- Как подключить электродвигатель 380В на 220В через конденсатор
- Как подобрать конденсаторы на трехфазный двигатель (формула, видео)
- Схема подключения двигателя через конденсатор
- Пуск трёхфазного двигателя без конденсаторов: 4 схемы
- Принципы работы электронной схемы: запуск трехфазного асинхронного электродвигателя без конденсаторов
- Электронная схема В Голик: устройство запуска трехфазных электродвигателей на доступной элементной базе
- 2 схемы подключения трехфазного двигателя к однофазной сети без конденсаторов автора В Бурлако: в чем отличия
- Преимущества схемы тиристорного преобразователя: автор В Соломыков
- Схема подключения электродвигателя на 220в через конденсатор: рассчитываем необходимую емкость
- Подключение электродвигателя 220380
- Включение в работу
- Использование магнитного пускателя
- Схемы подключения трехфазных двигателей на 220 вольт
- Реверсирование двигателя
- Способ повысить развиваемую мотором мощность
- Особенности и способы подключения к однофазной сети
- Схема звезда-треугольник
- Переподключение с 380 вольт на 220
- Увеличение напряжения
- Подбор емкости конденсатора
- Однофазный
- Общие схемы подключения двигателей с 380В на 220В через конденсатор
- Как еще можно подключить электродвигатель
- Мой самодельный электрогенератор (Сделай сам)
- Как заменить конденсатор в потолочном вентиляторе? 3 способа
- Как установить и подключить конденсатор в потолочный вентилятор?
- Замена неисправного конденсатора в потолочном вентиляторе
- Подключение пускового конденсатора к потолочному вентилятору
- Подключение 3-в-1 Потолочный вентилятор Конденсатор с обратным переключателем и тяговой цепью
- Цветовые коды проводки NEC и IEC:
- Общие меры безопасности 9 0554 Электричество — наш враг, если вы дадите ему шанс убить вас, Помните, они никогда не упустят его.Пожалуйста, прочтите все меры предосторожности и инструкции при выполнении этого руководства на практике. Отключите источник питания перед обслуживанием, ремонтом или установкой электрического оборудования. Используйте кабель подходящего размера с помощью этого простого метода расчета (Как определить подходящий размер кабеля для электромонтажа) Никогда не пытайтесь работать от электричества без надлежащего руководства и ухода. Work wit Конденсаторы — learn.sparkfun.com Добавлено в избранное Любимый 71 Введение Конденсатор — это двухконтактный электрический компонент.Наряду с резисторами и катушками индуктивности, они являются одними из самых фундаментальных пассивных компонентов , которые мы используем. Вам нужно будет очень внимательно поискать схему, в которой не содержит конденсатора. Особенностью конденсаторов является их способность накапливать энергию ; они похожи на полностью заряженную электрическую батарею. Колпачки , как мы их обычно называем, имеют самые разные критические применения в схемах. Общие приложения включают локальное накопление энергии, подавление скачков напряжения и комплексную фильтрацию сигналов. рассматривается в этом учебном пособии
- Рекомендуемая литература
- Обозначения и единицы
- Теория конденсаторов
- Типы конденсаторов
- Последовательные / параллельные конденсаторы
- Примеры применения
- Покупка конденсаторов
- Как установить и подключить конденсатор в потолочный вентилятор?
- Электродвигатель на 380 в переменного тока по лучшей цене — Выгодные предложения на электродвигатель на 380 в переменного тока от мировых продавцов электродвигателей на 380 в переменного тока
Как подключить электродвигатель 380В на 220В через конденсатор
Большинство собственников частных гаражей или мастерских сталкиваются с таким вопросом, как подключить электродвигатель 380В на 220В через конденсатор или другими методами. Некоторые виды оборудования, которые могут находиться в частной собственности, например, бетономешалки, точильные или деревообрабатывающие станки, потребляют большую мощность.
Обеспечить ее может асинхронный трехфазный двигатель, только главная его беда – расчет на подключение к силовой сети напряжением 380В, которое в большинстве частных домохозяйств отсутствует или сильно ограничено. Варианты выхода из существующей ситуации 380/220 рассмотрим далее.
Разница между однофазными и трехфазными агрегатами
Прежде чем приступить к непосредственному рассмотрению схем подключения типа 380/220, нужно разобраться в следующем:
- что собой представляют двигатели обоих классов,
- как они работают,
- каковы принципы функционирования однофазной (220) и трехфазной (380) сети.
Поскольку большинство асинхронных электродвигателей являются трехфазными (на 380В), то начнем, пожалуй, с них. Любой подобный агрегат имеет два ключевых элемента: подвижный ротор, соединенный с приводным валом, и неподвижный кольцевидный статор. Каждый из них имеет фазные обмотки, смещенные относительно друг друга на 120º. Принцип действия двигателя на 380В заключается в создании подвижного (вращающегося) магнитного поля. Оно создается в обмотках статора при подаче напряжения на них. За счет разности частот полей ротора и статора, между контактными обмотками возникает ЭДС, которая заставляет вал вращаться. На клеммы такого двигателя должны приходить три фазы (по 220 В) через соединение по схеме звезда или треугольник.
Однофазным принято называть силовой агрегат, рассчитанный на подключение к идентичной, чаще всего бытовой сети 220В. Учитывая, что любой такой кабель имеет две жилы (фаза и ноль), двигателю достаточно иметь всего одну фазную обмотку. По факту, на статоре конструктивно есть две обмотки, но одна используется как рабочая, а вторая – пусковая. Для того, чтобы двигатель на 220В начал работать, то есть, чтобы возникло вращающееся магнитное поле и следом за ним ЭДС, необходимо задействовать обе цепи. При этом, пусковая обмотка подключается через промежуточную емкостную/индуктивную цепь или же замыкается, если мощность агрегата мала.
Как можно заключить, главная разница между этими двумя классами двигателей (220 и 380 В) заключается не столько в количестве фаз/проводов подключения, сколько в организации пуска.
Особенности и способы подключения к однофазной сети
Однофазный ток 220В, подающийся на электродвигатель, точнее на его статор и ротор, формирует два равнозначных магнитных поля, вращающихся в противоположные стороны. Для того, чтобы заставить ротор вращаться, нужно вручную или за счет пусковых устройств организовать сдвиг фаз. Мощность будет ниже номинальной (50…70%), но двигатель будет работать.
Очевидно, что прямым включением одной из фазных обмоток к сети в 220В при неработающих остальных запустить двигатель не удастся. Следовательно, нужно все три фазы соединить через промежуточный контур. Сделать это можно двумя основными способами:
- Емкостная цепь. Одна из обмоток двигателя подключается через емкость, которая формирует сдвиг фазы тока вперед на 90º. После пуска, эту цепь можно отключить,
- Индуктивная цепь. Действует примерно так же, как и предыдущая, только сдвиг фазы происходит в обратном направлении.
Иногда бывает достаточно даже механического поворота ротора, чтобы двигатель на 380 заработал от 220.
