- Как подключить трёхфазный электродвигатель на 380 Вольт
- Схема подключения 3х фазного двигателя на 380
- Подключение трехфазного электродвигателя к однофазной сети
- Схемы подключения трехфазного двигателя. к 3-х и 1-о фазной сети
- Различные схемы подключения асинхронных двигателей к сети 380 вольт
- Виды электродвигателей
- Однофазный
- Электродвигатели постоянного тока
- Переключение на нужное напряжение
- Асинхронные электродвигатели
- Как работает трёхфазный асинхронный двигатель?
- Производители электродвигателей
- Подключение к однофазной сети
- Схемы подключения однофазных асинхронных двигателей
- Устройство электродвигателя
- Как подключить 3х фазный двигатель к сети 220в
- 3 Фазы без нуля
- Статьи, Схемы, Справочники
- Возможно ли подключить 3-х фазный прибор, если нет N?
- Схема подключения трехфазного двигателя к однофазной сети
- Запуск трехфазных электродвигателей с помощью конденсаторов
- Как подключить 3х фазный двигатель на 220
- Трёхфазный двигатель
- Схема подключения трехфазного двигателя на 220 с пусковым конденсатором
- Ввод в дом 3 фазы без нуля
- Может ли движок 380 работать без нуля?
- Правильное подключение 3-х фазного станка.
- Как подключить 3фазный двигатель на 220
- Подключение 3х фазного двигателя на 220 без конденсаторов
- Подключение электродвигателя 380в на 220в через конденсатор
- Подключение 3х фазного двигателя на 220 без потери мощности
- Рис 1. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»
- Рис. 2. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»
- Рис. 3. Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором С
- Рассмотрим сначала как подключается трехфазный двигатель в сеть 380в.
- Схема подключения 3-х фазного двигателя в сеть 220в соединенного звездой.
- Как подобрать конденсаторы для трехфазного двигателя, используя его в сети 220в.
- Реверс.
- Соединения выводов двигателя — базовое управление двигателем
- Общие обмотки двигателя и проводка для трехфазных двигателей
- : типы, работа и применение
- Разница между однофазным и трехфазным двигателем —
- Силовая установка: как использовать трехфазные двигатели
- Как подключить трехфазный двигатель
- Как подключить трехфазный двигатель?
Как подключить трёхфазный электродвигатель на 380 Вольт
Трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 вольт. Если у Вас в доме или гараже есть ввод на 380 Вольт, тогда обязательно покупайте компрессор или станок с трехфазным электродвигателем. Это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети 380 Вольт.
Выбор схемы включения электродвигателя
Схемы подключения 3-х фазных двигателей при помощи магнитных пускателей Я подробно описывал в прошлых статьях: «Схема подключения электромоторов с тепловым реле» и «Схема реверсивного пуска«.
Подключить трех фазный двигатель возможно и в сеть 220 Вольт с использованием конденсаторов по этой схеме. Но будет значительное падение мощности и эффективности его работы.
Вы должны учитывать, что при подключении звездой пуск будет плавным, но для того что бы достичь полной мощности необходимо подключить мотор треугольником. При этом мощность возрастет в 1.5 раза, но ток при запуске мощных или средних моторов будет очень высоким, и да же может повредить изоляцию обмоток.
Перед подключением электродвигателя ознакомьтесь с его характеристиками в паспорте и на шильдике. Особенно это важно при подключении 3 фазных электродвигателей западно-европейского производства, которые рассчитаны на работу от сети напряжением 400/690. Пример такого шильдика на картинке снизу. Такие моторы подключаются только по схеме «треугольник» к нашей электросети. Но многие монтажники подключают их аналогично отечественным в «звезду» и электромоторы при этом сгорают, особенно быстро под нагрузкой.
На практике все электродвигатели отечественного производства на 380 Вольт подключаются звездой. Пример на картинке. В очень редких случаях на производстве для того что бы, выжать всю мощность используется комбинированная схема включения звезда-треугольник. Об этом подробно узнаете в самом конце статьи.
Схема подключения электродвигателя звезда треугольник
В некоторых наших электромоторах выходит всего 3 конца из статора с обмотками- это означает, что уже внутри двигателя собрана звезда. Вам только остается подключить к ним 3 фазы. А для того, что бы собрать звезду необходимы оба конца, каждой обмотки или 6 выводов.
Нумерация концов обмоток на схемах идет слева направо. К номерам 4, 5 и 6 подключаются 3 фазы А-В-С от электросети.
При соединении звездой трёхфазного электродвигателя начала его обмоток статора соединяются вместе в одной точке, а к концам обмоток подключаются 3 фазы электропитания на 380 Вольт.
При соединении треугольником статорные обмотки между собой соединяются последовательно. Практически, необходимо соединить конец одной обмотки с началом следующей. К трем точкам соединения их между собой подключаются 3 фазы питания.
Подключение схемы звезда-треугольник
Для подключения мотора по довольно редкой схеме звезды при запуске, с последующим переводом для работы в рабочем режиме в схему треугольника. Так Мы сможем выжать максимум мощности, но получается довольно сложная схема без возможности реверсирования или изменения направления вращения.
Для работы схемы необходимы 3 пускателя. На первый К1 подключено электропитание с одной стороны, а с другой — концы обмоток статора. Их же начала подключены к К2 и К3. С пускателя К2 начала обмоток подключаются соответственно на другие фазы по схеме треугольник. При включении К3 все 3 фазы закорачиваются между собой и получается схема работы звездой.
Внимание, одновременно не должны включаться магнитные пускатели К2 и К3, а то произойдет произойдет аварийное отключение автомата защиты из-за возникновения межфазного короткого замыкания. Поэтому и делается электрическая блокировка между ними- при включении одного из них размыкается блок контактами цепь управления другого.
Схема работает следующим образом. При включении пускателя К1 реле времени включает К3 и двигатель запускается по схеме звезда. По истечении заданного промежутка, достаточного для полного запуска двигателя реле времени отключает пускатель К3 и включает К2. Мотор переходит на работу обмоток по схеме треугольник.
Отключение происходит пускателем К1. При повторном запуске все снова повторяется.
Схема подключения 3х фазного двигателя на 380
Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.
Схемы подключения трехфазного двигателяИз множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода.
- Схема звезды.
- Схема треугольника.
Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.
Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.
Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.
Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.
Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.
Проверка схемы подключения мотораПредставим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.
Метод определения фаз статораПосле разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах. Нужно помнить, что обязательна маркировка проводов, любым способом.
Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.
Полярность обмотокЧтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:
- Подключить импульсный постоянный ток.
- Подключить переменный источник тока.
Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.
Как проверить полярность обмоток батарейкой и тестеромНа контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.
Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.
Проверка переменным токомДве любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.
Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.
Схема звездыЭтот тип схемы подключения трехфазного двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.
Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.
Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:
С = (2800 · I) / U
Для схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.
Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.
В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».
Схема треугольникаСхемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.
Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:
С = (4800 · I) / U
Правильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.
Двигатель с магнитным пускателемТрехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.
Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.
В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.
Подключение мотора от автоматаОбщий вариант такой схемы подключения выглядит как на рисунке:
Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.
Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.
Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.
При применении схемы подключения трехфазного двигателя нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.
Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.
Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»
Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).
Например:
– зачем шесть контактов в двигателе?
– а почему контактов всего три?
– что такое «звезда» и «треугольник»?
– а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
– а как измерить ток в обмотках?
– что такое пускатель?
и т.п.
Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:
1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.
В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.
Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.
В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.
Возможные схемы подключения обмоток электродвигателей
Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.
Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы – C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая – C2 и C5, а третья – C3 и C6.
Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).
Подключение электродвигателя по схеме звезда
Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.
Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.
Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.
Подключение электродвигателя по схеме треугольник
Название этой схемы также идёт от графического изображения (см. правый рисунок):
Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.
То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).
Подключение электродвигателя к трёхфазной сети на 380 В
Последовательность действий такова:
1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):
3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
– использование автоматического выключателя или автомата защиты электродвигателя
Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.
– использование пускателя
Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).
Устройство электромагнитного пускателя:
Магнитный пускатель устроен достаточно просто и состоит из следующих частей:
(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).
При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).
Типовая схема подключения электродвигателя с использованием пускателя:
При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).
5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса
Как подключить поплавковый выключатель к трёхфазному насосу
Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.
Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.
Подключение электродвигателя к однофазной сети 220 В
Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку
Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).
Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.
Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.
Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.
Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.
Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).
Использование частотного преобразователя
В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.
Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).
Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:
– регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
– при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
– при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.
Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.
Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.
Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.
Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.
Данные насосы используются в качестве дозирующих насосов на пищевом производстве.
Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).
Некоторые мастера самостоятельно собирают станки по обработке древесины или металла в домашних условиях. Для этого могут использоваться любые доступные двигатели подходящей мощности. В некоторых случаях приходится разбираться с тем, как подключить трехфазный двигатель к однофазной сети. Именно этой теме и посвящена статья. Также будет рассказано о том, как правильно подобрать требуемые конденсаторы.
Однофазные и трехфазные
Чтобы правильно понимать предмет обсуждения, который объясняет подключение двигателя 380 на 220 вольт, необходимо разобраться, в чем лежит принципиальное отличие таких агрегатов. Все трехфазные двигатели являются асинхронными. Это означает, что фазы в нем подключены с некоторым смещением. Конструктивно двигатель состоит из корпуса, в который помещена статическая часть, которая не вращается, ее называют статором. Также есть вращающийся элемент, который называется ротором. Ротор находится внутри статора. На статор подается трехфазное напряжение, каждая фаза по 220 вольт. После этого происходит образование электромагнитного поля. Из-за того, что фазы находятся в угловом смещении, появляется электродвижущая сила. Она и заставляет ротор, который находится в магнитном поле статора вращаться.
Однофазные асинхронные агрегаты имеют немного иной тип подключения, т. к. питаются от сети 220 вольт. В ней есть только два провода. Один называется фазным, а второй нулевым. Чтобы запуститься, двигателю необходимо иметь только одну обмотку, к которой подключается фаза. Но только одной будет мало для пускового импульса. Поэтому присутствует еще она обмотка, которая задействована во время пуска. Чтобы она выполнила свою роль, она может быть подключена через конденсатор, что бывает чаще всего, или кратковременно замыкаться.
Подключение трехфазного двигателя
Обычное подключение трехфазного двигателя к трехфазной сети может стать непростой задачей для тех, кто никогда не сталкивался с ней. В некоторых агрегатах есть только три провода для подключения. Они позволяют сделать это по схеме «звезда». В других приборах есть шесть проводов. В таком случае появляется выбор между треугольником и звездой. Ниже на фото можно видеть реальный пример подключения звездой. В белой обмотке подходит питающий кабель, и он подключается только к трем выводам. Дальше установлены специальные перемычки, которые обеспечивают правильное питание обмоток.
Чтобы было понятнее, как это реализовать самостоятельно, ниже будет приведена схема такого подключения. Подключение треугольником несколько проще, т. к. три дополнительные клеммы отсутствуют. Но это говорит лишь о том, что механизм перемычек реализован уже в самом двигателе. При этом нет возможности повлиять на способ соединения обмоток, а значит необходимо будет соблюсти нюансы при подключении такого двигателя в однофазную сеть.
Подключение к однофазной сети
Трехфазный агрегат с успехом можно подключить к однофазной сети. Но стоит учитывать, что при схеме, которая называется «звезда», мощность агрегата не будет превышать половины его номинальной мощности. Чтобы увеличить этот показатель, необходимо обеспечить подключение по типу «треугольник». В таком случае можно будет добиться лишь 30-процентного падения мощности. Бояться при этом не стоит, ведь в сети 220 вольт невозможно возникновение критического напряжения, которое бы повредило обмотки двигателя.
Схемы подключения
Когда трехфазный двигатель подключен к сети 380, тогда каждая его обмотка запитана от одной фазы. При соединении его к 220 вольтовой сети на две обмотки приходит фазный и нулевой провод, а третья остается незадействованной. Чтобы исправить этот нюанс, необходимо подобрать правильный конденсатор, который в требуемый момент сможет подать на нее напряжение. В идеале в цепи должно быть два конденсатора. Один из них является пусковым, а второй рабочим. Если мощность трехфазного агрегата не превышает 1,5 кВт, и нагрузка на него подается уже после того, как он наберет требуемые обороты, тогда можно использовать только рабочий конденсатор.
В этом случае его необходимо его необходимо установить в разрыв между третьим контактом треугольника и нулевым проводом. Если необходимо добиться эффекта, при котором двигатель будет вращаться в обратном направлении, тогда необходимо на один вывод конденсатора подключить не нулевой, а фазный провод. Если двигатель по мощности превосходит, указанную выше, тогда понадобится еще и пусковой конденсатор. Он монтируется параллельно рабочему. Но стоит учитывать, что в провод, который дет между ними, на разрыв должен быть установлен выключатель без фиксации. Такая кнопка позволит задействовать конденсатор только во время пуска. При этом придется после включения двигателя в сеть несколько секунд удерживать эту клавишу для того, чтобы агрегат набрал требуемые обороты. После этого ее необходимо отпустить, чтобы не сжечь обмотки.
Если потребуется реализовать включение такого агрегат реверсивно, тогда монтируется тумблер на три вывода. Средний должен быть постоянно подключен к рабочему конденсатору. Крайние должны быть подключены к фазному и нулевому проводу. В зависимости от того, в какую сторону должно быть вращение, потребуется выставить тумблер либо на ноль, либо на фазу. Ниже схематически изображена схема такого подключения.
Подбор конденсатора
Не существует универсальных конденсаторов, которые бы подходили ко всем агрегатам без разбора. Их характеристикой служит емкость, которую они способны держать. Поэтому каждый придется подбирать индивидуально. Основным требованием для него будет работа при напряжении сети в 220 вольт, чаще они рассчитаны на 300 вольт. Чтобы определиться, какой именно элемент потребуется, необходимо воспользоваться формулой. Если соединение осуществляется звездой, тогда необходимо силу тока разделить на напряжение в 220 вольт и умножить на 2800. Показателем силы тока берется цифра, которая указана в характеристиках двигателя. Для подключения треугольником формула остается такой же, но последний коэффициент изменяется на 4800.
Например, если на агрегате написано, что номинальный ток, который может протекать по его обмоткам составляет 6 ампер, тогда емкость рабочего конденсатора будет 76 мкФ. Это при подключении звездой, для подключения треугольником результат будет 130 мкФ. Но выше говорилось, что если агрегат испытывает нагрузку при старте или имеет мощность больше 1,5 кВт, тогда понадобится еще один конденсатор – пусковой. Его емкость обычно в 2 или в 3 раза больше рабочего. То есть для соединения звездой понадобится второй конденсатор с емкостью 150–175 мкФ. Подбирать его придется опытным путем. В продаже может не быть конденсаторов требуемой емкости, тогда можно собрать блок для получения требуемой цифры. Для этого доступные конденсаторы соединяются параллельно, чтобы их емкость сложилась.
Почему пусковые конденсаторы лучше подбирать опытным путем начиная с наименьшего? Дело в том, что при недостаточном его значении будет подаваться ток большего значения, что может вывести из строя обмотки. Если его значение будет больше требуемого, тогда агрегату будет недостаточно импульса для запуска. Более наглядно представить себе подключение можно с помощью видео.
Вывод
Во время работы с электрическим током соблюдайте технику безопасности. Не запускайте ничего, если до конца неуверены в правильности выполненного подключения. Обязательно посоветуйтесь с опытным электриком, который подскажет, сможет ли проводка выдержать требуемую нагрузку от агрегата.
Подключение трехфазного электродвигателя к однофазной сети
3-х фазный мотор можно использовать для работы от бытовой сети переменного тока одной фазы напряжением 220 вольт. Переделка возможна, даже если нет большого опыта электротехнических работ с минимальным навыком монтажа. Затраты на дополнительные элементы схемы малы.Виды соединения обмоток
Трехфазный двигатель содержит статор – неподвижную часть с закрепленными проволочными катушками. Они смещены относительно друг друга по окружности на 120 угловых градусов. Переменный ток, проходя через обмотки, создает изменяющееся магнитное поле, толкающее подвижную часть двигателя – ротор, или как называли раньше – якорь.
