Магнит электрический: Мощный электрический магнит для промышленного использования

Содержание

Мощный электрический магнит для промышленного использования

О продукте и поставщиках:
Ищу электрический магнит. на Alibaba.com, которые можно использовать для безопасного перемещения металлических предметов, которые в противном случае были бы слишком тяжелыми для переноски вручную. Держите один на складе или на стройке для дополнительного удобства. Купить электрический магнит. поднимать и загружать стальные листы или стержни для хранения или транспортировки. Используйте один, чтобы повысить производительность без ущерба для безопасности сотрудников.

Большинство электрический магнит. имеют портативную конструкцию, позволяющую легко использовать ее. Доступны более крупные конструкции кранов для ситуаций, когда металлические предметы необходимо поднимать на большую высоту. Многие из них предназначены для поддержания мощного магнитного притяжения, которое не будет быстро исчезать со временем. При активации каждый блок будет надежно удерживать объект, не беспокоясь о его скольжении или падении. Доступны несколько весов для более эффективного удовлетворения различных потребностей.

Производители электрический магнит. на Alibaba.com могут быть предложены различные цвета и размеры на выбор. Проверьте наличие сертификатов, которые обещают качественное оборудование и высокие стандарты безопасности. Отчеты об испытаниях оборудования часто могут быть предоставлены по запросу. Многие поставщики помогут установить комплекты большего размера, а также предложат поддержку инженеров, чтобы сделать обслуживание более удобным. Некоторые могут изготовить устройство на заказ, чтобы убедиться, что оно соответствует назначению.

Найдите доступное по цене электрический магнит. указывает на Alibaba.com и продолжайте работать, не беспокоясь о стоимости. Купите портативный для небольшого производства или более крупную конструкцию, которая будет лучше служить крупному производственному предприятию. Сохраните душевное спокойствие, выбрав модель, которая прослужит долгое время и при этом будет обеспечивать качественные характеристики.

Электрический магнит Защита безопасности Двери Оперы

Электромагнит удерживаемого Алюминий Серебро с кнопкой разблокировки 19002 Opera

использование
Электромагнит удержан огня от двери до двери

версия
С помощью кнопки выхода
Настенный монтаж

Необязательно
Стандарт:
в приведенном ниже описании
Диапазон регулировки силы: 10-50 кг (защищающий магнит от отрываясь стенами после повторного злоупотребления)
Двойной источник питания: 24/48 В постоянного тока автоматический выбор (полезно для французского рынка)
Регулируемая прочность + Двоевластие

спецификации
Анодированный алюминиевый корпус серебристого цвета с основанием из оцинкованной стали
Блокировка электромагнита никель
Напряжение питания: 24 В постоянного тока — Потребляемый ток: 70 мА
Прочность фиксированной силы:> 55 кг

Остаточная анти-магнетизм штифт на электромагнит
штекер соединения с варистора анти-помех

Соответствие: UNI EN 1155.

по запросу
Свяжитесь с нами, чтобы добавить варианты:
— 12 В постоянного тока
— Источник питания 12 В переменного тока
— Источник питания 24 В переменного тока
— Источник питания 48 В постоянного тока
— Уменьшение силы 20 кг
— датчик государственного

ВАЖНО
Поставляется без рецепта.
Навершие продается на нашем сайте. Выбрать из:
— Исправлена ошибка счетчика (. Art 01800Z Opera)
— Счетчик крученые (. Art 01805Z Opera).

Серия Контроль работы пожарной
Eletromagnets, предназначенный для противопожарных дверей
Регуляторы для раздвижных противопожарных дверей
гидравлические амортизаторы удара

Управление пожарной сигнализации monozona
Дымовые и тепловые детекторы

доступа к управлению Opera
Opera SRL, специализирующаяся на разработке и реализации elettromaniglie, была создана в 1997 году в городе Модена, Эмилия-Романья, земля еды и двигателей. Весь менеджмент компании исходит из опыта, который блокирует рога для более века присутствует в городе Модена. Компания характеризуется непрерывным расширением на мировых рынках, но с сильными корнями в Италии.

Сделано в Италии
Более 40% оборота производится за границей, но 90% наших поставщиков являются локальными. Почти все продукты производятся в современном промышленном предприятии с использованием экологически чистыми технологиями и качеством работы. Мы гордимся тем, что производим и жить в Модене, северный итальянский город, который с 1997 года входит в список Всемирного наследия ЮНЕСКО.

Сила и слабость постоянных магнитов — Энергетика и промышленность России — № 7 (59) июль 2005 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 7 (59) июль 2005 года

Поскольку электрический ток (его свойства) – следствие движения электрических зарядов, а последние перемещаются относительно других неподвижных зарядов, возникают различные электрические взаимодействия. Что же следует понимать под «чистым» электрическим током?

Чистым или нейтральным током можно, по всей видимости, назвать ситуацию, когда имеются условно удаленные от других заряды, состоящие из равного количества отрицательно и положительно заряженных частиц, одни из которых двигаются относительно других в преобладающем направлении. Именно взаимное движение зарядов противоположного знака друг относительно друга – и есть нейтральный ток. Другие варианты движения зарядов, допустим, с преобладанием зарядов одного знака, будут в своем роде производными от нейтрального тока и соответственно иметь некоторые особенности электрических взаимодействий.

Во многих ситуациях мы имеем дело далеко не с нейтральными токами, поскольку существуют как неравномерное распределение зарядов по длине проводников с током, так и скачки напряженности электрического поля на некоторых границах проводников (наличие вызывающего ток ЭДС и т. п.). Поэтому для изучения свойств нейтрального тока следует пользоваться либо кольцевым сверхпроводником с током, либо постоянными магнитами, которые в данном случае условно можно рассматривать как систему с кольцевым нейтральным током.

Кольцевые токи магнитов

Рассматривая постоянные магниты, как кольцевые нейтральные токи, можно сделать некоторые общие замечания. Электрический кольцевой ток поддерживается без внешней подпитки достаточно длительное время. Процесс протекания нейтрального тока не сопровождается тепловыделением или электромагнитными излучениями (просто поддерживается тепловой баланс с окружающей средой и телом постоянного магнита).

Несмотря на то что «магнитные» нейтральные кольцевые токи, будем считать, постоянны по величине, при взаимодействии магнитов между собой возникают ситуации, когда возможны как некоторые переходные процессы, так и взаимное влияние токов друг на друга. Другими словами, возникает явление электрической взаимной индукции.

Взаимная индукция двух контуров с током при наличии магнитной связи достаточно подробно описана в литературе. Известно, что энергия двух контуров с током, обладающих магнитной связью, отличается от суммы собственных энергий токов на величину взаимной энергии двух токов. Распространяя это правило на взаимодействие постоянных магнитов, можно сказать, что энергия системы магнитов отличается от суммарной энергии каждого магнита. Это понятно, поскольку при сближении или удалении магнитов происходит механическая работа.

Но так ли постоянны по величине эквивалентные круговые токи постоянных магнитов? Действительно, они представляют, упрощенно, сумму огромного числа элементарных молекулярных токов. Но в отличие от прочих материальных тел постоянный магнит имеет внешнее и внутреннее магнитное поле, которое «связывает» все элементарные токи, и каждый круговой ток реагирует на колебания остальных, как и они в свою очередь на его колебания. Другими словами, в постоянном магните все элементарные токи представляют как бы единый «организм», что и делает его собственно постоянным магнитом. Если разрушить данный «организм» и каждый элементарный ток начнет независимое «существование», магнитные свойства у данного объекта пропадают.

Вращение – залог эффективности

В группе из трех магнитов средний магнит «модулирует» суммарное магнитное поле всех трех магнитов. Причем максимум плотности смещается в одну сторону, а с противоположной стороны магнитное поле практически отсутствует. При изменении магнитной силы среднего магнита происходит плавное изменение суммарного поля, причем плотность магнитного потока как бы перемещается на другую сторону.

Что в конечном итоге это дает? Поскольку средний магнит можно просто вращать, будет происходить и перемещение максимума плотности суммарного магнитного потока по кругу, равное частоте вращения среднего магнита. Другими словами, один средний магнит может управлять суммарным полем, которое складывается из силы трех магнитов. Причем при вращении среднего магнита не происходит изменения суммарной энергии магнитного поля, т. е. вращение среднего магнита происходит без затрат энергии.

Вращающийся или меняющий свое направление максимум магнитного потока можно использовать в различных устройствах – начиная от простейших вариантов насосов и заканчивая двигателями или генераторами. Все устройства будут отличаться высокой эффективностью и низким энергопотреблением.

Конечно, вращение среднего постоянного магнита – не единственный вариант практического использования группы из трех постоянных магнитов в генераторах или двигателях. Данный средний магнит можно заменить на электромагнит, через обмотку которого пропускают переменный ток различной формы (в зависимости от назначения или конструкции).

Наибольший интерес представляет использование этого эффекта в двух видах двигателей: с линейным возвратно-поступательным движением и вращательных. Момент вращения таких двигателей может достигать значительных величин при относительно небольших рабочих оборотах.

Где можно использовать постоянные магниты?

Одной из особенностей двигателей с активным использованием постоянных магнитов является возможность использования электрического резонанса. Поскольку управляющий электромагнит периодически меняет полярность, т. е. питается переменным током, от частоты которого зависят обороты (в случае вращательного двигателя) в соотношении 1 / К, где К – число полюсов, электромагниты можно включить в состав колебательного контура с емкостью. Соединение электромагнитов может быть последовательное, параллельное или комбинированное, а емкость подбирается по резонансу на рабочей частоте двигателя, при этом среднее значение тока, проходящего через электромагниты, будет большим, а внешняя подпитка по току будет компенсировать в основном активные потери.

Данный режим работы будет наиболее привлекательным с точки зрения экономичности, а двигатель, в котором он используется, будет называться магнитно-резонансный шаговый. Обороты двигателя в этом случае практически не зависят от нагрузки и определяются частотой электрического резонанса, разделенного на число полюсов, несмотря на увеличение потребляемого тока при увеличении нагрузки. С целью повышения рабочих оборотов возможно применение многофазных схем питания электромагнитов двигателей. Среднее ожидаемое снижение потребляемой электрической энергии данными магнитно-резонансными шаговыми двигателями может достигать 60‑75 % по сравнению с обычными электрическими двигателями. Подобные двигатели отличаются большим моментом вращения, достаточно жесткой нагрузочной характеристикой, стабильной частотой вращения, высокой надежностью (якорь не имеет токонесущих элементов), отсутствием подвижных контактов и искрения и т. п., поэтому область их применения будет иметь свои особенности.

Несмотря на это, они могут превосходить по некоторым параметрам как трехфазные асинхронные и синхронные машины, так и коллекторные двигатели постоянного тока. Одно из основных преимуществ – низкое энергопотребление.

Генератор с повышенным КПД

Применение постоянных магнитов эффективно, например, в конструкции электрического генератора с неподвижным ротором. Достоинство подобных генераторов – отсутствие подвижных частей, высокая надежность, экономичность, простота конструкции. Применение магнитных материалов с особыми свойствами позволит получить еще большую экономичность. Среднее сокращение энергозатрат при производстве электроэнергии на генераторах такого типа может достигать 50% и более.

