Однофазный двигатель схема: Упс… Кажется такой страницы нет на сайте

Содержание

Управление скоростью вращения однофазных двигателей

 

Однофазные асинхронные двигатели питаются от обычной сети переменного напряжения 220 В.

Наиболее распространённая конструкция таких двигателей содержит две (или более) обмотки — рабочую и фазосдвигающую. Рабочая питается напрямую, а дополнительная через конденсатор, который сдвигает фазу на 90 градусов, что создаёт вращающееся магнитное поле. Поэтому такие двигатели ещё называют двухфазные или конденсаторные.

Регулировать скорость вращения таких двигателей необходимо, например, для:

  • изменения расхода воздуха в системе вентиляции
  • регулирования производительности насосов
  • изменения скорости движущихся деталей, например в станках, конвеерах

В системах вентиляции это позволяет экономить электроэнергию, снизить уровень акустического шума установки, установить необходимую производительность.

 

Способы регулирования

Рассматривать механические способы изменения скорости вращения, например редукторы, муфты, шестерёнчатые трансмиссии мы не будем. Также не затронем способ изменения количества полюсов обмоток.

Рассмотрим способы с изменением электрических параметров:

  • изменение напряжения питания двигателя
  • изменение частоты питающего напряжения

 

Регулирование напряжением

Регулирование скорости этим способом связано с изменением, так называемого, скольжения двигателя — разностью между скоростью вращения магнитного поля, создаваемого неподвижным статором двигателя и его движущимся ротором:

S=(n1-n2)/n2

n1 — скорость вращения магнитного поля

n2 — скорость вращения ротора

При этом обязательно выделяется энергия скольжения — из-за чего сильнее нагреваются обмотки двигателя.

Данный способ имеет небольшой диапазон регулирования, примерно 2:1, а также может осуществляться только вниз — то есть, снижением питающего напряжения.

При регулировании скорости таким способом необходимо устанавливать двигатели завышенной мощности.

Но несмотря на это, этот способ используется довольно часто для двигателей небольшой мощности с вентиляторной нагрузкой.

На практике для этого применяют различные схемы регуляторов.

 

Автотрансформаторное регулирование напряжения

 

Автотрансформатор — это обычный трансформатор, но с одной обмоткой и с отводами от части витков. При этом нет гальванической развязки от сети, но она в данном случае и не нужна, поэтому получается экономия из-за отсутствия вторичной обмотки.

 

 На схеме изображён автотрансформатор T1, переключатель SW1, на который приходят отводы с разным напряжением, и двигатель М1.

Регулировка получается ступенчатой, обычно используют не более 5 ступеней регулирования.

 

 Преимущества данной схемы:

      • неискажённая форма выходного напряжения (чистая синусоида)
      • хорошая перегрузочная способность трансформатора

 Недостатки:

      • большая масса и габариты трансформатора (зависят от мощности нагрузочного мотора)
      • все недостатки присущие регулировке напряжением

 

 

Тиристорный регулятор оборотов двигателя

 

В данной схеме используются ключи — два тиристора, включённых встречно-параллельно (напряжение переменное, поэтому каждый тиристор пропускает свою полуволну напряжения) или симистор.

Схема управления регулирует момент открытия и закрытия тиристоров относительно фазового перехода через ноль, соответственно «отрезается» кусок вначале или, реже в конце волны напряжения.

Таким образом изменяется среднеквадратичное значение напряжения.

Данная схема довольно широко используется для регулирования активной нагрузки — ламп накаливания и всевозможных нагревательных приборов (так называемые диммеры).

Ещё один способ регулирования — пропуск полупериодов волны напряжения, но при частоте в сети 50 Гц для двигателя это будет заметно — шумы и рывки при работе.

Для управления двигателями регуляторы модифицируют из-за особенностей индуктивной нагрузки:

  • устанавливают защитные LRC-цепи для защиты силового ключа (конденсаторы, резисторы, дроссели)
  • добавляют на выходе конденсатор для корректировки формы волны напряжения
  • ограничивают минимальную мощность регулирования напряжения — для гарантированного старта двигателя
  • используют тиристоры с током в несколько раз превышающим ток электромотора

  

 Достоинства тиристорных регуляторов:

      • низкая стоимость
      • малая масса и размеры 

  Недостатки:

      • можно использовать для двигателей небольшой мощности
      • при работе возможен шум, треск, рывки двигателя 
      • при использовании симисторов на двигатель попадает постоянное напряжение
      • все недостатки регулирования напряжением

  

 

Стоит отметить, что в большинстве современных кондиционеров среднего и высшего уровня скорость вентилятора регулируется именно таким способом. 

 

Транзисторный регулятор напряжения

 

Как называет его сам производитель — электронный автотрансформатор или ШИМ-регулятор.

Изменение напряжения осуществляется по принципу ШИМ (широтно-импульсная модуляция), а в выходном каскаде используются транзисторы — полевые или биполярные с изолированным затвором (IGBT).

Выходные транзисторы коммутируются с высокой частотой (около 50 кГц), если при этом изменить ширину импульсов и пауз между ними, то изменится и результирующее напряжение на нагрузке. Чем короче импульс и длиннее паузы между ними, тем меньше в итоге напряжение и подводимая мощность.

Для двигателя, на частоте в несколько десятков кГц, изменение ширины импульсов равносильно изменению напряжения.

Выходной каскад такой же как и у частотного преобразователя, только для одной фазы — диодный выпрямитель и два транзистора вместо шести, а схема управления изменяет выходное напряжение.

 

  Плюсы электронного автотрансформатора:

        • Небольшие габариты и масса прибора
        • Невысокая стоимость
        • Чистая, неискажённая форма выходного тока
        • Отсутствует гул на низких оборотах
        • Управление сигналом 0-10 Вольт

 Слабые стороны:

        • Расстояние от прибора до двигателя не более 5 метров (этот недостаток устраняется при использовании дистанционного регулятора)
        • Все недостатки регулировки напряжением

 

Частотное регулирование

Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.

Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

Однофазные двигатели могут управляться:

  • специализированными однофазными ПЧ
  • трёхфазными ПЧ с исключением конденсатора

 

Преобразователи для однофазных двигателей

 

В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.

Это модель Optidrive E2

 

Для стабильного запуска и работы двигателя используются специальные алгоритмы.

При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

Xc=1/2πfC

f — частота тока

С — ёмкость конденсатора

 В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.

 

 Преимущества специализированного частотного преобразователя:

        • интеллектуальное управление двигателем
        • стабильно устойчивая работа двигателя
        • огромные возможности современных ПЧ:
          • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
          • многочисленные защиты (двигателя и самого прибора)
          • входы для датчиков (цифровые и аналоговые)
          • различные выходы
          • коммуникационный интерфейс (для управления, мониторинга)
          • предустановленные скорости
          • ПИД-регулятор

 Минусы использования однофазного ПЧ:

        • ограниченное управление частотой
        • высокая стоимость

 

Использование ЧП для трёхфазных двигателей

 

 

Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

 

Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого — магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

При работе без конденсатора это приведёт к:

  • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
  • разному току в обмотках

Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

 

 Преимущества:

          • более низкая стоимость по сравнению со специализированными ПЧ
          • огромный выбор по мощности и производителям
          • более широкий диапазон регулирования частоты
          • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

 Недостатки метода:

          • необходимость предварительного подбора ПЧ и двигателя для совместной работы
          • пульсирующий и пониженный момент
          • повышенный нагрев
          • отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями

 

 

Схема включения однофазного электродвигателя

Подключение однофазного электродвигателя к сети 220 вольт.

Подключение трёхфазного электродвигателя к сети 220 вольт.

Подключение однофазного электродвигателя к нажимному пускателю ПНВС.

Подключение однофазного электродвигателя с бифилярными катушками в пусковой обмотке к нажимному пускателю ПНВС.

Подключение трёхфазного электродвигателя к нажимному пускателю ПНВС.

Подключение однофазного электродвигателя с центробежным выключателем пускового конденсатора.

Подключение однофазного электродвигателя с центробежным выключателем пускового конденсатора.

Подключение однофазного электродвигателя с центробежным выключателем пускового конденсатора.

Подключение однофазного электродвигателя с центробежным выключателем пусковой обмотки.

Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.

Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.

В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.

С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

Важное предупреждение

Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

Как состояние подшипников влияет на работу двигателя

Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

Что надо учитывать в конструкции статорных обмоток и как их подготовить

Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

  • у трехфазных двигателей из статора могут выводиться:
  • три жилы при внутренней сборке схемы треугольника;
  • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
  • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
    • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

    Техническое состояние изоляции обмоток

    Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

    В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

    Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

    Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

    Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

    Как видите, промышленностью массово выпущены модели с:

    • повышенным сопротивлением пусковой обмотки;
    • пусковым конденсатором;
    • рабочим конденсатором;
    • пусковым и рабочим конденсатором;
    • экранированными полюсами.

    А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

    • значительное снижение реактивной мощности;
    • повышение КПД;
    • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

    Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

    Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

    Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

    Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

    Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

    Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

    Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

    Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

    Помечаем эти 3 конца уже понятной нам маркировкой:

    Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

    Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

    Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

    Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

    С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

    При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

    Тогда кнопку запуска отпускают:

    • пусковая обмотка отключается самовозвратом среднего контакта;
    • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

    Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

    Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

    Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

    С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

    Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

    Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

    Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

    Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

    2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

    Конденсатор подключают к выводам пусковой и рабочей обмоток.

    В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

    Здесь получается, что:

    • главная обмотка работает напрямую от 220 В;
    • вспомогательная — только через емкость конденсатора.

    Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

    Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

    Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

    Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

    Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

    Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

    При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

    В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

    Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

    Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

    Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

    Где взять номиналы главного и вспомогательного конденсаторов?

    Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

    Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

    Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

    Владелец
    видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

    Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

    Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

    Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

    Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

    В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

    Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

    Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

    Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

    Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

    Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

    Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

    Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

    Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

    Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал. Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу. В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.

    Отличие от трехфазных двигателей

    Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.

    Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:

    1. добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
    2. для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.

    Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.

    После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.

    Как это работает

    Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.

    Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.

    Основные схемы подключения

    В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.

    Различают три основные способа запуска однофазного асинхронного двигателя через:

    • рабочий;
    • пусковой;
    • рабочий и пусковой конденсатор.

    В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.

    Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).

    Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.

    Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.

    Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.

    Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.

    На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.

    Другие способы

    При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

    С экранированными полюсами и расщепленной фазой

    В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.

    После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.

    Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

    С асимметричным магнитопроводом статора

    Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.

    Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.

    Подбор конденсатора

    Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами. Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В. Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя.

    Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.

    Как подключить однофазный двигатель

    Сегодня мы рассмотрим подключение однофазного двигателя переменного тока. К таким относят асинхронные и синхронные моторы, питающиеся от одной фазы, которая обычно имеет напряжение 220 Вольт. Они очень распространены в бытовой сфере и мелком производстве, частном предпринимательстве.

    Подключение однофазного асинхронного двигателя

    Для разгона асинхронного двигателя требуется создать вращающееся магнитное поле. С этим легко справляется трехфазный источник питания, где фазы сдвинуты друг относительно друга на 120 градусов. Но если речь идет о том, как подключить однофазный электродвигатель, то встает проблема: без сдвига фаз вал не начнет вращаться.

    Внутри однофазного асинхронного мотора располагаются две обмотки: пусковая и рабочая. Если обеспечить сдвиг фаз в них, то магнитное поле станет вращающимся. А это главное условие для запуска электродвигателя. Сдвигать фазы можно путем добавочного сопротивления (резистора) или индуктивной катушки. Но чаще всего используют емкости – пусковой и/или рабочий конденсаторы.

    С пусковой емкостью

    В большинстве случаев схема включает в себя только пусковой конденсатор. Он активен только во время запуска мотора. Поэтому способ хорош, когда пуск обещает быть тяжелым, в противном случае вал не сможет разгоняться из-за небольшого начального момента. После разгона пусковой конденсатор отключается, и работа продолжается без него.

    Схема подключения двигателя со вспомогательной емкостью представлена на рисунке выше. Для ее реализации вам потребуется реле или, как минимум, одна кнопка, которую вы будете зажимать на 3 секунды во время запуска мотора в ход. Вспомогательный конденсатор вместе со вспомогательной обмоткой включаются в цепь лишь на некоторое время.

    Такая схема обеспечивает оптимальный начальный крутящий момент, если имеют место незначительные броски переменного тока во время пуска. Но есть и недостаток – при работе в номинальном режиме технические характеристики падают. Это обусловлено формой магнитного поля рабочей обмотки: оно у нее овальное, а не круговое.

    С рабочей емкостью

    Если пуск легкий, а работа тяжелая, то вместо пускового конденсатора понадобится рабочий. Схема подключения показана ниже. Особенность заключается в том, что рабочая емкость вместе с рабочей обмоткой включена в цепь постоянно.

    Схема обеспечивает хорошие характеристики при работе в номинальном режиме.

    С обоими конденсаторами

    Компромиссное решение – использование вспомогательной и рабочей емкости одновременно. Этот способ идеален, если двигатель переменного тока пускается в ход уже с нагрузкой, и сама работа тяжела для него. Посмотрите, схема ниже – это словно две схемы (с рабочей и вспомогательной емкостью), наложенные друг на друга. При запуске на несколько секунд будет включаться пусковой механизм, а второй накопитель будет активен все время: от пуска до завершения работы.

    Расчет емкостей

    Наибольшую сложность для начинающих представляет расчет емкости конденсаторов. Профессионалы подбирают их опытным путем, прислушиваясь к мотору во время запуска и работы. Так они определяют, подходит накопитель, или нужно поискать другой. Но с небольшой погрешностью в большинстве случаев емкость можно рассчитать так:

    • Для рабочего накопителя: 0,7-0,8 мкФ на 1000 Ватт мощности электрического двигателя;
    • Для пускового конденсатора: больше в 2,5 раза.

    Пример: у вас асинхронный однофазный электродвигатель на 2 кВт. Это 2000 Ватт. Значит, при подключении с рабочей емкостью нужно запастись накопителем 1,4-1,6 мкФ. Для пусковой потребуется 3,5-4 мкФ.

    Подключение однофазного синхронного электродвигателя

    Несмотря на сложность конструкции синхронных двигателей, они имеют много преимуществ перед асинхронными. Главное – это низкая чувствительность к скачкам напряжения, ведущих к резкому уменьшению или увеличению силы тока. Не менее значим и тот факт, что синхронные моторы могут работать даже с перегрузкой, не говоря уже об оптимальном режиме реактивной энергии и вращении вала с постоянной скоростью. Однако подключение – трудоемкий процесс, и это уже недостаток.

    Метод разгона

    Нельзя пустить в ход однофазный синхронный двигатель, просто подав питание на его обмотки. Потому что в момент включения направление питающего тока в статорных намотках соответствует рисунку (а). В это время на ротор, который еще находится в состоянии покоя, действует пара сил, которая будет пытаться крутить вал по часовой стрелке. Но через половину периода в статорных намотках ток поменяет свое направление. Поэтому пара сил будет уже действовать в обратном направлении, поворачивая вал против часов стрелки, как на рисунке (б). Поскольку ротор обладает большой инертностью, он так и не сдвинется с места.

    Чтобы заставить ротор вращаться, необходимо, чтобы он успевал сделать хотя бы половину оборота, чтобы изменение направления тока не повиляло на его вращение. Это возможно, если разогнать вал при помощи посторонних сил. Это можно сделать двумя путями:

    1. Вручную;
    2. С использованием второго двигателя.

    Собственной силой рук можно разогнать только маломощные синхронные электродвигатели. А для средне- и высокомощных агрегатов придется использовать другой мотор.

    При разгоне с посторонней силой ротор начинает вращаться со скоростью, близкой к синхронной. Потом только включается обмотка возбуждения, и затем – статорная намотка.