Известно два способа включения обмоток между собой:
- Звезда — первые концы обмоток соединены между собой, а фазные проводники сети подключены на вторые выводы катушек.
- Треугольник – катушки соединены последовательно друг за другом, конец третьей обмотки включен к началу первой. Схематически образуют треугольник, к вершинам которого подключены фазы.
Этапы выполнения работы:
1. Внимательно осмотрев электродвигатель, отыскать панельку (обычно, алюминиевая пластинка) с информацией о параметрах. Не нужно браться за переделку мотора мощностью более 1 кВт (1kW). Надпись DY 220/400 означает, что мотор допускается включать как по схеме «треугольник» (D), так и «звезда» (Y). Рабочее напряжение составляет 220 вольт одно-/либо 400 трехфазной. Клеммы, обозначенные L(1÷3), для подключения фаз.
2. Стандартно катушки 3-фазного электромотора включены «звездой». Изменение положения полосковых перемычек создаст схему «треугольник».
3. После этого L1 соединим с фазной жилой, а на L3 — нулевой провод. Среднюю клемму (L2) подключим на сдвигающий конденсатор, второй вывод которого соединяем с фазой или нулем. Это определяет направление вращения якоря. Мощность двигателя 100 Вт потребует емкости 8÷10 мкФ, для 0,25 кВт нужен конденсатор 20 мкФ.
4. Удобно оперативно менять направление вращения, переключая конденсатор с фазного проводника на нулевой. Двухполюсный выключатель подаст питание двигателя.
Подключение к однофазной сети
Снять крышку коммутационной коробки электродвигателя, получив доступ к перемычкам.
Предварительно открутив гайки крепления, поменять положение перемычек, изменив схему соединения обмоток на «треугольник». После этого гайки надежно затянуть и установить на место крышку коробки, отметив провода подключения 1, 2 и 3 фазы.
Определить среднюю обмотку, перерезать жилу, зачистить изоляцию. Концы обжать клеммным наконечником, если они есть, подключить в разрыв конденсатор.
Удобно, надежно коммутировать схему при помощи клеммных пар. Подключив на соединитель провода от двигателя и конденсатора, с другого конца подаются заземление, фаза и нуль. Аккуратное затягивание винтов клемм обеспечит надежный электрический контакт.
ВАЖНО! В двигателе есть проводник с желто-зеленой изоляцией. Он подключен к корпусу. Соединенный через третьи контакты вилки шнура и розетки с заземлением, защищает от пробоя напряжения по массе мотора. К нему нельзя подключать другие провода электрической сети – только желто-зеленый конец сетевой вилки.
Сняв питание, переключаем конденсатор на нулевой проводник – мотор вращает в обратную сторону. Выбрав подходящее направление, оставляем нужное подключение постоянным.
Оперативную смену стороны вращения на противоположную, обеспечит переключатель подключения конденсатора к фазе или нулю.
ВАЖНО! Менять направление разрешается только после отключения питания и полной остановке ротора.
Безопасность
Переделка электродвигателя связана с работой в сети 220 вольт. Неосторожное обращение, неаккуратность в работе связана с угрозой жизни или здоровья. Не оставляйте соединений без надежной изоляции. Ограничивайте доступ посторонних к монтажу до его завершения.
Смотрите видео
Схемы подключения трехфазного двигателя. к 3-х и 1-о фазной сети
Различные схемы подключения асинхронных двигателей к сети 380 вольт
Для того чтобы заставить работать двигатель существует несколько различных схем подключения, наиболее используемые среди них — звезда и треугольник.
Как правильно подключить трехфазный двигатель «звездой»
Такой способ подключения применяется в основном в трехфазных сетях с линейным напряжением 380 вольт. Концы всех обмоток: C4, C5, C6 (U2, V2, W2), — соединяются в одной точке. К началам обмоток: C1, C2, C3 (U1, V1, W1), — через аппаратуру коммутации подключаются фазные проводники A, B, C (L1, L2, L3). При этом напряжение между началами обмоток будет 380 вольт, а между местом подключения фазного проводника и местом соединения обмоток буде составлять 220 вольт.
На табличке электродвигателя указывается возможность подключения по способу «звезда» в виде символа Y, а также может указываться и можно ли подключить по другой схеме. Соединение по такой схеме может быть с нейтралью, которая подключается к точке соединения всех обмоток.
Такой подход позволяет эффективно защитить электродвигатель от перегрузок при помощи четырехполюсного автоматического выключателя.
Соединение «звездой» не позволяет электродвигателю, приспособленному для сетей 380 вольт развить полную мощность в силу того, что на каждой отдельной обмотке будет напряжение в 220 вольт. Однако, такое соединение позволяет не допустить перегрузки по току, старт электродвигателя происходит плавно.
В клеммной коробке будет сразу видно, когда электродвигатель соединен по схеме «звезда». Если есть перемычка между тремя выводами обмоток, то это однозначно говорит о том, что применяется именно эта схема. В любых других случаях применяется другая схема.
Выполняем соединение по схеме «треугольник»
Для того чтобы трехфазный двигатель мог развить свою максимальную паспортную мощность используют подключение, которое получило название «треугольник». При этом конец каждой обмотки соединяют с началом последующей, что в действительности образует на принципиальной схеме треугольник.
Выводы обмоток соединяют следующим образом: C4 соединяют с C2, С5 с C3, а С6 с C1. При новой маркировке это выглядит так: U2 соединяется с V1, V2 с W1, а W2 cU1.
В трехфазных сетях между выводами обмоток будет линейное напряжение 380 вольт, а соединение с нейтралью (рабочим нулем) не требуется. Такая схема имеет особенность еще и в том, что возникают большие пусковые токи, которые может не выдержать проводка.
На практике иногда применяют комбинированное подключение, когда на этапе запуска и разгона используется подключение «звездой», а в рабочем режиме специальные контакторы переключают обмотки на схему «треугольник».
В клеммной коробке подключение треугольником определяется наличием трех перемычек между клеммами обмоток. На табличке двигателя возможность подключения треугольником обозначается символом Δ, а также может указываться мощность, развиваемая при схеме «звезда» и «треугольник».
Трехфазные асинхронные двигатели занимают значительную часть среди потребителей электроэнергии благодаря своим очевидным достоинствам.
Виды электродвигателей
Наибольшее распространение имеет трехфазный асинхронный электродвигатель. Электродвигатели постоянного тока и синхронные применяются редко.
Большинство электрифицированных машин нуждаются в приводе мощностью от 0,1 до 10 кВт, значительно меньшая часть — в приводе мощностью в несколько десятков кВт. Как правило, для привода рабочих машин используются короткозамкнутые трехфазные электродвигатели. По сравнению с фазным такой электродвигатель имеет более простую конструкцию, меньшую стоимость, большую надежность в эксплуатации и простоту в обслуживании, несколько более высокие эксплутационные показатели (коэффициент мощности и коэффициент полезного действия), а при автоматическом управлении требует простой аппаратуры. Недостаток короткозамкнутых электродвигателей — относительно большой пусковой ток. При соизмеримости мощностей трансформаторной подстанции и электродвигателя его пуск сопровождается заметным снижением напряжения сети, что усложняет как пуск самого двигателя, так и работу соседних токоприемников.
Наряду с трехфазными асинхронными короткозамкнутыми электродвигателями основного исполнения применяются также отдельные модификации этих двигателей: с повышенным скольжением, многоскоростные, с фазным ротором, с массивным ротором и т. д. Электродвигатели с фазным ротором применяют и в тех случаях, когда мощность питающей сети недостаточна для пуска двигателя с короткозамкнутым ротором.
Механические характеристики асинхронных электродвигателей с короткозамкнутым ротором в значительной мере зависят от формы и размеров пазов ротора, а также от способа выполнения роторной обмотки. По этим признакам
Рис. 1. Кривые моментов M = f(S) асинхронных электродвигателей
различают электродвигатели с нормальным ротором (нормальная беличья клетка), с глубоким пазом и с двумя клетками на роторе. Конструкция ротора короткозамкнутых асинхронных электродвигателей общего назначения мощностью свыше 500 Вт предопределяет явление вытеснения тока в обмотке, эквивалентно увеличению ее активного сопротивления. Поэтому, а также вследствие насыщения магнитных путей потоков рассеивания такие электродвигатели (в первую очередь обмотки ротора) обладают переменными параметрами и аналитические выражения их механических характеристик усложняются. Увеличение активного сопротивления ротора в период пуска вызывает увеличение начального пускового момента при некотором снижении силы начального пускового тока (рис. 1).
Однофазный
Теперь поговорим еще об одном виде асинхронных электродвигателей. Это однофазные конденсаторные машины переменного тока. У них две обмотки, из которых, после пуска, работает только одна из них. Такие двигатели имеют свои особенности. Рассмотрим их на примере модели АВЕ-071-4С.
По-другому они еще называются асинхронными двигателями с расщепленной фазой. У них на статоре намотана еще одна, вспомогательная обмотка, смещенная относительно основной. Пуск производится при помощи фазосдвигающего конденсатора.
Схема однофазного асинхронного двигателя
Из схемы видно, что электрические машины АВЕ отличаются от своих трехфазных собратьев, а также от коллекторных однофазных агрегатов.
Всегда внимательно читайте, что написано на бирке! То, что выведено три провода, абсолютно не значит, что это для подключения на 380 в. Просто спалите хорошую вещь!
Включение в работу
Первое, что нужно сделать, это определить, где середина катушек, то есть, место соединения. Если наш асинхронный аппарат в хорошем состоянии, то это сделать будет проще – по цвету проводов. Можно посмотреть на рисунок:
Если все так выведено, то проблем не будет. Но чаще всего приходится иметь дело с агрегатами, снятыми со стиральной машины неизвестно когда, и неизвестно кем. Здесь, конечно, будет сложнее.
Стоит попробовать вызвонить концы при помощи омметра. Максимальное сопротивление – это две катушки, соединенные последовательно. Помечаем их. Дальше, смотрим на значения, которые показывает прибор. Пусковая катушка имеет сопротивление больше, чем рабочая.
Теперь берем конденсатор. Вообще, на разных электрических машинах они разные, но для АВЕ это 6 мкФ, 400 вольт.
Если точно такого нет, можно взять с близкими параметрами, но с напряжением, не ниже 350 В!
Давайте обратим внимание: кнопка на рисунке служит для пуска асинхронного электродвигателя АВЕ, когда он уже включен в сеть 220! Другими словами, должно быть два выключателя: один общий, другой – пусковой, который, после его отпускания, отключался бы сам. Иначе спалите аппарат
Если нужен реверс, то он делается по такой схеме:
Если все сделано правильно, тогда будет работать. Правда, есть одна загвоздка. В борно могут быть выведены не все концы. Тогда с реверсом будут сложности. Разве что разбирать и выводить их наружу самостоятельно.
Вот некоторые моменты, как подсоединять асинхронные электрические машины к сети 220 вольт. Схемы несложные, и при некоторых усилиях вполне возможно все это сделать собственными руками.
Электродвигатели постоянного тока
Двигатели постоянного тока широко применяются в качестве привода электротранспорта, промышленного оборудования, а также микропривода исполнительных механизмов. Такие электрические машины обладают следующими преимуществами:
- Возможность регулировки частоты вращения путем изменения напряжения в обмотке возбуждения. При этом крутящий момент на валу ДПТ (двигатели постоянного тока) остается неизменным.
- Высокий к.п.д. (коэффициент полезного действия) у машин постоянного тока несколько выше, чем у самых распространенных асинхронных двигателей переменного тока. При неполной нагрузке на валу к.п.д. ДПТ выше на 10-15%.
- Возможность изготовления ДПТ небольших габаритов. Практически все используемые микроприводы рассчитаны на постоянный ток.
- Простота схем управления. Для пуска, реверса и регулирования скорости и момента не требуется сложного электронного оборудования и большого количества аппаратов для коммутации.
- Возможность работы в режиме генератора. Электродвигатели такого типа можно использовать в качестве источников постоянного тока.
- Высокий пусковой момент. ДПТ используют в составе электроприводов кранов, тяговых и грузоподъемных механизмов, где требуется запуск под значительной нагрузкой.
ДПТ различают по способу возбуждения, они бывают:
- С постоянными магнитами. Такие двигатели отличаются малыми габаритами. Основная область их применения – микроприводы.
- С электромагнитным возбуждением.
Электрические машины с электромагнитами такого типа получили самое широкое распространение. Их классифицируют по способу подключения обмотки статора:
- Двигатели с параллельным возбуждением. Обмотки якоря и статора в электрической машине такого типа соединены параллельно. Такие электрические машины не требуют дополнительного источника питания для обмотки возбуждения, скорость вращения ротора практически не зависит от нагрузки. Их используют для привода металлорежущих станков и другого оборудования.
- Электродвигатели с последовательно включенной обмоткой статора. ДПТ этого типа имеют значительный пусковой момент. Их применяют в качестве привода электротранспорта и промышленных установок с необходимостью пуска под нагрузкой.
- Двигатели с независимым возбуждением. Для питания обмотки статора таких электромашин используется независимый источник постоянного тока. ДПТ такого типа отличаются широким диапазоном регулирования скоростей.
- Электрические машины со смешанным возбуждением. Электромагнит возбуждения в таких двигателях поделен на 2 части. Одна из них включена параллельно, вторая последовательно обмотке якоря. Электрические машины такого типа используются в механизмах и оборудовании, где необходим высокий пусковой момент, а также переменная и постоянная скорость при переменном моменте.
Переключение на нужное напряжение
Для начала необходимо убедиться в том, что наш двигатель имеет нужные параметры. Они написаны на бирке, прикрепленной у него сбоку. Там должно быть указано, что один из параметров – 220в. Далее, смотрим подключение обмоток. Стоит запомнить такую закономерность схемы: звезда – для более низкого напряжения, треугольник – для более высокого. Что это означает?
Увеличение напряжения
Предположим, на бирке написано: Δ/Ỵ220/380. Это значит, что нам нужно включение треугольником, так как чаще всего соединение по умолчанию – на 380 вольт. Как это сделать? Если электродвигатель в борне имеет клеммную коробку, то несложно. Там есть перемычки, и все, что нужно – переключить их в нужное положение.
Но что, если просто выведено три провода? Тогда придется аппарат разбирать. На статоре нужно найти три конца, которые между собой спаяны. Это и есть соединение звездой. Провода нужно рассоединить и подключить треугольником.
В данной ситуации это сложностей не вызывает. Главное помнить, что есть начало и конец катушек. К примеру, возьмем за начало концы, которые были выведены в борно электродвигателя. Значит то, что спаяно – это концы
Теперь важно не перепутать
Подключаем так: начало одной катушки соединяем с концом другой, и так далее.
Как видим, схема простая. Теперь двигатель, который был соединен для 380, можно включать в сеть 220 вольт.
Уменьшение напряжения
Предположим, на бирке написано: Δ/Ỵ 127/220. Это означает, что нужно подсоединение звездой. Опять же, если есть клеммная коробка, то все хорошо
А если нет, и включен наш электродвигатель треугольником? А если еще и концы не подписаны, то как их правильно соединить? Ведь здесь тоже важно знать, где начало намотки катушки, а где конец. Есть некоторые способы решения этой задачи
Для начала разведем все шесть концов в стороны и омметром найдем сами статорные катушки.
Возьмем скотч, изоленту, еще что-нибудь из того, что есть, и пометим их. Пригодится сейчас, а может быть, и когда-нибудь в будущем.
Берем обычную батарейку и подсоединяем к концам а1-а2. К двум другим концам (в1-в2) подсоединяем омметр.