В основе их конструкции лежит принцип модуляции суммарного магнитного поля трех постоянных магнитов средним магнитом, в качестве которого выступает электромагнит. Применение постоянных магнитов позволяет достичь снижения энергетических затрат при генерации электрической энергии.

Магнитная система данного генератора представляет в общем виде «крест в кольце», где одна из перекладин креста представляет собой постоянные магниты, а другая – электромагнит управления, катушка которого может быть разбита на две части или использоваться в виде единой катушки. Кольцо представляет собой магнитопровод с низкими потерями на вихревые токи, на котором располагаются 4 рабочие обмотки (выходные обмотки), соединение которых осуществляется попарно. Выходное напряжение имеет удвоенную частоту по отношению к частоте тока, питающего электромагнит управления.

Если при работе обычного генератора (с вращающимся ротором) неизменный магнитный поток ротора (постоянные магниты или электромагнит), вращаясь от приводного внешнего двигателя, периодически изменяет магнитный поток в статорных обмотках, то увеличиваются механические затраты со стороны приводного двигателя.

В случае с неподвижным ротором отсутствуют потери на трение и противодействующий вращательный момент приводного двигателя. По сути это особый вид трансформаторного преобразователя с дополнительной подпиткой от магнитного поля постоянных магнитов. В процессе преобразования входного переменного тока происходит удвоение частоты выходного тока. Поскольку магнитное поле постоянных магнитов не меняет своего направления – происходит лишь периодическое перераспределение его по секторам кольца ‑то оно активно работает, вкладывая свой «вклад» в генерацию ЭДС.

Магнитный поток управляющей или первичной обмотки электромагнита меняет знак, т. е. происходит процесс, аналогичный процессу простого трансформатора. КПД трансформаторного преобразования достаточно велик. Другими словами, мы получаем трансформатор-удвоитель частоты с повышенным КПД.

Что в конечном итоге это дает? Получается, что входная мощность как минимум меньше выходной. Превышение выходной мощности над входной происходит за счет энергии постоянных магнитов, которые, в отличие от привычной схемы генерации, неподвижны.

Дополнительные возможности данного генератора можно получить, применив для кольцевого сердечника статора магнитные материалы с особыми свойствами.
К недостаткам устройства можно отнести следующее: удвоение частоты выходного напряжения, некоторую сложность изготовления магнитопроводов и обмоток, необходимость компенсационных обмоток для задания необходимой нагрузочной характеристики. Максимальная мощность определяется в основном энергией применяемых постоянных магнитов, от которых зависят все остальные параметры.

Для создания трехфазного тока можно применить либо 3 подобных преобразователя (питание управляющих обмоток синхронизировано), либо аналогичную конструкцию, изготовленную в трехфазном варианте.

Грузоподъёмные электропостоянные магниты DIMET ИМГСоветы наших экспертов

Мощный промышленный электромагнит всего за одну смену способен перекрыть месячное потребление электричества целой семьи. И даже, если в масштабах крупного бизнеса это не такие большие издержки, после кризиса 2008 года и на волне внимания к экологической тематике промышленные компании стали искать варианты сокращения потребления энергетических ресурсов. В то же время в мире освоили производство постоянных магнитов из неодима, который относится к группе редкоземельных металлов и обладает выдающимися магнитными свойствами.

 

Следующим шагом должно было стать создание промышленных грузоподъёмных магнитов с использованием этого материала.  Мы сделали этот шаг в 2013 году, представив рынку линейку электропостоянных или импульсных магнитов DIMET ИМГ, которым электрический ток необходим всего на несколько секунд при захвате и отпускании груза. Кстати, эта особенность не только снижает текущие издержки пользователей, но и существенно повышает безопасность производства. При отключении электропитания постоянный магнит продолжит удерживать груз.

Но при всех своих достоинствах тяжёлые грузоподъёмные электропостоянные магниты имеют жестко ограниченную сферу применения, которая объясняется особенностями их конструкции.

 

Сила короткого импульса: Принцип работы

 

«Притягательность» импульсных магнитов обеспечивают элементы из неодима. Правда, в самом названии редкоземельный уже кроется одно из ограничений на применение неодимовых элементов — они существенно дороже стали.

 

Второй важный элемент конструкции импульсных магнитов — «сердечник» из альнико. Именно он позволяет электропостоянным магнитам по воле оператора захватывать и отпускать груз. Альнико — сплав из железа, алюминия, никеля и кобальта применяют в конструкции электропостоянных магнитов, так как он под воздействием коротких импульсов электрического тока способен менять направление своего магнитного поля.

 

Схематически работу импульсного магнита можно описать следующим образом. Допустим, когда условный северный полюс (N) сердечника из альнико обращён вниз, магнитное поле мощных неодимовых магнитов замыкается на грузе и притягивает его. Но стоит всего на несколько секунд подать на медную катушку электрическое напряжение, как происходит переполюсовка сердечника. Северный полюс начинает указывать вверх, силовые линии замыкаются на корпус магнита и он перестаёт удерживать груз.

 

Преграды на пути магнитной индукции

 

Мы привыкли к тому, что электромагниты достаточно хорошо притягивают ферромагнитные материалы. Различается лишь масса груза. Например на слябах она выше, чем на скрапе. Если цельная стальная плита обладает отличной способностью поддерживать создаваемое внешним магнитом поле, то несколько отдельных предметов  той же массы обладают куда менее впечатляющими характеристиками. Это объясняется очень низкой магнитопроводностью воздуха, который и заполняет зазоры, допустим, между отдельными прутьями арматуры.

 

Когда же речь заходит об импульсном магните, то индукция при работе с «рыхлыми» грузами сокращается фактически до нуля. Это объясняется тем, что магнитное поле мощных неодимовых элементов при контакте с грузом, который обладает высоким магнитным сопротивлением (скрап и тем более стружка), проходит по пути наименьшего сопротивления. Оно «пересиливает» поле сердечника из альнико и замыкается через корпус, не промагничивая «рыхлый» груз груз.

 

Температурные рамки постоянства

 

В науке существует понятие точки Кюри. Выше неё ферромагнитные материалы теряют свои магнитные свойства. Именно поэтому температурным пределом работы грузоподъёмных электромагнитов магнитов группы компаний «Димет» является точка в районе 650°С.

Неодим куда более требователен к температурному режиму. Созданные на его основе постоянные магниты наиболее распространенных марок стабильно работают при температурах не более 80°С. Дальнейшее повышение температуры может привести к их полному размагничиванию.

Следовательно, и сфера применения  импульсных грузоподъёмных магнитов имеет свои границы. Они предназначены только для работы с холодными грузами.

 

Когда DIMET ИМГ — это то, что надо

 

Впрочем, все вышеперечисленные ограничения не умаляет достоинств электропостоянных магнитов DIMET ИМГ. Нужно лишь чётко понимать, в какой нише они способны по максимуму раскрыть свои преимущества.

DIMET ИМГ ваш выбор, если:

 

  • безопасность погрузо-разгрузочных работ на данном производственном участке является критически важной;
  • нужно перегружать монолитный стальной проката «комнатной» температуры;
  • требуется существенно снизить затраты на электроэнергию при погрузо-разгрузочных работах с ферромагнитными материалами;
  • существуют технические ограничения по потреблению электроэнергии;
  • доступны финансовые ресурсы на покупку относительно более дорогой техники;
  • интенсивное использование грузоподъёмного магнита в течение всей смены.

 

Кстати, именно исходя из всего вышеперечисленного не только крупные машиностроительные  и судостроительные предприятия, но и металлурги, для производственно-логистических процессов останавливают свой выбор именно на электропостоянных магнитах DIMET ИМГ.

Биполярное устройство: что могут тонкопленочные магниты | Мнения

Магнитные металлы могут быть противоположны друг другу по своим характеристикам. Одни из них очень легко перемагничиваются — с частотой 50 герц (они применяются в электротехнике), или даже с частотой в мегагерцы (это особые материалы для преобразования электрических сигналов, которые используются в радиотехнике).

Вторые же, наоборот, никакими силами не перемагничиваются и потому служат в качестве постоянных магнитов. Они известны очень давно, начиная с Древнего Китая. Постоянные магниты приводят в действие многие электрические машины, электромоторы и генераторы, используются для изготовления магнитных стрелок, чувствительных частей навигационных приборов и т. д.

До начала XX века магниты делались из стали, и их делали обязательно длинными, потому что, чем длиннее магнит, тем слабее его собственное размагничивающее поле. А еще лучше, если магнит загнут в подкову, чтобы сблизить полюса. Когда же в 80–90-е годы XX века открыли некоторые соединения редкоземельных металлов с железом и кобальтом, тогда появились первые магниты, у которых полюса можно сближать еще сильнее. Были изготовлены тонкопленочные магниты, у которых север и юг расположены очень близко. И тогда появилась возможность сделать печатный плоский электродвигатель. Такой электродвигатель, кстати, был сконструирован в нашей стране: его длина составила 2 миллиметра, а диаметр, по-моему, 2 сантиметра.

Кроме того, появились возможность сделать электродвигатель не круглым, а линейным. Впервые эту идею высказал еще в 1940 году английский инженер Польгрин, но до сих пор она была реализована только в Шанхае. Там германская фирма Siemens построила железную дорогу на магнитной подвеске, где рельсы сделаны из постоянных магнитов, ориентированных северным полюсом вверх. А на нижней стороны вагона установлены такие же магниты, который своим севером смотрят вниз. Благодаря силам отталкивания одинаковых полюсов магнита, вагон висит в воздухе и движется с огромной скоростью. При этом все совершенно справедливо восхищаются тем, что нет никакого трения, но мало кто обращает внимание на то, что мотором здесь является сам вагон.

Под вагоном стоит толстая медная шина, к которой приложено небольшое, но постоянное электрическое напряжение. И по известному со школы правилу правой руки, или правилу буравчика, магнитное поле направлено вверх, электрический ток течет под брюхом вагона поперек вагона, соответственно, возникает перпендикулярная сила, которая тащит вагон вперед. То есть вагон сам себя тащит — надо лишь пропускать электрический ток по этой медной шине. А для остановки достаточно снять с шины напряжение.

В принципе, можно сделать такие же маленькие линейные двигатели, которые будут бегать по микросхеме и её переключать. Там не будет никаких подшипников и будет очень удобно управлять. К сожалению, в нашей стране по понятным причинам эти работы в свое время прекратились и до сих пор не возобновились.

Общий вес магнитов, которые выпускаются за год по всему миру, очень мал по сравнению со сталью, — в тысячу раз меньше, — но их количество и значение огромно. Например, в стеклоподъемниках автомобиля, в устройствах для определения степени обжарки курицы в микроволновой печи, в пластиковых банковских картах — везде используются магниты.