Общие схемы подключения двигателей с 380В на 220В через конденсатор
Чаще всего при необходимости решения такой задачи используют рабочий и пусковой конденсаторы (батареи конденсаторов). Базовые схемы подключения треугольником и звездой на 380В можно видеть на следующей иллюстрации:
Нефиксированная кнопка «Разгон» используется для активации параллельно подключенного пускового конденсатора. Ее необходимо удерживать до тех пор, пока двигатель не наберет максимальных оборотов. После этого пусковую цепь необходимо обязательно разъединить, чтобы предотвратить перегревание обмоток. Если мощность двигателя мала, пусковым конденсатором можно пренебречь, работая только через рабочий.
Расчет емкости конденсаторов ведется по следующим формулам:
Емкость пускового конденсатора при этом должна быть вдвое выше рабочей. Если не прибегать к расчету по формулам, то можно воспользоваться значением 7 мкФ/кВт.
Практическое применение показывает, что более эффективным является подключение треугольником, так как при этом распределение напряжения в обмотках будет более равномерным, да и мощность снижается меньше. Есть правда одно ограничение, которое касается компоновки клеммного блока двигателя. Если под его крышкой находится лишь три вывода на 380, то имеет место заранее предустановленная схема соединения, которую не изменишь. Если же там располагается шесть выводов, то можно выбирать, какой вариант организовать. Характерное обозначение наносится на металлическую табличку с характеристиками.
Если 380-вольтовый двигатель предполагается использовать на 220В в режиме с частыми пусками и остановками, то базовую схему можно доработать с организацией цепи динамического торможения:
Здесь можно видеть включение двигателя треугольником через емкостную цепь конденсаторов С1 (пускового) и С2 (рабочего). Дополнительно организована цепь на транзисторе и элементе сопротивления, которая подключается трехпозиционным ключом. Когда он находится в положении «3», напряжение сети 220В поступает на обмотки статора и кнопкой К1 можно совершить его запуск. Для остановки двигателя ключ переводится в положение «1», после чего на обмотки подается постоянный ток и осуществляется торможение. Следует отметить, что этот переключатель имеет только два фиксированных положения «2» и «3». Для использования обычного двухпозиционного ключа в эту цепь необходимо будет добавить еще один конденсатор. Выглядит это следующим образом:
Ранее уже упоминался тот факт, что однофазный ток приводит к организации разнонаправленных эквивалентных магнитных полей статора и ротора, которые можно сдвинуть (заставить вращаться) в ту или иную сторону. Следовательно, можно реализовать на практике схему реверсного подключения электродвигателя на 380В:
Схема является в некотором роде комбинацией двух предыдущих, только здесь использованы сдвоенный переключатель и пуск через реле Р1.
Рассмотренные в статье схемы являются базовыми, но в зависимости от конкретного случая их можно модифицировать как угодно, чтобы добиться включения в однофазную сеть 220В трехфазного асинхронного электродвигателя на 380В.
Как подобрать конденсаторы на трехфазный двигатель (формула, видео)
Подключение силового оборудования в однофазную сеть (220В) чаще всего производят емкостным методом. При этом нужно знать, как подобрать конденсаторы на трехфазный двигатель, от которого осуществляется привод. Из них собирается пусковая цепь, создающая необходимый момент и перекос фаз. В этой статье мы постараемся вкратце рассмотреть вопросы расчета и подбора емкости, а также возможные схемы подключения асинхронного электромотора.
Что такое трехфазный двигатель?
Большинство силовых агрегатов, преобразующих электрическую энергию с тепловую, представляют собой асинхронные машины. Если разобрать любой такой двигатель, то станет понятно, что он имеет два ключевых компонента, на взаимодействии которых строится вся его работа.
Статор
Это неподвижная часть мотора, имеющая кольцевидную форму – полый цилиндр. Сразу следует уточнить, что он не является цельным, грубо говоря изготовленным через точение круглой стальной болванки. Статор набирается из кольцевых пластин (магнитопровода), что позволяет избежать образования так называемых поверхностных токов Фуко, которые могут сильно разогревать металл. На внутреннем диаметре имеются продольные пазы, в которые укладывается обмотка из проволоки. Большинство стандартных двигателей являются трехфазными, то есть имеют три обмотки статора (по одной на каждую фазу). Геометрически каждая обмотка/фаза является смещенной относительно других на 120°. Такой расчет позволяет при подаче на фазные клеммы напряжения 380В возбудить в обмотках вращающееся магнитное поле.
Ротор
Это подвижная (вращающаяся) часть, конструктивно объединенная с приводным валом. Он также имеет наборный пластинчатый сердечник (магнитопровод), но в отличии от статора, пазы для обмоток располагаются на внешнем диаметре. Более того, называть их обмотками можно только с функциональной точки зрения, поскольку реально они представляют собой медные прутки определенного диаметра, а не пучки (катушки) проволоки.
С обоих сторон прутки соединяются на кольцевые ограничивающие пластины, образуя некоторое подобие беличьей клетки. Такая компоновка наиболее распространена и называется «коротко замкнутый ротор». При подаче напряжения здесь также магнитное поле, но оно имеет несколько меньшую частоту вращения (асинхронную), нежели у статора. Эта разница называется скольжением и составляет порядка 2…10%. Благодаря ей, между полями наводится ЭДС (электродвижущая сила), которая и заставляет вал вращаться с рабочей частотой.
Как подключить 3ех фазный двигатель в однофазную сеть?
Запуск двигателя с тремя рабочими обмотками возможет потому, что он по умолчанию имеет сдвинутые на 120° фазы. Если подать напряжение всего на одну фазу, то не произойдет ровным счетом ничего по аналогии с однофазным двигателем на 220В, где в таком случае возникают эквивалентные разнонаправленные магнитные поля. Формально для этого нужно включить в работу хотя бы еще одну фазу, чтобы создать сдвиг и набрать необходимый момент. Подключение в сеть с напряжением 220В чаще всего производят через дополнительный контур – цепь из рабочих и пусковых конденсаторов.
Общая пусковая схема при подключении звездой (слева) и треугольником (справа) будет иметь следующий вид:
Как можно видеть, и в первом, и во втором случае две из трех обмоток подключаются напрямую к однофазной сети на 220В. Третья фаза закольцовывается на одну из двух предыдущих посредством промежуточной цепи конденсаторов: Сраб – основной/рабочий и Сп–для запуска. Второй подключен параллельно через ключ SA. Последний имеет нормально разомкнутые контакты, а крайнее положение кнопки не фиксируется – для того, чтобы через пусковой конденсатор пошел ток, ее нужно удерживать нажатой.
Почему используются параллельные емкости?
Любой человек, в свое время не зевавший на уроках физики, должен помнить, что максимальное потребление энергии 3ех фазным двигателем наблюдается именно в момент его запуска, когда происходит рост частоты вращения от 0 до номинала. Чем больше мощность, тем это пиковое потребление электричества выше. Из чего следует логический вывод – емкости, которая будет поддерживать работу на 220В скорее всего не хватит для старта. Поэтому, для вывода мотора на режим ее по расчету нужно увеличить примерно вдвое относительно рабочей.