В момент разрыва контакта с батарейкой стрелка прибора качнется в одну из сторон. Запомним, куда она качнулась, и включаем прибор к концам с1-с2, при этом не меняем полярность батарейки. Проделываем все заново.
Наши читатели рекомендуют!
Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.
Если стрелка отклонилась в другую сторону, тогда меняем провода местами: с1 маркируем как с2, а с2 как с1. Смысл в том, чтобы отклонение было одинаковым.
Теперь батарейку с соблюдением полярности соединяем с концами с1-с2, а омметр – на а1-а2.
Добиваемся того, чтобы отклонение стрелки на любой катушке было одинаковым. Перепроверяем еще раз. Теперь один пучок проводов (например, с цифрой 1) у нас будет началом, а другой – концом.
Берем три конца, например, а2, в2, с2, и соединяем вместе и изолируем. Это будет соединение звездой. Как вариант, можем вывести их в борно на клеммник, промаркировать. На крышку наклеиваем схему соединения (или рисуем маркером).
Переключение треугольник – звезда сделали. Можно подключаться к сети и работать.
Асинхронные электродвигатели
Благодаря дешевизне и простоте конструкции электрические машины такого типа получили самое широкое распространение. Их принципиальное отличие – наличие так называемого скольжения. Это разность между частотой вращения магнитного поля неподвижной части электрической машины и скоростью вращение ротора. Напряжение на вращающейся части индуцируется за счет переменного магнитного поля обмоток статора двигателя. Вращение вызывает взаимодействие поля электромагнитов неподвижной части и магнитного поля ротора, возникающего под влиянием наведенных в нем вихревых токов. По особенностям обмоток статора выделяют:
- Однофазные двигатели переменного тока. Двигатели такого типа требуют для пуска наличия внешнего фазосдвигающего элемента. Это может быть пусковой конденсатор или индуктивное устройство. Область применения однофазных двигателей – маломощные приводы.
- Двухфазные электрические машины. Такие двигатели имеют 2 обмотки со смещенными относительно друг друга фазами. Их также используют для бытовых устройств и оборудования, имеющего небольшую мощность.
- Трех- и многофазные электродвигатели. Наиболее распространенный тип асинхронных машин. Электрические двигатели такого типа имеют от 3-х и более обмоток статора, сдвинутых по фазе на определенный угол.
По конструкции ротора асинхронные электрические машины делят на двигатели с короткозамкнутым и фазным ротором.
Обмотка ротора электрических машин первого типа представляет собой несколько неизолированных стержней, выполненных из сплавов меди или алюминия, замкнутых с двух сторон кольцами (конструкция “беличья клетка”). Асинхронные двигатели такого типа обладают следующими преимуществами:
- Достаточно простая схема пуска. Такие электрические машины можно подключать непосредственно к электрической сети через аппараты коммутации.
- Допустимость кратковременных перегрузок.
- Возможность изготавливать электрические машины высокой мощности. Двигатель такого типа не содержит скользящих контактов, препятствующих наращиванию мощности.
- Относительно простое ТО и ремонт. Асинхронные электромашины имеют несложную конструкцию.
- Невысокая цена. Двигатели асинхронного типа стоят дешевле синхронных машин и ДПТ.
Электрические машины с короткозамкнутым ротором имеют свои недостатки:
- Предельная скорость вращения составляет не более 3000 об/мин при входе в синхронный режим.
- Технически сложная реализация регулирования частоты вращения.
- Высокие пусковые токи при прямом запуске.
Электродвигатели с фазным ротором частично лишены недостатков, присущих машинам с ротором конструкции “беличья клетка”. Вращающаяся часть электрической машины такого типа имеет обмотки, соединенные в схему “звезда”. Напряжение подводится к обмотке через 3 контактных кольца, закрепленных на роторе и изолированных от него.
Такие электродвигатели обладают следующими достоинствами:
- Возможность ограничивать пусковые токи при помощи резистора, включенного в цепь электромагнитов ротора.
- Больший, чем у электромашин с короткозамкнутым ротором, пусковой момент.
- Возможность регулировки скорости.
Недостатками таких двигателей являются относительно большие габариты и масса, высокая цена, более сложный ремонт и сервисное обслуживание.
Как работает трёхфазный асинхронный двигатель?
Прежде всего, для работы трёхфазного асинхронного двигателя, необходимо создать вращающееся магнитное поле.
Создание вращающегося магнитного поля
Обмотки, которые расположены на статоре, равномерно смещены на 120 градусов относительно друг друга. Обмотка каждой фазы смещена относительно двух других на угол 120 градусов, то есть по обе стороны через 120 градусов расположены соседние фазы. Статор представляет собой полый цилиндр, который в сечении представляет собой кольцо. Внутри такого цилиндра расположен ротор. Три источника тока, отличатся друг от друга фазовым сдвигом. Этот сдвиг также составляет 120 градусов. В итоге, при прохождении трёхфазного переменного тока в обмотках статора, внутри статора образуется вращающееся магнитное поле.
В чем секрет создания вращения магнитного поля? Так как ток переменный, то создаваемое каждой фазой магнитное поле будет также переменным. Магнитный поток, который порождается прохождением тока в каждой обмотке, будет изменяться во времени точно также как породивший его ток. В то время когда один магнитный поток от первой фазы будет возрастать по величине, магнитный поток от второй фазы достигнет своего максимального значения и начнёт убывать по величине, магнитный поток от третьей фазы будет всё более уменьшаться, пока не достигнет своего минимального значения.
Магнитный поток переменного синусоидального тока любой из фаз изменяется по величине и направлению, тем самым чередуясь и пульсируя. Там где ранее был северный магнитный полюс, становится южный, а там где был южный полюс, там на его месте образуется северный полюс. Магнитное поле как бы пульсирует, но не вращается. Если пространственно равномерно по окружности расположить три катушки (соленоиды) так, чтобы их сердечники были направлены к центру окружности, а затем соединить в один общий магнитопровод наружные концы соленоидов (катушек), то мы получим прототип статора трёхфазного асинхронного двигателя. Подключив каждую катушку к источнику переменного тока, а именно к трём разным фазам, которые сдвинуты относительно друг друга на 120 градусов, мы получим не пульсирующее, а вращающееся магнитное поле.
По той причине, что магнитопровод будет общим, пульсирующие магнитные потоки от каждой катушки будут складываться с учётом направления и величины, тем самым образуя вращающийся вектор магнитного потока. Это удивительно, потому как статор неподвижен, но представляет собой магнит, поле такого магнита вращается, но статор остаётся неподвижен!!!
Как же преобразуется в дальнейшем электрическая энергия в механическую энергию? Если в статор, по обмоткам которого протекает трёхфазный ток и, соответственно, внутри него сосредоточено вращающееся магнитное поле, внести металлический предмет, то на него будет действовать механическая сила, которая будет пытаться этот предмет выкинуть из поля статора.
Как такое происходит? Магнитный поток статора индуцирует в короткозамкнутом роторе асинхронного двигателя ЭДС, так как цепь ротора замкнута, то по ней будет протекать электрический ток, который создаст второй магнитный поток – поток ротора. Взаимодействие двух встречных потоков ротора и статора создаст крутящий момент на роторе, и он начнёт вращаться. В соответствии с законом Ленца, ротор будет вращаться в том направлении, которое позволяет уменьшить магнитный поток статора.
Следует заметить, что принцип работы асинхронного двигателя не допускает синхронной скорости ротора с магнитным полем статора. В этом случае исчезнет ЭДС индукции в роторе, и ротор начнёт останавливаться. Синхронизация не достижима для асинхронного электродвигателя, скорость ротора в двигательном режиме может быть меньше скорости вращения магнитного поля.
Если ротору придать дополнительный крутящий момент от внешнего механического источника, так, чтобы его скорость стала больше чем скорость вращающегося магнитного поля статора, тогда электрическая машина перейдёт в генераторный режим работы, при котором происходит преобразование механической энергии в электрическую энергию.
Разница скоростей между статором и ротором позволяет говорить о таком явлении как скольжение ротора в магнитном поле статора. Необходимо помнить, что асинхронная электрическая машина переменного тока – это обратимая машина, которая может работать как в генераторном, так и двигательном режимах.
Производители электродвигателей
Российские производители электродвигателей
Регион | Производитель | Асинхронный двигатель | Синхронный двигатель | УД | КДПТ | |||||
---|---|---|---|---|---|---|---|---|---|---|
СДОВ | СДПМ, серво | СРД, СГД | Шаговый | |||||||
Краснодарский край | Армавирский электротехнический завод | |||||||||
Свердловская область | Баранчинский электромеханический завод | |||||||||
Владимир | Владимирский электромоторный завод | |||||||||
Санкт-Петербург | ВНИТИ ЭМ | |||||||||
Москва | ЗВИМосковский электромеханический завод имени Владимира Ильича | |||||||||
Пермь | ИОЛЛА | |||||||||
Республика Марий Эл | Красногорский завод «Электродвигатель» | |||||||||
Воронеж | МЭЛ | |||||||||
Новочеркасск | Новочеркасский электровозостроительный завод | |||||||||
Санкт-Петербург | НПО «Электрические машины» | |||||||||
Томская область | НПО Сибэлектромотор | |||||||||
Новосибирск | НПО Элсиб | |||||||||
Удмуртская республика | Сарапульский электрогенераторный завод | |||||||||
Киров | Электромашиностроительный завод Лепсе | |||||||||
Санкт-Петербург | Ленинградский электромашиностроительный завод | |||||||||
Псков | Псковский электромашиностроительный завод | |||||||||
Ярославль | Ярославский электромашиностроительный завод |
Аббревиатура:
- АДКР —
- АДФР —
- СДОВ — синхронный двигатель с обмоткой возбуждения
- СДПМ — синхронный двигатель с постоянными магнитами
- СРД — синхронный реактивный двигатель
- СГД — синхронный гистерезисный двигатель
- УД — универсальный двигатель
- КДПТ — коллекторный двигатель постоянного тока
- КДПТ ОВ —
- КДПТ ПМ —
Производители электродвигателей ближнего зарубежья
Страна | Производитель | Асинхронный двигатель | Синхронный двигатель | УД | КДПТ | |||||
---|---|---|---|---|---|---|---|---|---|---|
СДОВ | СДПМ, серво | СРД, СГД | Шаговый | |||||||
Беларусь | Могилевский завод «Электродвигатель» | |||||||||
Беларусь | Полесьеэлектромаш | |||||||||
Украина | Харьковский электротехнический завод «Укрэлектромаш» | |||||||||
Молдова | Электромаш | |||||||||
Украина | Электромашина | |||||||||
Украина | Электромотор | |||||||||
Украина | Электротяжмаш |
Производители электродвигателей дальнего зарубежья
Страна | Производитель | Асинхронный двигатель | Синхронный двигатель | УД | КДПТ | |||||
---|---|---|---|---|---|---|---|---|---|---|
СДОВ | СДПМ, серво | СРД, СГД | Шаговый | |||||||
Швейцария | ABB Limited | |||||||||
США | Allied Motion Technologies Inc. | |||||||||
США | Ametek Inc. | |||||||||
США | Anaheim automation | |||||||||
США | Arc System Inc. | |||||||||
Германия | Baumueller | |||||||||
Словения | Domel | |||||||||
США | Emerson Electric Corporation | |||||||||
США | General Electric | |||||||||
США | Johnson Electric Holdings Limited | |||||||||
Германия | Liebherr | |||||||||
Швейцария | Maxon motor | |||||||||
Япония | Nidec Corporation | |||||||||
Германия | Nord | |||||||||
США | Regal Beloit Corporation | |||||||||
Германия | Rexroth Bosch Group | |||||||||
Германия | Siemens AG | |||||||||
Бразилия | WEG |
ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
И.В.Савельев. Курс общей физики, том I. Механика, колебания и волны, молекулярная физика.-М.:Наука, 1970.
ГОСТ 29322-92 (МЭК 38-83) Стандартные напряжения.
ГОСТ 16264.0-85 Электродвигатели малой мощности
А.И.Вольдек, В.В.Попов. Электрические машины. Машины переменного тока: Учебник для вузов.- СПб.: Питер, 2007.
Paul Waide, Conrad U. Brunner. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems. International Energy Agency Working Paper, Energy Efficiency Series.: Paris, 2011.
Dr. J. Merwerth. The hybrid-synchronous machine of the new BMW i3 & i8 challenges with electric traction drives for vehicles. BMW Group, Workshop University Lund: Lund, 2014.
Подключение к однофазной сети
Для подключения трёхфазного электродвигателя 380В к однофазной сети 220В чаще всего используется схема с фазосдвигающими конденсаторами (пусковыми и рабочими). Без конденсаторов двигатель может и запустится, но только без нагрузки, и придется при запуске крутануть его вал от руки.
Проблема состоит в том, что для работы АД нужно вращающееся магнитное поле, которое нельзя получить от однофазной сети без дополнительных элементов. Но подключив одну из обмоток через дроссель, можно сдвинуть фазу напряжения до -90˚ а с помощью конденсатора на +90˚ относительно фазы в сети. Подробнее вопрос сдвига фаз мы рассматривали в статье: https://samelectrik.ru/chto-takoe-aktivnaya-reaktivnaya-i-polnaya-moshhnost.html.
Чаще всего для сдвига фаз используют именно конденсаторы, а не дроссели. Таким образом получают не вращающееся, а эллиптическое. В результате вы теряете около половины мощности от номинала. Однофазные АД работают при таком включении лучше, за счет того, что у них обмотки изначально рассчитаны и расположены на статоре для такого подключения.
Типовые схемы подключения двигателя без реверса для схем звезды или треугольника вы видите ниже.
Резистор на схеме ниже нужен для разрядки конденсаторов, так как после отключения питания на его выводах останется напряжение и вас может ударить током.
Ёмкость конденсатора для подключения трёхфазного двигателя к однофазной сети вы можете выбрать исходя из таблицы ниже. Если вы наблюдаете сложный и затяжной запуск — зачастую нужно увеличить пусковую (а иногда и рабочую) ёмкость.
Или посчитать по формулам:
Если двигатель мощный или запускается под нагрузкой (например, в компрессоре) — нужно подключить и пусковой конденсатор.
Чтобы упростить включение вместо кнопки «РАЗГОН» используют «ПНВС». Это кнопка для запуска двигателей с пусковым конденсатором. У неё три контакта, на два из них подключается фаза и ноль, а через третий – пусковой конденсатор. На лицевой панели расположено две клавиши — «ПУСК» и «СТОП» (как на автоматах АП-50).
Когда вы включаете двигатель и нажимаете первую клавишу до упора, замыкаются три контакта, после того как двигатель раскрутился, и вы отпускаете «ПУСК», средний контакт размыкается, а два крайних остаются замкнутыми, из цепи выводится пусковой конденсатор. При нажатии кнопки «СТОП» все контакты разомкнуться. Схема подключения при этом почти аналогична.
Подробно о том, что такое и как правильно подключить ПНВС, вы можете посмотреть в следующем видео:
Схема подключения электродвигателя 380В к однофазной сети 220В с реверсом изображена ниже. За реверс отвечает переключатель SA1.
Обмотки двигателя 380/220 соединяют треугольником, а у двигателей 220/127 – звездой, так чтобы напряжение питания (220 вольт) соответствовало номинальному напряжению обмоток. Если всего три выхода, а не шесть, то вы не сможете изменять схемы подключения обмоток без вскрытия. Здесь есть два варианта:
- Номинальное напряжение 3х220В — вам повезло, и используйте приведенные выше схемы.
- Номинальное напряжение 3х380В — вам меньше повезло, так как двигатель может плохо запускать или вообще не запускаться если подключать его в сеть 220В, но стоит попробовать, возможно работать будет!
Но при подключении электродвигателя 380В на 1 фазу 220В через конденсаторы есть одна большая проблема — потери мощности. Они могут достигать 40-50%.