    Асинхронный пуск синхронного мотора

    Если в наконечниках на полюсах ротора уложены стержни из металла, и они соединены между собой по бокам кольцами, то мотор должен запускаться асинхронным методом. Эти стержни играют роль вспомогательной обмотки, которая есть у асинхронного двигателя. При этом намотку возбуждения закорачивают с помощью разрядного резистора, а статорную обмотку подключают к сети. Только так можно обеспечить такой же разгон, как и у асинхронного электродвигателя. Но после того, как скорость вращения максимально приблизится к синхронной (достаточно 95% от нее), намотку возбуждения соединяют с источником постоянного тока. Скорость становится полностью синхронной, что влечет за собой снижение ЭДС индукции вспомогательной обмотки вплоть до нуля. И она отключается автоматически.

    Важно! Вспомогательные металлические стержни должны обладать высоким активным сопротивлением. В противном случае пусковой момент будет недостаточным для разгона ротора. А закорачивать намотку возбуждения необходимо по одной простой причине: если этого не сделать, то у нее в момент пуска случится пробой, потому что она задает вращение в том же направление, что и пусковая обмотка.

    Схема и способ подключения вашего двигателя будет зависеть от того, какой он у вас: синхронный или асинхронный. В учет идет также мощность мотора, а также способ пуска: с нагрузкой или без. Разобраться в рисунках вам поможет элементарное понимание механики и электромагнитных явлений.

     

    Сопротивление обмоток однофазного двигателя — Мастер Фломастер

    Однофазные электрические двигатели – электромеханический преобразователь энергии небольшой мощности. Конструктивно однофазный двигатель похож на трехфазный, однако статорная обмотка такого двигателя является двухфазной (основная и пусковая обмотки).
    Основная (рабочая) обмотка создает магнитное поле при работе электродвигателя. Однако при подключении только рабочей обмотки к питающей сети результирующее магнитное поле будет равно нулю.

    Пусковая (вспомогательная) обмотка предназначена для создания необходимого пускового момента. По способу создания пускового момента однофазные электродвигатели можно разделить на двигатели с рабочим конденсатором (конденсатор постоянно подключен к пусковой обмотке) и двигатели с пусковым конденсатором (конденсатор подключается к вспомогательной обмотке на время пуска).

    По своему конструктивному исполнению основная и пусковая обмотки имеют ряд отличий. В первую очередь это сечение токопроводящих проводников. Сечение проводов рабочей обмотки больше ввиду длительного пребывания обмотки под нагрузкой. Именно это условие и используется при определении пусковой и рабочей обмоток электродвигателя. Рабочая обмотка имеет бОльшее сечение проводника, а следовательно и меньшее активное сопротивление.

    Клеммная коробка однофазного электродвигателя имеет 3 или 4 вывода. Для определения пусковой и рабочей обмоток необходимо произвести измерение активного сопротивления проводников. Иногда обмотки можно различить визуально, зная что рабочая имеет бОльшее сечение.
    Рабочая обмотка подключается к сети переменного тока. Один из выводов пусковой – к выводу рабочей обмотки, второй – через конденсатор к другому концу рабочей обмотки. Направление вращения двигателя определяется подключением пусковой обмотки и не зависит от полярности питающего напряжения.

    Для электродвигателей с 3 выводами также необходимо произвести измерения активных сопротивлений. Довольно часто встречается комбинация сопротивлений 10 Ом, 25 Ом и 15 Ом. При этом один из выводов основной обмотки будет иметь наименьшее сопротивление (10 Ом), а второй при измерениях с двумя другими выводами покажет 10 Ом и 15 Ом. Третий вывод будет выводом пусковой обмотки. Направление вращения такого двигателя можно изменить лишь изменением схемы соединения обмоток, для чего необходимо произвести разборку электродвигателя.

    Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.

    Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.

    В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.

    С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

    Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

    На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

    Важное предупреждение

    Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

    Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

    В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

    Как состояние подшипников влияет на работу двигателя

    Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

    Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

    Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

    Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

    Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

    Что надо учитывать в конструкции статорных обмоток и как их подготовить

    Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

    Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

    Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

    Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

    Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

    Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

    Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

    Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

    Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

    Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

    Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

    Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

    • у трехфазных двигателей из статора могут выводиться:
    • три жилы при внутренней сборке схемы треугольника;
    • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
  • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
    • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

    Техническое состояние изоляции обмоток

    Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

    В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

    Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

    Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

    Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

    Как видите, промышленностью массово выпущены модели с:

    • повышенным сопротивлением пусковой обмотки;
    • пусковым конденсатором;
    • рабочим конденсатором;
    • пусковым и рабочим конденсатором;
    • экранированными полюсами.

    А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

    • значительное снижение реактивной мощности;
    • повышение КПД;
    • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

    Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

    Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

    Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

    Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

    Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

    Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

    Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

    Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

    Помечаем эти 3 конца уже понятной нам маркировкой:

    Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

    Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

    Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

    Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

    С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

    При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

    Тогда кнопку запуска отпускают:

    • пусковая обмотка отключается самовозвратом среднего контакта;
    • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

    Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

    Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

    Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

    С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

    Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

    Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

    Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

    Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

    2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

    Конденсатор подключают к выводам пусковой и рабочей обмоток.

    В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

    Здесь получается, что:

    • главная обмотка работает напрямую от 220 В;
    • вспомогательная — только через емкость конденсатора.

    Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

    Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

    Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

    Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

    Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

    Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

    При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

    В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

    Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

    Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

    Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

    Где взять номиналы главного и вспомогательного конденсаторов?

    Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

    Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

    Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

    Владелец
    видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

    Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

    Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

    Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

    Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

    В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

    Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

    Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

    Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

    Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

    Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

    Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

    Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

    Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

    Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя.

    Асинхронный или коллекторный: как отличить

    Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

    Так выглядит новый однофазный конденсаторный двигатель

    Как устроены коллекторные движки

    Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

    Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

    Строение коллекторного двигателя

    Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

    Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

    Асинхронные

    Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

    Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

    Строение асинхронного двигателя

    Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

    Схемы подключения однофазных асинхронных двигателей

    С пусковой обмоткой

    Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

    Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

    Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

    Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

    Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

    • один с рабочей обмотки — рабочий;
    • с пусковой обмотки;
    • общий.

    С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

    Со всеми этими

      Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

    подключение однофазного двигателя

    Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

    Конденсаторный

    При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

    Схемы подключения однофазного конденсаторного двигателя

    Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

    Схема с двумя конденсаторами

    Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

    При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

    Подбор конденсаторов

    Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

    • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
    • пусковой — в 2-3 раза больше.

    Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

    Изменение направления движения мотора

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

    Однофазный двигатель с конденсатором — Всё о электрике

    2 Схемы

    Принципиальные электросхемы, подключение устройств и распиновка разъёмов

    Схема подключения двигателя через конденсатор

    Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Схема подключения однофазного двигателя через конденсатор

    При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

    • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
    • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
    • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Схема подключения трёхфазного двигателя через конденсатор

    Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

    Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

    Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

    Онлайн расчет емкости конденсатора мотора

    Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

    Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

    Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
    Пусковой подбирается в 2-3 раза больше.

    Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

    Пусковые конденсаторы для моторов

    Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

    При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

    Реверс направления движения двигателя

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

    Как подключить однофазный двигатель

    Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

    Асинхронный или коллекторный: как отличить

    Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

    Так выглядит новый однофазный конденсаторный двигатель

    Как устроены коллекторные движки

    Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

    Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

    Строение коллекторного двигателя

    Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

    Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

    Асинхронные

    Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

    Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

    Строение асинхронного двигателя

    Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

    Схемы подключения однофазных асинхронных двигателей

    С пусковой обмоткой

    Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

    Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

    Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

    Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

    Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

    • один с рабочей обмотки — рабочий;
    • с пусковой обмотки;
    • общий.

    С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

    Со всеми этими

      Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

    подключение однофазного двигателя

    Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

    Конденсаторный

    При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

    Схемы подключения однофазного конденсаторного двигателя

    Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

    Схема с двумя конденсаторами

    Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

    При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

    Подбор конденсаторов

    Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

    • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
    • пусковой — в 2-3 раза больше.

    Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

    Изменение направления движения мотора

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

    Как подключить однофазный асинхронный двигатель через конденсатор?

    На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть. Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются.

    В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение 220 вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой.

    Конструкция и принцип работы

    Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.

    Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.

    Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:

    • статор с основной и дополнительной обмоткой пуска;
    • короткозамкнутый ротор;
    • борно с группой контактов на панели;
    • конденсаторы;
    • центробежный выключатель и многие другие элементы, показанные выше на рисунке.

    Рассмотрим, как подключить однофазный двигатель. С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Совокупность силы полей и токов создают вращающий импульс, прилагаемый к ротору, он начинает вращаться.

    Схемы подключения

    Варианты подключения двигателя через конденсатор:

    • схема подключения однофазного двигателя с использованием пускового конденсатора;
    • подключение электродвигателя с использованием конденсатора в рабочем режиме;
    • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

    Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

    Схема с пусковым конденсатором

    Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

    Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

    Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

    Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

    Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

    В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

    Схема с рабочим конденсатором

    Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

    Комбинированная схема с двумя конденсаторами

    Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

    Установка и подбор компонентов

    Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).

    В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.

    Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:

    • для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
    • для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.

    Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

    {SOURCE}

    Реверс однофазного конденсаторного двигателя — Всё о электрике

    2 Схемы

    Принципиальные электросхемы, подключение устройств и распиновка разъёмов

    Схема подключения двигателя через конденсатор

    Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Схема подключения однофазного двигателя через конденсатор

    При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

    • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
    • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
    • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Схема подключения трёхфазного двигателя через конденсатор

    Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

    Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

    Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

    Онлайн расчет емкости конденсатора мотора

    Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

    Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

    Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
    Пусковой подбирается в 2-3 раза больше.

    Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

    Пусковые конденсаторы для моторов

    Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

    При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

    Реверс направления движения двигателя

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

    Реверс однофазного двигателя

    Однофазным называется такой асинхронный двигатель, на статоре которого имеется лишь одна рабочая обмотка, напрямую питаемая от единственной фазы сети. Есть в однофазном двигателе и вспомогательная (пусковая) обмотка, которая используется только в момент старта двигателя, для того чтобы придать ротору начальный импульс, фактически пусковая обмотка включается с целью вывести ротор из положения равновесия, иначе бы он не сдвинулся с места без посторонней помощи, и его пришлось бы сталкивать как-то иначе.

    Как и в любом двигателе, в однофазном тоже имеются ротор, который вращается, и статор, который неподвижен, а служит лишь для создания изменяющегося во времени магнитного поля. Рабочая и пусковая обмотки расположены на статоре друг относительно друга под прямым углом, причем рабочая обмотка занимает вдвое больше пазов, чем пусковая.

    Можно сказать, что в момент пуска такой двигатель работает как двухфазный, а после — переходит в однофазный рабочий режим. Ротор однофазного асинхронного двигателя по конструкции самый обычный — короткозамкнутый (типа «беличья клетка») или цилиндрический (полый).

    Что получилось бы, если б пусковой обмотки на статоре вообще не было, или она была бы, но не использовалась. В этом случае, при включении двигателя в сеть, в рабочей обмотке появилось бы пульсирующее магнитное поле, и ротор бы попал в условия пронизывающего его изменяющегося магнитного потока.

    Но если ротор изначально неподвижен, а мы внезапно подали переменный ток лишь в рабочую обмотку, то ротор с места не сдвинется, потому что суммарный вращательный момент (против часовой стрелки и по часовой стрелке) будет равен нулю, несмотря на индуцируемые в роторе ЭДС, и нет причин для вращения, ведь возникающие силы Ампера друг друга точно компенсируют.

    Но совсем другое дело, если ротор подтолкнуть, – тогда он продолжит вращение в том же направлении, что и стартовый толчок, ведь теперь не только по закону электромагнитной индукции в роторе наведутся ЭДС и возникнут соответствующие токи, которые по закону Ампера станут от магнитного поля отталкиваться, но и (поскольку ротор уже имеет вращение) результирующий момент по направлению толчка окажется большим, чем момент против направления толчка. В итоге получим продолжение вращения ротора.

    Чтобы пусковая обмотка смогла ротор в начальный момент толкнуть, она должна быть не просто смещена в пространстве относительно рабочей обмотки, но еще и ток в ней должен быть сдвинут по фазе относительно тока рабочей обмотки, тогда совместное действие двух этих обмоток статора окажется эквивалентно не просто пульсирующему магнитному полю, но уже вращающемуся магнитному полю. А это – как раз то, что необходимо для разгона ротора в момент пуска однофазного двигателя.

    Для смещения по фазе тока в пусковой обмотке, как правило применяют необходимой емкости конденсатор, включенный последовательно с пусковой обмоткой, и создающий сдвиг фаз в 90 градусов. Это стандартное решение для двигателя с расщепленной фазой.

    Как только двигатель включается в сеть, оператор нажимает на кнопку выключателя, который подает питание к цепи пусковой обмотки, и как только обороты достигнут необходимого значения соответствующего номиналу при данной частоте сети, кнопку отпускают.

    Для получения реверса однофазного двигателя с конденсаторным пуском, достаточно обеспечить условие, когда пусковой толчок будет подаваться в другом направлении, чем подавался изначально. Это достигается путем изменения относительного порядка чередования фаз в рабочей и пусковой обмотках.

    Для обеспечения данных условия, необходимо переключить рабочую или пусковую обмотку, то есть поменять «полярность» подключения ее выводов к сети либо к сети и к конденсатору. Это несложно реализовать, поскольку на однофазном двигателе есть клеммник, на который выведены каждый из концов как пусковой, так и рабочей обмоток. Рабочая обмотка имеет меньшее активное сопротивление, чем пусковая, поэтому ее несложно найти при помощи мультиметра. Лучшее решение — разместить выводы пусковой обмотки на двухполюсный переключатель без фиксации.

    Реверсивное подключение однофазного асинхронного двигателя своими руками

    Перед выбором схемы подключения однофазного асинхронного двигателя важно определить, сделать ли реверс. Если для полноценной работы вам часто нужно будет менять направление вращения ротора, то целесообразно организовать реверсирование с использованием кнопочного поста. Если одностороннего вращения вам будет достаточно, то подойдет самая простая схема без возможности переключения. Но что делать, если после подсоединения по ней вы решили, что направление нужно все же поменять?

    Постановка задачи

    Предположим, что у уже подсоединенного с использованием пускозарядной емкости асинхронного однофазного двигателя изначально вращение вала направлено по часовой стрелке, как на картинке ниже.

    Уточним важные моменты:

    • Точкой А отмечено начало пусковой обмотки, а точкой В – ее окончание. К начальной клемме A подсоединен провод коричневого, а к конечной – зеленого цвета.
    • Точкой С помечено начало рабочей обмотки, а точкой D – ее окончание. К начальному контакту подсоединен провод красного, а к конечному – синего цвета.
    • Направление вращения ротора обозначено с помощью стрелок.

    Ставим перед собой задачу – сделать реверс однофазного двигателя без вскрытия его корпуса так, чтобы ротор начал вращаться в другую сторону (в данном примере против движения стрелки часов). Ее можно решить тремя способами. Рассмотрим их подробнее.

    Вариант 1: переподключение рабочей намотки

    Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

    1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
    2. Вы увидите, что к этой паре подсоединены две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.

    В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

    Вариант 2: переподключение пусковой намотки

    Второй способ организовать реверс асинхронного мотора 220 Вольт – поменять местами начало и конец пусковой обмотки. Делается это по аналогии с первым вариантом:

    1. Из четырех проводов, выходящих из коробки мотора, выясните, какие из них соответствуют отводкам пусковой намотки.
    2. Изначально конец В пусковой обмотки соединялся с началом С рабочей, а начало А подключалось к пускозарядному конденсатору. Сделать реверс однофазного двигателя можно, подключив емкость к выводу В, а начало С с началом А.

    После описанных выше действий получаем схему, как на рисунке выше: точки А и В поменялись местами, значит ротор стал обращаться в противоположную сторону.

    Вариант 3: смена пусковой обмотки на рабочую, и наоборот

    Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

    На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

    В этом случае поступают так:

    1. Снимают конденсатор с начального вывода А;
    2. Подсоединяют его к конечному выводу D;
    3. От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).

    Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

    Важно! Последний вариант реверсивной схемы подключения асинхронного однофазного мотора неправильный. Его можно использовать, только если соблюдаются условия:

    • Длина пусковой и рабочей намоток одинакова;
    • Площадь их поперечного сечения соответствует друг другу;
    • Эти провода изготовлены из одного и того же материала.

    Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

    Внимание! Даже если длина, толщина и материал обмоток совпадают, работа при измененном направлении вращения ротора не должна быть продолжительной. Это чревато перегревом и выходом из строя двигателя. КПД при этом тоже оставляет желать лучшего.

    Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три. Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть. Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.

    {SOURCE}

    где применяются, схема подключения с конденсатором

    Функционирование однофазного электродвигателя основано на использовании переменного электрического тока посредством подсоединения к сетям с одной фазой. Напряжение в такой сети должно соответствовать стандартному значению 220 Вольт, частота — 50 Герц. Преимущественное применение моторы данного типа находят в бытовых устройствах, помпах, небольших вентиляторах и т.п.

    Мощности однофазных моторов достаточно и для электрификации частных домов, гаражей или дачных участков. В этих условиях используется однофазная электрическая сеть с напряжением 220 В, что предъявляет некоторое требования к процессу подключения мотора. Здесь применяется специальная схема, предполагающая использование устройства с пусковой обмоткой.

    Схема подключения однофазного двигателя через конденсатор

    Однофазные электродвигатели 220в подключают к сети с применением конденсатора. Это обусловлено некоторыми конструктивными особенностями агрегата. Так, на статоре мотора обмотка с переменным током создает магнитное поле, импульсы которого компенсируются лишь при условии смены полярности с частотой 50 Гц. Несмотря на характерные звуки, которые издает однофазный двигатель, вращение ротора при этом не происходит. Крутящий момент создается за счет применения дополнительных пусковых обмоток.

    Чтобы понять, как подключить однофазный электродвигатель через конденсатор, достаточно рассмотреть 3 рабочие схемы с применением конденсатора:

    • пускового;
    • работающего;
    • работающего и пускового (комбинированная).

    Каждая из перечисленных схем подключения подходит для использования при эксплуатации асинхронных однофазных электродвигателей 220в. Однако каждый вариант имеет свои сильные и слабые стороны, поэтому они заслуживают более детального ознакомления.

    Идея применения пускового конденсатора состоит в его включении в цепь лишь в момент запуска мотора. Для этого схемой предусматривается наличие специальной кнопки, предназначенной для размыкания контактов после выхода ротора на заданный уровень скорости. Его дальнейшее вращение происходит под воздействием инерционной силы.

    Поддержание вращательных движений на протяжении длительного промежутка времени обеспечивается магнитным полем основной обмотки однофазного двигателя с конденсатором. Функции переключателя при этом может выполнять специально предусмотренное реле.

    Схема подключения однофазного электродвигателя через конденсатор предполагает наличие нажимной пружинной кнопки, разрывающей контакты в момент размыкания. Такой подход обеспечивает возможность снизить количество используемых проводов (допускается применение более тонкой пусковой обмотки). Во избежание возникновения коротких замыканий между витками рекомендуется применять термореле.

    При достижении критически высоких температур этот элемент деактивирует дополнительную обмотку. Аналогичную функцию может выполнять центробежный выключатель, устанавливаемый для размыкания контактов в случаях превышения допустимых значений скорости вращения.

    Для автоматического контроля скорости вращения и защиты мотора от перегрузов разрабатываются соответствующие схемы, а в конструкции агрегатов вносятся различные корректировочные компоненты. Установку центробежного выключателя можно произвести непосредственно на роторном валу либо на сопряженных с ним (прямым или редукторным соединением) элементах.

    Воздействующая на груз центробежная сила способствует натяжению пружины, соединенной с контактной пластиной. Если скорость вращения достигает заданного значения, происходит замыкание контактов, подача тока на двигатель прекращается. Возможна передача сигнала другому управляющему механизму.

    Существуют варианты схем, при которых в одном элементе конструкции предусматривается наличие центробежного выключателя и теплового реле. Подобное решение позволяет деактивировать двигатель посредством теплового компонента (в случае достижения критических температур) либо под воздействием раздвигающегося элемента центробежного выключателя.

    В случае подключения двигателя через конденсатор часто происходит искажение линий магнитного поля в дополнительной обмотке. Это влечет за собой увеличение мощностных потерь, общее снижение производительности агрегата. Однако сохраняются хорошие показатели пуска.

    Применение рабочего конденсатора в схеме подключение однофазного двигателя с пуcковой обмоткой предполагает ряд отличительных особенностей. Так, после пуска отключения конденсатора не происходит, вращение ротора осуществляется за счет импульсного воздействия со стороны вторичной обмотки. Это существенно увеличивает мощность двигателя, а грамотный побор емкости конденсатора позволяет оптимизировать форму электромагнитного поля. Однако пуск мотора становится более продолжительным.

    Подбор конденсатора подходящей мощности производится с учетом токовых нагрузок, что позволяет оптимизировать электромагнитное поле. В случае изменения номинальных значений будет происходить колебание по всем остальным параметрам. Стабилизировать форму линий магнитных полей позволяет использование нескольких конденсаторов с разными емкостными характеристиками. Такой подход позволяет оптимизировать рабочие характеристики системы, однако предусматривает возникновение некоторых сложностей в процессах монтажа и эксплуатации.

    Комбинированная схема подключения однофазного двигателя с пусковой обмоткой рассчитана на использование двух конденсаторов — рабочего и пускового. Это оптимальное решение для достижения средних рабочих характеристик.

    Расчет емкости конденсатора мотора

    Существует сложная формула, с помощью которой высчитывают необходимую точную емкость конденсатора. Однако многолетний опыт профессионалов показывает, что достаточно придерживаться следующих рекомендаций:

    • на 1 кВт мощности мотора необходимо 0,8 мкФ рабочего конденсатора;
    • пусковая обмотка требует, чтобы это значение было в 2 или 3 раза выше.

    Рабочее напряжение для них должно быть в 1,5 раза выше, чем в электросети (в нашем случае 220 В). Для упрощения процесса запуска в пусковую цепь лучше устанавливать конденсатор с маркировкой «Starting» или «Start». Хотя допускается использование стандартных конденсаторов.

    Реверс направления движения двигателя

    Не исключено, что после подключения однофазные электродвигатели будут вращаться в направлении, обратном необходимому. Исправить это несложно. Во время сборки схемы один провод был выведен, как общий, ещё один проводник был подан на кнопку. Для того чтобы изменить вращающееся магнитное направление электромотора, эти 2 провода необходимо поменять местами.

    Типы однофазных асинхронных двигателей (разделенная фаза, конденсаторный запуск, конденсаторный запуск)

    Однофазные асинхронные двигатели самозапускаются за счет обеспечения дополнительного магнитного потока некоторыми дополнительными средствами.

    Однофазные асинхронные двигатели классифицируются в зависимости от того, как создается этот дополнительный магнитный поток:

    1. Асинхронные двигатели с расщепленной фазой.
    2. Индукторный двигатель с конденсаторным пуском.
    3. Асинхронный двигатель с конденсаторным пуском, запускаемый через конденсатор (метод двухзначных конденсаторов.Используется как для запуска, так и для запуска двигателя).
    4. Двигатель с постоянным разделенным конденсатором (PSC).
    5. Асинхронный двигатель с экранированными полюсами.

    Асинхронный двигатель с разделенной фазой

    В дополнение к основной обмотке или рабочей обмотке статор однофазного асинхронного двигателя имеет другую обмотку, называемую вспомогательной обмоткой или пусковой обмоткой. Центробежный выключатель включен последовательно со вспомогательной обмоткой.

    Этот переключатель предназначен для отключения вспомогательной обмотки от главной цепи, когда двигатель достигает скорости от 75 до 80% от синхронной скорости.

    Мы знаем, что бегущая обмотка имеет индуктивную природу. Мы стремимся создать разность фаз между двумя обмотками, и это возможно, если пусковая обмотка имеет высокое сопротивление.

    На рисунке ниже переменные представляют:

    • I run — ток, протекающий через основную или рабочую обмотку,
    • I start — ток, протекающий в пусковой обмотке,
    • V T — напряжение питания.

    Для обмотки с большим сопротивлением ток почти совпадает по фазе с напряжением, а для обмотки с высокой индуктивностью ток отстает от напряжения на большой угол.

    Пусковая обмотка имеет большое сопротивление, поэтому ток, протекающий в пусковой обмотке, отстает от приложенного напряжения на очень небольшой угол, а рабочая обмотка имеет высокую индуктивность по своей природе, поэтому ток, протекающий в рабочей обмотке, отстает от приложенного напряжения на величину большой угол.

    Результирующая этих двух токов равна I T — результирующая этих двух токов создает вращающееся магнитное поле, которое вращается в одном направлении.

    В асинхронном двигателе с расщепленной фазой , пусковой и основной ток разделяются друг от друга на некоторый угол, поэтому этот двигатель получил свое название как асинхронный двигатель с расщепленной фазой.

    Применение асинхронных двигателей с расщепленной фазой

    Асинхронные двигатели с расщепленной фазой имеют низкий пусковой ток и умеренный пусковой момент.

    Эти двигатели используются в вентиляторах, нагнетателях, центробежных насосах, стиральных машинах, шлифовальных станках, токарных станках, вентиляторах кондиционирования воздуха и т. Д. Эти двигатели доступны в размере от 1/20 до 1/2 кВт.

    Конденсаторный запуск IM и конденсаторный запуск Конденсаторный запуск IM

    Принцип работы индукционных двигателей с конденсаторным запуском почти такой же, как и у асинхронных двигателей с конденсаторным запуском.

    Мы уже знаем, что однофазный асинхронный двигатель не запускается автоматически, потому что создаваемое магнитное поле не вращается. Чтобы создать вращающееся магнитное поле, должна быть некоторая разность фаз.

    В случае асинхронного двигателя с расщепленной фазой мы используем сопротивление для создания разности фаз, но здесь мы используем для этой цели конденсатор. Мы знакомы с тем фактом, что ток, протекающий через конденсатор, приводит к напряжению.

    Итак, в электродвигателе индуктивности запуска конденсатора и индукционном двигателе запуска конденсатора запуска конденсатора мы используем две обмотки, главную обмотку и пусковую обмотку.

    К пусковой обмотке мы подключаем конденсатор, поэтому ток, протекающий в конденсаторе, т.е. I st опережает приложенное напряжение на некоторый угол, φ st .

    Ходовая обмотка является индуктивной по своей природе, поэтому ток, протекающий в рабочей обмотке, отстает от приложенного напряжения на угол φ м .

    Теперь между этими двумя токами возникают большие разности фазового угла, которые создают результирующий ток. Это создаст вращающееся магнитное поле, поскольку крутящий момент, создаваемый этими двигателями, зависит от разности фаз, которая составляет почти 90 o .

    Итак, эти двигатели развивают очень высокий пусковой момент. В случае асинхронного двигателя с конденсаторным пуском центробежный переключатель предназначен для отключения пусковой обмотки, когда двигатель достигает скорости от 75 до 80% от синхронной скорости, но в случае конденсаторного пускового конденсатора запускается асинхронный двигатель.

    В нет центробежного переключателя, поэтому конденсатор остается в цепи и улучшает коэффициент мощности и условия работы однофазного асинхронного двигателя.

    Применение конденсаторного пускового двигателя IM и конденсаторного пускового конденсаторного режима IM

    Эти двигатели обладают высоким пусковым моментом; поэтому они используются в конвейерах, измельчителях, кондиционерах, компрессорах и т. д. Они доступны до 6 кВт.

    Двигатель с постоянным разделенным конденсатором (PSC)

    Он имеет ротор и статор с сепаратором. Статор имеет две обмотки — основную и вспомогательную. Он имеет только один конденсатор, включенный последовательно с пусковой обмоткой. У него нет пускового переключателя.

    Преимущества двигателя с постоянным разделением конденсаторов

    Центробежный переключатель не требуется.Он имеет более высокий КПД и крутящий момент отрыва.

    Применения двигателя с постоянным разделением конденсаторов

    Он находит применение в вентиляторах и нагнетателях в обогревателях и кондиционерах. Он также используется для привода офисной техники.

    Однофазные асинхронные двигатели с экранированными полюсами

    Статор однофазного асинхронного двигателя с экранированными полюсами имеет выступающие или выступающие полюса. Эти полюса затенены медной лентой или кольцом, которое по своей природе является индуктивным.

    Полюса разделены на две неравные половины.Меньшая часть несет медную ленту и называется заштрихованной частью полюса.

    ДЕЙСТВИЕ: Когда однофазное питание подается на статор асинхронного двигателя с экранированными полюсами, создается переменный магнитный поток.

    Это изменение магнитного потока вызывает ЭДС в заштрихованной катушке. Поскольку этот заштрихованный участок закорочен, в нем возникает ток в таком направлении, чтобы противодействовать основному потоку.

    Поток в заштрихованном полюсе отстает от потока в незатененном полюсе. Разность фаз между этими двумя потоками создает результирующий вращающийся поток.

    Мы знаем, что ток обмотки статора имеет переменную природу, как и магнитный поток, создаваемый током статора. Чтобы четко понять работу асинхронного двигателя с экранированными полюсами, рассмотрим три области:

    1. Когда магнитный поток изменяет свое значение от нуля до почти максимального положительного значения.
    2. Когда поток остается почти постоянным при максимальном значении.
    3. Когда поток уменьшается от максимального положительного значения до нуля.

    REGION 1:
    Когда поток меняет свое значение от нуля до почти максимального положительного значения — в этой области скорость нарастания потока и тока очень высока.

    Согласно закону Фарадея, всякий раз, когда происходит изменение потока, индуцируется ЭДС. Поскольку медная полоса представляет собой короткое замыкание, ток начинает течь в медной полосе из-за этой наведенной ЭДС. Этот ток в медной полосе создает собственный поток.

    Согласно закону Ленца, направление этого тока в медной полосе таково, что он противодействует своей собственной причине, то есть увеличению тока.

    Таким образом, поток заштрихованного кольца противостоит основному потоку, что приводит к скоплению потока в незатененной части статора, и поток ослабевает в заштрихованной части.

    Это неравномерное распределение магнитного потока вызывает смещение магнитной оси в середине незатененной части.

    REGION 2:
    Когда поток остается почти постоянным при максимальном значении. В этой области скорость нарастания тока и, следовательно, потока остается почти постоянной.

    Следовательно, в заштрихованной части очень мало наведенной ЭДС. Поток, создаваемый этой наведенной ЭДС, не влияет на основной поток, и, следовательно, распределение потока остается однородным, а магнитная ось лежит в центре полюса.

    REGION 3:
    Когда поток уменьшается от максимального положительного значения до нуля — в этой области скорость уменьшения потока и, следовательно, тока очень высока. Согласно закону Фарадея, всякий раз, когда происходит изменение потока, индуцируется ЭДС.

    Поскольку медная полоса представляет собой короткое замыкание, ток начинает течь в медной ленте из-за этой наведенной ЭДС. Этот ток в медной полосе создает собственный поток. Согласно закону Ленца, направление тока в медной полосе таково, что он противодействует своей собственной причине, т.е.е., уменьшение силы тока.

    Таким образом, поток заштрихованного кольца помогает главному потоку, что приводит к скоплению потока в заштрихованной части статора, и поток ослабевает в незатененной части. Это неравномерное распределение магнитного потока вызывает смещение магнитной оси в середине заштрихованной части полюса.

    Это смещение магнитной оси продолжается в течение отрицательного цикла и приводит к образованию вращающегося магнитного поля. Направление этого поля — от незатененной части полюса к затененной части полюса.

    Преимущества и недостатки электродвигателя с экранированными полюсами

    Асинхронный электродвигатель с экранированными полюсами имеет следующие преимущества:

    1. Очень экономичный и надежный.
    2. Конструкция проста и надежна, так как нет центробежного переключателя.

