просто выходят из корпуса мотора, то ищите на них обозначения С1 .. С6, часто в таких случаях на табличке тоже показана схема подключения с номиналами конденсаторов.
Но для того, чтобы можно было подключить автомат 380в к сети 220в, необходимо немного изменить схему подключения выводов.
Попробуем подключить трехфазный электродвигатель к однофазной сети
Для запуска движка в домашней сети потребуется переделать существующее подключение по схеме «треугольник». У вас должно получиться:
На схеме мы видим два конденсатора — рабочий и пусковой. Через них приводится в действие «третья фаза» двигателя. Конденсаторный спуск. он включается на короткое время с помощью кнопки без фиксации только на некоторое время, пока электродвигатель 220 В не разгонится до номинальной скорости, это занимает от 2 до 5 секунд.Данные номинальных характеристик конденсаторов можно рассчитать на основе тока, потребляемого двигателем, по формуле Сраба. = 4800 × I / V Спуск. = 2,5 × Краб.
Можно придерживаться упрощенной формулы «на каждый киловатт мощности 100 мкФ емкости», т.е. Srab = P / 10. Но на практике как всегда лучший метод расчета мощностей — это выборка, поэтому мы тщательно выбираем конденсаторы на основе надежного запуска и отсутствия перегрева двигателя при длительной эксплуатации.Номинальное напряжение конденсаторов должно быть не менее 400 вольт. Возможно подключение нескольких резервуаров параллельно для увеличения общего рейтинга. а последовательно — для увеличения рабочего напряжения.
Можно изменить направление вращения мотора, перебросив концы блока контейнера на другой провод питания.
Схема подключения к сети 220 вольт
На практике включение может осуществляться по следующей схеме:
Надо подключиться к питанию через предохранитель или.Пуск электрической машины происходит при нажатии на нефиксирующуюся кнопку «Пуск» с двумя парами контактов, через один из которых подается напряжение на катушку электромагнитного пускателя К1, а вторую — на пусковой конденсатор. После разгона двигателя с отпусканием кнопки «Старт» аппарат не останавливается из-за параллельно подключенных кнопок. Если необходимо остановить устройство, нажимают кнопку «Стоп» и разрывают силовую цепь магнитного пускателя, отключая двигатель от сети.Приведенная схема является базовой, ее можно дополнить элементами реверса, плавного торможения и прочего.
Стоит обратить внимание на то, что подключение электродвигателя на 380 вольт к 220 все еще нестандартно для трехфазных машин, поэтому мощность получившегося агрегата редко будет больше 50% от номинальной.
При изготовлении и установке таких устройств не забывайте — электробезопасность превыше всего!
Асинхронные электродвигатели, широко используемые в производстве, подключаются по схеме «треугольник» или «звезда».Первый тип в основном используется для двигателей для непрерывного пуска и работы. Совместное соединение используется для пуска электродвигателей большой мощности. Соединение звездой используется в начале пуска, затем при переходе к треугольнику. Также используется схема подключения трехфазного электродвигателя на 220 вольт.
Есть много типов двигателей, но для всех основной характеристикой является напряжение, подаваемое на механизмы, и мощность самих двигателей.
При подключении к сети 220В высокие пусковые токи сокращают срок его службы.В промышленности соединение треугольником используется редко. Мощные электродвигатели соединены «звездой».
Для перехода со схемы подключения электродвигателя 380 на 220 существует несколько вариантов, каждый из которых имеет свои достоинства и недостатки.
Повторное подключение с 380 вольт на 220
Очень важно понимать, как трехфазный электродвигатель подключается к сети 220в. Чтобы подключить трехфазный двигатель к 220в, отметим, что он имеет шесть выводов, что соответствует трем обмоткам.Тестером вызываются провода для поиска катушек. Соединяем их концы пополам — получаем соединение «треугольник» (и три конца).
Для начала подключаем два конца сетевого провода (220 В) к любым двум концам нашего «треугольника». Оставшийся конец (оставшаяся пара скрученных проводов катушки) подключается к концу конденсатора, а оставшийся провод конденсатора также подключается к одному из концов сетевого провода и катушек.
Выберем ли мы одно или другое, будет зависеть от того, в каком направлении начинает вращаться двигатель.Проделав все эти действия, запускаем двигатель, подав на него 220 вольт.
Электродвигатель должен работать. Если этого не произошло или не вышла необходимая мощность, необходимо вернуться к первой ступени, чтобы поменять местами провода, т.е. переподключить обмотки.
Если при включении мотор гудит, но не крутится, необходимо дополнительно установить (кнопкой) конденсатор. В момент запуска он дает толчок двигателю, заставляя его вращаться.