Главным и действенным способом подключения без потери мощности является использование частотника. Однофазные частотные преобразователи выдают на выходе 3 фазы с линейным напряжением 220В без нуля. Таким образом вы можете подключать двигатели до 5 кВт, для большей мощности просто очень редко встречаются преобразователи, способные работать с однофазным вводом. В этом случае вы не только получите полную мощность двигателя, но и сможете полноценно регулировать его обороты и реверсировать его.
Теперь вы знаете, как подключить трехфазный двигатель на 220 и 380 Вольт, а также что для этого нужно. Надеемся, предоставленная информация помогла вам разобраться в вопросе!
Материалы по теме:
- Подключение магнитного пускателя на 380 и 220в
- Как собрать трехфазный щит
- Как выбрать частотный преобразователь
Схемы подключения однофазных асинхронных двигателей
С пусковой обмоткой
Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.
Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»
Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.
Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).
Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):
- один с рабочей обмотки — рабочий;
- с пусковой обмотки;
- общий.
С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.
- Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС
подключение однофазного двигателя
Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)
К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим ). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку
Конденсаторный
При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).
Схемы подключения однофазного конденсаторного двигателя
Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки. например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.
Схема с двумя конденсаторами
Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым
При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.
Подбор конденсаторов
Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:
- рабочий конденсатор берут из расчета 0,7-0,8 мкФ на 1 кВт мощности двигателя;
- пусковой — в 2-3 раза больше.
Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.
Изменение направления движения мотора
Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.
Как все может выглядеть на практике
Устройство электродвигателя
Основные элементы, из которых состоит типичный трехфазный двигатель таковы:
- Корпус, имеющий ножки, которыми он крепится к фундаменту;
- Статор, напоминающий по строению простой трансформатор. Имеет сердечник и обмотку При подаче тока создается вихревое электромагнитное поле.
- Ротор. Основная вращающаяся часть.
- Вал, на который жестко насажен ротор. Передняя часть выходит наружу, имеет шпоночную борозду под шестерни или шкив. На заднюю часть, выходящую за пределы корпуса насаживается крыльчатка для охлаждения и обдува.
- Подшипки, находящиеся в нишах передней и задней крышки.
- Герметичная клеммная коробка.
Как подключить 3х фазный двигатель к сети 220в
Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода – фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт. Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя.
Подключение 3х фазного двигателя на 220 без конденсаторов
Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности – от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.
В этих схемах применяются симисторы, под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.
Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка. Путем изменения сопротивления, на конденсаторе образуется напряжение, сдвинутое на определенный угол относительно основного напряжения.
При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа.
Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней. Подключение второго ключа – параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока.
Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 120С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.
Подключение электродвигателя 380в на 220в через конденсатор
Для нормального подключения следует знать принцип действия трехфазного двигателя. При включении в трехфазную сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток. То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения. Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.
При включении такого двигателя в однофазную сеть, в создании вращающегося момента будет участвовать только одна обмотка и воздействие на ротор в этом случае происходит только в одной плоскости. Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами. Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.
Расчет конденсатора для трехфазного двигателя в однофазной сети:
- При мощности электродвигателя не более 1,5 кВт в схеме будет достаточно одного рабочего конденсатора.
- Если же мощность двигателя свыше 1,5 кВт или он испытывает большие нагрузки во время запуска, в этом случае выполняется установка сразу двух конденсаторов – рабочего и пускового. Их подключение осуществляется параллельно, причем пусковой конденсатор нужен только для запуска, после чего происходит его автоматическое отключение.
- Управление работой схемы производится кнопкой ПУСК и тумблером отключения питания. Для запуска двигателя нажимается пусковая кнопка и удерживается до тех пор, пока не произойдет полное включение.
В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора. Первый основной выход тумблера подключается к конденсатору, второй – к нулевому, а третий – к фазному проводу. Если подобная схема способствует падению мощности или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора.
Подключение 3х фазного двигателя на 220 без потери мощности
Наиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором.
Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети.
При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится. В этом случае потребуется дополнительное подключение пускового конденсатора. Он включается буквально на 2-3 секунды, чтобы обороты двигателя могли достигнуть 70% от номинальных. После этого конденсатор сразу же отключается и разряжается.
Таким образом, при решении вопроса как подключить трехфазный двигатель к сети 220 вольт, необходимо учитывать все факторы. Особое внимание следует уделить конденсаторам, поскольку от их действия зависит работа всей системы.
3 Фазы без нуля
Может ли движок 380 работать без нуля?
Имеется частотник Веспер и навозный редуктор. Через ноль от частотника какого-то хера идет напруга и соотсветственно утечка на массу хотя все по схеме подключено. В итоге если стоит узо у заказчика то вырубает. Частотник менять не вариант, бурим так уже три года наверное но попадаются иногда обьекты когда вообще движок не запускается. приходится от соседей цеплять и т.п.
Попробовал ноль открутить вообще, движок вроде крутит. но можно ли так работать длительное время (пару-тройку часов экстренно?) Я просто в трехфазном не соображаю липиздричестве
В принципе давно уже такая фигня но когда бур в земле утечка гасится и не мешает, контур заземления 20 метров.. Грешил сначала на движок, разобрал сегодня вроде все ОК пробоев нет, а потом взялся за нулевой провод от от частотника – оттуда долбит.
3 (и более) лет назад
Постов: 329
При подключении трёхфазного двигателя ( неважно, треугольником или звездой ) без «нулевого» провода, естественно двигатель работать будет. Но условия вашей безопасности соблюдены не будут.
К двигателю ведете только фазные провода + внутри клемной коробки или снаружи на болт – защитный проводник РЕ. Ноль не нужен, потому что нагрузка симметричная и и векторная сумма токов по фазам равна нулю, т.е токи в фазах сдвинуты на 120 градусов и при сложении их в нулевом проводе ток=0.
-по условиям надежности: по защитному проводнику не должен протекать рабочий ток.
-для того, что бы работали УЗО.
-чтобы избежать огромных токов утечек по оплеткам кабелей, трубам и прочим конструкциям зданий. Как следствие уменьшение электромагнитных полей и наводок на измерительное и информационное оборудование.
-ПУЭ 1.7.135. Когда нулевой рабочий и нулевой защитный проводники разделены начиная с какой-либо точки электроустановки, не допускается объединять их за этой точкой по ходу распределения энергии. В месте разделения PEN-проводника на нулевой защитный и нулевой рабочий проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. PEN-проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного РЕ-проводника.
-нельзя и всё .
И если кто еще не знал – чтобы изменить направление вращения трехфазного двигателя надо просто поменять местами любую пару проводов на двигателе.
из ПУЭ:
СОВМЕЩЕННЫЕ НУЛЕВЫЕ ЗАЩИТНЫЕ И НУЛЕВЫЕ РАБОЧИЕ ПРОВОДНИКИ
(PEN ПРОВОДНИКИ)
1.7.131. В многофазных цепях в системе TN для стационарно проложенных кабелей, жилы которых имеют площадь поперечного сечения не менее 10 мм2 по меди или 16 мм2 по алюминию, функции нулевого защитного (РЕ) и нулевого рабочего (N ) проводников могут быть совмещены в одном проводнике ( PEN проводник).
1.7.132. Не допускается совмещение функций нулевого защитного и нулевого рабочего проводников в цепях однофазного и постоянного тока. В качестве нулевого защитного проводника в таких цепях должен быть предусмотрен отдельный третий проводник.
7.1.36. Нулевой рабочий и нулевой защитный проводники не допускается подключать на щитках под общий контактный зажим.
1.7.135. В месте разделения PEN проводника на нулевой защитный и нулевой рабочий проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой.
В добавлениии скажу, если вы решили подключить трехфазный двигатель в сеть 220 вольт, то надо использовать конденсатор (естественно неэлектролитический).
Для подключения звездой или треугольником, разные формулы расчета конденсатора .
Треугольник Ср= 4800 * I / U (рабочая емкость – то есть та, которая будет включена постоянно при работе электродвигателя)
Звезда Ср= 2800 * I / U
Ток написан на шильдике двигателя.
Емкость Сп (пусковая емкость – включается кнопкой только на время запуска электродвигателя и подключатся параллельно рабочей емкости) в 2. 2,5 раза больше чем рабочая Ср.
, где
Р – мощность двигателя в Вт, указанная в его паспорте;
h – кпд;
cos j – коэффициент мощности;
U -напряжение в сети, В
Потребляемый электродвигателем ток в выше приведенных формулах, при известной мощности электродвигателя, можно вычислить из следующего выражения:
На практике величину емкостей рабочих и пусковых конденсаторов выбирают в зависимости от мощности двигателя по табл. 1
Таблица 1. Значение емкостей рабочих и пусковых конденсаторов трехфазного электродвигателя в зависимости от его мощности при включении в сеть 220 В.
Мощность трехфазного двигателя, кВт | 0,4 | 0,6 | 0,8 | 1,1 | 1,5 | 2,2 |
Минимальная емкость рабочего конденсатора Ср, мкФ | 40 | 60 | 80 | 100 | 150 | 230 |
Минимальная емкость пускового конденсатора Ср, мкФ | 80 | 120 | 160 | 200 | 250 | 300 |
Следует отметить, что у электродвигателя с конденсаторным пуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток на 20. 30 % превышающий номинальный. В связи с этим, если двигатель часто используется в недогруженном режиме или вхолостую, то в этом случае емкость конденсатора Ср следует уменьшить. Может случиться, что во время перегрузки электродвигатель остановился, тогда для его запуска снова подключают пусковой конденсатор, сняв нагрузку вообще или снизив ее до минимума.
Емкость пускового конденсатора Сп можно уменьшить при пуске электродвигателей на холостом ходу или с небольшой нагрузкой. Для включения, например, электродвигателя АО2 мощностью 2,2 кВт на 1420 об/мин можно использовать рабочий конденсатор емкостью 230 мкФ, а пусковой – 150 мкФ. В этом случае электродвигатель уверенно запускается при небольшой нагрузке на валу.
Для отключения пускового конденсатора можно использовать дополнительное реле К1, тогда надобность в тумблере SA1 отпадает, а конденсатор будет отключаться автоматически (рис.5)
Рис. 5 Принципиальная схема пускового устройства с автоматическим отключением пускового конденсатора.
При нажатии на кнопку SB1 срабатывает реле К1 и контактной парой К1.1 включает магнитный пускатель КМ1, а К1.2 – пусковой конденсатор Сп. Магнитный пускатель КМ1 самоблокируется с помощью своей контактной пары КМ 1.1, а контакты КМ 1.2 и КМ 1.3 подсоединяют электродвигатель к сети. Кнопку «Пуск» держат нажатой до полного разгона двигателя, а после отпускают. Реле К1 обесточивается и отключает пусковой конденсатор, который разряжается через резистор R2. В это же время магнитный пускатель КМ 1 остается включенным и обеспечивает питание электродвигателя в рабочем режиме. Для остановки электродвигателя следует нажать кнопку «Стоп». В усовершенствованном пусковом устройстве по схеме рис.5, можно использовать реле типа МКУ-48 или ему подобное.
. Использование электролитических конденсаторов в схемах запуска электродвигателей.
При включении трехфазных асинхронных электродвигателей в однофазную сеть, как правило, используют обычные бумажные конденсаторы. Практика показала, что вместо громоздких бумажных конденсаторов можно использовать оксидные (электролитические) конденсаторы, которые имеют меньшие габариты и более доступны в плане покупки. Схема эквивалентной замены обычного бумажного дана на рис. 6
Рис. 6 Принципиальная схема замены бумажного конденсатора (а) электролитическим (б, в).
Положительная полуволна переменного тока проходит через цепочку VD1, С2, а отрицательная VD2, С2. Исходя из этого можно использовать оксидные конденсаторы с допустимым напряжением в два раза меньшим, чем для обычных конденсаторов той же емкости. Например, если в схеме для однофазно сети напряжением 220 В используется бумажный конденсатор на напряжение 400 В, то при его замене, по вышеприведенной схеме, можно использовать электролитический конденсатор на напряжение 200 В. В приведенной схеме емкости обоих конденсаторов одинаковы и выбираются аналогично методике выбора бумажных конденсаторов для пускового устройства.
Включение трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов.Схема включения трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов приведена на рис.7.
Рис. 7 Принципиальная схема включения трехфазного двигателя в однофазную сеть при помощи электролитических конденсаторов.
В приведенной схеме, SA1 – переключатель направления вращения двигателя, SB1 – кнопка разгона двигателя, электролитические конденсаторы С1 и С3 используются для пуска двигателя, С2 и С4 – во время работы.
Подбор электролитических конденсаторов в схеме рис. 7 лучше производить с помощью токоизмерительных клещей. Измеряют токи в точках А, В, С и добивается равенства токов в этих точках путем ступенчатого подбора емкостей конденсаторов. Замеры проводят при нагруженном двигателе в том режиме, в котором предполагается его эксплуатация. Диоды VD1 и VD2 для сети 220 В выбираются с обратным максимально допустимым напряжением не менее 300 В. Максимальный прямой ток диода зависит от мощности двигателя. Для электродвигателей мощностью до 1 кВт подойдут диоды Д245, Д245А, Д246, Д246А, Д247 с прямым током 10 А. При большей мощности двигателя от 1 кВт до 2 кВт нужно взять более мощные диоды с соответствующим прямым током, или поставить несколько менее мощных диодов параллельно, установив их на радиаторы.
Статьи, Схемы, Справочники
Регистрация Вход. Ответы Mail. Вопросы – лидеры Не взлетает квадрокоптер 1 ставка. Перестал работать Mi band 4 1 ставка.
Поиск данных по Вашему запросу:
Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.Перейти к результатам поиска >>>
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Как быстро и просто подключить трехфазный двигатель в однофазную сеть DuMA8819
Возможно ли подключить 3-х фазный прибор, если нет N?
Трехфазные асинхронные двигатели совершенно заслужено являются самыми массовыми в мире, благодаря тому, что они очень надежны, требуют минимального технического обслуживания, просты в изготовлении и не требуют при подключении каких-либо сложных и дорогостоящих устройств, если не требуется регулировка скорости вращения.
Большинство станков в мире приводятся в действие именно трёхфазными асинхронными двигателями, они также приводят в действие насосы, электроприводы различных полезных и нужных механизмов. Но как быть тем, кто в личном домовладении не имеет трехфазного электроснабжения, а в большинство случаев это именно так. Как быть, если хочется в домашней мастерской поставить стационарную циркулярную пилу, электрофуганок или токарный станок?
Хочется порадовать читателей нашего портала, что выход из этого затруднительного положения есть, причем достаточно просто реализуемый. В этой статье мы намерены рассказать, как подключить трехфазный двигатель в сеть В. Как подключить трехфазный электродвигатель в сеть В. Большинство производимых в мире трехфазных двигателей — это асинхронные двигатели с короткозамкнутым ротором АДКЗ , которые не имеют никакой электрической контактной связи статора и ротора. В этом их основное преимущество, так как щетки и коллекторы, — самое слабое место любого электродвигателя, они подвержены интенсивному износу, требуют технического обслуживания и периодической замены.
Трехфазный асинхронный двигатель с короткозамкнутым ротором в разрезе. В литом корпусе 7 собран весь механизм электродвигателя, включающий две главные части — неподвижный статор и подвижный ротор.
В статоре имеется сердечник 3 , который набран из листов специальной электротехнической стали сплава железа и кремния , которая обладает хорошими магнитными свойствами. Сердечник набран из листов по причине того, что в условиях переменного магнитного поля в проводниках могут возникнуть вихревые токи Фуко, которые в статоре нам абсолютно не нужны.
Дополнительно каждый лист сердечника еще покрыт с обеих сторон специальным лаком, чтобы вообще свести на нет протекание токов. Нам от сердечника нужны только магнитные его свойства, а не свойства проводника электрического тока.