    Недостатками асинхронного двигателя с экранированными полюсами являются

    1. Низкий коэффициент мощности.
    2. Пусковой момент очень плохой.
    3. КПД очень низкий, так как потери в меди высоки из-за наличия медной полосы.
    4. Реверсирование скорости также сложно и дорого, поскольку требует другого набора медных колец.

    Применения двигателей с экранированными полюсами

    Применения двигателей с экранированными полюсами для асинхронных двигателей:

    Из-за низкого пускового момента и разумной стоимости эти двигатели в основном используются в небольших инструментах, фенах, игрушках, проигрывателях, маленьких вентиляторах и т. Д. электрические часы и т. д. Эти двигатели обычно доступны в диапазоне от 1/300 до 1/20 кВт.

    Однофазный асинхронный двигатель

    — конструкция, работа и типы

    Однофазный асинхронный двигатель — конструкция, работа и типы однофазных асинхронных двигателей

    Однофазные двигатели предпочтительнее трехфазных асинхронных двигателей для бытовые, коммерческие приложения.Поскольку от электросети доступно только однофазное питание. Таким образом, в этом типе применения нельзя использовать трехфазный асинхронный двигатель.

    В следующем посте мы покажем конструкцию и различные типы однофазных асинхронных двигателей с рабочими характеристиками и приложениями.

    Конструкция однофазного асинхронного двигателя

    Однофазный асинхронный двигатель аналогичен трехфазному асинхронному двигателю с короткозамкнутым ротором, за исключением того, что на нем установлены однофазные две обмотки (вместо одной трехфазной обмотки в трехфазных двигателях). Статор и ротор обмотки клетки размещены внутри статора, который свободно вращается с помощью установленных подшипников на валу двигателя.

    Конструкция однофазного асинхронного двигателя аналогична конструкции трехфазного асинхронного двигателя.

    Подобно трехфазному асинхронному двигателю, однофазный асинхронный двигатель также состоит из двух основных частей;

    Связанная публикация: Машина постоянного тока — конструкция, работа, типы и применение

    Статор

    В статоре единственная разница заключается в обмотке статора. Обмотка статора однофазная, а не трехфазная.Сердечник статора такой же, как сердечник трехфазного асинхронного двигателя.

    В однофазном асинхронном двигателе в статоре используются две обмотки, за исключением асинхронного двигателя с экранированными полюсами. Из этих двух обмоток одна обмотка является основной, а вторая — вспомогательной.

    Сердечник статора ламинирован для уменьшения потерь на вихревые токи. Однофазное питание подается на обмотку статора (главную обмотку)

    Ротор

    Ротор однофазного асинхронного двигателя такой же, как ротор асинхронного двигателя с короткозамкнутым ротором.Вместо обмотки ротора используются стержни ротора, которые замыкаются на конце концевыми кольцами. Следовательно, он проходит полный путь в цепи ротора. Стержни ротора прикреплены к концевым кольцам для увеличения механической прочности двигателя.

    Прорези ротора наклонены под некоторым углом, чтобы избежать магнитной связи. К тому же это использовалось для того, чтобы мотор работал плавно и тихо.

    На следующем рисунке показаны статор и ротор однофазного асинхронного двигателя.

    Работа однофазного асинхронного двигателя

    Однофазное питание переменного тока подается на обмотку статора (главную обмотку).Переменный ток, протекающий через обмотку статора, создает магнитный поток. Этот поток известен как основной поток.

    Теперь предположим, что ротор вращается и находится в магнитном поле, создаваемом обмоткой статора. Согласно закону Фарадея, ток начинает течь в цепи ротора, это близкий путь. Этот ток известен как ток ротора.

    Из-за тока ротора вокруг обмотки ротора образуется магнитный поток. Этот поток известен как поток ротора.

    Есть два потока; Основной поток , который создается статором , и второй поток ротора , который создается ротором .

    Взаимодействие между главным потоком и потоком ротора, крутящий момент, создаваемый в роторе, и он начинает вращаться.

    Поле статора имеет переменный характер. Скорость поля статора такая же, как синхронная скорость. Синхронная скорость двигателя зависит от числа полюсов и частоты питания.

    Может быть представлен двумя вращающимися полями. Эти поля равны по величине и вращаются в противоположном направлении.

    Допустим, Φ м — это максимальное поле, индуцированное в основной обмотке.Таким образом, это поле разделено на две равные части: Φ м /2 и Φ м /2.

    Из этих двух полей одно поле Φ f вращается против часовой стрелки, а второе поле Φ b вращается по часовой стрелке. Следовательно, результирующее поле равно нулю.

    Φ r = Φ f — Φ b

    Φ r = 0

    Теперь рассмотрим результирующее поле в разные моменты времени.

    При запуске двигателя индуцируются два поля, как показано на рисунке выше. Эти два поля имеют одинаковую величину и противоположное направление. Итак, результирующий поток равен нулю.

    В этом состоянии поле статора не может разрезаться полем ротора, и результирующий крутящий момент равен нулю. Итак, ротор не может вращаться, но издает гудение.

    Теперь представьте, что после поворота на 90 ° оба поля поворачиваются и указывают в одном направлении. Следовательно, результирующий поток является суммой обоих полей.

    Φ r = Φ f + Φ b

    Φ r = 0

    В этом состоянии результирующее поле равно максимальному полю, создаваемому статором. Теперь оба поля вращаются отдельно, и это альтернативный характер.

    Итак, оба поля отсекаются цепью ротора и ЭДС индуцируется в проводнике ротора. Из-за этой ЭДС в цепи ротора начинает течь ток, который индуцирует поток ротора.

    Благодаря взаимодействию магнитного потока статора и магнитного потока ротора двигатель продолжает вращаться.T его теория известна как теория двойного вращения или теория двойного вращения .

    Теперь, исходя из приведенного выше объяснения, мы можем сделать вывод, что однофазный асинхронный двигатель не самозапускается.

    Чтобы сделать этот двигатель самозапускающимся двигателем, нам нужен поток статора, вращающийся по своей природе, а не по переменной природе. Это можно сделать разными способами.

    Однофазный асинхронный двигатель можно классифицировать по способам пуска.

    Типы однофазных асинхронных двигателей

    Однофазные асинхронные двигатели классифицируются как;

    • Асинхронный двигатель с расщепленными фазами
    • Асинхронный двигатель с экранированными полюсами
    • Асинхронный двигатель с конденсаторным пуском
    • Асинхронный двигатель с конденсаторным пуском
    • Асинхронный двигатель с постоянным конденсатором
    Асинхронный двигатель с расщепленной фазой

    В этом типе асинхронного двигателя на том же сердечнике статора намотана дополнительная обмотка.Итак, в статоре две обмотки.

    Одна обмотка называется основной обмоткой или рабочей обмоткой, а вторая обмотка называется пусковой обмоткой или вспомогательной обмоткой. Центробежный выключатель включен последовательно со вспомогательной обмоткой.

    Вспомогательная обмотка представляет собой обмотку с высоким сопротивлением, а основная обмотка — с высокой индуктивностью. Вспомогательная обмотка имеет несколько витков небольшого диаметра.

    Назначение вспомогательной обмотки — создать разность фаз между обоими потоками, создаваемыми основной обмоткой и обмоткой ротора.

    Схема подключения показана на рисунке выше. Ток, протекающий через основную обмотку, равен I M , а ток, протекающий через вспомогательную обмотку, равен I A . Обе обмотки параллельны и питаются напряжением В.

    Вспомогательная обмотка имеет большое сопротивление. Таким образом, ток I A почти совпадает по фазе с напряжением питания V.

    Основная обмотка имеет высокую индуктивность. Итак, ток I M отстает от напряжения питания на большой угол.

    Полный поток статора индуцируется результирующим током этих двух обмоток. Как показано на векторной диаграмме, результирующий ток представлен как (I). Это создаст разность фаз между потоками, и результирующий поток создаст вращающееся магнитное поле. И мотор начинает вращаться.

    Вспомогательная обмотка используется только для запуска двигателя. Эта обмотка бесполезна в рабочем состоянии. Когда двигатель достигает 75–80% синхронной скорости, центробежный переключатель размыкается.Итак, вспомогательная обмотка отключена от схемы. А двигатель работает только от основной обмотки.

    Разность фаз, создаваемая этим методом, очень мала. Следовательно, пусковой момент этого двигателя плохой. Таким образом, этот двигатель используется в приложениях с низким пусковым моментом, таких как вентилятор, нагнетатель, измельчитель, насосы и т. Д.

    Асинхронный двигатель с экранированным полюсом

    По сравнению с другими типами однофазных асинхронных двигателей, этот двигатель отличается конструкция и принцип работы.Этот тип двигателя не требует вспомогательной обмотки.

    Этот двигатель имеет явный полюс статора или выступающий полюс, а ротор такой же, как у асинхронного двигателя с короткозамкнутым ротором. Полюса статора сконструированы специально для создания вращающегося магнитного поля.

    Полюс этого двигателя разделен на две части; заштрихованная часть и незатененная часть. Его можно создать, разрезав шест на неравные расстояния.

    Медное кольцо помещается в небольшую часть столба. Это кольцо представляет собой высокоиндуктивное кольцо, известное как заштрихованное кольцо или заштрихованная полоса.Часть, в которой проходит заштрихованное кольцо, называется заштрихованной частью шеста, а оставшаяся часть — незатененной частью.

    Конструкция этого двигателя показана на рисунке ниже.

    Когда переменное питание проходит через обмотку статора, в обмотке статора индуцируется переменный поток. Из-за этого потока некоторое количество потока будет связываться с заштрихованным кольцом, и ток будет течь через заштрихованное кольцо.

    Согласно закону Ленца, ток, проходящий через катушку, имеет противоположную природу, и поток, создаваемый этой катушкой, будет противодействовать основному потоку.

    Заштрихованное кольцо представляет собой высокоиндуктивную катушку. Таким образом, он будет противодействовать основному потоку, когда оба потока направлены в одном направлении, и будет увеличивать основной поток, когда оба потока направлены в противоположном направлении.

    Таким образом, он создаст разность фаз между основным магнитным потоком (потоком статора) и потоком ротора. Благодаря этому методу разность фаз очень меньше. Следовательно, пусковой момент намного меньше. Он используется в таких приложениях, как игрушечный двигатель, вентилятор, воздуходувка, проигрыватель грампластинок и т. Д.

    Индукционный двигатель с конденсаторным пуском

    Этот тип двигателя является усовершенствованной версией асинхронного двигателя с расщепленной фазой.Недостатком индукции с расщепленной фазой является низкий крутящий момент. Потому что в этом двигателе создаваемая разность фаз намного меньше.

    Этот недостаток компенсируется в этом двигателе с помощью конденсатора, включенного последовательно со вспомогательной обмоткой. Принципиальная схема этого двигателя показана на рисунке ниже.

    В этом двигателе используется конденсатор сухого типа. Он предназначен для использования с переменным током. Но этот конденсатор не используется для продолжительной работы.

    В этом методе также используется центробежный переключатель, который отключает конденсатор и вспомогательную обмотку, когда двигатель работает на 75-80% синхронной скорости.

    Ток через вспомогательный будет опережать напряжение питания на некоторый угол. Этот угол больше, чем угол, увеличенный в асинхронном двигателе с расщепленной фазой.

    Итак, пусковой момент этого двигателя очень высок по сравнению с асинхронным двигателем с расщепленной фазой. Пусковой момент этого двигателя на 300% больше момента полной нагрузки.

    Из-за высокого пускового момента этот двигатель используется в приложениях, где требуется высокий пусковой крутящий момент, например, в станках для реек, компрессорах, сверлильных станках и т.д. В двигателе два конденсатора включены параллельно во вспомогательную обмотку. Из этих двух конденсаторов один конденсатор используется только для запуска (пусковой конденсатор), а другой конденсатор постоянно подключен к двигателю (рабочий конденсатор).

    Принципиальная схема этого рисунка показана на рисунке ниже.

    Пусковой конденсатор имеет высокое значение емкости, а рабочий конденсатор — низкое значение емкости. Пусковой конденсатор соединен последовательно с центробежным переключателем, который размыкается, когда скорость двигателя составляет 70% от синхронной скорости.

    В рабочих условиях как рабочая, так и вспомогательная обмотки соединены с двигателем. Пусковой момент и КПД этого двигателя очень высоки.

    Следовательно, это может использоваться в приложениях, где требуется высокий пусковой крутящий момент, например, в холодильнике, кондиционере, потолочном вентиляторе, компрессоре и т. Д.

    Асинхронный двигатель с постоянным конденсатором

    Конденсатор низкой емкости постоянно подключен к вспомогательная обмотка. Здесь конденсатор имеет малую емкость.

    Конденсатор используется для увеличения пускового момента, но он низкий по сравнению с конденсаторным пусковым асинхронным двигателем.

    Принципиальная схема и векторная диаграмма этого двигателя показаны на рисунке ниже.

    Коэффициент мощности и КПД этого двигателя очень высоки, а также он имеет высокий пусковой крутящий момент, составляющий 80% крутящего момента при полной нагрузке.

    Этот тип двигателя используется в таких приложениях, как вытяжной вентилятор, нагнетатель, нагреватель и т. Д.

    Применение однофазных асинхронных двигателей

    Однофазные двигатели не самозапускаются и менее эффективны, чем трехфазные асинхронные двигатели, и доступны От 0,5 до 15 л.с., и тем не менее они широко используются для различных целей, таких как:

    • Часы
    • Холодильники, морозильники и обогреватели
    • Вентиляторы, настольные вентиляторы, потолочные вентиляторы, вытяжные вентиляторы, воздухоохладители и водоохладители.
    • Воздуходувки
    • Стиральные машины
    • станки
    • Сушилки
    • Типографы, фотостаты и принтеры
    • Водяные насосы и погружные
    • Компьютеры
    • Шлифовальные машины
    • Буровые станки
    • Прочие инструменты, оборудование для дома и т.

    Похожие сообщения:

    Однофазные двигатели переменного тока (часть 2)




    (продолжение части 1)

    ОПРЕДЕЛЕНИЕ НАПРАВЛЕНИЯ ВРАЩЕНИЯ ДВИГАТЕЛЕЙ РАЗДЕЛЕННОЙ ФАЗЫ

    ==


    FGR.26 Определение направления вращения двигателя с расщепленной фазой.

    ==


    FGR. 27 А конденсаторный двигатель с конденсаторным запуском.

    ==


    FGR. 28 Конденсаторный пуск Конденсаторный двигатель с дополнительным пуском конденсатор.

    ==


    FGR. 29 Потенциальные пусковые реле.

    ==


    FGR. 30 Подключение реле потенциала.

    ==

    Направление вращения однофазного двигателя в целом можно определить когда мотор подключен.

    Направление вращения определяется обращением к задней или задней части мотор. FGR. 26 показана схема подключения для вращения. Если по часовой стрелке желательно вращение, T5 должен быть соединен с T1. Если вращение против часовой стрелки желательно, T8 (или T6) должен быть подключен к T1. Эта схема подключения Предполагается, что двигатель содержит два набора рабочих и два набора пусковых обмоток. Тип используемого двигателя будет определять фактическое подключение.

    Например, FGR.24 показано подключение двигателя с двумя рабочими обмотками. и только одна пусковая намотка. Если бы этот двигатель был подключен по часовой стрелке вращения, клемма T5 должна быть подключена к T1, а клемма T8 должен быть подключен к T2 и T3. Если вращение против часовой стрелки желательно, клемма T8 должна быть подключена к T1, а клемма T5 должен быть подключен к T2 и T3.

    КОНДЕНСАТОРНО-ПУСКОВЫЕ МОТОРЫ КОНДЕНСАТОРА

    Хотя двигатель с конденсаторным пуском работает от конденсатора, это двигатель с расщепленной фазой, он работает по другому принципу, чем индукционный запуск с сопротивлением. двигатель или асинхронный двигатель с конденсаторным пуском.Конденсатор-пуск, конденсатор-бег. двигатель сконструирован таким образом, что его пусковая обмотка остается под напряжением всегда. Конденсатор включен последовательно с обмоткой для обеспечения постоянный ведущий ток в пусковой обмотке (FGR.27). Поскольку пусковая обмотка все время находится под напряжением, центробежный переключатель не необходимо для отключения пусковой обмотки при приближении двигателя к полной скорости.