Видео: Как подключить электродвигатель от 380 до 220
Вызов, т.е. измерение сопротивления, проводимое тестером. Если его нет, можно использовать для фонарика батарейку и обычную лампу: определяемые провода подключаются к цепи, последовательно с лампой. Если обнаружены концы одной обмотки, загорается лампа.
Найти начало и концы обмоток намного сложнее. Без вольтметра со стрелкой не обойтись.
Вам нужно будет подключить к обмотке аккумулятор, а к другой вольтметр.
Разрывая контакт провода с аккумулятором, наблюдать, отклоняется ли стрелка и в каком направлении. Такие же действия проделываем с остальными обмотками, при необходимости меняя полярность. Убедитесь, что стрелка отклоняется в том же направлении, что и при первом измерении.
Схема звезда-треугольник
В отечественных моторах «звезда» часто уже собрана, и нужно реализовать треугольник, т.е.е. соединить три фазы, а с оставшихся шести концов обмотки собрать звезду. Ниже приведен рисунок, чтобы облегчить понимание.
Основным преимуществом соединения трехфазной цепи звездой является то, что двигатель вырабатывает наибольшую мощность.
Тем не менее любителям такое подключение «нравится», но в производстве применяется нечасто, так как схема подключения сложная.
Для работы нужно три стартера:
Обмотка статора подключена к первому из них, К1, с одной стороны, и току — с другой.Остальные концы статора подключаются к пускателям К2 и К3, а затем для получения «треугольника» обмотка с К2 также подключается к фазам.
Подключив к фазе К3, оставшиеся концы немного укорачивают для получения схемы «звезда».
Важно: недопустимо одновременно включать К3 и К2, чтобы не произошло короткого замыкания, которое может привести к остановке электродвигателя машины. Чтобы этого избежать, используйте электрическую блокировку.Работает это так: при включении одного из пускателей отключается другой, т.е. его контакты размыкаются.
Как работает схема
Когда K1 включается с помощью реле времени, K3 включается. Трехфазный звездообразный двигатель работает с большей мощностью, чем обычно. Через некоторое время контакты реле К3 размыкаются, но К2 запускается. Теперь схема двигателя представляет собой «треугольник», и его мощность становится меньше.
Когда требуется отключение электроэнергии, запускается K1. Схема повторяется в последующих циклах.
Очень сложное подключение требует навыков и не рекомендуется для новичков.
Другие подключения двигателя
Есть несколько схем:
- Чаще, чем описанный вариант, используется схема с конденсатором, что поможет значительно снизить мощность. Один из контактов рабочего конденсатора подключен к нулю, второй — к третьему выводу электродвигателя.В итоге имеем маломощный блок (1,5 Вт). При большой мощности двигателя в цепи потребуется пусковой конденсатор. При однофазном подключении просто компенсирует третий выход.
- Асинхронный двигатель звездой или треугольником легко подключить при переключении с 380в на 220. Такие двигатели имеют три обмотки. Чтобы изменить напряжение, нужно поменять местами выходы, идущие к вершинам соединений.
- При подключении электродвигателей важно внимательно изучить паспорта, сертификаты и инструкции, ведь в импортных моделях часто встречается «треугольник», адаптированный к нашим 220В.Такие моторы при игнорировании и включении «звездой» просто перегорают. Если мощность больше 3 кВт, мотор нельзя подключать к бытовой сети. Это чревато коротким замыканием и даже выходом из строя УЗО автомата.
Включение трехфазного двигателя в однофазную сеть
Ротор, подключенный к трехфазной цепи трехфазного двигателя, вращается благодаря магнитному полю, создаваемому током, протекающим в разное время в разных обмотках.Но когда такой двигатель подключен к однофазной цепи, нет крутящего момента, который мог бы вращать ротор. Самый простой способ подключить трехфазный двигатель к однофазной цепи — подключить его третий контакт через фазосдвигающий конденсатор.
При подключении к однофазной сети такой двигатель имеет ту же скорость, что и при работе от трехфазной сети. Но этого нельзя сказать о мощности: ее потери значительны и зависят от емкости фазовращающего конденсатора, условий работы двигателя, выбранной схемы подключения.Потери примерно достигают 30-50%.
Цепи могут быть двух-, трех-, шестифазными, но чаще всего используются трехфазные. Под трехфазной схемой понимается совокупность электрических цепей с одинаковой частотой синусоидальной ЭДС, различающихся по фазе, но создаваемых общим источником энергии.