Если быть точным, то обмоток в трехфазном асинхронном двигателе как минимум три — по одной на каждую фазу. Концы обмоток выведены в клеммную коробку на рисунке она расположена в нижней части двигателя. Ротор помещен внутрь сердечника статора и свободно вращается на валу 1. Сердечник ротора 5 также набран из электротехнической стали и в нем тоже имеются пазы, но они предназначены не для обмотки из провода, а для короткозамкнутых проводников, которые расположены в пространстве так, что напоминают беличье колесо 4 , за что и получили свое название.
Белки могут гордиться тем, что в их честь назвали одну из главных деталей двигателя. Беличье колесо состоит из продольных проводников, которые связаны и механически, и электрически с торцевыми кольцами Обычно беличье колесо изготавливают путем заливки в пазы сердечника расплавленного алюминия, а заодно еще формуют монолитом и кольца, и крыльчатки вентиляторов 6.
В АДКЗ большой мощности в качестве проводников клетки применяют медные стержни, сваренные с торцевыми медными кольцами. Для того чтобы понять какие силы заставляют вращаться ротор АДКЗ, надо рассмотреть что такое трехфазная система электроснабжения, тогда все встанет на свои места.
Мы все привыкли к обычной однофазной системе, когда в розетке есть только два или три контакта, один из которых фаза L , второй рабочий ноль N , а третий защитный ноль PE. Среднеквадратичное фазное напряжение в однофазной системе напряжение между фазой и нулем равно В. Напряжение а при подключении нагрузки и ток в однофазных сетях изменяются по синусоидальному закону.
График переменного синусоидального напряжения. Из приведенного графика амплитудно-временной характеристики видно, что амплитудное значение напряжения не В, а В.
Для чего это делается? Только для удобства расчетов. За эталон принимают постоянное напряжение, по его способности произвести какую-то работу. Надо сразу сказать, что практически вся генерируемая электрическая энергия в мире трехфазная. Просто с однофазной энергией проще управляться в быту, большинству потребителей электроэнергии достаточно и одной фазы для работы, да и однофазные проводки гораздо дешевле.
Это хорошо видно в подъездных щитах, где видно, как с одной фазы провод идет в одну квартиру, с другой во вторую, с третьей в третью. Это так же хорошо видно на столбах, от которых линии идут к частным домовладениям. Трехфазное напряжение, в отличие от однофазного, имеет не один фазный провод, а три: фаза A, фаза B и фаза C. Фазы еще могут обозначать L1, L2, L3. Кроме фазных проводов, естественно, присутствует еще общий для всех фаз рабочий ноль N и защитный ноль PE.
Рассмотрим амплитудно-временную характеристику трехфазного напряжения. Амплитудно временная характеристика и векторная диаграмма трехфазного тока.
Трехфазный ток легко генерировать передавать к месту назначения и в дальнейшем преобразовывать в любой нужный вид энергии. В том числе и в механическую энергию вращения АДКЗ. Если подать переменное трехфазное напряжение на обмотки статора, то через них начнут протекать токи. Изменение сдвинутых по фазе на градусов токи обмоток статора создают вращающееся магнитной поле.
Эти токи образуют свое магнитное поле, которое распространяется по сердечнику ротора и начинает взаимодействовать с полем статора. Разноименные полюса, как известно, притягиваются, а одноименные отталкиваются друг от друга. Возникающие силы создают момент заставляющий ротор вращаться. Магнитное поле статора вращается с определенной частотой, которая зависит от питающей сети и количества пар полюсов обмоток.
Рассчитывается частота по следующей формуле:. С частотой переменного тока все понятно — она в наших сетях электроснабжения составляет 50 Гц.
Число пар полюсов отражает, сколько пар полюсов имеется на обмотке или обмотках, принадлежащих одной фазе. Если одной к одной фазе подключаются две обмотки, тогда число пар полюсов будет равно двум и так далее. Соответственно и меняется угловое расстояние между обмотками.
Затем за ней следует обмотка фазы B, занимающая такой же сектор, а затем и фазы C. Далее чередование повторяется. При увеличении пар полюсов соответственно уменьшаются сектора обмоток. Такие меры позволяют уменьшить частоту вращения магнитного поля статора и соответственно ротора. Приведем пример. Допустим, трехфазный двигатель имеет одну пару полюсов и подключен к трехфазной сети частотой 50 Гц.
Если увеличить количество пар полюсов — во столько же раз уменьшится частота вращения. Чтобы поднять обороты двигателя, надо увеличить частоту переменного тока , питающего обмотки.
Чтобы изменить направление вращения ротора, надо поменять местами две фазы на обмотках. Следует отметить, что частота вращения ротора всегда отстает от частоты вращения магнитного поля статора, поэтому двигатель и называется асинхронным.
Почему это происходит? Представим, что ротор вращается с той же скоростью, что и магнитное поле статора. Соответственно не будет наводиться ЭДС и перестанут протекать токи, не будет взаимодействия магнитных потоков и исчезнет момент, приводящий ротор в движение. Разницу частот вращения магнитного поля статора и вала ротора называют частотой скольжения, и она рассчитывается по формуле:.
Большинство АДКЗ имеет три обмотки, каждая из которых соответствует своей фазе и имеет начало и конец. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 — ее конец, то есть обмотка U имеет два вывода U1 и U2, обмотка V—V1 и V2, а обмотка W — W1 и W2.
Однако еще до сих пор в эксплуатации находятся асинхронные двигатели, сделанные во времена СССР и имеющие старую систему маркировки. Соответствие старых и новых систем обозначений представлено на рисунке. Старые и новые обозначения обмоток двигателей. При таком соединении все концы обмоток объединяют в одной точке, а к их началам подключают фазы.
На принципиальной схеме такой способ подключения действительно напоминает звезду, за что и получил название. Подключение обмоток асинхронного двигателя звездой. При соединении звездой к каждой обмотке в отдельности приложено фазной напряжение в В, а к двум обмоткам, соединенных последовательно линейное напряжение В. Главное преимущество такого способа подключения — это небольшие токи запуска, так как линейное напряжение приложено к двум обмоткам, а не к одной.
При таком соединении обмотки объединяют в треугольник, когда начало одной обмотки соединяется с концом следующей — и так по кругу. Если линейное напряжение в трехфазной сети В, то через обмотки будут протекать токи гораздо больших величин, чем при соединении звездой. Поэтому мощность электродвигателя будет выше. Подключение обмоток асинхронного двигателя треугольником. При соединении треугольником в момент запуска АДКЗ потребляет большие пусковые токи, которые могут в 7—8 раз превышать номинальные и способны вызвать перегрузку сети, поэтому на практике инженеры нашли компромисс — запуск двигателя и его раскручивание до номинальных оборотов производится по схеме звезда, а затем происходит автоматическое переключение на треугольник.
Прежде чем подключать трехфазный двигатель к однофазной сети В, необходимо выяснить по какой схеме подключены обмотки и при каком рабочем напряжении может работать АДКЗ. На табличке имеется вся необходимая информация, которая поможет подключить двигатель к однофазной сети. Если такой двигатель подключить в сеть В треугольником, то обмотки его сгорят. За подключение такого двигателя в сеть В лучше не браться. На следующем шильдике можно увидеть, что такой двигатель можно подключить только звездой и только в сеть В.
Скорее всего в клеммной коробке у такого АДКЗ будет только три вывода. Опытные электрики смогут подключить и такой двигатель к сети В, но для этого надо будет вскрывать заднюю крышку, чтобы добраться до выводов обмоток, затем найти начало и конец каждой обмотки и произвести необходимую коммутацию.
Задача сильно усложняется, поэтому авторы не рекомендуют подключать такие двигатели к сети В, тем более что большинство современных АДКЗ могут подключаться по-разному. На каждом двигателе есть клеммная коробка, расположенная чаще всего сверху.
В этой коробке есть входы для питающих кабелей, а сверху она закрыта крышкой, которую необходимо снять при помощи отвертки. Под крышкой можно увидеть шесть клемм, каждая из которых соответствует или началу, или концу обмотки.
Помимо этого клеммы соединяются перемычками, и по их расположению можно определить, по какой схеме подключены обмотки. Это свидетельствует о том, что имеет место соединение звездой. Однако, это сделано с определенной целью.
Для этого рассмотрим клеммную коробку АДКЗ с подключенными обмотками по схеме треугольник. Такое положение перемычек говорит о том, что обмотки подключены треугольником.
Схема подключения трехфазного двигателя к однофазной сети
Цитата вопроса – «Спрошу по другому: вольт это 2 или 3 фазы. Цитата вопроса -«Если двигатель 3 фазный он на сколько вольт? Цитата вопроса -«когда вольт, то говорят однофазный провод, » Ответ – не обязательно, так как при линейном это напряжение будет между фазами, а между нейтралью и фазой будет вольт. Цитата вопроса -«а когда вольтовый провод, там 2 фазы и ноль» Ответ – не верно, так как может быть или три провода, которые фазные и без нейтрали или четыре, то есть ещё и нейтраль ноль. Три фазы и ноль – это промышленная сеть вольт.
Запуск трехфазных электродвигателей с помощью конденсаторов
Бывают в жизни ситуации, когда нужно включить какое-то промышленное оборудование в обычную домашнюю сеть электропитания. Тут же возникает проблема с числом проводов. У машин, предназначенных для эксплуатации на предприятиях, выводов, как правило, три, а бывает и четыре. Что с ними делать, куда их подключать? Те, кто пытался испробовать различные варианты, убедились, что моторы просто так крутиться не хотят. Возможно ли вообще однофазное подключение трехфазного двигателя? Да, добиться вращения можно. К сожалению, в этом случае неизбежно падение мощности почти вдвое, но в некоторых ситуациях это — единственный выход. Для того чтобы понять, как подключить трехфазный двигатель к обычной розетке, следует разобраться, как соотносятся напряжения в промышленной сети.
Как подключить 3х фазный двигатель на 220
Здравствуйте, гость Вход Регистрация. Правила Форума. Искать только в этом форуме? Дополнительные параметры. Нейтраль при подключении электродвигателя.
Трёхфазный двигатель
Принцип работы двух и многофазных двигателей был разработан Николой Теслой и запатентован. Доливо-Добровольский усовершенствовал конструкцию электродвигателя и предложил использовать три фазы вместо двух, используемых Н. Некоторое время усовершенствование Доливо-Добровольского было ограниченно патентом Теслы на мультифазные двигатели, который к тому времени успел его продать Д. Асинхронный двигатель, согласно принципу обратимости электрических машин , может работать как в двигательном, так и в генераторном режимах. Для работы асинхронного двигателя в любом режиме требуется источник реактивной мощности. В двигательном режиме при подключении двигателя к трехфазной сети переменного тока в обмотке статора образуется вращающееся магнитное поле , под действием которого в короткозамкнутой обмотке ротора наводятся токи, образующие электромагнитный момент вращения, стремящийся провернуть ротор вокруг его оси.
Схема подключения трехфазного двигателя на 220 с пусковым конденсатором
Тема в разделе » Электрика «, создана пользователем павел рус , Искать только в заголовках Сообщения пользователя: Имена участников разделяйте запятой. Новее чем: Искать только в этой теме Искать только в этом разделе Отображать результаты в виде тем. Быстрый поиск. Ввод в дом 3 фазы без нуля Тема в разделе » Электрика «, создана пользователем павел рус , Регистрация: Ввод в дом 3 фазы без нуля. AlexeyL Живу здесь.
Ввод в дом 3 фазы без нуля
Трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на вольт. Если у Вас в доме или гараже есть ввод на Вольт, тогда обязательно покупайте компрессор или станок с трехфазным электродвигателем. Это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети Вольт.
Может ли движок 380 работать без нуля?
Необходимость использования трехфазного асинхронного электродвигателя самостоятельно чаще всего возникает, когда устанавливается или проектируется самодельное оборудование. Обычно на дачах или в гараже мастера хотят использовать самодельные наждачные станки, бетономешалки, приборы по заточке и обрезке изделий. Тут и возникает вопрос: как подключить электродвигатель, рассчитанный на , к сети в Вольт. Кроме того, важно как подключить электродвигатель в сеть, так и обеспечить необходимый показатель коэффициента полезного действия КПД , сохранить эффективность и работоспособность агрегата.
Правильное подключение 3-х фазного станка.
Тема в разделе » Электрика и электрооборудование «, создана пользователем Aleksands Jurcevs , Войти или зарегистрироваться. Строительный форум ВашДом. А кто это у нас тут прячется и стесняется? Непременно рекомендуем зарегистрироваться , либо зайти под своим именем!
Забыли пароль? Изменен п. Расшифровка и пояснения – тут.
Как подключить 3фазный двигатель на 220
Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода – фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт. Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя.
Подключение 3х фазного двигателя на 220 без конденсаторов
Как правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности – от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме.
В этих схемах применяются симисторы, под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении.
Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка. Путем изменения сопротивления, на конденсаторе образуется напряжение, сдвинутое на определенный угол относительно основного напряжения. При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа.
Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней. Подключение второго ключа – параллельное фазной обмотке, что способствует образованию в ней опережающего емкостного сдвига тока.
Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 120 0 С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов.
Подключение электродвигателя 380в на 220в через конденсатор
Для нормального подключения следует знать принцип действия трехфазного двигателя. При включении в трехфазную сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток. То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения. Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.
При включении такого двигателя в однофазную сеть, в создании вращающегося момента будет участвовать только одна обмотка и воздействие на ротор в этом случае происходит только в одной плоскости. Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами. Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора.
Расчет конденсатора для трехфазного двигателя в однофазной сети:
- При мощности электродвигателя не более 1,5 кВт в схеме будет достаточно одного рабочего конденсатора.
- Если же мощность двигателя свыше 1,5 кВт или он испытывает большие нагрузки во время запуска, в этом случае выполняется установка сразу двух конденсаторов – рабочего и пускового. Их подключение осуществляется параллельно, причем пусковой конденсатор нужен только для запуска, после чего происходит его автоматическое отключение.
- Управление работой схемы производится кнопкой ПУСК и тумблером отключения питания. Для запуска двигателя нажимается пусковая кнопка и удерживается до тех пор, пока не произойдет полное включение.
В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора. Первый основной выход тумблера подключается к конденсатору, второй – к нулевому, а третий – к фазному проводу. Если подобная схема способствует падению мощности или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора.
Подключение 3х фазного двигателя на 220 без потери мощности
Наиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором.
Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети.
При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится. В этом случае потребуется дополнительное подключение пускового конденсатора. Он включается буквально на 2-3 секунды, чтобы обороты двигателя могли достигнуть 70% от номинальных. После этого конденсатор сразу же отключается и разряжается.
Таким образом, при решении вопроса как подключить трехфазный двигатель к сети 220 вольт, необходимо учитывать все факторы. Особое внимание следует уделить конденсаторам, поскольку от их действия зависит работа всей системы.
Запуск 3х фазного двигателя от 220 Вольт
Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель, а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.
Читаем подробно далее
Емкость применяемого конденсатора, зависит от мощности электродвигателя и рассчитывается по формуле
С = 66·Рном ,
где С — емкость конденсатора, мкФ, Рном — номинальная мощность электродвигателя, кВт.
То есть можно считать, что на каждые 100 Вт мощности трехфазного электродвигателя требуется около 7 мкФ электрической емкости.
Например, для электродвигателя мощностью 600 Вт нужен конденсатор емкостью 42 мкФ. Конденсатор такой емкости можно собрать из нескольких параллельно соединенных конденсаторов меньшей емкости:
Итак, суммарная емкость конденсаторов для двигателя мощностью 600 Вт должна быть не менее 42 мкФ. Необходимо помнить, что подойдут конденсаторы, рабочее напряжение которых в 1,5 раза больше напряжения в однофазной сети.