До 80-х годов XX века в качестве самых лучших магнитомягких материалов — тех, которые легко перемагничиваются, — использовались сплавы железа с никелем. Но у них есть серьезный недостаток: они очень нежные, очень мягкие сами по себе. Поэтому их магнитные свойства очень легко испортить: если уронить магнитный сердечник на пол, даже на ковер, он уже испортится.

И вот в 80-е годы XX века нашли такие материалы — ферромагнитные, которые удивительным образом сочетают в себе свойства магнитной мягкости (то есть могут перемагничиваться при частотах внешнего поля в мегагерцах и при радиочастотах) и механические свойства высокопрочных сталей: их сломать вообще невозможно. Они изготавливаются на основе железа. Они непрозрачные, выглядят как хороший металл, очень хорошо блестят и плохо ржавеют. При этом у них нет кристаллической решетки, из-за чего их назвали «металлическими стеклами». Они получаются очень простым способом — закалкой металлической жидкости. Жидкий сплав на основе железа или кобальта выливают на быстро вращающийся медный барабан, и получается ленточка, которая имеет высокую прочность и, самое главное, высокие магнитные свойства.

Вся современная электроника строится именно на металлических стеклах, на этих ленточках. Это одно из достижений конца XX века, которое сейчас широко используется, и продолжает развиваться. Такое уникальное сочетание высокой механической прочности и низкой прочности магнитной, способность перемагничиваться наблюдается только в металлических стеклах.

Если рискнуть и немного заглянуть в будущее магнитных материалов, то можно предположить, что широкое распространение получат тонкопленочные магниты, а на их основе возникнет новая отрасль микроэлектротехники — с микророботами, грубо говоря, бегающими у нас по письменному или обеденному столу и выполняющими нужные нам действия. Можно предположить также создание совершенно новых гибких материалов для постоянных магнитов — тогда у микророботов и просто роботов появятся мышцы.

Вообще же, человечество использует магнитные свойства далеко не полностью, и тут многое еще впереди.

На дороги Москвы выехал первый отечественный электрогрузовик

Первый российский электрический большегруз Moskva вместе с зарядной станцией передан розничной сети «Магнит» для пробного использования. Автомобиль создан компанией Drive Electro, которая ранее разработала элементы питания для московских электробусов. Конструкция грузовика полностью соответствует требованиям «Магнита».

Создатели отмечают, что машина адаптирована к нашему климату и отличается минимальным уровнем шума, что призвано повысить комфорт в городе. По оценкам экспертов «Магнита», один такой электромобиль может помочь снизить выбросы углекислого газа на 87 тонн в год. Производитель, в свою очередь, уверяет, что в течение 10 лет стоимость владения этими электрическими грузовиками (с учётом техобслуживания и зарядной станции) будет на 20–25 % ниже, чем у обычных грузовиков за счёт более длительного срока службы основных компонентов.

В основе Moskva лежит шасси КАМАЗ, а силовая установка может похвастать мощностью 229 кВт (312 лошадиных сил) и крутящим моментом 1400 Н·м. Общая ёмкость аккумуляторов составляет 140 кВт·ч. Длина грузовика — почти 9 метров, собственная масса электромобиля Moskva аналогична показателям дизельного грузовика того же класса — около 10 тонн, и перевозить он может ещё до 9 тонн.

Машина способна развивать максимальную скорость в 110 км/ч, а запас её хода составляет 200 км. Производитель говорит, что это один из самых высоких показателей в мире в данном классе. Для «Магнита» этого достаточно: 40 % магазинов сети в России расположены в пределах 80 км от распределительных центров. Сегодня Магнит управляет около 600 магазинами разного формата только в Москве.

Для электрического грузовика доступны два режима зарядки: быстрая в течение 20 минут и ночная зарядка продолжительностью 8 часов. Грузовик может пополнять энергию от обычной промышленной сети напряжением 380 В. Стоит также отметить, что автомобиль имеет изотермический контейнер, оснащён холодильной установкой для сохранения продуктов и гидробортом грузоподъёмностью 1,5 тонны.

«Магнит» собирается проводить испытания грузовика в течение 6–12 месяцев, доставляя продукцию из распределительного центра компании в Дмитрове в магазины по всей Москве. Если тесты будут признаны успешными, компания будет закупать больше таких грузовиков в этой конфигурации: первоначальная партия может составить до 200 машин.

Сейчас инфраструктура «Магнита» включает помимо магазинов 38 распределительных центров и более 5000 собственных грузовиков. Компания также начала использовать автомобили, работающие на сжиженном природном газе, и планирует переоборудовать до 250 автомобилей на СПГ до конца года.

Если вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Магнитотерапия при лечении заболеваний позвоночника и суставов

Магнитотерапия — это метод физиотерапевтического лечения с применением магнитного поля. Лечение магнитотерапией – процедура безболезненная и эффективная. Благодаря ей улучшается локальный кровоток в тканях, также она способствует выведению из очага заболевания продуктов распада клеток и снятию отеков. Улучшение микроциркуляции крови стимулирует и увеличивает процессы регенерации в пораженных тканях и суставах.

Применение магнитотерапии при остеохандрозе препятствует дальнейшему развитию заболевания и разрушению пораженных тканей. Способствует расслаблению мышц спины и восстановлению подвижности в межпозвонковых суставах.

Магнитотерапия при шейном остеохондрозе помогает устранить головокружение, боль в затылке и увеличить общую работоспособность.

Положительные эффекты от магнитотерапии

  • Улучшаются обменные процессы в тканях, что способствует их полноценному питанию и восстановлению.
  • Устраняется воспаление и связанный с ним отек около суставных тканей.
  • Локально расширяются сосуды и улучшается кровоснабжение.
  • Снимается боль.

Эффект от магнитотерапии, которая всегда проводится курсами, наблюдается уже за довольно короткий промежуток времени с момента начала курса: спадают неприятные болезненные ощущения, пациенты начинают чувствовать себя лучше, к поврежденным суставам вновь возвращается подвижность.

Показания к применению

  • Воспаление суставов (артриты).
  • Воспалении около суставных тканей (периартриты).
  • Остеоартрозы.
  • Ревматоидные артриты с поражением коленных суставов.
  • Ушибы локтей, коленей и т.п.
  • Подпяточный бурсит.

Также специалисты “Команды позвоночника” с помощью магнитотерапии, в качестве дополнительного лечения, помогут вам справится со следующими проблемами:

  • С внутрисуставными и обычными переломами.
  • При лечении болей в суставах, возникших в следствии их травмирования, при этом эффективно снимая отечность и значительно уменьшая риск возникновения артроза.
  • При лечении воспаления связок, сухожилий и бурситов.

Противопоказания

В числе противопоказаний, не допускающих лечение с помощью магнитотерапии можно отметить следующие:

  • Беременность в период вынашивания.
  • Сердечно-сосудистые заболевания – ишемические болезни сердца, недавно перенесенный инфмаркт миокарда, нарушение мердечного ритма и т.п.
  • Плохая свертываемость крови и склонность к кровотечению.
  • Подозрение на опухоли (злокачественные или доброкачественные).
  • Наличие гнойно-воспалительных заболеваний.
  • Заболевания мозга – эпилепсия и другие психические расстройства.
  • Гипотония – выраженное снижение артериального давления.
  • Наличие у больного имлантированных электрических устройств, например, электрокардиостимулятора.


Магнитотерапия является одной из наиболее щадящих для человеческого тела физиотерапевтических процедур. Несмотря на действенность и эффективность процедуры, её не рекомендуется применять без предварительного осмотра и консультации у специалиста. Именно поэтому для прохождения курса магнитотерапии под наблюдением опытных специалистов вам лучше обратиться в наш Медицинский центр “Команда позвоночника”

В зависимости от тяжести заболевания курс магнитотерапии предполагает от 10 до 30 сеансов, 1 – 2 раза в день.

Обращайтесь к профессионалам

Медицинский центр “Команда позвоночника” гарантирует высокое качество предоставляемых медицинских услуг и доступные цены. Наши филиалы в Екатеринбурге находятся по 3 адресам:

  • ул. Кировградская, д. 20;
  • ул. Шейнкмана, д. 134А;
  • ул. Юлиуса Фучика, д. 13.

Приезжайте, мы будем рады вернуть вам ваше здоровье!


Скидка 10%
при записи через сайт Магнит

— Energy Education

Рис. 1: Стержневой магнит с обозначенными северным и южным полюсами. [1] Рисунок 1: Магнитное поле стержневого магнита с направлением поля с севера на юг, как показано стрелкой компаса. [2]

Магнит — это материал, создающий магнитное поле. Создаваемое магнитное поле невидимо, но его эффекты очень легко ощущаются при контакте с другими магнитными материалами.

Магниты важны для электрических генераторов, потому что вращение магнита рядом с катушкой с проволокой производит электричество.Например, ветряная турбина использует ветер для вращения магнита, гидроэлектростанция делает то же самое, но с силой движущейся воды.

Магнит характеризуется двумя полюсами; Север и юг. Эти полюса создают магнитное поле, которое течет от северного полюса к южному, и может быть изображено стрелкой компаса, как показано на рисунке 2. Стрелка компаса на самом деле является постоянным магнитом и, естественно, ориентируется для выравнивания с любым магнитным полем. [2]

Изменяющиеся магнитные поля движутся, создавая электрический ток возле витков провода.

Способность материала реагировать на магнитное поле более подробно обсуждается в гиперфизике.

Типы магнитов

Есть 3 типа магнитов: [3]

  • Постоянные магниты , обычно называемые ферромагнитными, представляют собой материалы, которые нелегко теряют свой магнетизм после намагничивания. Материалы могут намагничиваться при контакте с внешним магнитным полем. Этот процесс можно ускорить, сначала нагревая, а затем охлаждая материал. Такие материалы также называются твердыми магнитами . [4] Постоянные магниты часто используются в ветряных турбинах.
  • Временные магниты очень легко намагничиваются (внешним полем), но со временем постепенно теряют свой магнетизм. Эти магниты также называются мягкими магнитами и . [4]
  • Электромагниты — очень сильные магниты, используемые в таких устройствах, как компьютеры, телевизоры и двигатели. Их делают, помещая металлический сердечник в катушку с проволокой, по которой проходит электрический ток. Электричество, проходящее через провод, создает магнитное поле.Пока течет электрический ток, сердечник действует как сильный магнит. [3] Электромагниты используются во многих генераторах и электростанциях.

Phet Simulation

Университет Колорадо любезно разрешил нам использовать следующую симуляцию Фета. Это моделирование показывает, как изменение магнитного поля создает ток. Переместите магнит и посмотрите, что происходит с током.

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

Произошла ошибка: SQLSTATE [42S22]: Столбец не найден: 1054 Неизвестный столбец «rev_user» в «списке полей»

Электрогенератор | инструмент | Британника

Полная статья

Электрогенератор , также называемый динамо , любая машина, преобразующая механическую энергию в электричество для передачи и распределения по линиям электропередач бытовым, коммерческим и промышленным потребителям.Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость. Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, получаемый при сжигании ископаемого топлива или в результате ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели.Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное переключение в секунду). Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд). Частной формой переменного тока является синусоида, которая имеет форму, показанную на рисунке 1.Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены, и в результате они имеют одинаковую форму. В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор предназначен для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишитесь сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазы, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора.На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Британская энциклопедия, Inc.