Если нагрузка в фазах одинакова, цепь симметрична. Для трехфазных несимметричных цепей дело обстоит иначе. Полная мощность состоит из активной мощности трехфазной цепи и реактивной мощности.
Хотя большинство двигателей могут работать в однофазном режиме, не все могут работать хорошо. Лучше других в этом смысле асинхронные двигатели, которые рассчитаны на напряжение 380/220 В (первый для звезды, второй для треугольника).
Это рабочее напряжение всегда указывается в паспорте и на табличке, прикрепленной к двигателю. Там же показана схема подключения и варианты ее изменения.
Если присутствует «A», это означает, что можно использовать как треугольник, так и звезду.«B» означает, что обмотки соединены «звездой» и не могут быть соединены иначе.
Результат должен быть таким: при разрыве контактов обмотки с аккумулятором на двух оставшихся обмотках должен появиться электрический потенциал той же полярности (т.е. отклонение стрелки происходит в одном направлении). Выводы начала (А1, В1, С1) и конца (А2, В2, С2) помечаются и подключаются по схеме.
Использование магнитного пускателя
Использование схемы подключения электродвигателя 380 через стартер удобно тем, что пуск может производиться дистанционно.Преимущество стартера перед выключателем (или другим устройством) в том, что стартер можно разместить в шкафу, а элементы управления можно вынести в рабочую зону, напряжение и токи минимальны, поэтому провода подойдут. меньший раздел.
Кроме того, подключение с помощью стартера обеспечивает безопасность в случае «пропадания» напряжения, поскольку при этом размыкаются силовые контакты, и при повторном появлении напряжения стартер не подаст его на оборудование без нажатия кнопки запуска.
Схема подключения стартера асинхронного электродвигателя 380в:
На контактах 1,2,3 и пусковой кнопке 1 (разомкнут) в начальный момент присутствует напряжение. Затем через замкнутые контакты этой кнопки (при нажатии «Пуск») подается питание на контакты катушки пускателя К2, замыкая его. Катушка создает магнитное поле, сердечник притягивается, контакты пускателя замыкаются, приводя двигатель в движение.
При этом замыкается замыкающий контакт, с которого фаза подается на катушку через кнопку «Стоп».Получается, что при отпускании кнопки «Пуск» цепь катушки остается замкнутой, как и силовые контакты.
При нажатии «Стоп» цепь разрывается, возвращаясь размыканием силовых контактов. Пропадает напряжение с проводников, питающих двигатель и NO.
Видео: Подключение асинхронного двигателя. Определение типа двигателя.
Инструкции
Как правило, для подключения трехфазного электродвигателя используют три провода и напряжение питания 380 вольт.В сети 220 вольт всего два провода, поэтому для того, чтобы двигатель работал, на третий провод тоже нужно подавать напряжение. Для этого используется конденсатор, который называется рабочим конденсатором.
Емкость конденсатора зависит от мощности двигателя и рассчитывается по формуле:
C = 66 * P, где C — емкость конденсатора, мкФ, P — мощность электродвигателя, кВт.
То есть на каждые 100 Вт мощности двигателя нужно подбирать емкость около 7 мкФ.Таким образом, для двигателя мощностью 500 Вт необходим конденсатор емкостью 35 мкФ.
Требуемую емкость можно собрать из нескольких конденсаторов меньшей емкости, подключив их параллельно. Затем рассчитывается общая емкость по формуле:
Cобщ = C1 + C2 + C3 +… .. + Cn
Важно помнить, что рабочее напряжение конденсатора должно быть в 1,5 раза больше напряжения питания электродвигателя. . Следовательно, при напряжении питания 220 вольт конденсатор должен быть 400 вольт.Могут применяться конденсаторы типа КБГ, МБГЧ, БГТ.
Для подключения двигателя используются две схемы подключения — «треугольник» и «звезда».
Если в трехфазной сети двигатель был подключен по схеме «треугольник», то в однофазную сеть подключаемся по такой же схеме с добавлением конденсатора.
Подключение двигателя звездой осуществляется следующим образом.
Для работы электродвигателей мощностью до 1.5 кВт, емкости рабочего конденсатора вполне достаточно. Если подключить мотор большей мощности, то такой мотор будет очень медленно разгоняться. Поэтому необходимо использовать пусковой конденсатор. Он подключен параллельно рабочему конденсатору и используется только во время разгона двигателя. Затем конденсатор отключается. Емкость конденсатора для запуска двигателя должна быть в 2-3 раза больше емкости рабочего.
Трехфазный двигатель в однофазной сети Трехфазный двигатель необходим для различных самоделок: циркулярных, деревообрабатывающих, точильных и сверлильных станков.