В качестве рабочих конденсаторов могут быть использованы конденсаторы типа КБГ, МБГЧ, БГТ. При отсутствии таких конденсаторов применяют и электролитические конденсаторы. В этом случае корпуса конденсаторов электролитических соединяются между собой и хорошо изолируются.
Отметим, что частота вращения трехфазного электродвигателя, работающего от однофазной сети, почти не изменяется по сравнению с частотой вращения двигателя в трехфазном режиме.
Большинство трехфазных электродвигателей подключают в однофазную сеть по схеме «треугольник» (рис. 1). Мощность, развиваемая трехфазным электродвигателем, включенным по схеме «треугольник», составляет 70-75% его номинальной мощности.
Рис 1. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»
Трехфазный электродвигатель подключают так же по схеме «звезда» (рис. 2).
Рис. 2. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»
Чтобы произвести подключение по схеме «звезда», необходимо две фазные обмотки электродвигателя подключить непосредственно в однофазную сеть (220 В), а третью — через рабочий конденсатор (Ср) к любому из двух проводов сети.
Для пуска трехфазного электродвигателя небольшой мощности обычно достаточно только рабочего конденсатора, но при мощности больше 1,5 кВт электродвигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применять еще пусковой конденсатор (Сп). Емкость пускового конденсатора в 2,5-3 раза больше емкости рабочего конденсатора. В качестве пусковых конденсаторов лучше всего применяют электролитические конденсаторы типаЭП или такого же типа, как и рабочие конденсаторы.
Схема подключения трехфазного электродвигателя с пусковым конденсатором Сп показана на рис. 3.
Рис. 3. Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором С
пНужно запомнить: пусковые конденсаторы включают только на время запуска трехфазного двигателя, подключенного к однофазной сети на 2-3 с, а затем пусковой конденсатор отключают и разряжают.
Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого возьмите любой из 6 наружных выводов электродвигателя и присоедините его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1, а его конец — С4. Аналогично найдем начало и конец второй обмотки и обозначим их C2 и C5, а начало и конец третьей — СЗ и С6.
Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигателя согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим двигатель в однофазную сеть с использованием конденсаторов.
Если двигатель без сильного гудения сразу наберет номинальную частоту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке поменяйте местами выводы С1 и С4. Если это не помогает, концы первой обмотки верните в первоначальное положение и теперь уже выводы C2 и С5 поменяйте местами. То же самое сделайте в отношении третьей пары, если двигатель продолжает гудеть.
При определении начал и концов фазных обмоток статора электродвигателя строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.
Для изменения направления вращения ротора трехфазного электродвигателя, включенного в однофазную сеть по схеме «треугольник» (см. рис. 1), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).
Чтобы изменить направление вращения трехфазного электродвигателя, включенного в однофазную сеть по схеме «звезда» (см. рис. 2, б), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V). Направление вращения однофазного двигателя изменяют, поменяв подключение концов пусковой обмотки П1 и П2 (рис. 4).
При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо детально осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, смазать их, очистить корпус двигателя от грязи и пыли.
Чтобы заменить поврежденные подшипники, удалите их винтовым съемником с вала и промойте бензином место посадки подшипника. Новый подшипник нагрейте в масляной ванне до 80° С. Уприте металлическую трубу, внутренний диаметр которой немного превышает диаметр вала, во внутреннее кольцо подшипника и легкими ударами молотка по трубе насадите подшипник на вал электродвигателя. После этого заполните подшипник на 2/3 объема смазкой. Сборку производите в обратном порядке. В правильно собранном электродвигателе ротор должен вращаться без стука и вибрации.
Бывает, что в руки попадает трехфазный электродвигатель. Именно из таких двигателей изготавливают самодельные циркулярные пилы, наждачные станки и разного рода измельчители. В общем, хороший хозяин знает, что можно с ним сделать. Но вот беда, трехфазная сеть в частных домах встречается очень редко, а провести ее не всегда бывает возможным. Но есть несколько способов подключить такой мотор к сети 220в.
Следует понимать, что мощность двигателя при таком подключении, как бы вы ни старались — заметно упадет. Так, подключение «треугольником» использует только 70% мощности двигателя, а «звездой» и того меньше — всего 50%.
В связи с этим двигатель желательно иметь помощнее.
Итак, в любой схеме подключения используются конденсаторы. По сути, они выполняют роль третьей фазы. Благодаря ему, фаза к которой подключен один вывод конденсатора, сдвигается ровно настолько, сколько необходимо для имитации третьей фазы. Притом что для работы двигателя используется одна емкость (рабочая), а для запуска, еще одна (пусковая) в параллель с рабочей. Хотя не всегда это необходимо.
Например, для газонокосилки с ножом в виде заточенного полотна, достаточно будет агрегата 1 кВт и конденсаторов только рабочих, без надобности емкостей для запуска. Обусловлено это тем, что двигатель при запуске работает на холостом ходу и ему хватает энергии раскрутить вал.
Если взять циркулярную пилу, вытяжку или другое устройство, которое дает первоначальную нагрузку на вал, то тут без дополнительных банок конденсаторов для запуска не обойтись. Кто-то может сказать: «а почему не подсоединить максимум емкости, чтобы мало не было?» Но не все так просто. При таком подключении мотор будет сильно перегреваться и может выйти из строя. Не стоит рисковать оборудованием.
Рассмотрим сначала как подключается трехфазный двигатель в сеть 380в.
Трехфазные двигатели бывают, как с тремя выводами — для подключения только на «звезду», так и с шестью соединениями, с возможностью выбора схемы ― звезда или треугольник. Классическую схему можно видеть на рисунке. Здесь на рисунке слева изображено подключение звездой. На фото справа, показано как это выглядит на реальном брне мотора.
Видно, что для этого необходимо установить специальные перемычки на нужные вывода. Эти перемычки идут в комплекте с двигателем. В случае когда имеется только 3 вывода, то соединение в звезду уже сделано внутри корпуса мотора. В таком случае изменить схему соединения обмоток попросту невозможно.
Некоторые говорят, что так делали для того, чтобы рабочие не воровали агрегаты по домам для своих нужд. Как бы там ни было, такие варианты двигателей, можно с успехом использовать для гаражных целей, но мощность их будет заметно ниже, чем соединенных треугольником.
Схема подключения 3-х фазного двигателя в сеть 220в соединенного звездой.
Как видно, напряжение 220в распределяется на две последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.
Максимальной мощности двигателя на 380в в сети 220в можно достичь, только используя соединение в треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Схема подключения такого электродвигателя изображено на рисунке 1.
На рис.2, изображено брно с клеммой на 6 выводов для возможности подключения треугольником. На три получившихся вывода, подается: фаза, ноль и один вывод конденсатора. От того, куда будет подключен второй вывод конденсатора ― фаза или ноль, зависит направление вращения электродвигателя.
На фото: электродвигатель только с рабочими конденсаторами без емкостей для запуска.
Если на вал будет начальная нагрузка, необходимо использовать конденсаторы для запуска. Они соединяются в параллель с рабочими, используя кнопку или переключатель на момент включения. Как только двигатель наберет максимальные обороты, емкости для запуска должны быть отключены от рабочих. Если это кнопка, просто отпускаем ее, а если выключатель, то отключаем. Дальше двигатель использует только рабочие конденсаторы. Такое соединение изображено на фото.
Как подобрать конденсаторы для трехфазного двигателя, используя его в сети 220в.
Первое, что нужно знать ― конденсаторы должны быть неполярными, то есть не электролитическими. Лучше всего использовать емкости марки ― МБГО. Их с успехом использовали в СССР и в наше время. Они прекрасно выдерживают напряжение, скачки тока и разрушающее воздействие окружающей среды.
Также они имеют проушины для крепления, помогающие без проблем расположить их в любой точке корпуса аппарата. К сожалению, достать их сейчас проблематично, но существует множество других современных конденсаторов ничем не хуже первых. Главное, чтобы, как уже говорилось выше, рабочее напряжение их не было меньше 400в.
Расчет конденсаторов. Емкость рабочего конденсатора.
Чтобы не обращаться к длинным формулам и мучить свой мозг, есть простой способ расчета конденсатора для двигателя на 380в. На каждые 100 Вт (0,1 кВт) берется — 7 мкФ. Например, если двигатель 1 кВт, то рассчитываем так: 7 * 10 = 70 мкФ. Такую емкость в одной банке найти крайне трудно, да и дорого. Поэтому чаще всего емкости соединяют в параллель, набирая нужную емкость.
Емкость пускового конденсатора.
Это значение берется из расчета в 2-3 раза больше, чем емкость рабочего конденсатора. Следует учитывать, что эта емкость берется в сумме с рабочей, то есть для двигателя 1 кВт рабочая равна 70 мкФ, умножаем ее на 2 или 3, и получаем необходимое значение. Это 70-140 мкФ дополнительной емкости — пусковой. В момент включения она соединяется с рабочей и в сумме получается — 140-210 мкФ.
Особенности подбора конденсаторов.
Конденсаторы как рабочие, так и пусковые можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.
Кроме указанного выше типа конденсатора — МБГО, можно использовать тип — МБГЧ, МБГП, КГБ и тому подобные.
Реверс.
Иногда возникает необходимость менять направление вращения электродвигателя. Такая возможность есть и у двигателей на 380в, используемых в однофазной сети. Для этого нужно сделать так, чтобы конец конденсатора, подключенный к отдельной обмотке, оставался неразрывным, а другой мог перебрасываться с одной обмотки, где подключен «ноль», к другой где — «фаза».
Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».
Более подробно можно увидеть на рисунке.
Соединения выводов двигателя — базовое управление двигателем
Трехфазные двигатели используют катушки из проволоки для создания магнитных полей и вращения.
Стандартные трехфазные двигатели используют шесть отдельных катушек, по две на каждую фазу. Внутренняя конструкция и соединение этих катушек внутри двигателя предопределяются при изготовлении двигателя. Существует два класса трехфазных двигателей: звезда и треугольник.
Конфигурация «звезда» и «треугольник»Трехфазные двигатели также сконструированы для работы с двумя разными напряжениями , поэтому катушки могут быть подключены как в высоковольтной, так и в низковольтной конфигурации.
В высоковольтной конфигурации две катушки каждой фазы соединены друг с другом по схеме серии , так что более высокое значение напряжения питания распределяется между ними поровну и через каждую обмотку протекает номинальный ток.
В низковольтной конфигурации две катушки каждой фазы соединены параллельно друг с другом, так что меньшее значение напряжения питания распределяется поровну между катушками и номинальный ток протекает через каждую обмотку.
Обратите внимание, что низковольтное соединение обязательно потребует от источника в два раза больше тока, чем высоковольтное соединение. На паспортных табличках большинства двигателей указаны два значения напряжения и тока. Пускатели двигателей и их реле перегрузки важно рассчитать с учетом ожидаемого значения тока, который должен потребляться двигателем при том напряжении, при котором он используется.
Каждая из шести отдельных катушек имеет два питающих провода, всего двенадцать выводов.В конфигурациях «звезда» и «треугольник» три из этих выводов подключаются внутри, поэтому только девять выводов выводятся из двигателя для подключения. Эти выводы пронумерованы 1–9, и как в треугольнике, так и в треугольнике следуют стандартному соглашению о нумерации: начиная с верхней части схемы с провода номер 1, нарисуйте нисходящую внутрь спираль от каждой точки соединения, восходя к следующему номеру на каждом шаге. .
В зависимости от внутренней конструкции двигателя, эти провода могут быть подключены одним из четырех способов: соединение звездой высокого или низкого напряжения или треугольник высокого или низкого напряжения
Иногда возникает необходимость проверить или подтвердить конфигурацию двигателя перед окончательным подключением.Если двигатель с звездообразной обмоткой подключен как двигатель с треугольной обмоткой или наоборот, двигатель не будет работать должным образом.
Рассмотрим ситуацию: у вас есть девять выводов, идущих от двигателя, но нет никаких указаний на то, имеет ли он соединение звездой или треугольником. Используя омметр для простой проверки целостности цепи, вы можете определить тип конструкции двигателя.
Если это соединение звездой, каждый из проводов 1, 2 и 3 должен иметь соединение только с одним другим проводом (4, 5 и 6 соответственно). Все три провода без соединения с проводами 1, 2 и 3 должны иметь непрерывность друг с другом.
Соединения двигателя звездойЕсли он обмотан треугольником, каждый из проводов 1, 2 и 3 должен иметь соединение с двумя другими выводами:
- T1 имеет связь с T4 и T9
- T2 имеет связь с T5 и T7
- T3 имеет связь с T6 и T8
Важно отметить, что эти точки представляют собой внутреннее соединение катушек электродвигателя, а не то, как они должны быть подключены к источнику напряжения.
Низковольтная звезда
В этой конфигурации каждая фаза подводится к двум катушкам, подключенным параллельно друг другу.Клеммы 4, 5 и 6 соединены вместе, чтобы создать второе нейтральное соединение.
Низковольтное соединение звездойL1 | L2 | L3 | Связать |
1,7 | 2,8 | 3,9 | 4,5,6 |
Звезда высокого напряжения
В этой конфигурации каждая фаза подводится к двум катушкам, которые последовательно соединены друг с другом.
Высоковольтное соединение двигателя «звезда».
L1 | L2 | L3 | Связать |
1 | 2 | 3 | 4,7 — 5,8 — 6,9 |
Низковольтный Delta
В этой конфигурации каждая фаза подведена к центральному соединению двух катушек и к концевым соединениям каждой из двух других групп катушек.
Подключение низкого напряжения двигателя треугольником
L1 | L2 | L3 | Связать |
1,6,7 | 2,4,8 | 3,5,9 | нет |
Дельта высокого напряжения
В этой конфигурации каждая фаза подводится к двум катушкам, которые соединены последовательно с катушками других фаз.
Соединение высокого напряжения двигателя треугольником
L1 | L2 | L3 | Связать |
1 | 2, | 3 | 4,7 — 5,8 — 6,9 |
Общие обмотки двигателя и проводка для трехфазных двигателей
Трехфазные двигатели почти всегда имеют пучок проводов, выходящих сбоку, предназначенный для подключения как к входящей линии питания, так и для установления соединений между обмотками.Однако в этой истории есть гораздо больше, чем просто подключение проводов — есть как высокое, так и низкое напряжение, а также внутренние соединения звездой и треугольником. Более того, в каждой из этих категорий двигателей имеется много разного количества проводов.
Существует большое разнообразие трехфазных двигателей, приводящих в действие тяжелые промышленные нагрузки. Было бы неправильно говорить, что один тип двигателя лучше, иначе это был бы единственный тип двигателя.Вместо этого мы видим несколько разных типов двигателей, которые часто обозначаются проводами и паспортной табличкой сбоку.
Разнообразие двигателей обычно наиболее очевидно по количеству проводов, требующих подключения. Для электрика нет ничего важнее понимания того, какие провода следует подключать к входящим линиям напряжения для правильной работы.
Девятипроводные трехфазные двигатели
Самый распространенный тип трехфазного двигателя — это тот, у которого девять маркированных (и часто окрашенных) проводов выходят из коробки сбоку.Есть много двигателей с большим или меньшим количеством проводов, но девять из них являются наиболее распространенными.
Эти девятипроводные двигатели могут иметь внутреннее соединение по схеме «звезда» или «треугольник», установленной производителем. Оба имеют разные цели, но, к счастью, обычно их можно использовать как взаимозаменяемые.
Независимо от типа внутренней проводки, эти двигатели могут быть подключены к источнику питания звездой или треугольником — источник питания и двигатель — это два совершенно разных объекта.
Однако, если двигатель подключен к низкому напряжению, НИКОГДА не подключайте его к источнику высокого напряжения (звезда или треугольник), так как он перегреется.С другой стороны, если двигатель подключен к высокому напряжению, он не будет работать, если подключен к источнику низкого напряжения.