    Конденсатор, используемый в этом типе двигателя, обычно заполнен маслом. типа, так как он предназначен для постоянного использования.Исключение из этого общего Правило — это небольшие двигатели с дробной мощностью, используемые в реверсивном потолке фанаты. Эти вентиляторы имеют низкое потребление тока и используют электролитический конденсатор переменного тока. чтобы сэкономить место.

    Конденсаторный двигатель с конденсаторным пуском в действительности работает по принципу вращающегося магнитного поля в статоре. Поскольку и запускающие, и пусковые обмотки остаются под напряжением все время, магнитное поле статора продолжает вращаться и двигатель работает как двухфазный двигатель.У этого мотора отличный запуск и рабочий крутящий момент. Он тих в работе и имеет высокий КПД. Поскольку конденсатор все время остается подключенным к цепи, коэффициент мощности двигателя близок к единице.

    Хотя конденсаторный двигатель с конденсаторным пуском не требует центробежного выключатель для отключения конденсатора от пусковой обмотки, некоторые двигатели используйте второй конденсатор во время пускового периода, чтобы улучшить пуск крутящий момент (FGR.28).

    Хороший пример этого можно найти на компрессоре системы кондиционирования. Блок кондиционирования предназначен для работы от однофазной сети. Если двигатель не герметичен, для отключения используется центробежный выключатель пусковой конденсатор из цепи, когда двигатель достигает примерно 75% номинальной скорости. Однако для герметичных двигателей необходимо использовать некоторые тип внешнего переключателя для отключения пускового конденсатора от цепи.

    Двигатель с конденсаторным пуском, работающий от конденсатора, или постоянный разделенный конденсатор двигатель, как его обычно называют в системах кондиционирования и охлаждения промышленность, как правило, использует потенциальное пусковое реле для отключения пусковой конденсатор, когда нельзя использовать центробежный выключатель.Потенциал пусковое реле, FGR. 29A и B, работает, обнаруживая увеличение напряжение, возникающее в пусковой обмотке при работе двигателя. Схема Схема потенциальной цепи пускового реле приведена на FGR. 30. Внутри схемы реле потенциала используется для отключения пускового конденсатора от цепи когда двигатель достигает примерно 75% своей полной скорости. Пусковое реле Катушка SR подключена параллельно пусковой обмотке двигателя.Нормально замкнутый контакт SR включен последовательно с пусковым конденсатором. Когда контакт термостата замыкается, питание подается как на рабочий, так и на рабочий цикл. пусковые обмотки. На этом этапе подключены как пусковой, так и рабочий конденсаторы. в цепи.

    Когда ротор начинает вращаться, его магнитное поле индуцирует напряжение в пусковая обмотка, создавая более высокое напряжение на пусковой обмотке чем приложенное напряжение. Когда двигатель разогнался примерно до 75% от на полной скорости, напряжение на пусковой обмотке достаточно высокое, чтобы подать напряжение на катушку реле потенциала.Это вызывает нормально закрытый Контакт SR для размыкания и отключения пускового конденсатора от цепи. Поскольку пусковая обмотка этого двигателя никогда не отключается от линия питания, катушка потенциального пускового реле остается под напряжением пока двигатель работает.

    ===


    FGR. 31 Затененный полюс.


    FGR. 32 Затеняющая катушка противодействует изменению магнитного потока при увеличении тока.


    FGR.34 Затеняющая катушка препятствует изменению магнитного потока при уменьшении тока.


    FGR. 33 Существует противодействие магнитному потоку, когда ток не меняется.

    ====

    ИНДУКЦИОННЫЕ ДВИГАТЕЛИ С ТЕНЕННЫМ ПОЛЮСОМ

    Асинхронный двигатель с экранированными полюсами популярен благодаря своей простоте. и долгая жизнь. Этот двигатель не содержит пусковых обмоток или центробежного переключателя. Он содержит ротор с короткозамкнутым ротором и работает по принципу вращающегося магнитное поле, создаваемое затеняющей катушкой, намотанной на одной стороне каждого полюса кусок.

    Двигатели с расщепленными полюсами обычно представляют собой двигатели с дробной мощностью, используемые для приложения с низким крутящим моментом, такие как работающие вентиляторы и воздуходувки.

    КАТУШКА ОТТЕНКИ

    Затеняющая катушка намотана на один конец полюсного наконечника (FGR. 31). На самом деле это большая петля из медной проволоки или медной ленты. Два конца соединены, чтобы сформировать полную цепь. Затеняющая катушка действует как трансформатор с закороченной вторичной обмоткой.Когда ток переменного тока форма волны увеличивается от нуля к своему положительному пику, магнитное поле создается в полюсе. Когда магнитные линии потока прорезают затеняющая катушка, в катушке индуцируется напряжение. Поскольку катушка низкая сопротивление короткому замыканию, в шлейфе протекает большое количество тока. Этот ток вызывает сопротивление изменению магнитного потока (FGR. 32). Пока в затеняющей катушке наведено напряжение, будет противодействие изменению магнитного потока.

    Когда переменный ток достигает своего пикового значения, он больше не меняется, и никакое напряжение не индуцируется в затеняющей катушке. Поскольку нет ток в затеняющей катушке отсутствует противодействие магнитному поток. Магнитный поток полюсного наконечника теперь однороден по полюсу. лицо (ЛГР. 33).

    Когда переменный ток начинает уменьшаться от своего пикового значения обратно в сторону нуля магнитное поле полюсного наконечника начинает схлопываться.Напряжение снова вводится в затеняющую катушку. Это индуцированное напряжение создает ток, противодействующий изменению магнитного потока (FGR. 34). Это вызывает магнитный поток, который должен быть сосредоточен в заштрихованной части полюса кусок.

    Когда переменный ток проходит через ноль и начинает увеличиваться отрицательное направление, происходит тот же набор событий, за исключением того, что полярность магнитного поля обратное. Если бы эти события были просмотрены в быстрый порядок, магнитное поле будет видно, чтобы вращаться поперек лица полюса.

    ==


    FGR. 35 Четырехполюсный асинхронный двигатель с расщепленными полюсами.

    ==


    FGR. 36 Обмотка статора и ротор асинхронного двигателя с экранированными полюсами ..

    ===

    СКОРОСТЬ

    Скорость асинхронного двигателя с расщепленными полюсами определяется тем же Факторы, определяющие синхронную скорость других асинхронных двигателей: частота и количество полюсов статора.

    Двигатели с расщепленными полюсами обычно имеют четырех- или шестиполюсные двигатели.FGR. 35 показан чертеж четырехполюсного асинхронного двигателя с расщепленными полюсами.

    ОБЩИЕ РАБОЧИЕ ХАРАКТЕРИСТИКИ

    Двигатель с расщепленными полюсами содержит стандартный ротор с короткозамкнутым ротором. Количество крутящего момента определяется силой магнитного поля статора, напряженности магнитного поля ротора и разность фазовых углов между магнитным потоком ротора и статора. Индукция заштрихованного полюса двигатель имеет низкий пусковой и рабочий крутящий момент.

    Направление вращения определяется направлением, в котором вращающееся магнитное поле движется по лицевой стороне полюса. Ротор поворачивается направление показано стрелкой в ​​FGR. 35.

    Направление можно изменить, сняв обмотку статора и повернув это вокруг. Однако это не обычная практика. Как правило, Асинхронный двигатель с расщепленными полюсами считается нереверсивным. FGR. 36 показаны обмотка статора и ротор асинхронного двигателя с экранированными полюсами.

    ==


    FGR. 37 Трехскоростной мотор.

    ==

    МНОГОСКОПНЫЕ ДВИГАТЕЛИ

    Есть два основных типа многоскоростных однофазных двигателей. Один из них последовательный тип полюса, а другой — запуск конденсатора со специальной обмоткой. конденсаторный двигатель или асинхронный двигатель с экранированными полюсами. Последующий полюс однофазный двигатель работает, реверсируя ток через переменный полюсов и увеличение или уменьшение общего количества полюсов статора.В последующий полюсный двигатель используется там, где необходимо поддерживать высокий крутящий момент. на разных скоростях; например, в двухскоростных компрессорах для центрального кондиционеры.

    МНОГОСКОРОСТНЫЕ ДВИГАТЕЛИ ВЕНТИЛЯТОРА

    Многоскоростные двигатели вентиляторов используются уже много лет. Они вообще намотать от двух до пяти ступеней скорости и задействовать вентиляторы и беличью клетку воздуходувки. Схематический чертеж трехскоростного двигателя показан на FGR. 37. Обратите внимание, что обмотка хода была выбрана для получения низкого, среднего и высокоскоростной.Пусковая обмотка подключена параллельно ходовой обмотке. раздел. Другой конец провода пусковой обмотки подсоединяется к внешнему маслонаполненный конденсатор. Этот двигатель изменяет скорость, добавляя индуктивность последовательно с ходовой обмоткой. Фактическая рабочая обмотка для этого двигателя между выводами отмечены высокий и общий. Обмотка, показанная между высокий и средний соединены последовательно с обмоткой главного хода.

    Когда поворотный переключатель установлен в положение средней скорости, индуктивное сопротивление этой катушки ограничивает количество тока, протекающего через ходовая обмотка.При уменьшении тока обмотки хода сила его магнитного поля уменьшается, и двигатель производит меньший крутящий момент. Этот вызывает большее скольжение, и скорость двигателя снижается.

    Если поворотный переключатель установлен в нижнее положение, индуктивность увеличивается. вставлены последовательно с ходовой обмоткой. Это приводит к меньшему току протекания через обмотку хода и очередное снижение крутящего момента. Когда крутящий момент уменьшается, скорость двигателя снова уменьшается.

    Обычные скорости для четырехполюсного двигателя этого типа: 1625, 1500 и 1350. Об / мин. Обратите внимание, что этот двигатель не имеет широких диапазонов между скоростями, поскольку было бы в случае с последующим полюсным двигателем. Большинство асинхронных двигателей перегрев и повреждение обмотки двигателя, если скорость была снижена до этого степень. Однако этот тип двигателя имеет гораздо более высокое сопротивление обмоток. чем у большинства моторов. Ходовые обмотки большинства электродвигателей с расщепленной фазой имеют провод сопротивление от 1 до 4 Ом.Этот двигатель обычно имеет сопротивление От 10 до 15 Ом в обмотке. Это высокий импеданс обмоток что позволяет двигателю работать таким образом без повреждений.

    Поскольку этот двигатель предназначен для замедления при добавлении нагрузки, он не работает. используется для работы с нагрузками с высоким крутящим моментом — только с нагрузками с низким крутящим моментом, такими как вентиляторы и воздуходувки.

    ОДНОФАЗНЫЕ СИНХРОННЫЕ ДВИГАТЕЛИ

    Однофазные синхронные двигатели малы и развивают только дробную часть Лошадиные силы.Они работают по принципу вращающегося магнитного поля. разработан статором с расщепленными полюсами. Хотя они будут работать синхронно скорости, они не требуют постоянного тока возбуждения. Они используются там, где постоянная требуется скорость, например, в часовых двигателях, таймерах и записывающих приборах, и как движущая сила для маленьких вентиляторов, потому что они маленькие и недорогие. для производства. Есть два основных типа синхронных двигателей: Уоррен, или двигатель General Electric, и двигатель Holtz.Эти двигатели также упоминаются как гистерезисные двигатели.

    ==


    FGR. 38 Мотор Уоррена.

    ==


    FGR. 39 Мотор Holtz.

    ==


    FGR. 40 Якорь и щетки универсального двигателя.

    ==


    FGR. 41 Компенсирующая обмотка подключена последовательно с обмотка возбуждения.

    ==

    УОРРЕН МОТОРС

    Двигатель Уоррена состоит из ламинированного сердечника статора и одного катушка.Катушка обычно намотана для работы на переменном токе 120 В. Ядро содержит две опоры, каждая из которых разделена на две секции.

    Половина каждого полюсного наконечника содержит затеняющую катушку для вращения магнитное поле (FGR. 38). Поскольку статор разделен на два полюса, скорость синхронного поля составляет 3600 об / мин при подключении к 60 Гц.

    Разница между двигателями Уоррена и Хольца заключается в типе ротора. использовал. Ротор двигателя Уоррена построен путем укладки закаленных стальные пластины на валу ротора.Эти диски имеют высокий гистерезис. потеря. Пластины образуют две поперечины для ротора. Когда питание подключено к двигателю вращающееся магнитное поле индуцирует напряжение в роторе, и создается сильный пусковой крутящий момент, заставляющий ротор ускоряться до почти синхронной скорости. Как только двигатель разгонится до почти синхронного скорости, поток вращающегося магнитного поля следует по пути минимума реактивное сопротивление (магнитное сопротивление) через две поперечины.Это вызывает ротор блокируется синхронно с вращающимся магнитным полем, а двигатель работает со скоростью 3600 об / мин. Эти двигатели часто используются с небольшими зубчатыми передачами. снизить скорость до желаемого уровня.

    ДВИГАТЕЛИ HOLTZ

    В двигателе Holtz используется ротор другого типа (FGR. 39). Этот ротор вырезан таким образом, чтобы образовалось шесть прорезей. Эти слоты образуют шесть выступающие (выступающие или выступающие) полюса ротора. Обмотка типа «беличья клетка» создается путем вставки металлической планки в нижнюю часть каждого слота.Когда питание подключено к двигателю, обмотка с короткозамкнутым ротором обеспечивает крутящий момент, необходимый для начала вращения ротора. Когда ротор приближается синхронная скорость, выступающие полюса будут синхронизироваться с полюсами поля каждый полупериод. Это обеспечивает скорость ротора 1200 об / мин (одна треть от синхронная скорость) для двигателя.

    УНИВЕРСАЛЬНЫЕ ДВИГАТЕЛИ

    Универсальный двигатель часто называют двигателем переменного тока. это очень похож на двигатель серии постоянного тока по своей конструкции в том, что он содержит раневая арматура и кисти (FGR.40). Однако универсальный двигатель имеет добавление компенсирующей обмотки. Если был подключен двигатель постоянного тока к переменному току двигатель будет плохо работать по нескольким причинам. Обмотки якоря будут иметь большое индуктивное сопротивление. при подключении к переменному току. Кроме того, полевые столбы большинство машин постоянного тока содержат цельнометаллические полюсные наконечники. Если бы поле было подключено к переменному току большое количество энергии будет потеряно из-за индукции вихревых токов в полюсах.Универсальные двигатели содержат ламинированный сердечник для предотвращения Эта проблема. Компенсирующая обмотка намотана на статор и функционирует. для противодействия индуктивному сопротивлению обмотки якоря.

    Универсальный двигатель назван так потому, что он может работать от переменного или постоянного тока. Напряжение. При работе от постоянного тока компенсирующая обмотка соединен последовательно с последовательной обмоткой возбуждения (FGR. 41).

    ==


    FGR.42 Компенсация проводимости.

    ==


    FGR. 43 Индуктивная компенсация.

    ==


    FGR. 44 Использование поля серии для установки кистей в нейтральной плоскости позиция.

    ==

    ПОДКЛЮЧЕНИЕ КОМПЕНСАЦИОННОЙ ОБМОТКИ ПЕРЕМЕННОГО ТОКА

    Когда универсальный двигатель работает от сети переменного тока, компенсирующий обмотку можно подключить двумя способами. Если он подключен последовательно с якорь, как показано на FGR.42, это называется компенсацией проводимости.

    Компенсирующая обмотка также может быть соединена путем короткого замыкания ее выводов вместе. как показано в FGR. 43. При таком подключении обмотка действует как закороченная вторичная обмотка трансформатора. Наведенный ток позволяет обмотка должна работать при таком подключении. Эта связь известна как индуктивная компенсация. Индуктивная компенсация не может использоваться, когда двигатель подключен к постоянному току.