Среди различных способов пуска трехфазных электродвигателей в однофазных сетях самый простой и эффективный — с подключением третьей обмотки через фазосдвигающий конденсатор. Учитывая, что конденсатор сдвигает фазу третьей обмотки на 90 ° С, а между первой и второй фазами сдвиг незначительный, электродвигатель теряет мощность примерно на 40 … 50% при включении обмоток по схема треугольника. На практике это условие выполнить сложно, обычно двигатель управляется в два этапа: сначала его включают пусковым конденсатором (из-за больших пусковых токов), а после разгона отключают, оставляя только рабочий ( Инжир.1).
C2 = 4800 I / U
U — напряжение сети, В.
Ток, потребляемый электродвигателем, можно измерить амперметром или рассчитать по формуле: на практике это условие выполнить сложно, электродвигатель не работает. обычно управляется в два этапа: сначала включается пусковым конденсатором (из-за больших пусковых токов), а после разгона отключается, оставляя только рабочий (рис. 1).
При нажатии кнопки СБ1 (можно использовать кнопку от стиральной машины — стартер ПНВС-10 УХЛ2) электродвигатель М начинает разгоняться, а когда набирает скорость, кнопка отпускается.SB1.2 открывается, а SB1.1 и SB1.3 остаются закрытыми. Они открываются для остановки электродвигателя. Если SB 1.2 в кнопке не отрывается, под нее следует подложить шайбу, чтобы она оторвалась. При соединении обмоток двигателя по схеме «треугольник» емкость рабочего конденсатора С2 определяется по формуле:
С2 = 4800 I / U
, где I — ток, потребляемый двигателем, А;
U — напряжение сети, В.
Ток, потребляемый электродвигателем, можно измерить амперметром или рассчитать по формуле:
где Р — мощность двигателя, Вт;
U — напряжение сети, В;
н- КПД;
cosψ — коэффициент мощности.Емкость пускового конденсатора С1 выбирается в 2 … 2,5 раза больше рабочего при большой нагрузке на вал, а их допустимые напряжения должны превышать в 1,5 раза напряжение сети. Лучше всего использовать конденсаторы марок МГБО, МБГП, МБГЧ с рабочим напряжением 500 В и выше. Пусковые конденсаторы необходимо зашунтировать резистором R1 на 200 … 500 кОм, через который «течет» оставшийся электрический заряд.
Реверс электродвигателя осуществляется переключением фазы на его обмотке тумблером SA1 (рис.1) типа ТВ1 … 4 и т. Д.
При работе на холостом ходу по обмотке, подводимой через конденсаторы, протекает ток, па 20 … 40% превышающий допустимый. Следовательно, если электродвигатель будет часто использоваться в режиме недогрузки или холостого хода, емкость конденсатора C2 должна быть уменьшена. Например, для включения мотора мощностью 1,5 кВт в качестве рабочего конденсатора можно использовать конденсатор 100 мкФ, а пускового — 60 мкФ. Значения емкостей рабочих и пусковых конденсаторов в зависимости от мощности двигателя приведены в таблице.
Если нет возможности закупить бумажные конденсаторы, можно использовать оксидные (электролитические) конденсаторы в качестве пусковых. «допустимое напряжение, чем для обычных бумажных конденсаторов. Так, если для бумажных конденсаторов требуется напряжение 400 В и выше, то для электролита достаточно 300 … 350 В, потому что он пропускает только одну полуволну переменного тока, и поэтому на него подается только половина рабочего напряжения, а для надежности он должен выдерживать амплитудное напряжение однофазной сети, т.е.е. примерно 300 В. Их расчет аналогичен расчету бумажных.
Схема подключения трехфазного двигателя к однофазной сети с использованием электролитических конденсаторов представлена на рис. 3. Подобрать необходимое значение емкости бумажных и оксидных конденсаторов проще всего, измерив, ток в точках a , б, в — токи должны быть равными при оптимальной нагрузке на вал двигателя. Диоды VD1, VD2 подбираются с обратным напряжением не менее 300 В и 1 пр. макс = 10А.При большей мощности двигателя диоды устанавливают на радиаторах, по два в плече, иначе может произойти пробой диодов и через оксидный конденсатор будет протекать переменный ток, в результате чего через некоторое время электролит может нагреться и взорваться. Электролитические конденсаторы в качестве рабочих использовать нежелательно, так как длительное протекание через них больших токов приводит к их нагреву и взрыву. Их лучше всего использовать как пусковые установки.