После запуска, когда будут достигнуты оптимальные обороты (не менее 70% от номинальных), пусковые конденсаторы отключают, отпуская кнопку SA. Сделать это нужно обязательно, иначе большая суммарная емкость вызовет серьезный перекос фаз и перегрев обмоток.
Если же мощность мотора невелика или он не работает под серьезной нагрузкой, то скорее всего можно будет обойтись пуском через рабочий контур.
Как рассчитать емкость и подобрать конденсатор
Очевидно то, что вопрос выбора емкостей для запуска и работы трехфазного двигателя в однофазной сети, зависит от его мощности, номинального (фазного) тока и напряжения. Расчет обычно ведется через следующие формулы:
В данном уравнении присутствуют две величины:
- U – напряжение в однофазной сети (220В),
- IН– номинальный или фазный ток, А.
Обе схемы подключений дают разные значения линейных и фазных характеристик, что видно на следующих иллюстрациях:
Вычислить необходимый ток между обмотками можно с помощью клещей либо используя формулы. Если же и тот, и другой вариант видятся сложными, то можно провести расчет и подобрать конденсатор через эмпирическую зависимость: 7 мкФ на 100 Вт мощности.
Что касается пусковых конденсаторов, то их подбор ведется с расчетом, что емкость должна быть выше, нежели у рабочих, чтобы покрыть пиковое потребление при запуске. Разные источники указывают на разные значения пропорционального коэффициента: от 1,5 до 3. На практике же чаще всего используют рекомендацию по двукратному увеличению.
Далее можно подобрать конденсаторы и приступить к компоновке. Для организации запуска двигателя используются бумажные (МБГП, КБП, МБГО), электролитические или металлизированные полипропиленовые (СВВ) модели. Первые, как правило, массовые и дешевые, но имеют сравнительно большие габариты при малой емкости, что вынуждает набирать целые батареи. Электролитические модели требуют использования в схеме управления диодных элементов и сопротивления, повреждение или выход из строя которых приведет к разрушению конденсатора. СВВ модели более современные, а посему в них нет практически тех недостатков, которые присутствуют в аналогах. По форме емкостные блоки могут выпускаться либо квадратными, либо круглыми (бочонками).
Также следует подобрать рабочее напряжение конденсатора, которое по расчету должно быть примерно в 1,15 раза выше чем в однофазной сети на 220В. Меньшие значения негативно сказываются на долговечности блоков, а большие – на габаритах сборки.
Схема подключения двигателя через конденсатор
Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.
В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.
Схема подключения однофазного двигателя через конденсатор
При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.
- 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
- 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
- 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.
Схема подключения трёхфазного двигателя через конденсатор
Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.
Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.
Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.
Онлайн расчет емкости конденсатора мотора
Введите данные для расчёта конденсаторов — мощность двигателя и его КПД |
Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:
Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.
Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.
Пусковые конденсаторы для моторовЭти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.
При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.
Реверс направления движения двигателя
Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».
Пуск трёхфазного двигателя без конденсаторов: 4 схемы
Асинхронные электродвигатели просты по конструкции, дешевы, массово применяются в различных производствах. Не обходятся без них домашние мастера, запитывая их от 220 вольт с пусковыми и рабочими емкостями.
Но, есть альтернативный вариант. Это — подключение трёхфазного двигателя к однофазной сети без конденсаторов, который тоже имеет право на существование.
Ниже я показываю 4 схемы реализации такого проекта. Вы можете выбрать для себя любой из них, более подходящий под ваши личные интересы и местные условия эксплуатации.
Содержание статьи
С этой темой я впервые столкнулся в конце 1998 года, когда к нам в электролабораторию РЗА пришел друг связист с журналом Радио за №6 от 1996 года и показал статью про безконденсаторный запуск.
Мы сразу решили испытать ее в деле, благо все детали, включая тиристоры и подходящий двигатель, у нас имелись. Как раз был перерыв на обед.
Для проверки спаяли электронный блок навесным монтажом. Справились где-то меньше, чем за час. Схема заработала практически без наладки. Оставили ее для наждака.
Порадовали маленькие габариты блока и отсутствие необходимости подбирать конденсаторы. Особых отличий в потере мощности по сравнению с конденсаторным пуском замечено не было.
Принципы работы электронной схемы: запуск трехфазного асинхронного электродвигателя без конденсаторов
Для подключения в однофазную сеть по этому методу подойдет любой асинхронный движок типового исполнения.
Автор Голик обращает внимание, что обороты ротора в минуту должны составлять не 3000, а 1500. Связано это с конструкцией обмоток статора.
Мощность устройства ограничена электрическими характеристиками силовых диодов и тиристоров — 10 ампер с величиной обратного напряжения более 300 вольт.
Три обмотки статора необходимо подключать по схеме треугольника.
Их выводы собираются на клеммной колодке тремя последовательными перемычками.
Напряжение 220 вольт подключается через защитный автоматический выключатель параллельно одной обмотке, назовем ее «A». Две другие оказываются последовательно соединенными между собой и параллельно — с ней.
Обозначим их «B» и «C». На выводы одной из них, например, «B» подключается электронный блок. Назовем его ключом «k».
Представим, что ее контакт всегда разомкнут, а напряжение подано. Тогда по цепочкам «A» и «B+C» станут протекать токи Ia и Ib+c. Мы знаем, что сопротивление всех обмоток статора (резистивно-индуктивное) одинаково.
Поэтому в цепи «A» ток станет в два раза превышать вектор Ib+c, а по фазе они будут совпадать.
Каждый из этих токов создаст вокруг себя магнитный поток. Но, они не смогут в этой ситуации привести во вращение ротор.
Чтобы электродвигатель стал работать, необходимо сдвинуть по углу два этих магнитных потока (или токи между собой). Эту функцию в нашем случае выполняет электронный ключ.
Его конструкция собрана так, что он кратковременно замыкается, а затем размыкается, шунтируя обмотку «B».
Для этого процесса выбирается момент времени, когда синусоида напряжения достигает максимального амплитудного значения, а сила тока в обмотке «C», ввиду ее индуктивного сопротивления, минимальна.
Резкое закорачивание сопротивления «B» в цепи «B+C» создает бросок тока через замкнутый электронный контакт по виткам обмотки «C», который быстро возрастает и затем снижается под влиянием уменьшения амплитуды напряжения до нуля.
Между токами в обмотках «A» и «C» образуется временной сдвиг, обозначенный буквой φ. За счет возникновения этого угла сдвига фаз создается суммирующий магнитный поток, начинающий раскрутку ротора двигателя.
Форма тока в обмотке «C» при работе электронного ключа отличается от гармоничной синусоиды, но она не мешает создать на валу ротора крутящий момент.
При переходе полуволны синусоиды напряжения в область отрицательных значений картина повторяется, а двигатель продолжает раскручиваться дальше.
Электронная схема В Голик: устройство запуска трехфазных электродвигателей на доступной элементной базе
Силовая выходная часть электронного ключа, осуществляющая коммутацию обмотки, выполнена на двух мощных диодах (VD1, VD2) и тиристорах (VS1, VS2), включенных по схеме обычного моста.