    НЕЙТРАЛЬНАЯ ПЛОСКОСТЬ

    Так как универсальный двигатель содержит намотанный якорь, коллектор и щетки, щетки должны быть установлены в положение нейтральной плоскости. Этот может быть выполнено в универсальном двигателе аналогично настройке нейтральная плоскость машины постоянного тока. При установке щеток на нейтраль положение плоскости в универсальном двигателе, последовательное или компенсирующее можно использовать обмотку. Чтобы установить кисти в нейтральную плоскость, используйте последовательная обмотка (FGR.44), переменный ток подключен к якорю. ведет. К последовательной обмотке подключают вольтметр. Напряжение тогда наносится на арматуру. Затем положение щетки перемещается до тех пор, пока вольтметр не подключенное к серии поле достигает нулевой позиции. (Нулевая позиция достигается, когда вольтметр достигает своей нижней точки.)

    ===


    FGR. 45: Использование компенсирующей обмотки для установки щеток в нейтральную плоскость позиция.

    ===

    Если компенсирующая обмотка используется для установки нейтральной плоскости, то попеременно на якорь снова подключается ток и подключается вольтметр к компенсационной обмотке (FGR. 45). Затем применяется переменный ток. к якорю, а щетки перемещают до тех пор, пока вольтметр не покажет его максимальное или пиковое напряжение.

    РЕГУЛИРОВКА СКОРОСТИ

    Регулировка скорости универсального двигателя очень плохая.Поскольку это у серийного двигателя такая же плохая регулировка скорости, как у серийного двигателя постоянного тока. Если универсальный двигатель подключен к малой нагрузке или без нагрузки, его скорость практически неограничен. Этот двигатель нередко эксплуатируется при несколько тысяч оборотов в минуту. Универсальные двигатели используются в количество портативных устройств, отличающихся высокой мощностью и малым весом. необходимы, например, буровые электродвигатели, пилы для профессионального использования и пылесосы. Универсальный двигатель способен производить большую мощность для своего размера и веса, потому что его высокой рабочей скорости.

    ИЗМЕНЕНИЕ НАПРАВЛЕНИЯ ВРАЩЕНИЯ

    Направление вращения универсального двигателя можно изменить в таким же образом, как и изменение направления вращения двигателя постоянного тока. Чтобы изменить направление вращения, измените выводы якоря относительно к полю ведет.

    РЕЗЮМЕ

    • Не все однофазные двигатели работают по принципу вращающегося магнитного поле.

    • Двигатели с разделенной фазой запускаются как двухфазные двигатели, создавая противофазу. условие тока в обмотке хода и тока в пуске обмотка.

    • Сопротивление провода в пусковой обмотке пускового резистора. Асинхронный двигатель используется для создания разности фаз между ток в пусковой обмотке и ток в пусковой обмотке.

    • В асинхронном двигателе с конденсаторным пуском используется электролитический конденсатор переменного тока. для увеличения разности фаз между пусковым и рабочим током. Это вызывает увеличение пускового момента.

    • Максимальный пусковой крутящий момент для двигателя с расщепленной фазой достигается, когда ток пусковой обмотки и рабочий ток обмотки сдвинуты по фазе на 90 ° с друг с другом.

    • Большинство асинхронных двигателей с резистивным пуском и индукционные двигатели с конденсаторным пуском. двигатели используют центробежный переключатель для отключения пусковых обмоток, когда двигатель достигает примерно 75% скорости при полной нагрузке.

    • Конденсаторный двигатель с конденсаторным пуском работает как двухфазный двигатель. потому что и пусковая, и пусковая обмотки остаются под напряжением во время работы двигателя.

    • В большинстве электродвигателей с конденсаторным пуском используется масляный конденсатор переменного тока. соединены последовательно с пусковой обмоткой.

    • Конденсатор конденсаторного пускового конденсаторного двигателя помогает исправить коэффициент мощности.

    • Асинхронные двигатели с расщепленными полюсами работают по принципу вращающегося магнитное поле.

    • Вращающееся магнитное поле асинхронного двигателя с экранированными полюсами создается. размещая затемняющие петли или катушки на одной стороне полюсного наконечника.

    • Синхронная полевая скорость однофазного двигателя определяется количество полюсов статора и частота приложенного напряжения.

    • Последовательные полюсные двигатели используются, когда требуется изменение скорости двигателя. и должен поддерживаться высокий крутящий момент.

    • Двигатели многоскоростных вентиляторов состоят из последовательного соединения обмоток. с обмоткой главного хода.

    • Двигатели многоскоростных вентиляторов имеют обмотки статора с высоким сопротивлением для предотвращения их от перегрева при уменьшении их скорости.

    • Направление вращения двигателей с расщепленной фазой изменяется реверсированием. пусковая обмотка по отношению к ходовой обмотке.

    • Двигатели с расщепленными полюсами обычно считаются нереверсивными.

    • Существует два типа однофазных синхронных двигателей: Уоррена и Holtz.

    • Однофазные синхронные двигатели иногда называют двигателями с гистерезисом.

    • Двигатель Уоррена работает со скоростью 3600 об / мин.

    • Двигатель Holtz работает со скоростью 1200 об / мин.

    • Универсальные двигатели работают от постоянного или переменного тока.

    • Универсальные двигатели содержат намотанный якорь и щетки.

    • Универсальные двигатели также называются двигателями серии переменного тока.

    • Универсальные двигатели имеют компенсирующую обмотку, которая помогает преодолевать индукционные реактивное сопротивление.

    • Направление вращения универсального двигателя можно изменить реверсированием. якорь ведет относительно проводов возбуждения.

    ВИКТОРИНА

    1. Какие три основных типа двигателей с расщепленной фазой?

    2.Напряжения в двухфазной системе на сколько градусов не совпадают по фазе. друг с другом?

    3. Как подключены пусковая и рабочая обмотки двигателя с расщепленной фазой? по отношению друг к другу?

    4. Для создания максимального пускового момента в двигателе с расщепленной фазой, на сколько градусов не совпадает по фазе должны запускаться и запускаться токи обмотки быть друг с другом?

    5. В чем преимущество асинхронного двигателя с конденсаторным пуском перед индукционный двигатель с резистивным пуском?

    6.В среднем, на сколько градусов не совпадают по фазе друг с другом пусковые и управляющие токи обмотки в асинхронном двигателе с резистивным пуском?

    7. Какое устройство используется для отключения пусковых обмоток цепи? в большинстве негерметичных асинхронных двигателей с конденсаторным пуском?

    8. Почему двигатель с расщепленной фазой продолжает работать после пусковых обмоток были отключены от цепи?

    9. Как можно изменить направление вращения двигателя с расщепленной фазой?

    10.Если двигатель с двойным напряжением и расщепленной фазой должен работать от высокого напряжения, как связаны друг с другом ходовые обмотки?

    11. При определении направления вращения двигателя с расщепленной фазой, следует ли смотреть на двигатель спереди или сзади?

    12. Какой тип двигателя с расщепленной фазой обычно не содержит центробежного выключатель?

    13. Каков принцип работы конденсаторно-пускового конденсатора. запустить мотор?

    14.Что заставляет магнитное поле вращаться по индукции с заштрихованными полюсами мотор?

    15. Как изменить направление вращения асинхронного двигателя с экранированными полюсами? быть изменен?

    16. Как изменяется скорость последующего полюсного двигателя?

    17. Почему многоскоростной вентиляторный двигатель может работать на более низкой скорости, чем большинство других асинхронные двигатели без вреда для обмоток двигателя?

    18. Какова скорость работы мотора Уоррена?

    19.Какая скорость работы мотора Хольца?

    20. Почему электродвигатель серии переменного тока часто называют универсальным электродвигателем?

    21. Какова функция компенсирующей обмотки?

    22. Как изменить направление вращения универсального двигателя?

    23. Когда двигатель подключен к постоянному напряжению, как должна компенсировать обмотку подключать? 24. Объясните, как установить положение нейтральной плоскости. кистей, используя поле серии.

    25. Объясните, как установить положение нейтральной плоскости с помощью компенсирующего обмотка.

    ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ:

    Вы — подрядчик по электрике, и вас вызвали на дом. установить скважинный насос. Владелец дома купил насос, но делает не знаю как это подключить. Вы открываете крышку клеммной коробки и обнаружите, что двигатель имеет 8 клеммных выводов, помеченных с T1 по T8. Двигатель должен быть подключен к напряжению 240 В.В настоящее время Т-выводы подключены следующим образом: T1, T3, T5 и T7 соединены вместе; и T2, T4, T6 и Т8 соединены вместе. Линия L1 подключена к группе клемм с T1, а линия L2 подключена к группе клемм с T2. Является нужно ли менять провода для работы от 240 В? Если да, то как они связаны?

    Однофазные двигатели переменного тока (часть 1)




    ЦЕЛИ:

    В
    • перечислены различные типы двигателей с расщепленной фазой.
    • обсуждают работу электродвигателей с расщепленной фазой.
    • меняет направление вращения двигателя с расщепленной фазой.
    • обсуждает работу многоскоростных электродвигателей с расщепленной фазой.
    • обсуждает работу двигателей с расщепленными полюсами.
    • обсуждают работу двигателей отталкивающего типа.
    • обсуждают работу шаговых двигателей.
    • обсуждают работу универсальных двигателей.

    ГЛОССАРИЙ ТЕРМИНОВ ОДНОФАЗНЫХ ДВИГАТЕЛЕЙ

    • выключатель центробежный — выключатель, служащий для отключения пусковых обмоток в электродвигателе с расщепленной фазой после того, как электродвигатель разогнался примерно до 75% номинальной скорости
    • компенсационная обмотка — обмотка, используемая в универсальных двигателях для противодействия индуктивное сопротивление в обмотках якоря
    • компенсация проводимости — достигается подключением компенсирующего обмотка универсального двигателя последовательно с обмоткой возбуждения
    • Двигатель Хольца — тип однофазного синхронного двигателя, который работает при скорости 1200 об / мин
    • индуктивная компенсация — достигается замыканием компенсирующего обмотка выводит вместе и позволяет индуцированному напряжению подавать ток к обмотке
    • Многоскоростные однофазные двигатели
    • — двигатели, рассчитанные на более чем одна скорость полной нагрузки
    • нейтральная плоскость — точка, в которой в якоре не возникает напряжения. обмотка
    • run обмотка — одна из обмоток в двухфазном двигателе
    • Асинхронный двигатель с расщепленными полюсами
    • — однофазный двигатель, производящий вращающееся магнитное поле путем затенения одной стороны каждого полюсного наконечника; затенение достигается путем размещения петли из большого медного провода вокруг одной стороны затеняющей катушки полюсного наконечника петля из большого провода, используемая для формирования экранированный полюс
    • Двухфазный двигатель — тип однофазного двигателя, который разделяет ток. поток через две отдельные обмотки для создания вращающегося магнитного поля
    • пусковая обмотка одной из обмоток, используемых в электродвигателе с расщепленной фазой
    • Синхронные двигатели
    • — двигатели, которые работают с постоянной скоростью с любого нагрузка до полной нагрузки синхронная скорость скорость вращающегося магнитного поле асинхронного двигателя переменного тока
    • двухфазный — система питания, вырабатывающая два отдельных фазных напряжения. Универсальный двигатель с разнесением на 90 ° Тип однофазного двигателя, который может работать на постоянном или переменном токе
    • Двигатель Уоррена — тип однофазного синхронного двигателя, который работает при скорости 3600 об / мин

    Хотя большинство крупных двигателей, используемых в промышленности, являются трехфазными, на раз необходимо использовать однофазные двигатели.Однофазные двигатели используются практически исключительно для эксплуатации бытовой техники, такой как кондиционеры, холодильники, колодезные насосы и вентиляторы. Обычно они рассчитаны на работу от 120 В или 240 В. Они имеют размер от долей до нескольких лошадиных сил, в зависимости от приложения.

    РАЗДЕЛЬНЫЕ ДВИГАТЕЛИ

    Электродвигатели с расщепленной фазой делятся на три основных класса:

    1. Асинхронный двигатель с резистивным пуском.
    2. Асинхронный двигатель с конденсаторным пуском.
    3. Конденсаторный двигатель с конденсаторным пуском.

    Хотя эти двигатели имеют разные рабочие характеристики, они похожи по конструкции и используют одинаковый принцип работы. Сплит-фаза моторы получили свое название из-за того, как они работают по принципу вращающееся магнитное поле. Однако вращающееся магнитное поле не может быть производится только с одной фазой. Электродвигатели с расщепленной фазой, таким образом, разделяют протекание тока через две отдельные обмотки для имитации двухфазного питания система.Вращающееся магнитное поле может быть создано двухфазной системой.


    FGR. 1 Двухфазный генератор вырабатывает напряжения, сдвинутые по фазе на 90 °. друг с другом.

    ДВУХФАЗНАЯ СИСТЕМА

    В некоторых частях мира вырабатывается двухфазное питание. Двухфазный Система состоит из генератора с двумя намотанными катушками. 90 ° друг от друга (FGR. 1). Следовательно, напряжения двухфазной системы равны 90 ° сдвинуты по фазе друг к другу.Эти два сдвинутых по фазе напряжения могут создать вращающееся магнитное поле. Потому что должно быть два напряжения или токи в противофазе друг с другом для создания вращающегося магнитного поля, в двигателях с расщепленной фазой используются две отдельные обмотки для создания разности фаз между токами в двух обмотках. Эти моторы буквально раскалываются одна фаза и производят вторую фазу, отсюда и название двигателя с расщепленной фазой.

    ==


    FGR. 2A Обмотка статора используется с асинхронными двигателями с резистивным пуском.

    ==

    Статор электродвигателя с расщепленной фазой содержит две отдельные обмотки: намотка начала и намотка хода.

    Пусковая обмотка сделана из тонкого провода и размещена в верхней части сердечник статора. Обмотка прогона сделана из проволоки сравнительно большого диаметра. размещается в нижней части сердечника статора. Fgrs. -2A и 2B показывают фотографии двух статоров с расщепленной фазой. Статор в A используется для запуска с сопротивлением. асинхронный двигатель или конденсаторный асинхронный двигатель.

    Статор в B используется для конденсаторного двигателя с конденсаторным пуском. Оба статоры содержат четыре полюса, а пусковая обмотка расположена под углом 90 ° от ходовой обмотки.

    Обратите внимание на разницу в размере и положении двух обмоток статор показан на FGR. 2А.

    Пусковая обмотка сделана из небольшого провода и размещена в верхней части сердечник статора. Это приводит к тому, что она имеет более высокое сопротивление, чем обмотка хода.

    Пусковая обмотка располагается между полюсами ходовой обмотки.В ходовая обмотка сделана из проволоки большего диаметра и размещена в нижней части основной. Это дает ему более высокое индуктивное сопротивление и меньшее сопротивление, чем у пусковая обмотка. Эти две обмотки подключены параллельно каждой прочее (FGR. 3).

    При подаче питания на статор ток течет через обе обмотки. Поскольку пусковая обмотка более резистивная, ток течет через нее. будет больше совпадать по фазе с приложенным напряжением, чем будет течь ток через ходовую обмотку.

    Ток, протекающий через рабочую обмотку, будет отставать от приложенного напряжения. из-за индуктивного сопротивления.

    Эти два противофазных тока создают вращающееся магнитное поле в статор. Скорость этого вращающегося магнитного поля называется синхронной. скорость и определяется двумя факторами:

    1. количество полюсов статора
    2. частота приложенного напряжения.

    Скорость вращающегося магнитного поля можно определить по формуле:

    S = 120 F / P

    Где:

    S =

    об / мин

    F = частота в герцах

    P = Количество полюсов статора

    ПРИМЕР

    Однофазный двигатель содержит шесть полюсов статора и подключен к сети 60 Гц. линия.Какая скорость вращающегося магнитного поля?