Внутренние звездообразные обмотки
Для тех стандартных девятипроводных двигателей, которые имеют внутренние звездообразные соединения на заводе, мысленное изображение расположения обмоток может дать некоторое представление о причине выполнения определенных соединений.
Для этих двигателей на паспортной табличке будет указатель двух различных сценариев подключения — один для низкого напряжения (208–240), а другой для высокого напряжения (480).
Рис. 1. Внутреннее устройство трехфазного двигателя с звездообразной обмоткой и девятью выводами. Эти девять выводов обеспечивают возможность подачи питания от источников высокого или низкого напряжения.Для варианта с низким напряжением инструкции показывают, как подключить следующее:
T4-T5-T6, T1-T7-Line, T2-T8-Line и, наконец, T3-T9-Line.
Для высокого напряжения меняется проводка:
T4-T7, T5-T8, T6-T9, T1-Line, T2-Line и T3-Line.
Внутри имеется 6 отдельных обмоток, равномерно распределенных по внешней стороне ротора. Основное назначение проводки — обеспечить одинаковое питание катушек на противоположных сторонах ротора в любое время.
При более низком напряжении источника эти две противоположные обмотки должны быть параллельны для одновременного получения надлежащего напряжения. Для высокого напряжения противоположные обмотки, включенные последовательно, в один и тот же момент дадут правильное напряжение.
Низковольтная проводка
Когда напряжение питания ниже, общее сопротивление нагрузки также должно быть ниже, чтобы генерировать такую же выходную мощность.Пока сопротивление остается равным, одинаковое приложение напряжения должно давать одинаковую выходную мощность для каждой обмотки. Согласно закону Ватта:
Мощность = Напряжение2 / СопротивлениеПоскольку напряжение возведено в квадрат, удвоение этого напряжения с низкого (240) до высокого (480) источника потребует 4-кратного увеличения сопротивления для поддержания одинаковой выходной мощности.
Для достижения этого более низкого сопротивления идеальной конфигурацией была бы параллельная сеть.Это достигается за счет создания второго небольшого связанного набора звездообразных обмоток в двигателе. Обе эти маленькие параллельные звезды-звезды будут снабжены подводящим проводом.
Рис. 2. Подключения, необходимые для низковольтной проводки двигателя с звездообразной обмоткой.На этом изображении показаны эти две маленькие звезды-тройники, сначала соединяющие Т-выводы 4-5-6, затем соединяющие Т4 и Т7 с линией, а также Т5 и Т8, а затем Т6 и Т9 каждый с линейными выводами. .
Представьте себе, что от линии 1 к линии 2. Ток может идти от линии через T7 к T8 обратно к линии. Параллельно он может перемещаться от Линии через Т1, Т4, Т5 и Т2 обратно к Линии. Оба параллельных пути содержат две последовательные обмотки. Таким образом, общее сопротивление будет равно сопротивлению одной только обмотки.
Для входа 240 В каждая из обмоток упадет на 120 В, поскольку на каждом пути есть две последовательно соединенные обмотки.
Электропроводка высокого напряжения
Для высокого напряжения общее сопротивление должно быть в 4 раза выше, чем для низкого напряжения, чтобы поддерживать номинальную выходную мощность.
Изображение этой схемы подключения легче визуализировать. Исходная схема подключения показывала правильное расположение обмоток для создания более крупной звездообразной системы, в которой между любыми двумя выводами имеется четыре одинаковых обмотки.
Рис. 3. Соединения, необходимые для высоковольтной проводки двигателя с звездообразной обмоткой.В этой схеме подключения между любыми двумя выводами линии имеется 4 последовательно соединенных обмотки. Сравните это с низким напряжением.От линии 1 до линии 2 ток имеет только один путь через T1, T4, T7, T8, T5 и T2 обратно в линию. Это дает сопротивление, в 4 раза превышающее значение одной обмотки.
Опять же, сравнивая мощность с низким напряжением, если входное напряжение составляет 480 вольт, каждая из 4 последовательных обмоток упадет на 120 вольт. Это такое же напряжение и, следовательно, мощность, что и в схеме низкого напряжения.
Трехфазный асинхронный двигатель: типы, работа и применение
Трехфазный асинхронный двигатель — конструкция, работа и типы трехфазных асинхронных двигателей
Двигатель используется для преобразования электрической формы энергии в механическую.По типу питания двигатели классифицируются как двигатели переменного и постоянного тока. В сегодняшнем посте мы обсудим различных типов трехфазных асинхронных двигателей с рабочими и приложениями.
Асинхронный двигатель , особенно трехфазные асинхронные двигатели , широко используются в двигателях переменного тока для выработки механической энергии в промышленных приложениях. Почти 80% двигателей — это трехфазные асинхронные двигатели среди всех двигателей, используемых в промышленности. Следовательно, асинхронный двигатель является наиболее важным двигателем среди всех других типов двигателей.
Что такое трехфазный асинхронный двигатель?
Трехфазный асинхронный двигатель — это тип асинхронного двигателя переменного тока, который работает от трехфазного источника питания по сравнению с однофазным асинхронным двигателем, где для его работы требуется однофазное питание. Трехфазный питающий ток создает электромагнитное поле в обмотке статора, которое приводит к созданию крутящего момента в обмотке ротора трехфазного асинхронного двигателя, имеющего магнитное поле.
Конструкция трехфазного асинхронного двигателяКонструкция асинхронного двигателя очень проста и надежна.Он состоит в основном из двух частей;
СтаторКак следует из названия, статор является неподвижной частью двигателя. Статор асинхронного двигателя состоит из трех основных частей;
- Рама статора
- Сердечник статора
- Обмотка статора
Рама статора является внешней частью двигателя. Рама статора служит опорой для сердечника статора и обмотки статора.
Придает механическую прочность внутренним частям двигателя. Рама имеет ребра на внешней поверхности для отвода тепла и охлаждения двигателя.
Рама отлита для малых машин и изготовлена для большой машины. В зависимости от области применения рама изготавливается из литой под давлением или сборной стали, алюминия / алюминиевых сплавов или нержавеющей стали.
Сердечник статораНазначение сердечника статора — переносить переменный магнитный поток, который вызывает гистерезис и потери на вихревые токи.Для минимизации этих потерь сердечник ламинирован штамповкой из высококачественной стали толщиной от 0,3 до 0,6 мм.
Эти штамповки изолированы друг от друга лаком. Все штамповки штампуются вместе в форме сердечника статора и фиксируются его рамой статора.
Внутренний слой сердечника статора имеет несколько пазов.
Обмотка статораОбмотка статора расположена внутри пазов статора, имеющихся внутри сердечника статора. Трехфазная обмотка размещена как обмотка статора.А на обмотку статора подается трехфазное питание.
Число полюсов двигателя зависит от внутреннего соединения обмотки статора и определяет скорость двигателя. Если количество полюсов больше, скорость будет меньше, а если количество полюсов меньше, скорость будет высокой. Полюса всегда попарно. Поэтому общее количество полюсов всегда четное число. Соотношение между синхронной скоростью и числом полюсов показано в уравнении ниже:
N S = 120 f / P
Где;
- f = Частота питания
- P = Общее количество полюсов
- N с = Синхронная скорость
Как конец обмотки, подключенный к клеммной коробке.Следовательно, в клеммной коробке шесть клемм (по две каждой фазы).
В зависимости от применения и способа запуска двигателей обмотка статора подключается по схеме звезды или треугольника, и это осуществляется путем соединения клемм в клеммной коробке.
РоторКак следует из названия, ротор — это вращающаяся часть двигателя. По типу ротора асинхронный двигатель классифицируется как;
- Асинхронный двигатель с короткозамкнутым ротором
- Асинхронный двигатель с фазовой обмоткой / асинхронный двигатель с контактным кольцом
Конструкция статора одинакова в обоих типах асинхронных двигателей.Мы обсудим типы роторов, используемых в трехфазных асинхронных двигателях, в следующем разделе, посвященном типам трехфазных асинхронных двигателей.
Типы трехфазных асинхронных двигателей
Трехфазные двигатели подразделяются в основном на две категории в зависимости от обмотки ротора (обмотка катушки якоря), то есть короткозамкнутого ротора и контактного кольца (двигатель с фазным ротором).
- Асинхронный двигатель с короткозамкнутым ротором
- Асинхронный двигатель с скользящим кольцом или с обмоткой ротора
Связанная публикация: Бесщеточный двигатель постоянного тока (BLDC) — конструкция, принцип работы и применение
Индукционный двигатель с короткозамкнутым ротором ДвигательПо форме этот ротор напоминает клетку белки.Поэтому этот двигатель известен как асинхронный двигатель с короткозамкнутым ротором.
Конструкция этого типа ротора очень проста и надежна. Итак, почти 80% асинхронного двигателя — это асинхронный двигатель с короткозамкнутым ротором.
Ротор состоит из многослойного цилиндрического сердечника и имеет пазы на внешней периферии. Прорези не параллельны, но перекошены под некоторым углом. Это помогает предотвратить магнитную блокировку между статором и зубьями ротора. Это обеспечивает плавную работу и снижает гудение.Увеличивает длину проводника ротора, за счет чего увеличивается сопротивление ротора.
Ротор с короткозамкнутым ротором состоит из стержней ротора вместо обмотки ротора. Штанги ротора изготовлены из алюминия, латуни или меди.
Стержни ротора постоянно закорочены концевыми кольцами. Таким образом, он делает полностью закрытый путь в цепи ротора. Стержни ротора приварены или скреплены концевыми кольцами для обеспечения механической поддержки.
Короткое замыкание стержней ротора. Следовательно, невозможно добавить внешнее сопротивление в цепь ротора.
В роторах этого типа не используются контактные кольца и щетки. Следовательно, конструкция этого типа двигателя проще и надежнее.
Асинхронный двигатель с контактным кольцом или с фазным роторомАсинхронный двигатель с контактным кольцом также известен как двигатель с фазным ротором . Ротор состоит из пластинчатого цилиндрического сердечника с прорезями на внешней периферии. Обмотка ротора размещена внутри пазов.
В этом типе ротора обмотка ротора намотана таким образом, что число полюсов обмотки ротора совпадает с числом полюсов обмотки статора.Обмотка ротора может быть соединена звездой или треугольником.
Концевые выводы обмоток ротора соединены с контактными кольцами. Итак, этот двигатель известен как асинхронный двигатель с контактным кольцом.
Внешнее сопротивление может легко подключаться к цепи ротора через контактное кольцо и щетки. И это очень полезно для управления скоростью двигателя и улучшения пускового момента трехфазного асинхронного двигателя.
Электрическая схема трехфазного асинхронного двигателя с контактным кольцом и внешним сопротивлением показана на рисунке ниже.
Внешнее сопротивление используется только для пусковых целей. Если он остается подключенным во время работы, это приведет к увеличению потерь в меди в роторе.
Высокое сопротивление ротора хорошо для начальных условий. Таким образом, внешнее сопротивление подключено к цепи ротора во время запуска.
Когда двигатель работает со скоростью, близкой к фактической, контактные кольца замыкаются накоротко из-за металлической манжеты. Благодаря такому расположению щетки и внешнее сопротивление удаляются из цепи ротора.
Это снижает потери меди в роторе, а также трение в щетках. Конструкция ротора немного сложнее по сравнению с двигателем с короткозамкнутым ротором из-за наличия щеток и контактных колец.
Обслуживание этого мотора больше. Таким образом, этот двигатель используется только тогда, когда требуется регулирование скорости и высокий пусковой момент. В противном случае асинхронный двигатель с короткозамкнутым ротором предпочтительнее асинхронного двигателя с контактным кольцом.
Принцип работы трехфазного асинхронного двигателяОбмотки статора перекрываются под углом 120 ° (электрически) друг к другу.Когда на обмотку статора подается трехфазное питание, в цепи статора индуцируется вращающееся магнитное поле (RMF).
Скорость вращающегося магнитного поля называется синхронной скоростью (N S ).
Согласно закону Фарадея, ЭДС индуцируется в проводнике из-за скорости изменения магнитного потока (dΦ / dt). Схема ротора отсекает магнитное поле статора и ЭДС, индуцированную в стержне или обмотке ротора.
Цепь ротора — закрытый путь. Значит, за счет этой ЭДС по цепи ротора будет протекать ток.
Теперь мы знаем, что проводник с током индуцирует магнитное поле. Итак, ток ротора индуцирует второе магнитное поле.
Относительное движение между магнитным потоком статора и магнитным потоком ротора, ротор начинает вращаться, чтобы уменьшить причину относительного движения. Ротор пытается поймать поток статора и начинает вращаться.
Направление вращения определяется законом Ленца. И находится в направлении вращающегося магнитного поля, индуцированного статором.
Здесь ток ротора создается за счет индуктивности.Поэтому этот двигатель известен как асинхронный двигатель.
Скорость ротора меньше скорости синхронной скорости. Ротор пытается поймать вращающееся магнитное поле статора. Но никогда не улавливает. Следовательно, скорость ротора немного меньше скорости синхронной скорости.
Синхронная скорость зависит от количества полюсов и частоты питания. Разница между фактической скоростью ротора и синхронной скоростью называется скольжением.
Почему скольжение в асинхронном двигателе никогда не бывает нулевым?
Когда фактическая скорость ротора равна синхронной скорости, скольжение равно нулю.Для асинхронного двигателя этого никогда не будет.
Потому что, когда скольжение равно нулю, обе скорости равны и относительного движения нет. Следовательно, в цепи ротора не наведена ЭДС, и ток ротора равен нулю. Следовательно, двигатель не может работать.
Асинхронный двигатель широко используется в промышленности. Потому что преимуществ больше, чем недостатков.
Преимущества и недостатки асинхронных двигателей
Преимущества
Ниже перечислены преимущества асинхронных двигателей:
- Конструкция двигателя очень проста и надежна.
- Асинхронный двигатель работает очень просто.
- Может работать в любых условиях окружающей среды.
- КПД мотора очень высокий.
- Асинхронный двигатель требует меньше обслуживания по сравнению с другими двигателями.
- Это двигатель с одним возбуждением. Следовательно, ему нужен только один источник. Он не требует внешнего источника постоянного тока для возбуждения, как синхронный двигатель.
- Асинхронный двигатель — это самозапускающийся двигатель. Таким образом, для нормальной работы не требуется никаких дополнительных вспомогательных устройств для запуска.
- Стоимость этого мотора очень меньше по сравнению с другими моторами.
- Срок службы этого двигателя очень высок.
- Реакция якоря меньше.
Связанное сообщение: Прямой онлайн-пускатель — Схема подключения стартера прямого включения для двигателей
Недостатки
Недостатки двигателя перечислены ниже;
- В условиях малой нагрузки коэффициент мощности очень низкий. И он потребляет больше тока.Таким образом, потери в меди больше, что снижает эффективность при небольшой нагрузке.
- Пусковой момент этого двигателя (асинхронный двигатель с короткозамкнутым ротором) не меньше.
- Асинхронный двигатель — это двигатель с постоянной скоростью. В приложениях, где требуется регулировка скорости, этот двигатель не используется.
- Управление скоростью этого мотора затруднено.
- Асинхронный двигатель имеет высокий пусковой пусковой ток. Это вызывает снижение напряжения во время запуска.
Асинхронный двигатель в основном используется в промышленности.Асинхронные двигатели с короткозамкнутым ротором используются в жилых и промышленных помещениях, особенно там, где не требуется регулирование скорости двигателей, например:
- Насосы и погружные
- Прессовочный станок
- Токарный станок
- Шлифовальный станок
- Конвейер
- Мукомольные заводы
- Компрессор
- И другие устройства с малой механической мощностью
Двигатели с контактным кольцом используются в тяжелых нагрузках, где требуется высокий начальный крутящий момент, например:
- Сталелитейные заводы
- Подъемник
- Крановая машина
- Подъемник
- Линейные валы
- и другие тяжелые механические мастерские и т. Д.