Если используется трехфазный электродвигатель с динамическими (большими) нагрузками на валу, можно использовать схему подключения пускового конденсатора с использованием реле тока, что позволяет автоматически подключать и отключать пусковые конденсаторы в момент сильных нагрузки на вал (рис.3).
При подключении обмоток трехфазного двигателя к однофазной сети по схеме, представленной на рис. 4, мощность электродвигателя составляет 75% от номинальной мощности в трехфазном режиме, т.е. потери составляют порядка 25%, так как обмотки А и В включены в противофазе при полном напряжении 220 В, а напряжение вращения определяется включением обмотки С. Фазировка обмоток показана точками.
Более практичными и удобными в работе с трехфазными двигателями являются резисторно-индуктивно-емкостные преобразователи однофазной сети 220 В в трехфазную, с токами по фазам до 4А и сдвигом напряжения по фазам около 120 °.Такие устройства универсальны, монтируются в жестяном корпусе и позволяют подключать трехфазные электродвигатели мощностью до 2,5 кВт к однофазной сети 220 В практически без потерь мощности.
Преобразователь использует дроссель с воздушным зазором. Дроссельное устройство показано на рис. 6. При правильном подборе R, C и соотношения витков в секциях дроссельной обмотки такой преобразователь обеспечивает нормальную длительную работу электродвигателей независимо от их характеристик и мощности. степень нагрузки на вал.Вместо индуктивности дано индуктивное сопротивление XL, так как его легче измерить: обмотка дросселя соединяется с крайними выводами через амперметр на напряжение 100 … 220 В частотой 50 Гц параллельно с вольтметр. Индуктивное сопротивление (активным можно пренебречь) практически определяется как отношение напряжения в вольтах к току в амперах XL = U / J.
Конденсатор С1 должен выдерживать напряжение не менее 250 В, С2 — не менее 350 В. Если использовать конденсаторы КБГ, МБГ-4, то напряжение соответствует номиналу, указанному на маркировке, а конденсаторы МБГП, МБГО при подключении к цепи переменного тока должны иметь примерно двойной запас по напряжению.Резистор R1 должен быть рассчитан на ток до 3А, т.е. на мощность около 700 Вт (намотан никель-хромовой проволокой диаметром 1,3 … 1,5 мм на фарфоровой трубке с подвижным кронштейном, что позволяет для получения необходимого сопротивления для разных мощностей двигателя). Резистор необходимо защищать от перегрева, защищать от других элементов, токоведущих частей, от прикосновения человека. Металлическое шасси шасси должно быть заземлено.
Сечение магнитопровода индуктора S = 16… 18см2, диаметр проволоки d = l, 3 … 1,5 мм, общее количество витков W = 600 … 700. Форма магнитопровода и марка стали — любые, Главное — предусмотреть воздушный зазор (а значит, возможность изменять индуктивное сопротивление), который устанавливается винтами (рис. 6). Чтобы исключить сильное дребезжание дроссельной заслонки, между W-о-разными половинками магнитопровода закладывается деревянный брусок и зажимается саморезами. В качестве дросселя подходят силовые трансформаторы от ламповых цветных телевизоров мощностью 270… 450 Вт. Вся обмотка индуктора выполнена в виде одной катушки с тремя секциями и четырьмя выводами. Если вы используете сердечник с постоянным воздушным зазором, вам придется сделать испытательную катушку без промежуточных отводов, собрать дроссель с примерным зазором, подключить его и измерить XL. Затем подогнать полученное значение к искомому. XL нужно перематывать или перематывать на несколько витков. Выяснив необходимое количество витков, намотайте необходимую катушку, разделив каркас на секции в соотношении W1: W2: W3 = 1: 1: 2.Итак, если общее количество витков равно 600, то Wl = W2 = 150, а W3 = 300. Чтобы увеличить выходную мощность преобразователя и при этом избежать разбаланса напряжений, необходимо изменить значения XL, Rl, Cl, C2, которые рассчитываются исходя из того, что токи в фазах A, B и C должны быть равны при номинальной нагрузке на валу двигателя. В режимах недогрузки двигателя асимметрия фазных напряжений не опасна, если наибольший из фазных токов не превышает номинальный ток двигателя.Преобразование параметров преобразователя на другую мощность осуществляется по формулам:
С1 = 80П;
C2 = 40P;
Рл = 140 / П;
XL = 110 / P,
W = 600 / P,
S = 16P,
d = 1.4P;
Где P — мощность преобразователя в киловаттах, а номинальная мощность двигателя — его мощность на валу. Если коэффициент полезного действия двигателя неизвестен, его можно принять в среднем 75 … 80%.