Статор простейшего генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока. В этом случае статор содержит только одну катушку, причем две стороны размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора.Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки. Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже.Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Структура ротора генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь. Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора. Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту.Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения. В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °. Напряжение, индуцированное в катушке статора, которое охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 герц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов.Возможные значения скорости ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — количество полюсов.

Как работают электромагниты | HowStuffWorks

Как мы упоминали во введении, основные электромагниты не так уж и сложны; вы можете построить простую его версию самостоятельно, используя материалы, которые, вероятно, валяются у вас дома. На металлический стержень наматывается токопроводящий провод, обычно изолированный медным.Провод нагревается на ощупь, поэтому важна изоляция. Стержень, на который наматывается провод, называется соленоидом , и возникающее магнитное поле излучается вдали от этой точки. Сила магнита напрямую зависит от количества витков проволоки вокруг стержня. Для более сильного магнитного поля провод следует наматывать плотнее.

Хорошо, это еще не все. Чем плотнее проволока наматывается на стержень или сердечник, тем больше витков делает ток вокруг него, увеличивая силу магнитного поля.В дополнение к тому, насколько плотно намотана проволока, материал, используемый для сердечника, также может контролировать силу магнита. Например, железо представляет собой ферромагнитный металл , что означает, что он обладает высокой проницаемостью [источник: Бостонский университет]. Проницаемость — это еще один способ описания того, насколько хорошо материал может выдерживать магнитное поле. Чем более проводящим является определенный материал для магнитного поля, тем выше его проницаемость.

Вся материя, включая железный стержень электромагнита, состоит из атомов.Перед тем, как соленоид наэлектризован, атомы в металлическом ядре располагаются случайным образом, не указывая в каком-либо конкретном направлении. Когда вводится ток, магнитное поле проникает в стержень и выравнивает атомы. Когда эти атомы движутся в одном направлении, магнитное поле растет. Выравнивание атомов, небольшие области намагниченных атомов, называемые доменами , увеличиваются и уменьшаются в зависимости от уровня тока, поэтому, управляя потоком электричества, вы можете контролировать силу магнита.Наступает точка насыщения, когда все домены выровнены, а это означает, что добавление дополнительного тока не приведет к увеличению магнетизма.

Управляя током, вы можете включать и выключать магнит. Когда ток отключается, атомы возвращаются в свое естественное, случайное состояние, и стержень теряет свой магнетизм (технически он сохраняет некоторые магнитные свойства, но не очень и ненадолго).

В обычных постоянных магнитах, таких как те, которые держат изображение семейной собаки у холодильника, атомы всегда выровнены, а сила магнита постоянна.Знаете ли вы, что вы можете уменьшить прилипающую силу постоянного магнита, уронив его? Удар может привести к тому, что атомы выйдут из строя. Их можно снова намагнитить, потерев их магнитом.

Электроэнергия для питания электромагнита должна откуда-то поступать, верно? В следующем разделе мы рассмотрим некоторые способы, которыми эти магниты получают сок.

Что такое магнетизм? | Магнитные поля и магнитная сила

Магнетизм — это один из аспектов комбинированной электромагнитной силы.Это относится к физическим явлениям, возникающим из-за силы, вызванной магнитами, объектами, которые создают поля, которые притягивают или отталкивают другие объекты.

Согласно веб-сайту HyperPhysics Университета штата Джорджия, магнитное поле воздействует на частицы в поле за счет силы Лоренца. Движение электрически заряженных частиц порождает магнетизм. Сила, действующая на электрически заряженную частицу в магнитном поле, зависит от величины заряда, скорости частицы и силы магнитного поля.

Все материалы обладают магнетизмом, некоторые сильнее, чем другие. Постоянные магниты, сделанные из таких материалов, как железо, испытывают сильнейшее воздействие, известное как ферромагнетизм. За редким исключением, это единственная форма магнетизма, достаточно сильная, чтобы ее могли почувствовать люди.

Противоположности притягиваются

Магнитные поля генерируются вращающимися электрическими зарядами, согласно HyperPhysics. Все электроны обладают свойством углового момента или спина. Большинство электронов имеют тенденцию образовывать пары, в которых один из них имеет «спин вверх», а другой — «спин вниз», в соответствии с принципом исключения Паули, который гласит, что два электрона не могут находиться в одном и том же энергетическом состоянии одновременно.В этом случае их магнитные поля направлены в противоположные стороны, поэтому они компенсируют друг друга. Однако некоторые атомы содержат один или несколько неспаренных электронов, спин которых может создавать направленное магнитное поле. По данным Ресурсного центра неразрушающего контроля (NDT), направление их вращения определяет направление магнитного поля. Когда значительное большинство неспаренных электронов выровнены со своими спинами в одном направлении, они объединяются, чтобы создать магнитное поле, достаточно сильное, чтобы его можно было почувствовать в макроскопическом масштабе.

Источники магнитного поля дипольные, с северным и южным магнитными полюсами. По словам Джозефа Беккера из Университета Сан-Хосе, противоположные полюса (северный и южный) притягиваются, а подобные полюса (северный и северный, или южный и южный) отталкиваются. Это создает тороидальное поле или поле в форме пончика, поскольку направление поля распространяется наружу от северного полюса и входит через южный полюс.

Земля сама по себе является гигантским магнитом. Согласно HyperPhysics, планета получает свое магнитное поле от циркулирующих электрических токов внутри расплавленного металлического ядра.Компас указывает на север, потому что маленькая магнитная стрелка в нем подвешена, так что он может свободно вращаться внутри своего корпуса, выравниваясь с магнитным полем планеты. Как ни парадоксально, то, что мы называем Северным магнитным полюсом, на самом деле является южным магнитным полюсом, потому что он притягивает северные магнитные полюса стрелок компаса.

Ферромагнетизм

Если выравнивание неспаренных электронов сохраняется без приложения внешнего магнитного поля или электрического тока, образуется постоянный магнит.Постоянные магниты — результат ферромагнетизма. Приставка «ферро» относится к железу, потому что постоянный магнетизм впервые наблюдался в форме естественной железной руды, называемой магнетитом, Fe 3 O 4 . Кусочки магнетита можно найти разбросанными на поверхности земли или вблизи нее, и иногда они намагничиваются. Эти встречающиеся в природе магниты называются магнитными камнями. «Мы до сих пор не уверены в их происхождении, но большинство ученых считают, что магнитный камень — это магнетит, в который попала молния», — говорится в сообщении Университета Аризоны.

Вскоре люди узнали, что можно намагнитить железную иглу, поглаживая ее магнитом, в результате чего большинство неспаренных электронов в игле выстраиваются в одном направлении. По данным НАСА, примерно в 1000 году нашей эры китайцы обнаружили, что магнит, плавающий в чаше с водой, всегда выстраивался в направлении север-юг. Таким образом, магнитный компас стал огромным помощником в навигации, особенно днем ​​и ночью, когда звезды были скрыты облаками.

Было обнаружено, что другие металлы, помимо железа, обладают ферромагнитными свойствами.К ним относятся никель, кобальт и некоторые редкоземельные металлы, такие как самарий или неодим, которые используются для создания сверхпрочных постоянных магнитов.

Другие формы магнетизма

Магнетизм принимает многие другие формы, но, за исключением ферромагнетизма, они обычно слишком слабы, чтобы их можно было наблюдать за исключением чувствительных лабораторных приборов или при очень низких температурах. Диамагнетизм был впервые открыт в 1778 году Антоном Бругнамсом, который использовал постоянные магниты в поисках материалов, содержащих железо.По словам Джеральда Кюстлера, широко публикуемого независимого немецкого исследователя и изобретателя, в его статье «Диамагнитная левитация — исторические вехи», опубликованной в Румынском журнале технических наук, Бругнамс заметил: «Только темный и почти фиолетовый висмут проявлял конкретное явление в исследовании; потому что, когда я положил его кусок на круглый лист бумаги, плавающий на воде, он оттолкнулся обоими полюсами магнита ».

Было установлено, что висмут обладает самым сильным диамагнетизмом из всех элементов, но, как обнаружил Майкл Фарадей в 1845 году, это свойство всей материи отталкиваться магнитным полем.

Диамагнетизм вызван орбитальным движением электронов, создающих крошечные токовые петли, которые создают слабые магнитные поля, согласно HyperPhysics. Когда к материалу прикладывается внешнее магнитное поле, эти токовые петли имеют тенденцию выравниваться таким образом, чтобы противостоять приложенному полю. Это заставляет все материалы отталкиваться постоянным магнитом; однако результирующая сила обычно слишком мала, чтобы быть заметной. Однако есть некоторые заметные исключения.

Пиролитический углерод, вещество, похожее на графит, демонстрирует даже более сильный диамагнетизм, чем висмут, хотя и только вдоль одной оси, и фактически может подниматься над сверхсильным редкоземельным магнитом.Некоторые сверхпроводящие материалы демонстрируют еще более сильный диамагнетизм ниже своей критической температуры, поэтому над ними можно левитировать редкоземельные магниты. (Теоретически из-за их взаимного отталкивания один может левитировать над другим.)

Парамагнетизм возникает, когда материал временно становится магнитным при помещении в магнитное поле и возвращается в свое немагнитное состояние, как только внешнее поле удаляется. При приложении магнитного поля некоторые из неспаренных электронных спинов выравниваются с полем и преодолевают противоположную силу, создаваемую диамагнетизмом.Однако, по словам Дэниела Марша, профессора физики Южного государственного университета Миссури, эффект заметен только при очень низких температурах.

Другие, более сложные формы включают антиферромагнетизм, при котором магнитные поля атомов или молекул выстраиваются рядом друг с другом; и поведение спинового стекла, которое включает как ферромагнитные, так и антиферромагнитные взаимодействия. Кроме того, ферримагнетизм можно рассматривать как комбинацию ферромагнетизма и антиферромагнетизма из-за многих общих черт между ними, но, по данным Калифорнийского университета в Дэвисе, он все же имеет свою уникальность.

Электромагнетизм

Когда провод перемещается в магнитном поле, поле индуцирует в проводе ток. И наоборот, магнитное поле создается движущимся электрическим зарядом. Это соответствует закону индукции Фарадея, который лежит в основе электромагнитов, электродвигателей и генераторов. Заряд, движущийся по прямой линии, как по прямому проводу, создает магнитное поле, которое вращается вокруг провода по спирали. Когда этот провод превращается в петлю, поле приобретает форму пончика или тора.Согласно Руководству по магнитной записи (Springer, 1998) Marvin Cameras, это магнитное поле можно значительно усилить, поместив ферромагнитный металлический сердечник внутрь катушки.