Связанные сообщения:
Разница между однофазным и трехфазным двигателем —
Когда вы используете устройство, которое использует электричество, вы обычно видите тип источника питания.Стандартным источником питания для домов и предприятий является источник питания переменного тока.
В каждом источнике питания есть тип электрической фазы, на которую он подразделяется. Две категории — однофазные и трехфазные.
Хотя они обеспечивают электрический ток, однофазный и трехфазный двигатель не одно и то же. Давайте посмотрим, чем они отличаются друг от друга, и какой из них лучше всего подходит для ваших нужд.
Электроэнергия, включенная по фазе
Электричество, включенное по фазе, — это ссылка на напряжение существующего провода.Термин «фаза» относится к типу распределительной нагрузки, с которой может справиться провод.
Если используется один провод, он будет иметь большую нагрузку. Если используются три провода, электрическая нагрузка распределяется равномерно. Это существенное различие определяет надежность получаемого вами электрического тока.
Однофазный двигатель
Однофазный двигатель — наиболее распространенный тип, который используется сегодня. В основном он используется для жилых домов и непромышленных предприятий.
Однофазные двигатели переменного тока используют двухпроводную схему.У вас есть фазный провод, по которому проходит ток, и нейтральный провод. Так что, если вы включаете телевизор или один из светильников в доме, вероятно, используется однофазный ток.
Трехфазный двигатель
Трехфазный двигатель вырабатывает электричество, как однофазный двигатель, но распределение нагрузки другое. Он работает с использованием трехпроводных двигателей переменного тока для разделения электричества на разные фазы.
Многие предприятия и производители используют трехфазные двигатели, потому что это снижает потребление электроэнергии и экономит деньги.Системы с трехфазным двигателем также вырабатывают в три раза больше мощности, чем однофазный двигатель, при этом требуется только один дополнительный провод.
Преимущества однофазного питания
Однофазное питание имеет свои преимущества. Опять же, он обеспечивает достаточное количество энергии для жилых домов. Таким образом, он может питать ваш холодильник, телевизор, свет и заряжать ваши устройства.
Конструкция однофазного двигателя также проста. Возможно, наступит время, когда вам нужно будет проверить свой ток.Так что вы сможете понять устройство, если помощь недоступна.
Преимущества трехфазного питания
Предприятия используют трехфазное питание, потому что они могут выдерживать более тяжелую энергетическую нагрузку, а также эффективно ее распределять. Трехфазные двигатели также не требуют дополнительного пускателя, как однофазные двигатели. Это означает, что энергии, обеспечиваемой трехфазным двигателем, достаточно для самостоятельного запуска.
Трехфазный источник питания может быть более экономичным в долгосрочной перспективе.Отсутствие материалов, необходимых для передачи и распределения электрического тока, делает его отличным вариантом для предприятий, которым необходимо использовать большое количество электроэнергии.
Правый фазовый двигатель является ключевым
Теперь, когда вы знаете разницу между однофазным и трехфазным двигателем, электронные тормоза Ambitech могут помочь выбрать подходящий для ваших нужд.
Если вам нужна помощь с двигателем переменного тока или промышленным оборудованием, позвольте нам помочь. Свяжитесь с нами сегодня, если у вас есть другие вопросы по фазным двигателям.
Силовая установка: как использовать трехфазные двигатели
Рано или поздно большинство владельцев небольших магазинов найдут отличную сделку на машине только для того, чтобы обнаружить, что в ней есть трехфазный двигатель. Поскольку трехфазное питание обычно используется в промышленных условиях, многие из этих магазинов будут иметь только однофазное электроснабжение, подключенное к их зданиям. Хотя иногда самое простое решение — просто заменить двигатель, это не всегда разумный вариант. В этой статье я расскажу о других способах вывода трехфазных машин онлайн.
Место, где нам нужно начать это обсуждение, — это точка входа электричества в ваше здание. Основная электрическая панель напрямую связана с трансформатором на опоре электросети или расположенной поблизости подземной электропроводкой. В то время как именно тип электроэнергии, протекающей по улице, определяет вашу способность иметь трехфазное питание, именно трансформатор определяет напряжение, поступающее в ваше здание. Это будет зависеть от вашего местоположения, но здесь я буду называть однофазное питание 220 вольт, а трехфазное — 208 вольт.Хотя в этой статье речь пойдет о двигателях машин с таким напряжением, имейте в виду, что машины с более высоким промышленным напряжением действительно существуют и иногда их можно запускать в соответствии с этой информацией.
Разница между двигателями
Однофазный двигатель рассчитан на работу от 110 или 220 вольт. Питается по двум проводам: две горячие линии, на 220 вольт; или горячий и нейтральный, если 110 вольт. У двигателя может быть или не быть конденсатора, помогающего ему запускаться под нагрузкой, и другого, чтобы немного увеличить его при работе.Если он имеет конденсатор (ы), он также будет иметь встроенный центробежный переключатель для передачи мощности конденсатора на обмотки двигателя.
Трехфазный двигатель — более простое устройство. В нем не используются конденсаторы и переключатели, а вместо этого используются обмотки, обеспечивающие пусковой и рабочий крутящий момент. Отчасти из-за этого 3-фазные двигатели обычно стоят дешевле, чем однофазные. Также трехфазные двигатели разделяют источник питания на 208 В между тремя выводами вместо двух, что означает, что провода, идущие к машине, могут быть меньшего диаметра.Однако, вопреки распространенному мнению, трехфазные двигатели не требуют меньших затрат в эксплуатации, потому что общий ток, протекающий через электросчетчик, будет одинаковым, независимо от того, разделен ли он между двумя или тремя проводами.
Трехфазные преобразователи
Теперь, когда мы рассмотрели различия между двигателями, мы можем рассмотреть варианты, доступные для работы трехфазной машины в однофазной среде. Есть четыре возможности: статические, вращательные и цифровые преобразователи и частотные преобразователи (инверторы).
Статические преобразователи
Статический преобразователь — это электронное устройство, которое передает однофазное напряжение 220 В через две из трех ветвей трехфазного двигателя. Затем он будет электронным образом генерировать энергию для третьей ноги, достаточной для того, чтобы двигатель заработал. После запуска двигателя образовавшаяся третья ветвь отключается, оставляя двигатель работать на однофазной мощности.
Достоинством статических преобразователей является то, что они относительно недороги в приобретении, при этом они компактны и легко устанавливаются на машине.Однако недостатки значительны. Во-первых, статические преобразователи рассчитаны на определенный или низкий диапазон номинальной мощности двигателя. Хотя теоретически вы можете настроить работу двух двигателей от одного статического преобразователя, он может работать только по одному за раз.
Второй недостаток заключается в том, что после отключения третьей ноги, созданной электронным способом, двигатель работает по двум однофазным проводам. Из-за этого он будет развивать только около двух третей своей номинальной мощности. Это может быть нормально, если вы работаете с небольшой нагрузкой, но это может привести к сгоранию двигателя и / или статического преобразователя, если приложена большая нагрузка.
Роторные преобразователи
В основе роторного преобразователя лежит вращающийся трехфазный электродвигатель с конденсаторами и другими электронными компонентами. Поскольку трехфазный двигатель преобразователя вращается свободно, он не требует значительного рабочего крутящего момента, а конденсаторы в схеме помогут его запустить. Таким образом, он может вращаться, используя однофазное питание 220 вольт на двух из трех его ножек.
Эти же два однофазных провода, которые питают двигатель вращающегося преобразователя, затем подключаются непосредственно к двигателю вашей машины, подключаясь к двум из трех выводов двигателя.Поскольку двигатель преобразователя вращается без нагрузки, он действует как генератор, и электрический ток выталкивается из его третьего вывода. Этот третий вывод затем подключается непосредственно к третьей ноге двигателя вашей машины, и вы получаете «истинное» трехфазное питание.
У этой системы есть несколько неожиданное преимущество. Поскольку два из трех проводов к вашей машине поступают от однофазного источника питания, роторный преобразователь обеспечивает только одну треть необходимой мощности. Пока они запускаются по одному, вы можете одновременно запускать несколько двигателей, увеличивая примерно в три раза номинальную мощность вращающегося преобразователя в лошадиных силах.С другой стороны, поскольку двигатели обычно имеют высокие требования к пусковой мощности, вам необходимо приобрести вращающийся преобразователь, который в 1,25–1,5 раза больше, чем самый большой двигатель, который вы захотите запустить. Чем больше нагрузка на двигатель при запуске, тем большего размера должен быть преобразователь.
Хотя роторные преобразователи являются очень хорошим вариантом для 3-фазного преобразования энергии, есть еще несколько недостатков, которые следует учитывать. Во-первых, вы будете оплачивать электрические расходы на вращение двигателя преобразователя, а также двигателя машины.Возможно, вам также придется быть осторожным при подключении преобразователя к машинам с электронными компонентами, чтобы генерируемый провод шел на вход, который не питает электронику. Наконец, в том же духе вам необходимо убедиться, что к вашим машинам подается электрически сбалансированное трехфазное питание. Для этого требуется электрическая схема, которая должна быть спроектирована в качественный роторный преобразователь, но это проблема, которую необходимо изучить при покупке.
Частотные приводы
Это правильное решение для ситуаций, когда ваша новая машина оснащена двигателем с регулируемой скоростью.За исключением некоторых небольших двигателей (например, используемых в ручных электроинструментах), двигатели переменного тока нелегко настроить на регулируемую скорость. Однако это можно сделать на трехфазных асинхронных двигателях с частотным приводом. Это управляемые пользователем электронные устройства, которые смешивают схемы переменного и постоянного тока для обеспечения трехфазного выхода с регулируемой скоростью.
Они доступны в двух вариантах: те, которые могут вводить только трехфазное питание, и другие, которые могут вводить однофазное или трехфазное питание. Оба выходят моделируемой трехфазной мощностью с полным напряжением на всех трех ветвях.После установки они обеспечивают экономию работы статических преобразователей и истинную 3-фазную выходную мощность вращающихся преобразователей.
Цифровые преобразователи
Цифровые преобразователи аналогичны статическим преобразователям и частотным преобразователям, поскольку они полностью электронные по своей природе. Они вырабатывают настоящую трехфазную мощность, но не предназначены для использования с двигателями с регулируемой скоростью, и их не нужно подбирать для конкретного двигателя. Один блок может привести в действие целый магазин. Но цифровые преобразователи — самый дорогой вариант — около 1.В 5–2 раза больше, чем у роторного преобразователя аналогичного размера, и в настоящее время доступны в ограниченном диапазоне размеров. Кроме того, если цифровой преобразователь, который используется для полной переоборудования магазина, имеет отказ электроники, весь цех может выйти из строя до тех пор, пока он не будет отремонтирован или заменен.
Выводы
Итак, какой лучший выбор для вашего магазина?
• Если двух третей номинальной мощности машины будет достаточно, и вы не ожидаете дополнительных потребностей в трехфазной сети в будущем, недорогой статический преобразователь будет хорошим выбором.
• Если вы ввозите такое оборудование, как фрезерный станок с ЧПУ, для которого требуется регулируемая скорость или возможность программирования, то частотные приводы, которые вводят однофазное питание, являются лучшим решением.
• Если вы думаете о цехе с полностью 3-фазным питанием, то цифровой или роторный преобразователь — лучший выбор.
B.H. Дэвис является владельцем B.H. Davis Co., производитель гнутых молдингов из Томпсона, штат Коннектикут,
Эта статья впервые появилась в номере за март 2012 года.
Как подключить трехфазный двигатель
Я пытаюсь починить старую трехфазную дрель.
Из двигателя выходят 3 провода, которые подключаются к трем фазам.
Подключение его к источнику питания ничего не дает, поэтому я проверил его с помощью мультиметра и увидел, что два провода, идущие от двигателя, закорочены вместе, но не с хорошим соединением (~ 25 Ом).
Я не разбираюсь в электричестве, кроме ваших обычных знаний непрофессионала, и определенно не знаю, зачем нужны три фазы или как они используются (или, действительно, что этот термин даже означает, помимо очевидных трех проводов)
Поэтому сначала я предполагал, что это короткое замыкание — неисправность где-то внутри двигателя.
Затем, переосмыслив, я понял, что если три фазы полностью разделены, и нет 0 / заземления, идущего к двигателю, то как можно замкнуть цепь?
Действительно ли это короткое замыкание является неисправностью? как возникает замкнутая цепь, когда единственные линии, идущие в двигатель, — это линии электропередач?
Спасибо 🙂
/ Редактировать
Учитывая полезные ответы и комментарии, я могу только предположить, что что-то внутри двигателя неисправно. Это потому, что 1) Ничего не произошло, когда он был подключен к электричеству, даже ничего плохого.2) Мультиметр показывает, что существует только физическое соединение между одной из трех пар. Надеюсь, я смогу протестировать это дальше и завтра предоставлю фотографии. Спасибо!
/ После дополнительных испытаний
Похоже, я был введен в заблуждение, и к трехфазной розетке в стене даже не подавалось питание. Ой!
Когда на двигатель подается реальная мощность, он как бы пытается вращаться с ОЧЕНЬ сильным сопротивлением, и, в конце концов, через несколько секунд ему удается вращаться очень медленно.Становится очень жарко.
Поскольку существует только физическое соединение между одной из трех пар, я предполагаю, что это означает, что только одна из фаз действительно работает.
Возможно, я попытаюсь полностью открыть его, хотя не думаю, что у меня есть подходящие инструменты для этой работы.
Большое спасибо за ответы и пояснения, по крайней мере, у меня есть базовая информация по этому вопросу, о которой я совершенно ничего не знал два дня назад 🙂
/ Заключение
Двигатель был отправлен на ремонт, и действительно, обмотки испортились, и их пришлось переделывать.
Большое спасибо вам всем за то, что вы меня обучили 🙂
Как подключить трехфазный двигатель?
При подключении 3-фазного двигателя, паспортная табличка показывает разные напряжения для треугольника: 380-400 вольт и 660-690 вольт для звезды. Какой вариант следует выбрать? Напряжение питания от линии к линии составляет 380-400. Каждая обмотка статора двигателя выдерживает напряжение 380-400 В.
Таким образом, если вы подключаете двигатель (статор двигателя) по схеме треугольник, он должен быть подключен к линейному напряжению 380-400 В.
С другой стороны, если вы подключите обмотку статора вашего двигателя в Y, вы сможете подключить двигатель к линейному напряжению, которое составляет sqrt (3) x 380-400 В = 660-690. V.
Фактическая выходная мощность (для стандартного трехфазного двигателя переменного тока с короткозамкнутым ротором) определяется не самим двигателем, а нагрузкой, которую он приводит. Двигатель будет пытаться работать со скоростью, близкой к синхронной, и передавать мощность, необходимую для ведомого оборудования, на этой скорости. Это означает, что ток, потребляемый двигателем при любом заданном напряжении, будет почти одинаковым, независимо от того, подключен ли он звездой или треугольником.Таким образом, если вы подключаете двигатель звездой, питая его напряжением, на которое он рассчитан при подключении по схеме треугольника, ток через каждую обмотку будет в квадрате (3) раз больше, чем рассчитана обмотка. Это снова означает, что рассеивание тепла в обмотке будет примерно в 3 раза больше, чем она предназначена, и, следовательно, она сгорит, если вы загрузите двигатель его номинальной нагрузкой.
Мы должны знать, что мощность двигателя, указанная на его паспортной табличке, в зависимости от доступной мощности панели MCC, к которой он подключен, являются важными факторами при выборе типа запуска двигателя.Примите во внимание тот факт, что при прямом пуске двигателя в треугольник (что является правильным в зависимости от напряжения вашей сети) токи могут достигать 8-кратного номинала двигателя, и если ваш MCC не способен выдерживать этот ток ( уменьшая его напряжение питания), вы можете выйти из строя с типом пуска DOL Delta.