Однофазный vs.Объяснение трехфазного питания
Однофазный источник питания используется в большинстве домов и на малых предприятиях, поскольку его установка относительно проста и недорога. Коммерческие и промышленные предприятия с более высокими потребностями в электроэнергии предпочитают трехфазное питание, потому что оно более эффективно и дешевле в эксплуатации. Но в чем именно разница между однофазным и трехфазным питанием?
Однофазное и трехфазноеЧтобы проиллюстрировать разницу между однофазным и трехфазным, представьте себе гребца-одиночки в каноэ.Он может двигаться только вперед, пока его весло движется по воде. Когда он поднимает весло из воды, чтобы подготовиться к следующему гребку, мощность, подаваемая на каноэ, равна нулю.
А теперь представьте то же каноэ с тремя гребцами. Если их гребки синхронизированы, так что каждый из них разделен на 1/3 цикла гребка, каноэ получает постоянное и последовательное движение по воде. Подается больше мощности, и каноэ движется по воде более плавно и эффективно.
Однофазное питание- Однофазное электричество используется в большинстве домов и на малых предприятиях
- Обеспечивает достаточную мощность для большинства небольших потребителей, включая дома и небольшие непромышленные предприятия
- Подходит для работы двигателей мощностью до 5 лошадиных сил; Однофазный двигатель потребляет значительно больше тока, чем эквивалентный трехфазный двигатель, что делает трехфазный двигатель более эффективным выбором для промышленного применения
- Распространено в крупных компаниях, а также в промышленности и производстве по всему миру
- Все более популярны в энергоемких центрах обработки данных с высокой плотностью данных
- Дорогое преобразование существующей однофазной установки, но трехфазная позволяет использовать меньшую и менее дорогую проводку и более низкое напряжение, что делает ее безопаснее и дешевле в эксплуатации.
- Высокоэффективный для оборудования, рассчитанного на работу от 3-х фазного источника питания
Однофазные и трехфазные продукты от Tripp Lite
Сравнение однофазных и трехфазных двигателей
Есть три основных категории двигателей:
- постоянного тока
- Однофазный переменный ток (1-фазный переменный ток)
- Трехфазный переменный ток (3-фазный переменный ток)
Даже в рамках этих основных категорий существует множество вариаций и стратегий.Двигатели постоянного тока обладают некоторыми уникальными свойствами, но обычно принципы работы между различными вариантами двигателей переменного тока могут быть неясными. Понимание этих различий может объяснить причины, по которым в некоторых ситуациях можно использовать только один тип двигателя, а не другие.
Двигатели работают по принципу магнитных полей, создаваемых катушками с проволокой. В уникальной ситуации с двигателем постоянного тока полюса магнитного поля должны каким-то образом переключаться извне. Чаще всего это достигается с помощью щеток коммутатора или, возможно, путем переменного напряжения с внешней схемой драйвера (например, в бесщеточном или шаговом двигателе).
Когда дело доходит до кривой переменного напряжения переменного тока, это создает идеальную ситуацию для управления двигателем без дополнительных схем или шумных, неэффективных угольных щеток. Переменное напряжение — идеальный источник питания для перемещения тяжелых грузов с минимально возможными потерями. Однако даже между двумя системами напряжения (1-фазная и 3-фазная) существуют различия в работе, приводящие к преимуществам и недостаткам в зависимости от требований приложения.
Однофазные двигатели переменного тока
Внутри однофазного двигателя основная катушка привода на самом деле представляет собой серию катушек, равномерно распределенных внутри, чтобы плавно вращать ротор внутри.Будет приложено напряжение, ведущее к каждой катушке, чередующейся север и юг на основной частоте сети. Ротор будет намагничен к этим полюсам, неся его по непрерывному кругу.
Работает, пока двигатель работает на полной скорости, но при запуске возникает проблема. Ротор остановится в случайном месте при выключении двигателя, поэтому в следующий раз, когда при запуске будет приложено напряжение, трудно понять, заставит ли магнитное притяжение NS двигаться вперед или назад, чтобы начать вращение. при запуске.Случайное направление вращения явно недопустимо.
Рисунок 1. Разрез однофазного двигателя.Наиболее распространенный метод исправления этой проблемы — использование конденсатора, соединенного последовательно с вторичной катушкой, обычно называемой «пусковой катушкой». Поскольку конденсатор предназначен для подачи всплеска тока в самом начале формы волны напряжения, ток через эту пусковую катушку будет проходить за доли секунды до основной катушки.Это приводит к тому, что ротор сначала притягивается к этой пусковой катушке, а затем к главной катушке привода в тесной последовательности, обеспечивая предсказуемое направление вращения.