В некоторых приложениях постоянный ток используется для создания постоянного поля в одном направлении, которое можно включать и выключать вместе с током. Это поле может затем отклонить подвижный железный рычаг, вызывая слышимый щелчок. Это основа телеграфа, изобретенного в 1830-х годах Сэмюэлем Ф. Б. Морзе, который позволял осуществлять связь на большие расстояния по проводам с использованием двоичного кода, основанного на импульсах большой и малой длительности.Импульсы посылались опытными операторами, которые быстро включали и выключали ток с помощью подпружиненного переключателя с мгновенным контактом или ключа. Другой оператор на принимающей стороне затем переводил слышимые щелчки обратно в буквы и слова.

Катушка вокруг магнита также может двигаться по шаблону с изменяющейся частотой и амплитудой, чтобы индуцировать ток в катушке. Это основа для ряда устройств, в первую очередь для микрофона. Звук заставляет диафрагму двигаться внутрь и наружу с волнами переменного давления.Если диафрагма соединена с подвижной магнитной катушкой вокруг магнитопровода, она будет производить переменный ток, аналогичный падающим звуковым волнам. Затем этот электрический сигнал может быть усилен, записан или передан по желанию. Крошечные сверхсильные магниты из редкоземельных элементов сейчас используются для изготовления миниатюрных микрофонов для сотовых телефонов, сообщил Марш Live Science.

Когда этот модулированный электрический сигнал подается на катушку, он создает колеблющееся магнитное поле, которое заставляет катушку входить и выходить по магнитному сердечнику по той же схеме.Затем катушка прикрепляется к подвижному диффузору динамика, чтобы он мог воспроизводить слышимые звуковые волны в воздухе. Первым практическим применением микрофона и динамика был телефон, запатентованный Александром Грэмом Беллом в 1876 году. Хотя эта технология была усовершенствована и усовершенствована, она все еще является основой для записи и воспроизведения звука.

Применение электромагнитов практически бесчисленное множество. Закон индукции Фарадея формирует основу для многих аспектов нашего современного общества, включая не только электродвигатели и генераторы, но и электромагниты всех размеров.Тот же принцип, который используется гигантским краном для подъема старых автомобилей на свалку металлолома, также используется для выравнивания микроскопических магнитных частиц на жестком диске компьютера для хранения двоичных данных, и каждый день разрабатываются новые приложения.

Штатный писатель Таня Льюис внесла свой вклад в этот отчет.

Дополнительные ресурсы

Влияние электрических, магнитных и электромагнитных полей на циркадную систему: текущий уровень знаний

Одним из побочных эффектов работы каждого электрического устройства является электромагнитное поле, генерируемое рядом с его рабочим местом.Все организмы, включая человека, ежедневно подвергаются воздействию различных типов этого поля, характеризующегося различными физическими параметрами. Поэтому важно точно определить влияние электромагнитного поля на физиологические и патологические процессы, происходящие в клетках, тканях и органах. Многочисленные эпидемиологические и экспериментальные данные показывают, что чрезвычайно низкочастотное магнитное поле, создаваемое линиями электропередачи и устройствами с электрическим приводом, а также высокочастотное электромагнитное излучение, излучаемое электронными устройствами, потенциально отрицательно влияет на циркадную систему.С другой стороны, несколько исследований не обнаружили влияния этих полей на хронобиологические параметры. В соответствии с текущим уровнем знаний, некоторые ранее предложенные гипотезы, в том числе гипотеза о ключевой роли нарушения секреции мелатонина в патогенезе заболеваний, вызванных электромагнитным полем, нуждаются в пересмотре. В этой статье рассматриваются данные о влиянии электрических, магнитных и электромагнитных полей на ритмы мелатонина и кортизола — двух основных маркеров циркадной системы, а также сна.Он также предоставляет основную информацию о характере, классификации, параметрах и источниках этих полей.

1. Введение

Одним из побочных эффектов работы любого электрического устройства является электромагнитное поле, возникающее рядом с его рабочим местом. Все организмы, включая человека, ежедневно подвергаются воздействию различных типов этого поля, характеризующегося различными физическими параметрами. Поэтому важно точно определить влияние электромагнитного поля на организмы.Все электрические устройства и линии передачи генерируют низкочастотное (обычно 50 или 60 Гц) поле, которое имеет квазистационарный характер, и две его составляющие — электрическое и магнитное поле — можно анализировать отдельно. Считается, что это поле оказывает потенциально негативное воздействие на организмы, хотя механизм его биологического действия остается неизвестным. С другой стороны, электронные устройства, такие как мобильные телефоны, телевизоры или радиопередатчики, излучают электромагнитное излучение с высокими частотами (от 300 МГц до 300 ГГц).Излучение высокой энергии этого типа вызывает тепловой эффект, который может повышать температуру тканей и органов, а также вызывать серьезные повреждения клеток. Международное агентство по изучению рака (IARC) в 2002 году классифицировало чрезвычайно низкочастотное магнитное поле, создаваемое электрическими устройствами, как возможное канцерогенное для человека [1]. В 2011 году радиочастоты электромагнитных полей были квалифицированы МАИР и ВОЗ как потенциально повышающие риск развития злокачественной опухоли головного мозга [2].

Видимая часть электромагнитного излучения с относительно узкой полосой частот от 389 до 789 ТГц играет ключевую роль в регуляции суточных ритмов, влияя на активность супрахиазматического ядра через меланопсин-положительные ганглиозные клетки сетчатка [3]. Тем не менее, несколько отчетов предоставили доказательства того, что электрические и магнитные поля также влияют на циркадную систему. Было высказано предположение, что дефицит секреции мелатонина может быть ответственным за онкогенное действие электромагнитного поля [4].

Целью статьи был обзор данных о влиянии электрических, магнитных и электромагнитных полей на ритмы мелатонина и кортизола, двух основных маркеров циркадной системы, а также на сон. Мы также включили информацию о природе, физических параметрах, классификации и источниках полей, которая может быть полезна биологам и врачам.

2. Природа электрических, магнитных и электромагнитных сил

В физических науках электромагнитное поле — это состояние пространства, характеризующееся электродинамической природой сил, действующих на электрически заряженные объекты.В этом контексте электромагнитное поле можно рассматривать как состоящее из двух независимых компонентов [5]: (i) электрическое — представленное состоянием пространства, известным как электрическое поле, в котором кулоновские силы действуют на неподвижные электрически заряженные объекты, (ii) магнитное — представленное состоянием пространства, известным как магнитное поле, в котором силы Лоренца действуют на нестационарные (движущиеся) электрически заряженные объекты (представляющие электрические токи). Может быть интересно отметить, что согласно специальной теории относительность, электрическое и магнитное поля — это два аспекта одного и того же явления в зависимости от выбранной системы отсчета наблюдения — электрическое поле в одной системе отсчета может восприниматься как магнитное поле в другой системе отсчета.

В пределах своего воздействия электромагнитные поля могут воздействовать на физические объекты, включая живые организмы. Эффекты этого влияния зависят от многих факторов. Среди них наиболее важными являются [5] (i) напряженность поля — в случае электрического поля его напряженность выражается в вольтах на метр (В / м), а в случае магнитного поля (МП) — в интенсивность выражается в амперах на метр (А / м), (ii) расстояние до объекта выражается в метрах (м), (iii) частота излучаемой энергии — в случае полей, зависящих от времени, она выражается в герцах (Гц) , в то время как для полей, не зависящих от времени, их частота равна 0, (iv) поверхностная плотность мощности (удельная мощность), представляющая интенсивность излучаемой энергии (мощности) с площадью по всей этой излучаемой энергии, выраженная в ваттах на квадратный метр (Вт / м 2 ).

Здесь стоит упомянуть, что напряженность магнитного поля выражается в амперах на метр (А / м) в соответствии со стандартами SI. Однако в литературе и научной практике очень часто вместо этого используется индукция магнитного поля, которая выражается в теслах (Тл). Эти величины — и — взаимосвязаны через магнитную проницаемость среды.

3. Электромагнитные поля в среде обитания живых организмов

Электромагнитное излучение и поля сопровождают живые организмы с самого начала жизни на Земле.Однако их нынешнюю интенсивность и повсеместность следует отнести, прежде всего, к человеческой деятельности — технологическим достижениям в современном машиностроении, связанным с разработкой и практическим использованием систем передачи электроэнергии, электрического оборудования и телекоммуникаций.

Источники электромагнитного излучения и полей можно разделить на естественные и неестественные. К естественным источникам относятся небесные тела, такие как звезды и магнитары, Земля и биологические процессы, связанные с потоком электрических импульсов в живых организмах (рис. 1).Электромагнитное излучение, которое достигает поверхности Земли из космоса в виде микроволнового фонового излучения, является следствием Большого взрыва и эволюции Вселенной в самые первые секунды ее существования. Этот тип излучения характеризуется распределением тепловой энергии как наиболее совершенное черное тело в природе и имеет почти идеальный планковский спектр при температуре около 2,7 К, в то время как максимум его поверхностной плотности мощности соответствует длине волны 272 ГГц [6 ]. Солнечное излучение, достигающее поверхности Земли, имеет относительно небольшую поверхностную плотность мощности около 3 μ Вт / м 2 [6] и состоит из отличительных полос частот, так называемых атмосферных окон, представляющих те полосы частот, которые не поглощаются атмосфера Земли.Их можно перечислить как (i) радиоокно — представленное длинами электромагнитных волн от 15 МГц до 300 ГГц, (ii) оптическое окно — представленное длинами электромагнитных волн от 150 ТГц до 1000 ТГц, (iii) микроволновое окно — представленное электромагнитными длинами волн от 23,1 ТГц до 37,5 ТГц. Магнитное поле Земли — это еще одно естественное поле, исходящее из ядра планеты, которое простирается до обширного пространства, окружающего Землю, известного как магнитосфера. Важным источником сильных электромагнитных полей являются атмосферные разряды, известные как молния.Быстрые выбросы радиации, которые сопровождают эти природные явления, характеризуются высокой плотностью мощности и высокими частотами. В живых организмах электромагнитные поля возникают из-за передачи сигналов в нервной системе и из структур, автономно генерирующих электрические импульсы (например, сердца).


История неестественных источников электромагнитного излучения и полей относительно коротка и охватывает только последние сто лет. Неестественные источники электромагнитного излучения или полей относятся к двум группам.Первая группа включает ионизирующее излучение, характеризующееся относительно высокой энергией, которое может приводить к ионизации частиц вещества. Присутствие этого вида излучения имеет в первую очередь естественные причины (статистическая годовая доза облучения составляет около 2,4 мЗв). Однако неприродные источники ионизирующего излучения, такие как технические устройства, в которых используются различные радиоактивные изотопы, в настоящее время считаются наиболее важными проблемами в охране здоровья населения. Вторая группа — это неионизирующее излучение с энергией, которая слишком мала для ионизации частиц вещества.Обычными источниками этого вида излучения являются все средства, используемые для производства, передачи и использования электроэнергии (высоковольтные линии электропередач, подстанции, двигатели, генераторы, промышленные и бытовые приборы, домашняя электропроводка и т. Д.). Очень важные источники электромагнитного излучения включают телекоммуникационные системы (радио, телевидение, Интернет и Wi-Fi), а также медицинские устройства, используемые для диагностики или терапии.