Однако здесь они выполняют другую задачу: своими плечами из одного тиристора и диода поочередно шунтируют обмотку подключенного электродвигателя при достижении амплитудного значения синусоиды напряжения на схеме.
За счет такого подключения создан электронный ключ двунаправленного действия, реагирующий на положительную и отрицательную полуволну гармоники.
Диодами VD3 и VD4 осуществляется двухполупериодное напряжение сигнала, поступающего на цепи управления. Оно ограничивается и стабилизируется резистором R1 и стабилитроном VD5.
Сигналы на открытие тиристоров электронного ключа поступают от биполярных транзисторов (VT1 и VT2).
Переменный резистор R7 с номиналом на 10 килоом предназначен для регулировки момента открытия силового тиристора. Когда его ползунок установлен в минимальное положение сопротивления, то электронный ключ срабатывает при наибольшем напряжении амплитуды на обмотке B.
Максимальное введение сопротивления резистора R7 закрывает электронный ключ.
Запуск схемы осуществляют при положении ползунка R7, соответствующем максимальному сдвигу фаз токов между обмотками. После этого его сдвигают, определяют наиболее устойчивый режим работы, который зависит от приложенной нагрузки и мощности двигателя.
Все электронные детали со своими номиналами приведены на схеме. Они не являются дефицитными. Их можно заменить любыми другими элементами, соответствующими по электрическим характеристикам.
Вариант их размещения на электронной печатной плате показан на картинке. Регулировочный резистор R7 показан справа двумя подключенными проводами, синим и коричневым. Сам он не виден на фото.
Силовая часть, созданная для работы с электродвигателями небольшой мощности, может выполняться без радиаторов охлаждения, как показано здесь. Если же диоды и тиристоры работают на пределе своих возможностей, то теплоотвод обязателен.
Электронный блок ключа работает под напряжением сети 220 вольт. Его детали должны быть надежно заизолированы и защищены от случайного прикосновения человеком. Меры безопасности от поражения электрическим током необходимо соблюдать.
2 схемы подключения трехфазного двигателя к однофазной сети без конденсаторов автора В Бурлако: в чем отличия
Здесь я полагаюсь на информацию из интернета, ибо вижу, что в принципе конструкции рабочие, а принципы управления токами в обмотках те же, что предложил В Голик.
Кстати, авторы статей ссылаются на автомобильный украинский журнал «Сигнал» №4 за 1999 год. Пришлось поискать его в интернете. Однако разочаровался, там оказалась полностью перепечатанная статья из журнала Радио под авторством В Голик. Вот так…
Если знаете, где можно найти первоисточник на эту информацию, то сообщите в комментариях.
Электронные ключи, выполненные по технологии Бурлако, работают так же. Они просто выполнены из других, более усовершенствованных полупроводников, как и силовая часть.
Схема запуска асинхронного двигателя от симисторного электронного ключа: усовершенствование конструкции В Голик
Картинка подключения трехфазного электродвигателя упростилась. Вместо двунаправленного силового блока из двух тиристоров и диодов здесь работает один симистор VS1 серии ТС-2-10.
Он также шунтирует одну обмотку «B» в момент достижения синусоидой напряжения амплитудного значения, когда ток параллельной цепочки минимален.
При этом создается сдвиг фаз токов в параллельных обмотках, как и в предыдущей схеме, порядка 50-80 угловых градусов, что достаточно для вращения ротора.
Работой симитора VS1 управляет ключ, выполненный на симметричном динисторе VS2 для каждого полупериода гармоники напряжения. Он получает команды от фазосдвигающей цепочки, выполненной из резистивно-емкостных элементов.
Сдвиг фазы сигнала конденсатором C дополняется общим сопротивлением R1+R2. Подстроечный резистор R2 на 68 кОм работает как R7 в предыдущей схеме, регулируя время заряда конденсатора и, соответственно, момент подключения VS2, а через него VS1 в работу.
Рекомендации автора по сборке и наладке
Схема испытывалась и предназначена для работы с электродвигателями, раскручивающими ротор до 1500 оборотов в минуту с электрической мощностью 0,5÷2,2 кВт.
На устройствах электронных ключей, работающих с мощными электродвигателями, необходимо обеспечивать теплоотвод с симистора VS1.
При наладке устройства обращают внимание на оптимальную подгонку угла сдвига фаз токов между обмотками, когда двигатель запускается и работает нормально: без шума, гула и вибраций. Для этого может потребоваться изменение номиналов у элементов фазосдвигающей цепочки.
Семисторы можно использовать другой марки. Важно, чтобы они соответствовали электрическим характеристикам. Вместо DB3 допустимо установить отечественный динистор KP1125.
Схема безконденсаторного запуска электродвигателей с большими пусковыми моментами
Она же хорошо подходит под управление двигателями, собранными для вращения со скоростью 3000 оборотов в минуту. С этой целью у нее изменена система подключения обмоток с треугольника на разомкнутую звезду.
На картинке ниже их полярность показана точками.
В этой ситуации создается больший крутящий момент для запуска ротора.
Рассматриваемая схема отличается от предыдущей дополнительным электронным ключом, подключенным к обмотке «A», создающим дополнительно сдвиг фазы тока. Он необходим для трудных условий работы.
Рекомендации автора по наладке и работе не изменились.
Преимущества схемы тиристорного преобразователя: автор В Соломыков
Эта разработка позволяет максимально эффективно сохранить мощность асинхронного двигателя при его подключении в однофазную сеть. Она является прообразом современных частотных преобразователей, но выполнена на старой и доступной элементной базе.
Тиристорный преобразователь позволяет сделать формы напряжений на каждой фазе очень похожими на идеальные, гармоничные синусоиды, под которые и создается асинхронный электродвигатель.
Питание от сети 220 вольт происходит через защиту — автоматический выключатель SF1 и диодный мост на базе Д233В.
Силовые выходные цепи образуются работой тиристорных ключей VS1-VS6.
Сдвиг фаз токов для питания каждой обмотки двигателя своим напряжением создается работой двух микросхем:
- DD1 — К176ЛЕ5;
- DD2 — К176 ИР2.
Они формируют такты сдвига напряжений сигналов в регистрах, а их сочетания подаются на входы управления тиристорами VS1÷VS6 через индивидуальные транзисторы VT1÷VT6 по запланированной временной диаграмме.
Логическая часть
Микросхема К176ИР2 вырабатывает по 2 раздельных 4-х разрядных регистра сдвига с четырьмя выходами Q от любого триггера. Каждый триггер двухступенчатый, типа D.
Ввод данных в регистр происходит через вход D. Также имеется вход для тактовых импульсов типа C. Они поступают через вход D 1-го триггера, а затем смещаются по ходу вправо на один такт.
Обнуление данных на выходе регистра Q происходит при поступлении на вход R (асинхронный сброс) напряжения логического уровня.