Полярность этой пусковой катушки может быть изменена, чтобы изменить направление запуска. Как только двигатель будет достаточно запущен, очень отчетливый «щелчок» будет указывать на то, что центробежный выключатель открыл пусковую катушку, и его работа завершена. Выпуклость на стороне корпуса обычно содержит конденсатор, поэтому, если эта выпуклость присутствует, это почти наверняка конденсаторный однофазный двигатель.
Эти однофазные двигатели имеют преимущества, когда источником напряжения является дом или магазин без трехфазного источника питания. Провода, идущие к двигателю, будут состоять только из линии и нейтрали от стандартного источника питания на 120 вольт или двух линейных проводов в случае системы на 240 вольт. В любом случае эта единственная цепь проводимости должна содержать весь ток возбуждения.
Если двигатель требует большой мощности, провода должны быть огромными. Это приводит к основному недостатку однофазных двигателей: они обычно используются только для небольших приложений.Но, тем не менее, поскольку однофазные источники питания настолько распространены, этот тип двигателя можно найти повсюду в торговом оборудовании.
Трехфазные двигатели переменного тока
Многие принципы управления катушками внутри трехфазного двигателя точно такие же, как и в однофазном. Единственное отличие состоит в том, что в трехфазном режиме магнитные полюса катушки перемещаются с шагом пути вокруг ротора, когда каждая линия достигает полного напряжения. Это означает, что в зависимости от последовательности намагничивания катушек направление вращения больше не будет случайным, как это было в однофазном двигателе — оно полностью предсказуемо и согласовано.Пусковая цепь с конденсатором больше не нужна, поскольку двигатель работает вполне естественно.
Рисунок 2. Разрез трехфазного двигателяОсновным преимуществом этого типа двигателя является его применение в больших мощностях. Источник питания и проводники обычно в первую очередь способны обеспечивать большее количество тока, чем жилые системы, и каждая из трех линий будет пропускать меньше тока по отдельности, чем если бы весь ток проходил через одну цепь.Это делает двигатель привлекательным для приложений с большей мощностью. В случае большинства трехфазных двигателей электрик может настроить электропроводку на высокое или низкое напряжение. Это может снизить потребление тока, если будет обеспечено более высокое напряжение.
Очевидным недостатком этого типа двигателя является то, что для его привода требуется трехфазное питание. В современных системах управления это не всегда так, поскольку некоторые маломощные частотно-регулируемые приводы (ЧРП) могут питаться однофазным питанием, но обеспечивать трехфазный ток.
Сводка
Для большинства небольших магазинов, где требуются двигатели с низким энергопотреблением, нормальным будет однофазный двигатель с конденсаторной пусковой катушкой. Для справки с точки зрения «мощности», двигатель мощностью 5 лошадиных сил, работающий при 240 В переменного тока, потребляет около 15 ампер.
Работая только при 120 В переменного тока, тот же двигатель мощностью 5 л.с. потребляет 30 А. Это довольно значительная величина тока. Для более крупных промышленных приложений естественным решением будет трехфазный двигатель, поскольку источники напряжения и тока намного больше.Идеальное решение практически для любого двигателя!
Трехфазная мощность, значения напряжения и тока
Трехфазное соединение звездой: линия, фазный ток, напряжения и мощность в конфигурации Y Что такое соединение звездой (Y)?Star Connection ( Y ) Система также известна как Трехфазная четырехпроводная система ( 3-фазная 4-проводная ), и это наиболее предпочтительная система для распределения мощности переменного тока, а для передачи — Delta соединение обычно используется.
В системе соединения Star (также обозначается как Y ) начальные или конечные концы (аналогичные концы) трех катушек соединяются вместе, образуя нейтральную точку. Или
Звездное соединение получается путем соединения вместе одинаковых концов трех катушек, либо «Пуск», либо «Завершение». Остальные концы присоединяются к линейным проводам. Общая точка называется нейтральной или звездной точкой , которая представлена N .(Как показано на рис. 1)
Звездное соединение также называется трехфазной 4-проводной (3-фазной, 4-проводной) системой.
Также читайте:
Если сбалансированная симметричная нагрузка подключена к трехфазной системе параллельно, то три тока будут течь по нейтральному проводу, количество которых будет одинаковым, но они будут отличаться на 120 ° (не в фазе) , следовательно, векторная сумма этих трех токов = 0. т.е.