Согласно Европейской комиссии, неионизирующее излучение можно разделить на несколько уровней [7]: (i) статические поля, (ii) поля крайне низкой частоты (поля СНЧ), (iii) поля промежуточной частоты (поля ПЧ), ( iv) радиочастотные поля (радиочастотные поля).Чтобы проиллюстрировать соображения авторов, типичные источники электромагнитных полей / излучения, влияющих на живые организмы и упомянутые выше, перечислены и описаны в таблице 1.


Уровень Диапазон частот Излучение источник

Статический 0 Гц Земля, видеоэкраны, магнитно-резонансная томография и другое диагностическое / научное оборудование, электролиз, сварка

Поля крайне низкой частоты 0–300 Гц Линии электропередачи, домашняя проводка, автомобильные электродвигатели , электропоезда и трамваи, сварочные аппараты

Промежуточная частота 300 Гц – 100 кГц Видеоэкраны, противоугонные устройства, используемые в автомобилях, домах, магазинах, кардридеры, металлодетекторы, магнитно-резонансная томография , сварочные аппараты

Радиочастота 100 кГц – 300 ГГц Радио, телевидение, мобильные телефоны, микроволновые печи, радары и радиопередатчики, магнитно-резонансная томография

4.Влияние электрических, магнитных и электромагнитных полей на суточный ритм секреции мелатонина

Мелатонин является основным гормоном системы суточного ритма у всех позвоночных, включая человека [8]. Суточный ритм его секреции в шишковидной железе млекопитающих управляется супрахиазматическим ядром — центральным эндогенным осциллятором, непосредственно связанным с сетчаткой [8–10]. В физиологических условиях регуляторные механизмы обеспечивают правильное включение этого ритма в цикл свет-темнота, и, следовательно, повышенная секреция мелатонина в ночное время может служить для всех клеток организма часами и календарем [8, 11, 12].Мелатонин играет ключевую роль в контроле многих физиологических процессов, происходящих в суточных или сезонных ритмах, таких как сон, обмен веществ и размножение [13]. Более того, мелатонин также участвует в регуляции иммунной системы [14], сердечно-сосудистой системы [15] и развития рака [13, 16, 17]. Это также очень мощный поглотитель свободных радикалов [18].

Следует отметить, что уровень секреции мелатонина заметно различается у разных людей, как у людей [19, 20], так и у животных [21, 22].Основываясь на измерениях мелатонина в моче, человеческая популяция может быть разделена на выделителей мелатонина с низким и высоким содержанием мелатонина [19, 20]. Исследование на овцах продемонстрировало, что индивидуальная вариабельность уровня мелатонина в плазме находится под строгим генетическим контролем и связана с массой шишковидной железы и секрецией мелатонина, но не с катаболизмом гормонов [21]. Индивидуальные суточные профили мелатонина плазмы хорошо воспроизводятся в последовательные дни, недели и месяцы как у людей, так и у животных [20, 22].Уровень ночной секреции мелатонина снижается с возрастом [23].

Несколько факторов, например световое загрязнение в ночное время или перемещение по часовым поясам, могут привести к нарушению ритма секреции мелатонина и циркадной дезорганизации, что, несомненно, оказывает негативное влияние на различные аспекты здоровья [13, 14, 16, 24, 25].

Секреция мелатонина шишковидной железой обычно считается особенно чувствительной к воздействиям электрического, магнитного и электромагнитного поля.Влияние этих полей на активность пинеальной железы было проанализировано в эпидемиологических исследованиях [26–41] и экспериментальных исследованиях, проведенных с использованием различных моделей in vivo, [42–94] и in vitro, [95–100].

4.1. Эпидемиологические исследования

Эпидемиологические исследования предоставили интересные и очень важные данные о влиянии электромагнитных полей на мелатонин и его метаболит — 6-сульфатоксимелатонин — у людей. Многие из этих исследований касались эффектов чрезвычайно низкочастотного магнитного поля (ELF-MF), которое генерируется внешними линиями электропередачи высокого и среднего напряжения, внутренним источником электропитания и электрическими приборами [25].

Связь между воздействием магнитных полей с частотой 16,7 Гц и здоровьем человека интенсивно изучалась у железнодорожников [26, 101, 102]. Pfluger и Minder [26] сравнили, используя план повторных измерений, выделение 6-сульфатоксимелатонина с мочой у 108 швейцарских железнодорожников мужского пола между периодами отдыха и днями после начала работы на двигателях с электрическим приводом или выполнения других задач. Исследование показало, что экскреция 6-сульфатоксимелатонина с мочой была ниже в рабочие дни, чем в дни отдыха, у водителей двигателей, подвергавшихся воздействию 16.Магнитное поле 7 Гц со средней напряженностью 20 мк Тл, но не среди других рабочих. Следует отметить, что эпидемиологические исследования швейцарских железнодорожников продемонстрировали значительно повышенную (0,9% на μ T-год кумулятивного воздействия) смертность от лейкозов [101]. Статистические данные также предполагают связь между профессиональным воздействием магнитного поля с частотой 16,7 Гц и риском болезни Альцгеймера [102].

Люди широко подвергаются воздействию магнитных полей с частотой 50 Гц (в Европе) или 60 Гц (в Северной Америке), создаваемых источниками электропитания и электрическими устройствами, обычно используемыми в домах и на рабочих местах.Уменьшение экскреции 6-сульфатоксимелатонина с мочой наблюдалось у электриков, подвергавшихся воздействию магнитных полей с частотой 60 Гц [27–29]. Значительные изменения были отмечены после второго дня рабочей недели, и эффект воздействия магнитного поля был наиболее заметным у субъектов с низким уровнем освещенности на рабочем месте [28]. Кроме того, было продемонстрировано, что уменьшение экскреции 6-сульфатоксимелатонина происходило у рабочих, подвергавшихся воздействию более двух часов и в трехфазной среде [29].У людей, работающих в однофазной среде, изменений не обнаружено. Слабое влияние профессионального воздействия низкоинтенсивного магнитного поля на экскрецию 6-сульфатоксимелатонина также наблюдалось у работающих женщин [30].

Davis et al. [31] предположили, что домашнее воздействие магнитного поля 60 Гц снижает активность пинеальной железы у женщин, в первую очередь у женщин, принимающих лекарства. Уровень экскреции 6-сульфатоксимелатонина был ниже у младенцев, содержащихся в инкубаторах, и повышался, когда их переводили в место, свободное от электрических устройств [103].Анализ, проведенный Юутилайненом и Кумлином [32], предполагает, что воздействие магнитного поля с частотой 50 Гц может усиливать эффекты воздействия ночного света на выработку мелатонина; однако исследование проводилось на относительно небольшой группе субъектов.

Следует подчеркнуть, что небольшое количество эпидемиологических исследований не выявило влияния воздействия КНЧ-МФ на секрецию мелатонина [33–37]. Gobba et al. [33] отметили схожие уровни экскреции 6-сульфатоксимелатонина в двух группах рабочих, подвергавшихся воздействию полей ≤0.2 μ T и> 0,2 μ T. У взрослых в возрасте 50–81 лет не наблюдалось связи между воздействием магнитного поля 60 Гц в жилых помещениях и экскрецией 6-сульфатоксимелатонина [34]. Touitou et al. [35] показали, что длительное воздействие КНЧ-МФ не изменяет уровень и суточную секрецию мелатонина. Эти данные предполагают, что магнитные поля не обладают кумулятивным действием на секрецию мелатонина у людей.

В отличие от ELF-MF, в эпидемиологических исследованиях гораздо меньше внимания уделялось влиянию электромагнитных полей промежуточного диапазона частот (от 300 Гц до <10 МГц) и радиочастотного диапазона (от 10 МГц до 300 ГГц).Не было обнаружено изменений в экскреции 6-сульфатоксимелатонина с мочой у женщин, проживающих рядом с передатчиками радио- и телевещания [38]. Использование мобильного телефона более 25 минут в день снижает уровень секреции мелатонина [39]. Радиовещательные передатчики с коротковолновыми электромагнитными полями (6–22 МГц) снижали секрецию мелатонина на 10% [40]. Исследование, проведенное с участием 50 техников по обслуживанию электронного оборудования, подвергшихся воздействию различных видов полей, выявило значительно более низкие уровни мелатонина в сыворотке крови по сравнению с контрольной группой [41].

4.2. Экспериментальные исследования на добровольцах

В отличие от эпидемиологических исследований, большинство исследований, проведенных на добровольцах, не выявили влияния КНЧ-МФ на уровни мелатонина и / или 6-сульфатоксимелатонина [42–51]. В исследовании Warman et al. [42], 2-часовое воздействие поля частотой 50 Гц с интенсивностью 200–300 μ Тл не вызывало значительных изменений в повышении уровня мелатонина в ночное время. Точно так же воздействие на добровольцев в течение одной ночи полем 50 Гц с интенсивностью 20 мк Тл не оказывало влияния на уровень мелатонина в плазме [43].Selmaoui et al. [44] продемонстрировали, что острое ночное воздействие непрерывного или прерывистого 50 Гц линейно поляризованного магнитного поля силой 10 мк Тл не влияет на секрецию мелатонина у людей. В серии экспериментов, проведенных Graham et al. [45–49], ночная секреция и метаболизм мелатонина не изменялись у людей при воздействии КНЧ-МП с интенсивностью в пределах профессионального диапазона воздействия в течение одной или нескольких ночей. Не было обнаружено изменений мелатонина в слюне после воздействия на добровольцев 16.Электромагнитное поле 7 Гц [50, 51]. В отличие от данных, представленных выше, Davis et al. [52] продемонстрировали, что воздействие магнитного поля от 0,5 до 1 мкм, Тл, превышающего уровни окружающей среды, в течение 5 ночей подряд снижает выведение 6-сульфатоксимелатонина у женщин.

4.3. Экспериментальные исследования на животных

Большинство из экспериментов in vivo , посвященных влиянию воздействия магнитного поля на активность пинеальной железы, было проведено на лабораторных грызунах [53–85].

В исследованиях воздействия КНЧ-МФ были получены весьма изменчивые результаты. Непрерывное воздействие на крыс Sprague-Dawley магнитного поля 10 μ Тл 50 Гц в течение 91 дня снижало уровень мелатонина в крови [53]. Однако в другом исследовании той же группы не удалось продемонстрировать стойкий эффект воздействия магнитного поля 100 μ T 50 Гц на уровень мелатонина у крыс, поскольку не наблюдалось его снижения или отсутствия изменений [54]. Снижение активности пинеальной железы в ответ на КНЧ-МФ было отмечено также в ряде других экспериментов, проведенных на лабораторных крысах [55–63] и джунгарских хомяках [64, 65].С другой стороны, повышенная экскреция 6-сульфатоксимелатонина наблюдалась у крыс Sprague-Dawley, подвергшихся воздействию магнитного поля с частотой 50 Гц и интенсивностью 100 мкм Тл в течение 24 часов [66]. Аналогичным образом Dyche et al. [67] продемонстрировали, что у крыс-самцов, подвергшихся воздействию магнитного поля 100 мкм Тл в течение 1 месяца, наблюдается несколько повышенная экскреция 6-сульфатоксимелатонина. Повышенная секреция мелатонина после воздействия слабого магнитного поля также была обнаружена у джунгарского хомяка Niehaus et al.[68]. В других исследованиях, проведенных на крысах и хомяках, изменений секреции мелатонина в ответ на магнитное поле с частотой 50/60 Гц не наблюдалось [69–77]. Об отсутствии влияния ELF-MF на активность пинеальной железы также сообщалось у мышей [78].