Таблица данных К176ИР2 и состояний регистров
Число разрядов | 4х2 | Входы | Выход | |||
Сторона сдвига | Направо | C | D | R | Q0 | Qn |
Тип ввода | Последовательно | ∫ | H | Н | H | Qn-1 |
Тип вывода | Параллельно | ∫ | B | H | B | Qn-1 |
Тактовая частота | 2,5MHz | ∫ | X | H | Q1 | Qn не меняется |
Рабочая температура | -45÷+85 | X | X | B | H | H |
Работой микросхемы К176ИР2 управляет элементы DD1 на сборке К176ЛЕ5.
Они обеспечивают подачу импульсов на управляющие электроды тиристоров по следующей временной диаграмме.
Силовая часть схемы, принципы ее управления и наладки
При подаче напряжения на схему обнуляется регистр сдвига микросхемы DD2 до окончания заряда емкости C2 по цепочке через R5. В момент заряда срабатывает логический элемент DD1.1, разрешающий сдвиг импульса регистру DD2.
При переходе регистра в положение «логической 1» подается сигнал на базу его биполярного транзистора (VT1÷VT6). Последний открывается и подает команду на управляющий электрод своего тиристора.
В результате работы этой цепочки между выходными силовыми клеммами создается трехфазное напряжение (довольно близкое к синусоидальной форме) со сдвигом векторов между собой на 120 градусов.
Асинхронный двигатель, работающий по этой схеме, развивает наибольшую мощность по сравнению с тремя предыдущими вариантами.
Частота коммутации тиристоров подбирается экспериментально при наладке за счет выбора номиналов емкостей С4, С5, С6. Их номиналы зависят от мощности электродвигателя.
Емкость конденсаторов предварительно рассчитывают по формуле:
С = 0.01P (Вт) / n ∙ 1 / 30n (мкФ).
При номинальной частоте вращения ротора выставляют n=1.
Резисторы R3 и R4 после окончания настройки устройства демонтируют, а вместо R4 запаивают конденсатор с емкостью 0,68 микрофарад.
Затем к точкам A и B припаивают регулировочный резистор на 15 килоом. Его назначение — точное выставление частоты вращения ротора у двигателя.
Все четыре схемы, которые я привел, не содержат дефицитных деталей и могут быть собраны в домашних условиях людьми с начальным уровнем навыков электрика.
Для продвинутых мастеров могу порекомендовать схему, по которой выполнил подключение трехфазного двигателя к однофазной сети без конденсаторов на современной электронной базе владелец сайта Радиокот.
Он фактически собрал частотный преобразователь, которому отдал много времени. К тому же простым паяльником и обычным цифровым мультиметром там отделаться не получится. Нужны практические навыки, специальный инструмент, осциллограф для наладки.
Все это я написал, чтобы подвести вас к выводу: запустить асинхронный двигатель на 3 фазы в сеть 220 вольт без потерь мощности можно только через промышленный частотный преобразователь.
Рекомендую посмотреть два коротких видеоролика по этой теме и сравнить результат.
Видео владельца Kick Ass с самодельным регулятором по схеме В Голик.
Видео владельца Capricorn WorkShop о самом простом частотном преобразователе.
Выводы сделайте сами. А если остались еще вопросы и неясности, или заметили случайную ошибку, то воспользуйтесь разделом комментариев. Обязательно обсудим.
Схема подключения электродвигателя на 220в через конденсатор: рассчитываем необходимую емкость
Автор Aluarius На чтение 6 мин. Просмотров 10.1k. Опубликовано
Подключение электродвигателя к однофазной сети – это ситуация, которая встречается достаточно часто. Особенно такое подключение требуется на загородных участках, когда трехфазные электродвигатели используются под какие-то приспособления. К примеру, для изготовления наждака или самодельного сверлильного аппарата. Кстати, мотор стиральной машины через конденсатор производится. Но как это сделать правильно? Необходима схема подключения электродвигателя на 220В через конденсатор. Давайте разбираться в ней.
Начнем с того, что существует две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник. Оба вида подключения создают условия, при которых в обмотках статора двигателя попеременно проходит ток. Он создает внутри вращающееся магнитное поле, которое действует на ротор, заставляя его вращаться. Если подключается трехфазный электродвигатель в однофазную сеть, то вот этот вращающийся момент не создается. Что делать? Вариантов несколько, но чаще всего электрики устанавливают в схему конденсатор.
Что при этом получается?
- Скорость вращения не изменяется.
- Мощность сильно падает. Конечно, говорить о конкретных цифрах здесь не приходиться, потому что падение мощности будет зависеть от разных факторов. К примеру, от условий эксплуатации самого двигателя, от схемы подключения, от конденсаторов, а, точнее, от их емкости. Но в любом случае потери будут составлять от 30 до 50 процентов.
Необходимо отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные виды. У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. При этом обязательно указывается величина напряжения – 127/220 или 220/380В. Меньший показатель предназначен для схемы треугольник, больший для звезды. На картинке ниже показано обозначение.
Внимание! Конденсаторный двигатель в однофазную сеть лучше подключать через схему треугольник. Это обусловлено тем, что при таком виде подключения уменьшаются потери мощности агрегата.
Обратите внимание в рисунке на нижнюю бирку (Б). Она говорит о том, что двигатель можно подключить только через звезду. С этим придется смириться и получить аппарат с низкой мощностью. Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, после чего провести подключение по треугольнику.
И еще один очень важный момент. Если вы устанавливаете в однофазную сеть электродвигатель с напряжением 127/220 вольт, то понятно, что к сети напряжением 220В можно подключиться через звезду. Потери мощности гарантированы. Но сделать в данном случае ничего нельзя. Если будет произведено подключение этого прибора через треугольник – мотор просто сгорит.
Схемы подключения
Давайте рассмотрим обе схемы подключения. Начнем с треугольника. В любой схеме очень важно правильно подключить именно конденсатор. В данном случае провода распределяются таким образом:
- Два контакта подсоединяются к сети.
- Один через конденсатор к обмотке.
Но тут есть один момент, если электродвигатель не нагружать, то его ротор без проблем начнем вращаться. Если пуск будет производиться под определенной нагрузкой, то вал или не будет вращаться вообще, или с очень низкой скоростью. Чтобы решить эту проблему, в схему необходимо установить еще один конденсатор – пусковой. На нем лежит всего лишь одна задача – запустить мотор, отключиться и разрядиться. По сути, пусковой работает всего 2-3 секунды.
В схеме звезда подключение конденсатора производится на выходные концы обмоток. Две из них соединяются с сетью 220В, а свободный конец и один из подключенных к сети замыкают конденсатор.
Как рассчитать емкость
Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в 220В, зависит от самой схемы. Для этого существуют специальные формулы.
Соединение звездой:
Cр = 2800•I/U, где Ср – это емкость, I – сила тока, U – напряжение. Если производится подсоединение треугольником, то используется та же формула, только коэффициент 2800 меняется на 4800.
Хотелось бы обратить ваше внимание на тот факт, что сила тока (I) на бирке мотора не указывается, поэтому ее надо будет рассчитать по вот этой формуле:
I = P/(1.73•U•n•cosф), где Р- это мощность электрического двигателя, n – КПД агрегата, cosф – коэффициент мощности, 1,73 – это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.