    S = 120 _ 60 6

    S = 1200 об / мин

    Частота линии электропередачи на всей территории США составляет 60 Гц. Стол 19-1 перечислены обороты в минуту (об / мин) для двигателей с разными номерами. полюсов статора.

    ===

    Табл. 1 об / мин при 60 Гц

    Полюса статора —

    об / мин
    • 2 — 3600
    • 4–1800
    • 6–1200
    • 8–900

    ===

    ==


    FGR.2B Обмотка статора, используемая с конденсаторными двигателями с конденсаторным пуском.

    ==


    FGR. 3 Пусковая и рабочая обмотки подключаются параллельно каждой Другие.

    ==

    СОПРОТИВЛЕНИЕ-ПУСК ИНДУКЦИОННО-РАБОЧИЕ ДВИГАТЕЛИ

    Асинхронный двигатель с резистивным пуском назван так потому, что состояние между пуском и работой обмотки тока вызвано пуском обмотка имеет большее сопротивление, чем обмотка хода.

    Определяется пусковой крутящий момент, создаваемый двигателем с расщепленной фазой. по трем факторам:

    1. Напряженность магнитного поля статора.

    2. Напряженность магнитного поля ротора.

    3. Разность фазового угла между током в пусковой обмотке и ток в обмотке хода. (Максимальный крутящий момент создается, когда эти два токи сдвинуты по фазе на 90 °.)

    Хотя эти два тока не совпадают по фазе друг с другом, они не совпадают по фазе на 90 °.В Обмотка запуска более индуктивна, чем обмотка запуска, но у нее есть некоторое сопротивление, которое предотвращает смещение по фазе тока на 90 ° с напряжением. Пусковая обмотка более резистивна, чем ходовая, но у него есть индуктивное сопротивление, предотвращающее ток от находится в фазе с приложенным напряжением. Следовательно, разность фаз от 35 ° до 40 ° возникает между этими двумя токами, что приводит к довольно слабый пусковой крутящий момент (FGR.4).

    ===


    FGR. 4 Рабочий ток и пусковой ток не совпадают по фазе от 35 ° до 40 °. друг с другом.

    ===


    FGR. 5 Центробежный выключатель используется для отключения пусковой обмотки от схема.

    ===


    FGR. 6 Центробежный выключатель замкнут, когда ротор не вращается.

    ===

    ОТКЛЮЧЕНИЕ ПУСКОВОЙ ОБМОТКИ

    Вращающееся магнитное поле статора необходимо только для запуска ротора. превращение.Как только ротор разгонится примерно до 75% от номинальной скорости, пусковую обмотку можно отключить от цепи, и двигатель будет продолжать работу только с включенной обмоткой хода. Двигатели, которые не герметично закрыты (большинство компрессоров холодильных систем и кондиционеров) герметично закрыты) используйте центробежный выключатель, чтобы отключить пуск обмотки из схемы. Контакты центробежного выключателя соединены последовательно с пусковой обмоткой (FGR.5). Центробежный переключатель содержит набор подпружиненных грузов. Когда вал не вращается, пружины удерживайте фибровую шайбу в контакте с подвижным контактом переключателя (FGR. 6). Волоконная шайба заставляет подвижный контакт замкнуть цепь с стационарный контакт.

    Когда ротор ускоряется примерно до 75% от номинальной скорости, центробежная сила заставляет веса преодолевать силу пружин. Фибровая шайба втягивается и позволяет контактам размыкать и отключать пусковую обмотку из схемы (FGR.7). Пусковая обмотка этого типа двигателя предназначена быть под напряжением только в течение периода времени, в течение которого двигатель фактически начиная. Если не отсоединить пусковую обмотку, она выйдет из строя. чрезмерным током.

    ==


    FGR. 7 Контакт размыкается, когда ротор достигает примерно 75% номинальной скорости.

    ==


    FGR. 8 Подключение реле горячего провода.

    ==


    FGR. 9 Пусковое реле термоэлектрического типа.

    ==

    ПУСКОВОЕ РЕЛЕ

    Асинхронные двигатели с резистивным пуском и индукционные двигатели с конденсаторным пуском иногда герметично закрыты, например, при кондиционировании воздуха и холодильных установках. компрессоры. Когда они герметично закрыты, центробежный переключатель не может использоваться для отключения пусковой обмотки. Устройство, которое можно установить снаружи нужен для отключения пусковых обмоток от цепи. Пусковые реле выполнить эту функцию.

    Есть три основных типа пусковых реле, используемых с пусковым сопротивлением. и электродвигатели с конденсаторным пуском:

    1 Реле горячего провода.

    2 Реле тока.

    3 Твердотельное пусковое реле.

    Реле горячего провода работает как пусковое реле, так и как реле защиты от перегрузки. реле. В схеме, показанной в FGR. 8 предполагается, что термостат контролирует работу мотора. Когда термостат закрывается, ток протекает через резистивный провод и через два нормально замкнутых контакта подключен к пусковой и пусковой обмоткам двигателя.Высокий старт ток двигателя быстро нагревает резистивный провод, вызывая его расширение. Расширение провода вызывает подпружиненный контакт пусковой обмотки. размыкать и отключать пусковую обмотку от цепи, уменьшая двигатель Текущий. Если двигатель не перегружен, резистивный провод никогда не выходит из строя. достаточно горячий, чтобы вызвать размыкание контакта перегрузки, и двигатель продолжает работать. бежать. Однако при перегрузке двигателя резистивный провод расширяется. Достаточно разомкнуть контакт перегрузки и отключить двигатель от сети.Фотография пускового реле с нагревом приведена на FGR. 9.

    Реле тока также работает, определяя величину протекающего тока. в цепи. Этот тип реле работает по принципу магнитного поле вместо расширяющегося металла. Реле тока содержит катушку с несколько витков большого провода и набор нормально разомкнутых контактов FGR. 10. Катушка реле соединена последовательно с ходовой обмоткой электродвигатель, а контакты соединены последовательно с пусковой обмоткой, как показано в FGR.11. Когда контакт термостата замыкается, подается питание. к обмотке двигателя. Поскольку пусковая обмотка разомкнута, двигатель не запускается, что приводит к протеканию высокого тока в цепи рабочей обмотки. Этот сильный ток создает сильное магнитное поле в катушке реле, в результате чего нормально разомкнутые контакты замыкаются и подключают начать намотку на схему.

    При запуске двигателя ток рабочей обмотки значительно снижается, что позволяет пусковые контакты снова разомкнуть и отсоединить пусковую обмотку от схема.

    ===


    FGR. 10 Текущий тип пускового реле.

    ===


    FGR. 11 Подключение реле тока.

    ===


    FGR. 12 Пусковое твердотельное реле.

    ===


    FGR. 13 Подключение твердотельного пускового реле.

    ===

    Пусковое твердотельное реле, FGR. 12, выполняет ту же основную функцию как текущее реле и во многих случаях заменяет как текущее реле и центробежный переключатель.Пусковое твердотельное реле обычно надежнее и дешевле, чем реле тока или центробежный выключатель. Пусковое твердотельное реле на самом деле является электронным компонентом. известный как термистор. Термистор — это устройство, которое демонстрирует изменение сопротивления при изменении температуры. Этот конкретный термистор имеет положительный температурный коэффициент, что означает, что при его температуре увеличивается, увеличивается и его сопротивление. Принципиальная схема в FGR.13 показано подключение твердотельного пускового реле. Термистор включен последовательно с пусковой обмоткой двигателя. Когда мотор не работает, термистор имеет низкую температуру и его сопротивление низкий, обычно 3 или 4 Ом.

    Когда контакт термостата замыкается, ток течет как в рабочий, так и в пусковые обмотки двигателя. Ток, протекающий через термистор вызывает повышение температуры. Эта повышенная температура вызывает сопротивление термистора внезапному изменению до высокого значения в несколько ты и ом.Изменение температуры настолько внезапно, что эффект размыкания набора контактов.

    Хотя пусковая обмотка никогда полностью не отключается от источника питания линии, величина тока, протекающего через нее, очень мала, обычно 0,03 до 0,05 ампера, и не влияет на работу мотора. Этот маленький величина тока утечки поддерживает температуру термистора и предотвращает его возврат к низкому значению сопротивления.

    После отключения двигателя от сети время охлаждения Необходимо подождать 2–3 минуты, чтобы термистор вернулся в нормальное состояние. низкое сопротивление перед перезапуском двигателя.

    ВЗАИМОСВЯЗЬ ПОЛЕЙ СТАТОРА И РОТОРА

    Двигатель с расщепленной фазой содержит ротор с короткозамкнутым ротором (FGR. 14). Когда питание подключено к обмоткам статора, вращающееся магнитное поле индуцирует напряжение на стержнях ротора с короткозамкнутым ротором. Индуцированная напряжение заставляет ток течь в роторе, и создается магнитное поле вокруг стержней ротора. Магнитное поле ротора притягивается к поля статора, и ротор начинает вращаться в направлении вращающееся магнитное поле.После размыкания центробежного выключателя только бег обмотка индуцирует напряжение в роторе. Это индуцированное напряжение синфазно. с током статора.

    Индуктивное реактивное сопротивление ротора высокое, что вызывает ток ротора. быть почти на 90 ° не совпадающим по фазе с наведенным напряжением. Это вызывает пульсирующее магнитное поле ротора, чтобы отставать от пульсирующего магнитного поля статора на 90 °. Магнитные полюса, расположенные посередине между статором полюса, создаются в роторе (FGR.15). Эти два пульсирующих магнитных поля создают собственное вращающееся магнитное поле, и ротор продолжает движение. вращать.

    ===


    FGR. 14 Ротор с короткозамкнутым ротором, используемый в двигателе с расщепленной фазой.

    ===


    FGR. 15 Вращающееся магнитное поле создается статором и ротором. поток.

    ===


    FGR. 16 Электролитический конденсатор переменного тока соединен последовательно с пусковым обмотка.

    ===


    FGR. 17 Ток в обмотке и ток в пусковой обмотке не совпадают по фазе на 90 °. друг с другом.

    ===


    FGR. 18 Асинхронный двигатель с конденсаторным пуском.

    ===

    НАПРАВЛЕНИЕ ВРАЩЕНИЯ

    Направление вращения двигателя определяется направлением вращения вращающегося магнитного поля, создаваемого бегом и пуском обмоток при первом запуске двигателя.Направление вращения мотора можно изменить, изменив подключение любой пусковой обмотки. или обмотка хода, но не то и другое одновременно. Если пусковая обмотка отключена, двигатель может работать в любом направлении, вручную вращая ротор вал в желаемом направлении вращения.

    КОНДЕНСАТОРНО-ПУСКОВЫЕ ДВИГАТЕЛИ

    Асинхронный двигатель с конденсаторным пуском очень похож по конструкции. и работа асинхронного двигателя с резистивным пуском.Конденсатор пусковой асинхронный двигатель, однако, имеет подключенный электролитический конденсатор переменного тока последовательно с центробежным переключателем и пусковой обмоткой (FGR. 16).

    Хотя рабочие характеристики индукционного запуска конденсатора двигатель и асинхронный двигатель с резистивным пуском идентичны, пусковой характеристики нет. Конденсаторный пуск асинхронного двигателя производит пусковой момент, который существенно выше, чем при пуске с сопротивлением асинхронный двигатель.Напомним, что один из факторов, определяющих пусковой момент для двигателя с расщепленной фазой — это разность фаз между начать ток обмотки и запустить ток обмотки. Пусковой момент Асинхронный двигатель с резистивным запуском имеет низкое значение, поскольку разность фаз между этими двумя токами только около 40 ° (FGR. 16).

    Когда конденсатор надлежащего размера включен последовательно с пусковым обмотки, это заставляет ток в пусковой обмотке опережать приложенное напряжение.Этот опережающий ток вызывает сдвиг фазы на 90 ° между током рабочей обмотки. и пусковой ток обмотки (FGR.17). Максимальный пусковой крутящий момент развивается в этот момент.

    Хотя индукционный двигатель с конденсаторным пуском имеет высокий пусковой момент, двигатель не следует запускать чаще восьми раз в час.

    Частый запуск может привести к повреждению пускового конденсатора из-за перегрева. Если конденсатор необходимо заменить, следует соблюдать осторожность при использовании конденсатора правильного рейтинга микрофарад.Если конденсатор слишком малой емкости используется, пусковой ток будет меньше 90 ° по фазе с рабочий ток, и пусковой крутящий момент будет уменьшен. Если емкость значение слишком велико, пусковой ток будет не совпадать по фазе более чем на 90 ° с рабочим током, и пусковой момент снова будет уменьшен. Асинхронный двигатель с конденсаторным пуском показан на FGR. 18.

    ДВУХНАПРЯЖНЫЕ ДВИГАТЕЛИ С РАЗДЕЛЕНИЕМ ФАЗЫ

    ==


    FGR.19 Обмотки двойного напряжения для двигателя с расщепленной фазой.

    ==


    FGR. 20 Высоковольтное соединение для двигателя с расщепленной фазой на два хода и две пусковые обмотки. СТАРТОВЫЕ ОБМОТКИ

    ==


    FGR. 21 Низковольтное соединение для двигателя с расщепленной фазой с двумя рабочими и две пусковые обмотки.

    ==


    FGR. 22 Двигатель с двойным напряжением и одной пусковой обмоткой, обозначенной T5 и T6.

    ==


    FGR.23 Двигатель с двойным напряжением и одной пусковой обмоткой, обозначенной T5 и T8.

    ==


    FGR. 24 Высоковольтное соединение с одной пусковой обмоткой.

    ==


    FGR. 25 Низковольтное соединение для двигателя с расщепленной фазой с одним пуском обмотка.

    ==

    Многие электродвигатели с расщепленной фазой рассчитаны на работу от 120 или 240 В. FGR. 19 показана принципиальная схема двигателя с расщепленной фазой, рассчитанного на два напряжения. операция.Этот конкретный двигатель содержит две рабочие обмотки и две пусковые обмотки. обмотки.

    Номера выводов однофазных двигателей нумеруются стандартным образом. Одна из обмоток хода имеет номера выводов Т1 и Т2. Другая обмотка его выводы пронумерованы T3 и T4. В этом двигателе используются два разных набора начать намотку проводов. Один набор помечен T5 и T6, а другой набор помечены как Т7 и Т8.

    Если двигатель должен быть подключен для работы от высокого напряжения, рабочие обмотки и пусковые обмотки будут подключены последовательно, как показано на FGR.20.

    Затем пусковые обмотки подключаются параллельно ходовым обмоткам. Если желательно противоположное направление вращения, T5 и T8 будут изменены.

    Для работы от низкого напряжения обмотки должны быть соединены параллельно. как показано в FGR. 21.

    Это соединение выполняется путем предварительного параллельного соединения обмоток хода. соединяя Т1 и Т3 вместе, а Т2 и Т4 вместе. Пусковые обмотки соединяются параллельно, соединяя T5 ​​и T7 вместе, а T6 и T8 вместе.Затем пусковые обмотки подключаются параллельно ходовым обмоткам. Если требуется противоположное направление вращения, следует поменять местами T5 и T6. вместе с Т7 и Т8.

    Не все однофазные двигатели с двойным напряжением содержат два набора пусковых обмоток. FGR. 22 показана принципиальная схема двигателя, содержащего два комплекта ходовые обмотки и только одна пусковая обмотка.

    На этом рисунке пусковая обмотка обозначена T5 и T6. Некоторые моторы, однако обозначьте пусковую обмотку, обозначив ее T5 и T8, как показано на FGR.23.