Исследования на грызунах предоставили интересные данные о влиянии радиочастотного диапазона электромагнитного поля на активность пинеальной железы. Воздействие на крыс электромагнитного поля частотой 900 МГц и удельной адсорбцией 0.9 Вт · кг −1 (мобильный телефон) в течение 2 часов в день и повторение в течение 45 дней привело к статистически значимому снижению содержания мелатонина в пинеальной железе [81]. Кроме того, поле с частотой 1800 МГц и мощностью 200 Вт · см −2 (2 часа в сутки в течение 32 дней; 0,5762 Вт · кг −1 ) нарушало ритм секреции мелатонина у крыс [82]. Однако в другом эксперименте животных подвергали аналогичному воздействию в течение 30 минут в день, 5 дней в неделю в течение 4 недель, и никаких изменений уровня мелатонина в сыворотке крови крыс не было отмечено [83].Точно так же воздействие на джунгарских хомяков электромагнитным полем с частотами 383, 900 и 1800 МГц (80 мВт · кг -1 ) в течение 60 дней (24 часа в сутки) не приводило к изменениям секреции мелатонина. [84].

Исследования воздействия электрических и магнитных полей на негрызуны проводились лишь от случая к случаю [86–94]. Воздействие на молочный скот вертикального электрического поля 10 кВ / м и однородного горизонтального магнитного поля 30 мк Тл в течение 28 дней не изменяло ночной уровень мелатонина в крови [86].Аналогичным образом не наблюдалось изменений секреции мелатонина в других экспериментах, проведенных на молочных коровах [87, 88] и ягнятах [89, 90]. Исследования американских пустельг показали, что длительное воздействие электромагнитных полей (60 Гц, 30 μ Тл, 10 кВ · м -1 ) вызывает изменения секреции мелатонина [91]. Магнитное поле увеличивало уровень мелатонина в шишковидной железе и сыворотке крови форели в ночное время [92].

4.4.
Исследования in vitro

Исследования in vitro , посвященные влиянию электромагнитных полей на секрецию мелатонина, были проведены на шишковидной железе джунгарских хомяков [95, 100] и крыс [96–99].Результаты экспериментов с шишковидной железой хомяка в культуре суперфузионных органов показали, что КНЧ-МФ с интенсивностью 86 мк Тл и частотой 16,67 или 50 Гц вызывают снижение секреции мелатонина, активируемое изопротеренолом [95]. Снижение стимулируемой изопротеренолом секреции мелатонина и активности арилалкиламино-N-ацетилтрансферазы также было обнаружено в исследованиях пинеалоцитов крыс после воздействия КНЧ-МФ [96, 97]. Напротив, Lewy et al. [98] отметили повышенную активность ферментов, синтезирующих мелатонин, в то время как Tripp et al.[99] не обнаружили изменений секреции мелатонина в пинеалоцитах крыс в ответ на КНЧ-МФ.

Влияние воздействия электромагнитного поля с частотой 1800 МГц на секрецию мелатонина шишковидной железой джунгарского хомячка было исследовано [100] на той же экспериментальной установке, которая использовалась в экспериментах с КНЧ-МФ [95]. Это исследование продемонстрировало, что как непрерывные, так и импульсные сигналы при определенном уровне адсорбции 800 мВт · кг -1 , продолжительностью семь часов, увеличивают уровень секреции мелатонина, стимулированной изопротеренолом [100].

5. Влияние электрических, магнитных и электромагнитных полей на суточный ритм секреции кортизола

Кортизол является важным стероидным гормоном, вырабатываемым надпочечниками. Подобно мелатонину, он демонстрирует постоянный и воспроизводимый суточный ритм в физиологических условиях [104–107]. Debono et al. [105] в исследовании 33 здоровых людей с 20-минутным интервалом профилирования кортизола в течение 24 часов показали, что концентрация кортизола достигает самых низких уровней около полуночи.Затем он начал расти в 02: 00–03: 00, а пик пришелся примерно на 08:30. Затем уровень кортизола медленно снизился до надира. Максимальный уровень кортизола в крови человека составлял приблизительно 399 нмоль / л, в то время как надирный уровень кортизола был <50 нмоль / л. Как и многие другие физиологические процессы в организме, происходящие в суточных циклах, ритм секреции кортизола регулируется супрахиазматическим ядром, расположенным в гипоталамусе.

Кортизол управляет голодом и аппетитом, стрессом, воспалительной реакцией и многими другими функциями [108–110].Важность кортизола особенно очевидна, когда он становится недостаточным в состоянии, известном как надпочечниковая недостаточность [111]. Было высказано предположение, что кортизол действует как вторичный посредник между центральными и периферическими часами и может быть важным фактором синхронизации циркадных ритмов тела [111]. Изменения ритмической продукции и уровня кортизола приводят к значительным побочным эффектам [108, 112]. У детей с аутизмом часто наблюдаются большие различия в дневных моделях кортизола и значительное повышение уровня кортизола в слюне в ответ на несоциальный стрессор [113].

И люди, и животные живут в среде с электромагнитными полями разного происхождения. Они подвергаются воздействию электромагнитного поля естественного происхождения, такого как магнитная сила Земли и искусственного происхождения, которое возникает в результате деятельности человека. Изменения магнитного поля Земли влияют на все живые существа на планете. Кроме того, электрические и магнитные поля, которые существуют везде, где генерируется или передается электричество, кажутся очень важными для подвергшихся воздействию организмов.

5.1. Экспериментальные исследования на животных

Результаты исследований влияния электромагнитного поля на секрецию кортизола у животных очень разнообразны. У морских свинок КНЧ-МП вызывало изменения уровня кортизола, которые зависели от частоты и интенсивности поля [114]. Воздействие на животных в течение 2 и 4 часов в день в течение 5 дней поля с частотой 50 Гц и 0,207 мк Тл показало значительное снижение уровня кортизола [114]. Однако в группах, подвергнутых воздействию поля 5 Гц и 0.013 μ T, никаких значительных изменений кортизола через 2 или 4 часа воздействия не наблюдалось [114]. У швейцарских мышей, непрерывно подвергавшихся воздействию низкочастотного (50 Гц) поля в течение 350 дней, снижение уровня кортизола наблюдалось на 190 день эксперимента [115]. На 90-е и 350-е сутки воздействия значимых различий отмечено не было [115]. Повышение уровня кортизола наблюдалось у крыс, подвергавшихся воздействию однородных магнитных полей 10 –3 Тл и 10 –2 Тл по 1 часу каждый день в течение десяти дней [116].Воздействие на самок хомяков мобильных телефонов, работающих на частоте 950 МГц в течение короткого (10 дней, 3 часа ежедневно) и длительных (60 дней, 3 часа ежедневно) периодов, вызывало значительное повышение уровня кортизола по сравнению с контрольной группой [117].

Сообщалось также об отсутствии влияния электромагнитного поля на концентрацию кортизола. Burchard et al. [118] не показали изменений в концентрации кортизола, что могло быть связано с воздействием на дойных коров электрического и магнитного полей (вертикальное электрическое поле 10 кВ и горизонтальное магнитное поле 30 мТл).У овцематок также не сообщалось об эффекте воздействия магнитного поля 60 Гц в течение 43 недель на уровень кортизола в сыворотке [119]. Отсутствие влияния электромагнитного поля на концентрацию кортикостерона, независимо от характеристик и продолжительности воздействия, было обнаружено также в экспериментах на крысах [120, 121].

5.2. Исследования на людях

Исследования влияния магнитной силы Земли на человеческое тело показали, что уровни кортизола в сыворотке зависят от направления головы во время сна по отношению к Северному и Южному магнитным полюсам [122].Биологический эффект воздействия антропогенных электромагнитных полей на человека был предметом нескольких исследований [123–127]. Стоматология — одна из категорий профессий, в которых часто наблюдается повышенный уровень ELF-MF. Воздействие на стоматологов полей, излучаемых кавитронами, вызывало снижение уровня кортизола в сыворотке крови по сравнению с контрольной группой [123]. Низкочастотные магнитные поля применяются в физиотерапии (магнитотерапия и магнитостимуляция). Исследования длительного применения этих процедур предполагают регулирующее влияние магнитных полей на концентрацию кортизола [124].Однако следует подчеркнуть, что многочисленные исследования не обнаружили влияния магнитных полей 50/60 Гц (1–20 μ Тл) и радиочастотных электромагнитных полей на уровень кортизола, независимо от времени эксперимента, возраста или возраста. пол особей или время отбора проб [125–127].

6. Влияние электрических, магнитных и электромагнитных полей на сон

Суточные ритмы генерируются внутренней системой биологических часов, которые синхронизируются с 24-часовым днем ​​под воздействием факторов окружающей среды, в первую очередь цикла свет-темнота.Многие ритмы очевидны и легко распознаются, например, цикл сна и бодрствования, двигательная активность и пищевое поведение.

Цикл сна-бодрствования, вероятно, является основным выходным ритмом циркадных часов, потому что регуляция многих форм поведения и физиологической активности зависит от того, спит ли организм или бодрствует. Предполагается, что расстройства сна — часто встречающиеся клинические симптомы — частично связаны с воздействием электромагнитного поля. В последние годы появляется все больше экспериментальных и эпидемиологических данных о влиянии неионизирующих электромагнитных полей на физиологию мозга и сон [40, 128–144].

Сон — это эндогенный самостоятельный церебральный процесс. Можно измерить определенные и различимые фазы сна. Низкочастотная активность (<10 Гц) и частотная активность веретена сна (приблизительно 12-15 Гц) - это две безмолвные характеристики сна с небыстрым движением глаз (NREM), которые можно количественно оценить и использовать в качестве маркеров процессов регуляции сна [145]. Несколько экспериментов показали, что спектральная мощность электроэнцефалографии (ЭЭГ) в альфа (8–12 Гц) и веретено (12–14 Гц) частотах увеличивается как во время, так и после воздействия импульсно-модулированного радиочастотного поля [128–133].Недавно также наблюдалось увеличение дельта-мощности (<4,5 Гц) [129]. Mann и Röschke [134] сообщили о снижении скорости сна с быстрым движением глаз (REM) и изменениях спектральной мощности ЭЭГ во время REM-сна в ответ на высокочастотное электромагнитное поле, излучаемое цифровыми мобильными радиотелефонами. Regel et al. [130] провели исследование влияния воздействия радиочастотного электромагнитного поля путем изменения интенсивности сигнала в трех экспериментальных сессиях. Анализ ЭЭГ сна выявил дозозависимое увеличение мощности в частотном диапазоне веретена во время медленного сна.Это дало первые признаки дозозависимой связи между интенсивностью поля и его влиянием на физиологию мозга. Huber et al. [137] также продемонстрировали увеличение мощности в диапазоне частот быстрого шпинделя ЭЭГ во время воздействия импульсно-модулирующего радиочастотного поля, но не дозозависимым образом. Следует также подчеркнуть, что во многих исследованиях [135, 139–141] не удалось показать каких-либо эффектов воздействия радиочастотного поля на сон или ЭЭГ во сне.