Так как чаще всего подключение трехфазного двигателя к однофазной сети 220В производится по треугольнику, то емкость конденсатора (рабочего) можно подсчитать по более простой формуле:
C = 70•Pн, здесь Рн – это номинальная мощность агрегата, измеряемая в киловаттах и обозначаемая на бирке прибора. Если разобраться в этой формуле, то можно понять, что существует достаточно простое соотношение: 7 мкФ на 100 Вт. К примеру, если устанавливается мотор мощностью 1 кВт, то для него необходим конденсатор на 70 мкФ.
Как определить, точно ли подобран конденсатор? Это можно проверить только в рабочем режиме.
- Если в процессе эксплуатации мотор перегревается, то, значит, емкость прибора больше требуемой.
- Низкая мощность двигателя, значит, емкость занижена.
Даже расчет может привести к неправильному выбору, ведь условия эксплуатации мотора будут влиять на его работу. Поэтому рекомендуется начинать подбор с низких величин, и при необходимости наращивать показатели до необходимых (номинальных).
Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя. Хотелось бы обратить ваше внимание на то, что пусковая емкость и емкость пускового конденсатора – это не одно и то же. Первая величина – это сумма емкостей рабочего и пускового конденсаторов.
Внимание! Емкость пускового конденсатора должна быть раза в три больше емкости рабочего. При этом специалисты советуют вместо одного большого прибора использовать несколько с малой емкостью. К тому же пусковые работают непродолжительное время, поэтому на их место можно устанавливать дешевые модели.
В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым. Даже расчет является процессом неточным.
Подключение электродвигателя 220380
Включение в работу
1-ое, что необходимо это сделать найти, где середина катушек, другими словами, место соединения. Если наш асинхронный аппарат в неплохом состоянии, то это сделать будет проще – по цвету проводов. Увидите на набросок:
Если что остается сделать нашему клиенту так выведено, то заморочек не будет. Однако в большинстве случаев приходится заниматься с агрегатами, снятыми со стиральной машины непонятно когда, и непонятно кем. Тут, естественно, будет труднее.
Стоит испытать вызвонить концы при наличии омметра. Наибольшее сопротивление – это две катушки, соединенные поочередно. Помечаем их. Далее, смотрим на значения, которые указывает устройство. Пусковая катушка имеет сопротивление чем просто, чем рабочая.
Как подключить двигатель 380 на 220 вольт.
Сейчас берем конденсатор. Вообщем, на различных электронных машинах они различные, но для АВЕ это 6 мкФ, 400 вольт.
Если точно такового нет, есть вариант взять с близкими параметрами, но с напряжением, не ниже 350 В!
Давайте обратим внимание: кнопка на рисунке служит для запуска асинхронного электродвигателя АВЕ, когда он уже включен в сеть 220! Говоря иначе, надо сделать два выключателя: один общий, другой – пусковой, который, после его отпускания, отключался бы сам. По другому спалите аппарат
Если нужен реверс, то он делается по таковой схеме:
Если что остается сделать нашему клиенту изготовлено верно, тогда работает. Правда, конечно одна загвоздка. В борно случаются выведены далеко не все концы. Тогда с реверсом будут трудности. Только что разбирать и выводить их наружу без помощи других.
Вот некие моменты, как подсоединять асинхронные электронные машины к сети 220 вольт. Схемы легкие, и при неких усилиях не исключено полный набор сделать своими руками.
Использование магнитного пускателя
Применение схемы подключения электродвигателя 380 через пускатель хорошо тем, что пуск производить можно дистанционно. Преимущество пускателя перед рубильником (или другим устройством) в том, что пускатель можно разместить в шкафу, а в рабочую зону вынести элементы управления, напряжение и токи при этом минимальны, следовательно, провода подойдут меньшего сечения.
Помимо этого, подключение с использованием пускателя обеспечивает безопасность в случае, если «пропадает» напряжение, поскольку при этом происходит размыкание силовых контактов, когда же напряжение вновь появится, пускатель без нажатия пусковой кнопки его не подаст на оборудование.
Схема подключения пускателя асинхронного двигателя электрического 380в:
На контактах 1,2,3 и пусковой кнопке 1 (разомкнутой) напряжение присутствует в начальный момент. Затем оно подается через замкнутые контакты этой кнопки (при нажатии на «Пуск») на контакты пускателя К2 катушки, замыкая ее. Катушкой создается магнитное поле, сердечник притягивается, контакты пускателя замыкаются, приводя в движение мотор.
Одновременно с этим происходит замыкание контакта NO, с которого подается фаза на катушку через кнопку «Стоп». Получается, что, когда отпускают кнопку «Пуск», цепь катушки остается замкнутой, как и силовые контакты.
Нажав «Стоп», цепь разрывают, возвращая размыкая силовые контакты. С питающих двигатель проводников и NO исчезает напряжение.
Видео: Подключение асинхронного двигателя. Определение типа двигателя.
Схемы подключения трехфазных двигателей на 220 вольт
Если двигатель маломощный (менее 1,5 кВт), и подключение происходит без нагрузки, то для успешной работы достаточно просто подключить к схеме конденсатор. Например, один вывод припаять к входу нулевого провода, а другой — к свободному концу обмотки, или третьему выводу треугольника. Если направление вращения не устраивает, то нужно просто прикрепить второй вывод конденсатора к входу фазного провода.
Для запуска нагруженного или мощного двигателя необходим более мощный «толчок», который может обеспечить дополнительный (пусковой) конденсатор. Он впаивается в схему параллельно основному, однако работает не постоянно, а только несколько секунд, на время старта двигателя. Обычно его подключают через кнопку или двухпозиционный тумблер. Для запуска требуется нажать кнопку (включить тумблер) на то время, пока двигатель запустится и наберет обороты. Затем кнопку отпускают, разрывая сеть и отключая емкость.
Двигатель можно заставить работать в прямом и реверсивном режимах. Для этого в схеме подключения добавляется тумблер, который в одном положении подключает конденсатор к нулевому, а в другом — к фазовому проводу. В реверсивной схеме, если двигатель медленно запускается или не стартует вообще, также может быть добавлен пусковой конденсатор. Он точно так же подключается параллельно основному и включается кнопкой «Пуск».
Часто можно услышать вопрос, а можно ли в принципе запустить трехфазный двигатель без конденсатора? К сожалению, этого сделать нельзя. Так можно запустить только мотор, изначально предназначенный для работы с однофазной сетью 220 В.
Реверсирование двигателя
Для того чтобы заставить двигатель вращаться в другую сторону, достаточно «перевернуть» фазу, поступающую на точку соединения обмоток В и С (соединение «Треугольник») или на обмотку В (схема «Звезда»). Схема же, позволяющая изменять направление вращения ротора простым щелчком переключателя SB2, будет выглядеть следующим образом.