I R + I Y + I B = 0 …………….Victorially
Напряжение между любыми двумя клеммами или напряжение между линией и нейтралью (точка звезды) называется фазным напряжением или напряжением звезды, обозначаемым V Ph . Напряжение между двумя линиями называется линейным напряжением или линейным напряжением и обозначается V L .
Соединение звездой (Y) Трехфазное питание, значения напряжения и тока Значения напряжения, тока и мощности при соединении звездой (Y)Теперь мы найдем значения линейного тока, линейного напряжения, фазного тока, фазы Напряжения и мощность в трехфазной системе переменного тока звездой.
Линейные напряжения и фазные напряжения при соединении звездойМы знаем, что линейное напряжение между линией 1 и линией 2 (из рис. 3a) составляет
В RY = V R — V Y …. (Разность векторов)
Таким образом, чтобы найти вектор V RY , увеличьте вектор V Y в обратном направлении, как показано пунктирной линией на рисунке 2 ниже. Аналогичным образом на обоих концах вектора V R и Vector V Y образуют перпендикулярные пунктирные линии, которые выглядят как параллелограмм, как показано на рис. (2).Диагональная линия, разделяющая параллелограмм на две части, показывает значение V RY . Угол между векторами V Y и V R составляет 60 °.
Следовательно, если
V R = V Y = V B = V PH
, то
V RY = 2 x V PH x Cos (60 ° / 2)
= 2 x V PH x Cos 30 °
= 2 x V PH x (√3 / 2) …… Так как Cos 30 ° = √3 / 2
V RY = √3 V PH
Аналогично
V YB = V Y — V B
V YB = √3 V PH 4
And4 = V B — V R
V BR = √3 V PH
Следовательно, доказано, что V RY = V YB = V BR равно линейные напряжения (V L ) при соединении звездой , следовательно, при соединении звездой;
V L = √3 V PH или V L = √3 E PH
Линейные и фазные напряжения при соединении звездойИз рисунка 2 видно, что;
- Линейные напряжения отстоят друг от друга на 120 °
- Линейные напряжения на 30 ° опережают соответствующие фазные напряжения
- Угол Ф между линейными токами и соответствующими линейными напряжениями составляет (30 ° + Ф), т.е.е. каждый линейный ток отстает (30 ° + Ф) от соответствующего сетевого напряжения.
Связанный пост: Осветительные нагрузки, соединенные звездой и треугольником
Линейные токи и фазные токи при соединении звездойИз рис. (3a) видно, что каждая линия соединена последовательно с отдельной фазной обмоткой, поэтому значение Линейный ток такой же, как и в фазных обмотках, к которым подключена линия. т.е.
- Ток в линии 1 = I R
- Ток в линии 2 = I Y
- Ток в линии 3 = I B
Так как текущие токи во всех трех линиях одинаковы, и поэтому индивидуальный ток в каждой строке равен соответствующему фазному току;
I R = I Y = I B = I PH ….Фазный ток
Линейный ток = Фазный ток
I L = I PH
Проще говоря, значения линейных токов и фазных токов одинаковы в Star Connection .
Соединение звездой (Y): значения линейных токов и напряжений и фазных токов и напряжений Мощность при соединении звездойВ трехфазной цепи переменного тока общая истинная или активная мощность является суммой трехфазной мощности.Или сумма всех трех фазных мощностей — это полная активная или истинная мощность.
Следовательно, полная активная или истинная мощность в трехфазной системе переменного тока;
Общая истинная или активная мощность = 3-фазная мощность
Или
P = 3 x V PH x I PH x CosФ … .. уравнение… (1)
Мы знаем, что значения фазного тока и фазного напряжения при соединении звездой;
I L = I PH
V PH = V L / √3 ….. (От V L = √3 V PH )
Ввод этих значений в уравнение мощности ……. (1)
P = 3 x (V L / √3) x I L x CosФ …….…. (V PH = V L / √3)
P = √3 x√3 x (V L / √3) x I L x CosФ….… {3 = √3x√3 }
P = √3 x V L x I L x CosФ
Следовательно, доказано;
Подключение питания звездой ,
P = 3 x V PH x I PH x CosФ или
P = √3 x V L x I L x CosФ
То же самое объясняется в MCQ трехфазной цепи с пояснительным ответом (MCQ No.1)
Аналогично,
Общая реактивная мощность = Q = √3 x V L x I L x SinФ
Где Cos Φ = коэффициент мощности = фазовый угол между фазным напряжением и фазным током, а не между линейным током и линейным напряжением.
Полезно знать : Реактивная мощность индуктивной катушки принимается как положительная (+), а реактивная мощность конденсатора — как отрицательная (-).