    Независимо от того, какой метод используется для маркировки клемм начать намотку, соединение будет таким же. Если двигатель должен быть подключен для работы с высоким напряжением, рабочие обмотки будут подключены последовательно и пусковая обмотка будет подключена параллельно одному из прогонов обмотки, как показано на FGR. 24. В этом типе двигателя каждая обмотка рассчитана на при 120 В. Если рабочие обмотки соединены последовательно через 240 В, каждая обмотка будет иметь падение напряжения 120 В.Подключив пусковую обмотку параллельно только через одну обмотку, он получит только 120 В, когда на двигатель подается питание. Если противоположное направление вращения желательно, следует изменить Т5 и Т8.

    Если двигатель должен работать от низкого напряжения, обмотки подключаются. параллельно, как показано в FGR. 25. Поскольку все обмотки соединены параллельно, каждый из них получит 120 В при подаче питания на двигатель.

    (продолжение в части 2)

    Что такое асинхронный двигатель с расщепленной фазой? — его Приложения

    Электродвигатель с разделенной фазой также известен как электродвигатель запуска с сопротивлением .Он имеет ротор с одной клеткой, а его статор имеет две обмотки, известные как основная обмотка и пусковая обмотка. Обе обмотки смещены в пространстве на 90 градусов. Основная обмотка имеет очень низкое сопротивление и высокое индуктивное сопротивление, тогда как пусковая обмотка имеет высокое сопротивление и низкое индуктивное реактивное сопротивление. Схема подключения двигателя представлена ​​ниже:

    Резистор включен последовательно со вспомогательной обмоткой. В результате ток в двух обмотках неодинаков, вращающееся поле неоднородно.Следовательно, пусковой крутящий момент невелик, порядка 1,5–2-кратного заявленного рабочего крутящего момента. При запуске двигателя обе обмотки включаются параллельно.

    Как только двигатель достигает скорости примерно 70 80% синхронной скорости, пусковая обмотка автоматически отключается от сети питания. Если мощность двигателей составляет около 100 Вт или более, центробежный переключатель используется для отключения пусковой обмотки, а для двигателей с меньшей мощностью используется реле для отключения обмотки.

    Реле подключено последовательно с основной обмоткой. При запуске в цепи протекает сильный ток, и контакт реле замыкается. Таким образом, пусковая обмотка находится в цепи, и по мере того, как двигатель достигает заданной скорости, ток в реле начинает уменьшаться. Таким образом, реле размыкает и отключает вспомогательную обмотку от источника питания, в результате чего двигатель работает только от основной обмотки.

    Векторная диаграмма асинхронного двигателя с расщепленной фазой показана ниже:

    Ток в основной обмотке (I M ) отстает от напряжения питания V почти на угол 90 градусов.Ток во вспомогательной обмотке I A примерно совпадает по фазе с линейным напряжением. Таким образом, существует разница во времени между токами двух обмоток. Разность фаз во времени ϕ составляет не 90 градусов, а порядка 30 градусов. Этой разности фаз достаточно для создания вращающегося магнитного поля.

    Характеристика крутящего момента скорости вращения двигателя с расщепленной фазой показана ниже:

    Здесь n 0 — точка, в которой срабатывает центробежный выключатель.Пусковой крутящий момент двигателя с сопротивлением пуска примерно в 1,5 раза превышает крутящий момент при полной нагрузке. Максимальный крутящий момент примерно в 2,5 раза превышает крутящий момент при полной нагрузке примерно при 75% синхронной скорости. Пусковой ток двигателя примерно в 7-8 раз превышает значение полной нагрузки.

    Направление электродвигателя с резистивным пуском можно изменить, изменив направление подключения основной или пусковой обмотки. Реверс двигателя возможен только в состоянии покоя.

    Применение асинхронного двигателя с расщепленной фазой

    Этот тип двигателя дешев и подходит для легкого пуска нагрузок с ограниченной частотой пуска. Этот тип двигателя не используется для приводов, которым требуется более 1 кВт из-за низкого пускового момента. Различные приложения следующие:

    • Применяется в стиральных машинах и вентиляторах кондиционеров.
    • Двигатели используются в миксерах-шлифовальных машинах, полировальных машинах.
    • Воздуходувки, Центробежные насосы.
    • Станок сверлильно-токарный.

    Это все об асинхронных двигателях с расщепленной фазой.

    Типы однофазных асинхронных двигателей

    Однофазный асинхронный двигатель запускается несколькими способами. Механические методы не очень практичны, поэтому двигатель временно запускается путем преобразования его в двухфазный двигатель.

    Однофазные асинхронные двигатели классифицируются по вспомогательным средствам, используемым для запуска двигателя.Они классифицируются следующим образом:

    1. Двухфазный двигатель
    2. Конденсаторно-пусковой двигатель
    3. Конденсаторный двигатель, конденсаторный двигатель
    4. Двигатель с постоянным разделенным конденсатором (PSC)
    5. Электродвигатель с расщепленными полюсами

    1. Асинхронный двигатель с расщепленной фазой:

    Асинхронный двигатель с расщепленной фазой также известен как двигатель с резистивным пуском . Он состоит из одноклеточного ротора, а его статор имеет две обмотки? основная обмотка и пусковая (также называемая вспомогательной) обмотка.Обе обмотки смещены в пространстве на 90 °, как обмотки в двухфазном асинхронном двигателе. Основная обмотка асинхронного двигателя имеет очень низкое сопротивление и высокое индуктивное сопротивление.

    Рисунок: Асинхронный двигатель с разделением фаз (a) Принципиальная схема (b) Диаграмма

    Характеристики двигателя:

    Пусковой момент асинхронного двигателя с резистивным пуском примерно в 1,5 раза больше крутящего момента при полной нагрузке. Максимальный крутящий момент или крутящий момент отрыва примерно в 2,5 раза превышает крутящий момент при полной нагрузке примерно при 75% синхронной скорости.Двигатель с расщепленной фазой имеет высокий пусковой ток, который обычно в 7-8 раз превышает значение полной нагрузки.

    Приложения:

    Двухфазные двигатели наиболее подходят для легко запускаемых нагрузок, где частота запуска ограничена, и они очень дешевы.

    1. Эти моторы используются в стиральных машинах.
    2. Они используются в вентиляторах кондиционирования воздуха.
    3. Используется в пищевых миксерах, шлифовальных машинах, полировальных машинах, воздуходувках, центробежных насосах,
    4. Они используются в небольших дрелях, токарных станках, оргтехнике и т. Д.
    5. Иногда они также используются для приводов, требующих более 1 кВт.

    Конденсаторные двигатели:

    Конденсаторные двигатели — это двигатели, которые имеют конденсатор в цепи вспомогательной обмотки для создания большей разности фаз между током в основной и вспомогательной обмотках. Есть три типа конденсаторных двигателей.


    2. Конденсаторно-пусковой двигатель:

    Двигатель с конденсаторным пуском развивает гораздо более высокий пусковой момент, то есть в 3,0–4,5 раза больше крутящего момента при полной нагрузке.Для получения высокого пускового момента емкость пускового конденсатора должна быть большой, а сопротивление пусковой обмотки — низким. Из-за высокого номинального значения VAr требуемого конденсатора используются электролитические конденсаторы порядка 250 F. Конденсатор Cs рассчитан на кратковременный ток.

    Эти двигатели более дорогие, чем двигатели с расщепленной фазой, из-за дополнительной стоимости конденсатора.

    Рисунок: Конденсаторный пусковой двигатель (a), принципиальная схема (b) Диаграмма

    Приложения:

    1. Эти двигатели используются для тяжелых нагрузок, когда требуется частый запуск.
    2. Эти двигатели используются для насосов и компрессоров, поэтому они используются в качестве компрессора в холодильнике и кондиционере.
    3. Они также используются для конвейеров и некоторых станков.

    3. Двухзначный конденсаторный двигатель

    Этот двигатель имеет ротор с сепаратором, а его статор имеет две обмотки, а именно основную обмотку и вспомогательную обмотку. Две обмотки смещены в пространстве на 90 °. В двигателе используются два конденсатора Cs и CR. На начальном этапе два конденсатора подключаются параллельно.

    Рисунок: Конденсаторный двигатель с двумя значениями

    Приложения:

    1. Конденсаторные двигатели с двумя номиналами используются для нагрузок с большей инерцией, требующих частого запуска.
    2. Применяются в насосном оборудовании.
    3. Применяются в холодильных установках, воздушных компрессорах и т. Д.

    4. Двигатель с постоянным разделением конденсаторов (PSC):

    Эти двигатели имеют ротор с сепаратором, и его ротор состоит из двух обмоток, а именно основной обмотки и вспомогательной обмотки.Однофазный асинхронный двигатель имеет только один конденсатор С, который включен последовательно с пусковой обмоткой. Конденсатор С постоянно включен последовательно с пусковой обмоткой. Конденсатор C постоянно включен в цепь в условиях запуска и работы.

    Преимущества

    Однозначный конденсаторный двигатель имеет следующие преимущества:

    1. В двигателях этого типа центробежный выключатель не требуется.
    2. Этот двигатель имеет более высокий КПД.
    3. Он имеет более высокий коэффициент мощности из-за постоянно подключенного конденсатора.
    4. Обладает более высоким крутящим моментом отрыва.

    Ограничения конденсаторного двигателя с постоянным разделением:

    1. Электролитические конденсаторы нельзя использовать для непрерывной работы. Следовательно, следует использовать конденсаторы с масляным наполнением, разнесенные по бумаге. Бумажные конденсаторы того же номинала больше по размеру и дороже.
    2. Однозначный конденсатор имеет низкий пусковой крутящий момент, обычно меньший, чем крутящий момент при полной нагрузке.

    Приложения:

    1. Эти двигатели используются для вентиляторов и нагнетателей в обогревателях.
    2. Применяется в кондиционерах.
    3. Применяется для привода компрессоров холодильников.
    4. Также используется для работы с оргтехникой.

    5. Двигатель с экранированными полюсами:

    Двигатель с расщепленными полюсами — это простой тип однофазного асинхронного двигателя с самозапуском. Он состоит из статора и ротора клеточного типа. Статор состоит из выступающих полюсов.У каждого полюса есть прорези сбоку, а на меньшей части установлено медное кольцо. Эта часть называется заштрихованным полюсом. Кольцо обычно представляет собой одновитковую катушку, известную как затеняющая катушка.

    Рис.: Двигатель с расщепленными полюсами и двумя полюсами статора.

    Приложения:

    1. Двигатели с расщепленными полюсами используются для привода устройств, требующих низкого пускового момента.
    2. Эти двигатели очень подходят для небольших устройств, таких как реле, вентиляторы всех типов и т. Д., Из-за их низкой начальной стоимости и легкости запуска.
    3. Чаще всего эти двигатели применяются в настольных вентиляторах, вытяжных вентиляторах, фенах, вентиляторах для холодильного оборудования и оборудования для кондиционирования воздуха, электронном оборудовании, охлаждающих вентиляторах и т. Д.

    Пусковой конденсатор двигателя | Приложения

    Конденсаторы моторные

    Асинхронные двигатели

    переменного тока, также известные как асинхронные двигатели, используют вращающееся магнитное поле для создания крутящего момента. Трехфазные двигатели получили широкое распространение, поскольку они надежны и экономичны.Вращающееся магнитное поле легко достигается в трехфазных асинхронных двигателях, поскольку сдвиг фазового угла между отдельными фазами составляет 120 градусов. Однако однофазные двигатели переменного тока требуют внешней схемы, которая создает сдвиг фазового угла для создания вращающегося магнитного поля. Эта схема может быть реализована с использованием усовершенствованной силовой электроники или, проще говоря, с использованием конденсатора двигателя.

    На видео ниже показано простое для понимания объяснение принципа работы асинхронного двигателя переменного тока.

    Однофазные асинхронные двигатели переменного тока

    Однокатушечные асинхронные двигатели переменного тока

    Асинхронные двигатели

    переменного тока обычно используют две или более катушек для создания вращающегося магнитного поля, которое создает крутящий момент на роторе. Когда используется одна катушка, она генерирует пульсирующее магнитное поле, которого достаточно для поддержания вращения, но недостаточно для запуска двигателя с места. Двигатели с одной катушкой должны запускаться с использованием внешней силы и могут вращаться в любом направлении.Направление вращения зависит от внешней силы. Если двигатель был запущен по часовой стрелке, он продолжит вращаться и набирает скорость по часовой стрелке, пока не достигнет максимальной скорости, которая определяется частотой источника питания. Точно так же он продолжит вращение против часовой стрелки, если первоначальное вращение было против часовой стрелки. Эти двигатели непрактичны из-за невозможности самостоятельно надежно начать вращение.

    Пусковой конденсатор асинхронных двигателей переменного тока

    Одним из способов улучшения конструкции с одной катушкой является использование вспомогательной катушки последовательно с пусковым конденсатором двигателя.Вспомогательная катушка, также называемая пусковой катушкой, используется для создания начального вращающегося магнитного поля. Чтобы создать вращающееся магнитное поле, ток, протекающий через основную обмотку, должен быть в противофазе по отношению к току, протекающему через вспомогательную обмотку. Роль пускового конденсатора заключается в том, чтобы задерживать ток во вспомогательной обмотке, выводя эти два тока в противофазе. Когда ротор достигает достаточной скорости, вспомогательная катушка отключается от цепи с помощью центробежного переключателя, а двигатель остается запитанным от одной катушки, создающей пульсирующее магнитное поле.В этом смысле вспомогательную катушку в этой конструкции можно рассматривать как пусковую катушку, поскольку она используется только во время запуска двигателя.

    Конденсатор пусковой / рабочий, асинхронные двигатели переменного тока

    Еще одним способом дальнейшего улучшения конструкции однофазного асинхронного двигателя с одной катушкой является введение вспомогательной катушки, которая остается под напряжением не только во время фазы запуска двигателя, но и во время нормальной работы. В отличие от двигателя переменного тока, использующего только пусковой конденсатор двигателя, который создает пульсирующее магнитное поле во время нормальной работы, двигатели переменного тока, использующие пусковой конденсатор двигателя и рабочий конденсатор двигателя, создают вращающееся магнитное поле во время нормальной работы.Функция пускового конденсатора двигателя остается такой же, как и в предыдущем случае — он отключается от цепи после того, как ротор достигает заданной скорости с помощью центробежного переключателя. После этого вспомогательная обмотка остается запитанной через рабочий конденсатор двигателя. На рисунке ниже показан этот тип конструкции.

    Конденсаторы пускового и пускового электродвигателя

    Пусковые конденсаторы

    Пусковые конденсаторы двигателя используются во время фазы запуска двигателя и отключаются от цепи, когда ротор достигает заданной скорости, которая обычно составляет около 75% максимальной скорости для этого типа двигателя.Эти конденсаторы обычно имеют емкость более 70 мкФ. Они бывают разных номиналов напряжения, в зависимости от того, для чего они предназначены.

    Рабочие конденсаторы

    В некоторых конструкциях однофазных двигателей переменного тока используются рабочие конденсаторы, которые остаются подключенными к вспомогательной катушке даже после того, как пусковой конденсатор отключен центробежным переключателем. Эти конструкции работают, создавая вращающееся магнитное поле. Конденсаторы для работы двигателя предназначены для непрерывного режима работы и остаются под напряжением при включении двигателя, поэтому не используются электролитические конденсаторы, а вместо них используются полимерные конденсаторы с низкими потерями.Значение емкости рабочих конденсаторов обычно ниже, чем емкость пусковых конденсаторов, и часто находится в диапазоне от 1,5 мкФ до 100 мкФ. Выбор неправильного значения емкости для двигателя может привести к неравномерному магнитному полю, которое может проявляться как неравномерная скорость вращения двигателя, особенно под нагрузкой. Это может вызвать дополнительный шум от двигателя, падение производительности и повышенное потребление энергии, а также дополнительный нагрев, который может вызвать перегрев двигателя.

    Приложения

    Пусковые и пусковые конденсаторы двигателя используются в однофазных асинхронных двигателях переменного тока.Такие двигатели используются, когда однофазный источник питания более практичен, чем трехфазный, например, в бытовых приборах.

    Добавить комментарий

    Ваш адрес email не будет опубликован.