Реверсирование трехфазного двигателя на 380 В, работающего в однофазной сети
Здесь следует заметить, что практически любой трехфазный двигатель — реверсный, но выбирать направление вращения мотора нужно перед его пуском. Реверсировать электродвигатель во время его работы нельзя! Сначала нужно обесточить электродвигатель, дождаться его полной остановки, выбрать нужное направление вращение тумблером SВ1 и лишь затем подать на схему напряжение и кратковременно нажать на кнопку В1.
Способ повысить развиваемую мотором мощность
Оказывается, повысить мощность мотора можно, и притом существенно. Для этого даже не придется усложнять конструкцию, а достаточно лишь подключить трехфазный двигатель по приведенной ниже схеме.
Асинхронный двигатель — подключение на 220 В по улучшенной схеме
Здесь уже обмотки A и B работают в номинальном режиме, и лишь обмотка C отдает четверть мощности:
33,3 + 33,3 + 8,325 = 74.92%.
Совсем неплохо, не правда ли? Единственное условие при таком включении — обмотки A и B должны быть включены противофазно (отмечено точками). Реверсирование же такой схемы производится обычным образом — переключением полярности цепи конденсатор-обмотка C.
И последнее замечание. На месте фазосдвигающего и пускового конденсатора могут работать лишь бумажные неполярные приборы, к примеру, МБГЧ, выдерживающие напряжение в полтора-два раза выше напряжения питающей сети.
Особенности и способы подключения к однофазной сети
Однофазный ток 220В, подающийся на электродвигатель, точнее на его статор и ротор, формирует два равнозначных магнитных поля, вращающихся в противоположные стороны. Для того, чтобы заставить ротор вращаться, нужно вручную или за счет пусковых устройств организовать сдвиг фаз. Мощность будет ниже номинальной (50…70%), но двигатель будет работать.
Очевидно, что прямым включением одной из фазных обмоток к сети в 220В при неработающих остальных запустить двигатель не удастся. Следовательно, нужно все три фазы соединить через промежуточный контур. Сделать это можно двумя основными способами:
- Емкостная цепь. Одна из обмоток двигателя подключается через емкость, которая формирует сдвиг фазы тока вперед на 90º. После пуска, эту цепь можно отключить;
- Индуктивная цепь. Действует примерно так же, как и предыдущая, только сдвиг фазы происходит в обратном направлении.
Иногда бывает достаточно даже механического поворота ротора, чтобы двигатель на 380 заработал от 220.
https://youtube.com/watch?v=ukl8nctMpTI
Схема звезда-треугольник
В отечественных моторах часто «звезда» собрана уже, а треугольник требуется реализовать, т.е. подключить три фазы, а из оставшихся шести концов обмотки собрать звезду. Ниже дан чертеж, чтобы разобраться было легче.
Тем не менее, подобное соединение «любят» любители, но не часто применяют на производствах, поскольку схема подключения сложная.
Чтобы она работала необходимо три пускателя:
К первому из них –К1 с одной стороны подключается обмотка статора, с другой – ток. Оставшиеся концы статора соединяют с пускателями К2 и К3, а затем для получения «треугольника» к фазам подключаются и обмотка с К2.
Подключив в фазу К3, незначительно укорачивают оставшиеся концы для получения схемы «звезда».
Переподключение с 380 вольт на 220
Очень важно понимать, как подключается трехфазный электродвигатель к сети 220в. Чтобы трехфазный двигатель подключить к 220в, заметим, что у него есть шесть выводов, что соответствует трем обмоткам
При помощи тестера провода прозванивают, чтобы найти катушки. Их концы соединяем по два – получается соединение «треугольник» (и три конца).
Для начала, два конца сетевого провода (220 в) подключаем к любым двум концам нашего «треугольника». Оставшийся конец (оставшаяся пара скрученных проводов катушки) подсоединяется к концу конденсатора, а оставшийся провод конденсатора также соединяется с одним из концов сетевого провода и катушек.
От того, выберем мы один или другой, будет зависеть в какую сторону начнет вращаться двигатель. Проделав все указанные действия, запускаем двигатель, подав на него 220 в.
Если при включении, мотор гудит, но не крутиться, требуется дополнительно установить (через кнопку) конденсатор. Он будет в момент пуска давать двигателю толчок, заставляя крутиться.
Видео:
Видео: Как подключить электродвигатель с 380 на 220
Прозванивание, т.е. измерение сопротивления, проводится тестером. Если такой отсутствует, воспользоваться можно батарейкой и обычной лампой для фонарика: в цепь, последовательно с лампой, подсоединяют определяемые провода. Если концы одной обмотки найдены – лампа загорается.
Труднее гораздо найти определить начало и концы обмоток. Без вольтметра со стрелкой не обойтись.
Разрывая контакт провода с батарейкой, наблюдают, отклоняется ли стрелка и в какую сторону. Те же действия проводят с оставшимися обмотками, изменяя, если нужно, полярность. Добиваются чтобы отклонялась стрелка в ту же сторону, что при первом измерении.
Увеличение напряжения
Представим, на бирке написано: Δ/Ỵ220/380. Это означает, что нам необходимо включение треугольником, потому что чаще всего соединение как правило – на 380 вольт. Как это сделать? Если электродвигатель в борне имеет клеммную коробку, то нетрудно. Там бывают перемычки, все, что необходимо – переключить их в необходимое положение.
Увы что, если просто выведено три провода? Тогда придется аппарат разбирать. На статоре необходимо отыскать три конца, которые друг с другом спаяны. Это и конечно соединение звездой. Провода необходимо рассоединить и подключить треугольником.
В данной ситуации это сложностей не вызывает. Главное держать в голове, что бывают начало и конец катушек. Например, возьмем за начало концы, которые были выведены в борно электродвигателя. Означает то, что спаяно – это концы. Сейчас принципиально не спутать.
Подключаем так: начало одной катушки соединяем с концом другой, и т.д..
Как мы рассмотрели, схема обычная. Сейчас двигатель, который был соединен для 380, конечно включать в сеть 220 вольт.
Подбор емкости конденсатора
Рабочее напряжение конденсатора должно быть не меньше 300 В. Лучше всего для схемы подходят конденсаторы марок БГТ, МБЧГ, МБПГ и МБГО. Все данные (тип, Uраб, емкость) указаны на корпусе.
Для расчета необходимой емкости следует воспользоваться формулой:
- для подключения «треугольником» С = (I/U)x4800;
- для подключения «звездой» С = (I/U)x2800.
Где С — емкость конденсатора в микрофарадах (мкФ), I — номинальный ток в обмотках (по паспорту), U — напряжение питания (220 В), а цифры — коэффициенты для разных типов подключения обмотки.
Что касается пусковых конденсаторов, то их емкость необходимо подбирать путем эксперимента. Обычно она составляет 2-3 от рабочего номинала.
Приведем пример расчета
Соединение — треугольник. Потребляемый номинальный паспортный ток — 3 А. Подставляя значения в формулу, получаем С=(3/220)х4800 = 65 мкФ. В этом случае емкость пускового конденсатора нужно выбирать в пределах 130-180 мкФ. Однако конденсаторов на 65 мкФ в продаже не бывает, поэтому собираем набор из 6 шт. по 10 мкФ и добавляем еще один — 5 мкФ.