Несмотря на несколько сообщений, показывающих влияние импульсно-модулированного радиочастотного электромагнитного поля на ЭЭГ во сне, механизм этих вызванных воздействием изменений до сих пор неясен.Кроме того, нет подтверждающих доказательств того, что этот эффект связан с такими последствиями для здоровья, как изменение качества сна [128–130, 136].

На сегодняшний день проведено несколько контролируемых лабораторных исследований ЭЭГ сна в низкочастотных электрических и магнитных полях. Åkerstedt et al. [143] провели двойное слепое плацебо-контролируемое исследование с участием 18 здоровых людей, чтобы изучить влияние магнитного поля частотой 50 Гц на сон. Результаты показали, что эффективность сна, медленный сон и медленная активность, а также субъективная глубина сна были значительно снижены под воздействием СНЧ-МФ.Хотя эти результаты предполагают вмешательство низкочастотного поля, авторы подчеркивают, что эти изменения все еще находятся в пределах нормы. В двойном слепом лабораторном исследовании Graham et al. [144] исследовали влияние магнитного поля 60 Гц на сон во время непрерывного, прерывистого или фиктивного воздействия. Они продемонстрировали, что периодическое воздействие приводит к явному искажению сна и изменению архитектуры сна по сравнению с фиктивными условиями и непрерывным воздействием. Следует подчеркнуть, что напряженность поля в обоих упомянутых исследованиях [143, 144] была ниже той, которая используется для медицинских диагностических целей, таких как магнитно-резонансная томография.

Анализ эпидемиологических данных, касающихся качества сна и цикла мелатонина, собранных в течение десяти лет в районе, прилегающем к коротковолновой (6–22 МГц) радиовещательной станции, предоставил доказательства того, что воздействие электромагнитного поля влияет только на тех, кто плохо спит, и это может быть группой людей, чувствительных к такому воздействию [40]. Это явление было описано как гиперчувствительность к электромагнитным полям, EHS. Это также наблюдалось в нескольких других сообщениях [146, 147].

Хотя биологическое объяснение связи между воздействием радиочастотного электромагнитного поля и ухудшением качества сна не было идентифицировано, предполагается, что в этом процессе может быть задействовано подавление ночной секреции мелатонина [148].Два сравнительно недавних исследования предполагают связь между снижением секреции мелатонина в ночное время и увеличением использования мобильных телефонов, излучающих радиочастотное поле [39, 149]. Однако четыре перекрестных испытания [127, 141, 150, 151] не обнаружили корреляции между воздействием мобильного телефона и секрецией мелатонина. Гипотеза о связи между циклом мелатонина и воздействием электромагнитного поля требует дальнейшего изучения [152].

7. Выводы

Результаты исследований влияния электрических, магнитных и электромагнитных полей на секрецию мелатонина и кортизола, а также на сон во многом противоречивы.Неблагоприятные данные, связанные с влиянием этих физических факторов на секрецию обоих «циркадных» гормонов, были получены во всех группах исследований, включая эпидемиологические исследования, исследования на добровольцах и исследования на животных. Более того, исследований in vitro и эпифизов грызунов также дали противоречивые результаты. Источники расхождений остаются неизвестными; однако такие факторы, как неправильная оценка уровня воздействия, влияние других факторов, таких как свет и лекарства, различия в фазах циркадного ритма во время воздействия и индивидуальная изменчивость чувствительности к электромагнитным полям, по-видимому, заслуживают особого внимания.Идея о том, что некоторые люди более чувствительны к электромагнитному полю, чем другие, из-за генетического фона или / или текущего состояния здоровья, кажется очень привлекательной и должна стать предметом дальнейших исследований. Следует отметить, что противоречивые результаты были также получены в исследованиях, посвященных другим воздействиям электрических, магнитных и электромагнитных полей на организм, включая их опухолево-промотирующее действие [153–157].

Несмотря на расхождения в представленных результатах, КНЧ-СЧ и радиочастотное электромагнитное поле следует рассматривать как факторы, возможно влияющие на функцию циркадной системы, поскольку значительное количество исследований продемонстрировало изменения в секреции мелатонина и кортизола, а также во сне после экспозиция в этих областях.Из-за широко распространенного воздействия на людей и животных КНЧ-СЧ и радиочастотного электромагнитного поля исследования их биологических эффектов должны быть продолжены. Важным и до сих пор нерешенным вопросом является взаимосвязь между физическими характеристиками и биологическими эффектами полей, а также механизмами воздействия полей на циркадную систему.

В свете существующей литературы гипотеза, указывающая на нарушение секреции мелатонина, как одного из основных факторов, ответственных за канцерогенные эффекты электрических, магнитных или электромагнитных полей [158, 159], не подтверждается эпидемиологическими и экспериментальные данные.Следовательно, в настоящее время его следует рассматривать как отрицательно проверенный.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.

Электромагнитный ротационный аппарат Майкла Фарадея (двигатель)

Этот простой на вид объект был создан Майклом Фарадеем в 1822 году. Его простота маскирует его истинное значение как первого сохранившегося электродвигателя.

В 1820 году Ганс Кристиан Эрстед объявил о своем открытии, согласно которому электрический ток, протекающий по проводу, создает вокруг него магнитное поле.Андре-Мари Ампер продолжил и показал, что магнитная сила, по-видимому, была круговой, создавая, по сути, цилиндр магнетизма вокруг провода. Такой круговой силы раньше не наблюдалось.

Британский ученый-самоучка Майкл Фарадей (1791–1867) первым понял, что означают эти открытия. Если магнитный полюс можно изолировать, он должен постоянно перемещаться по кругу вокруг токоведущего провода.

В 1821 году Фарадей попытался понять работу Эрстеда и Ампера, разработав свой собственный эксперимент с использованием небольшой ртутной ванны.Это устройство, преобразовывающее электрическую энергию в механическую, было первым электродвигателем.

Этот аппарат — единственный сохранившийся оригинальный образец, сделанный Фарадеем на следующий год после его открытия в 1822 году.

Двигатель имеет жесткий провод, который свешивается в стеклянный сосуд, на дне которого закреплен стержневой магнит. Тогда стеклянный сосуд будет частично заполнен ртутью (металлом, который является жидким при комнатной температуре и является отличным проводником). Фарадей подключил свой аппарат к батарее, которая пропускала электричество по проводу, создавая вокруг него магнитное поле.Это поле взаимодействовало с полем вокруг магнита и заставляло проволоку вращаться по часовой стрелке.

Это открытие привело Фарадея к размышлениям о природе электричества. В отличие от своих современников, он не был убежден, что электричество — это материальная жидкость, которая течет по проводам, как вода по трубе. Вместо этого он думал об этом как о вибрации или силе, которые каким-то образом передаются в результате напряжений, созданных в проводнике.

Электрические и магнитные поля от линий электропередачи

Факты о радиации

  • Научные исследования четко не показали, увеличивает ли воздействие ЭМП риск рака.

Электрические и магнитные поля, также известные как электромагнитные поля (ЭМП), состоят из волн электрической и магнитной энергии, движущихся вместе. Эти энергетические поля окружают нас все время. Научные исследования четко не показали, увеличивает ли воздействие ЭМП риск рака. Несколько исследований связали ЭМП и воздействие на здоровье, но повторить их не удалось. Это означает, что они неубедительны. Ученые продолжают исследования по этому поводу.

На этой странице:


Об электрических и магнитных полях от линий электропередач

Электромагнитное излучение (ЭМИ)

Это изображение травяного поля и окружающих его деревьев; в центре изображения — линии электропередач и их опоры.

Электромагнитное излучение (ЭМИ) состоит из волн электрической и магнитной энергии, движущихся вместе в пространстве. Примером электромагнитного излучения является видимый свет. Электромагнитное излучение может находиться в диапазоне от низкой до высокой частоты, которая измеряется в герцах, и может варьироваться от низкой до высокой энергии, которая измеряется в электрон-вольтах. Длина волны, еще один термин, связанный с электромагнитным излучением, — это расстояние от пика одной волны до другой.

Существует два основных вида электромагнитного излучения: ионизирующее излучение и неионизирующее излучение.Ионизирующее излучение достаточно мощно, чтобы сбить электроны с орбиты вокруг атома. Этот процесс называется ионизацией и может повредить клетки организма. Неионизирующее излучение обладает достаточной энергией, чтобы перемещать атомы в молекуле и заставлять их вибрировать, что приводит к нагреванию атома, но недостаточно для удаления электронов из атомов.

Электромагнитные поля (ЭМП)


Электромагнитные поля, связанные с электричеством, представляют собой тип низкочастотного неионизирующего излучения, и они могут исходить как от естественных, так и от искусственных источников.Например, молния во время грозы создает электромагнитное излучение, потому что она создает ток между небом и землей. Этот ток окружает электромагнитное поле. Одним из примеров является магнитное поле Земли. Мы всегда находимся в магнитном поле Земли, которое генерируется ядром Земли. Это магнитное поле заставляет работать компасы, а также используется голубями и рыбами для навигации. На изображении ниже показан диапазон частот для различных форм электромагнитного излучения, присутствующих в электромагнитном спектре.


Волны от линий электропередач и электрических устройств имеют гораздо более низкую частоту, чем другие типы ЭМИ, такие как микроволны, радиоволны или гамма-лучи. Однако низкочастотная волна не обязательно означает низкую энергию; зарядный кабель для телефона создает низкочастотное электромагнитное поле с низкой энергией, в то время как линия электропередачи высокого напряжения может создавать электромагнитное поле с гораздо большей энергией, которое по-прежнему имеет низкую частоту.

ЭМИ, связанное с линиями электропередач, представляет собой тип низкочастотного неионизирующего излучения.Электрические поля создаются электрическими зарядами, а магнитные поля создаются потоком электрического тока через провода или электрические устройства. Из-за этого низкочастотное ЭМИ обнаруживается в непосредственной близости от источников электричества, таких как линии электропередач. Когда ток проходит по линии электропередачи, он создает магнитное поле, называемое электромагнитным полем. Сила ЭДС пропорциональна количеству электрического тока, проходящего через линию электропередачи, и уменьшается по мере удаления от вас.Из-за этого свойства воздействие электромагнитного поля, которое вы получаете от линии электропередачи, уменьшается с расстоянием.

Что вы можете сделать

Если вас беспокоит возможный риск для здоровья от электрических и магнитных полей, вы можете:

  • Увеличить расстояние между вами и источником. Чем больше расстояние между вами и источником ЭДС, тем меньше ваша экспозиция.

    Добавить комментарий

    Ваш адрес email не будет опубликован.