Нужно учитывать, что при расчете использовались данные на номинальную мощность. Если двигатель будет работать с недогрузом, он будет перегреваться. В этом случае необходимо уменьшить емкость конденсаторов, чтобы снизить ток в обмотке. Но со снижением емкости уменьшится и мощность, которую может развить двигатель.
Поэтому при подключении рекомендуется действовать методом подбора. Начинать с минимально необходимой емкости, а затем постепенно увеличивать ее до получения оптимальных показателей.
Дополнительные замечания и предостережения:
- Следует помнить, что двигатель, переделанный с 380 на 220 В, при работе без нагрузки может просто сгореть.
- Двигатели мощнее 3 кВт не рекомендуется подключать к стандартной проводке жилого дома. Из-за высокой потребляемой мощности он будет выбивать пробки и автоматы, а если поставить более мощные автоматы, то может просто расплавиться изоляция на проводах. Это может привести к пожару или поражению током.
- Даже после отключения конденсаторы долго сохраняют напряжение на выводах. Поэтому при монтаже они должны быть ограждены, чтобы не допустить случайного касания. Перед работой с конденсаторами обязательно проводите их «контрольную» разрядку.
Однофазный
Сейчас побеседуем еще об одном виде асинхронных электродвигателей. Это однофазовые конденсаторные машины переменного тока. У их две обмотки, где, после запуска, работает только одна в их числе. Такие движки имеют свои особенности. Разглядим их на примере модели АВЕ-071-4С.
По-другому они еще именуются асинхронными движками с расщепленной фазой. У их на статоре намотана очередная, вспомогательная обмотка, смещенная относительно основной. Запуск делается с использованием фазосдвигающего конденсатора.
Схема однофазового асинхронного двигателя
Из схемы видно, что электронные машины АВЕ отличаются от собственных трехфазных братьев, также от коллекторных однофазовых агрегатов.
Всегда пристально читайте, что написано на бирке! То, что выведено три провода, полностью не означает, что это для подключения на 380 в. Просто спалите неплохую вещь!
Общие схемы подключения двигателей с 380В на 220В через конденсатор
Чаще всего при необходимости решения такой задачи используют рабочий и пусковой конденсаторы (батареи конденсаторов). Базовые схемы подключения треугольником и звездой на 380В можно видеть на следующей иллюстрации:
Нефиксированная кнопка «Разгон» используется для активации параллельно подключенного пускового конденсатора. Ее необходимо удерживать до тех пор, пока двигатель не наберет максимальных оборотов. После этого пусковую цепь необходимо обязательно разъединить, чтобы предотвратить перегревание обмоток. Если мощность двигателя мала, пусковым конденсатором можно пренебречь, работая только через рабочий.
Расчет емкости конденсаторов ведется по следующим формулам:
Емкость пускового конденсатора при этом должна быть вдвое выше рабочей. Если не прибегать к расчету по формулам, то можно воспользоваться значением 7 мкФ/кВт.
Практическое применение показывает, что более эффективным является подключение треугольником, так как при этом распределение напряжения в обмотках будет более равномерным, да и мощность снижается меньше. Есть правда одно ограничение, которое касается компоновки клеммного блока двигателя. Если под его крышкой находится лишь три вывода на 380, то имеет место заранее предустановленная схема соединения, которую не изменишь. Если же там располагается шесть выводов, то можно выбирать, какой вариант организовать. Характерное обозначение наносится на металлическую табличку с характеристиками.
Если 380-вольтовый двигатель предполагается использовать на 220В в режиме с частыми пусками и остановками, то базовую схему можно доработать с организацией цепи динамического торможения:
Здесь можно видеть включение двигателя треугольником через емкостную цепь конденсаторов С1 (пускового) и С2 (рабочего). Дополнительно организована цепь на транзисторе и элементе сопротивления, которая подключается трехпозиционным ключом. Когда он находится в положении «3», напряжение сети 220В поступает на обмотки статора и кнопкой К1 можно совершить его запуск. Для остановки двигателя ключ переводится в положение «1», после чего на обмотки подается постоянный ток и осуществляется торможение. Следует отметить, что этот переключатель имеет только два фиксированных положения «2» и «3». Для использования обычного двухпозиционного ключа в эту цепь необходимо будет добавить еще один конденсатор. Выглядит это следующим образом:
Ранее уже упоминался тот факт, что однофазный ток приводит к организации разнонаправленных эквивалентных магнитных полей статора и ротора, которые можно сдвинуть (заставить вращаться) в ту или иную сторону. Следовательно, можно реализовать на практике схему реверсного подключения электродвигателя на 380В:
Схема является в некотором роде комбинацией двух предыдущих, только здесь использованы сдвоенный переключатель и пуск через реле Р1.
https://youtube.com/watch?v=tqwz6Uv7mlE
Рассмотренные в статье схемы являются базовыми, но в зависимости от конкретного случая их можно модифицировать как угодно, чтобы добиться включения в однофазную сеть 220В трехфазного асинхронного электродвигателя на 380В.
Как еще можно подключить электродвигатель
Помимо соединения звезда-треугольник, также есть еще несколько вариантов, которые применяются более часто:
Многие электрики советуют поставить конденсатор. Конечно, это самое простое решение, но в тоже время Вы сразу получите резкое снижение мощности электродвигателя. Для её реализации понадобится только исправный конденсатор. Нужно два контакта конденсатора подключить к нулю и третьему выходу электродвигателя. В итоге получится маломощный агрегат до 1,5 Вт. Но если Ваш электродвигатель производит большую мощность, то нужно в схему ввести еще пусковой конденсатор. Но в тоже время, если у Вас однофазное подключение, то конденсатор просто компенсирует отсутствие третьего выхода; Фото – схема подключения двигателя с конденсаторами
Если у Вас асинхронный электродвигатель, то можно легко его подключить в звезду либо треугольник по желанию с 380 на 220 В
В таких двигателях установлено три обмотки, которые соединены между собой в звезду или треугольник, для изменения напряжения нужно просто поменять выводы, которые идут на вершины соединений;
Очень важно внимательно читать инструкция к двигателю, его сертификат и паспорт. У многих импортных моделей возможна только монтажная схема соединения треугольник к нашему напряжению 220 В
Если Вы проигнорируете это правило и включите их в сеть 220 при помощи соединения звезда, то моторы просто сгорят под высокой нагрузкой. Также нельзя подключать к домашней сети двигатель, у которого мощность более трех киловатт, иначе начнутся короткие замыкания или даже сгорит автомат УЗО.
Дополняя пункт про конденсаторы, нужно отметить, что подбирать эту комплектующую необходимо исходя из минимально допустимой емкости, постепенно пробными методами увеличивая её до оптимальной, необходимой двигателю. Если электродвигатель очень долго стоит без нагрузки, то он может просто сгореть при подключении к сети. Также помните, что даже после того, как Вы выключили из сети электродвигатели, конденсаторы хранят напряжение на своих контактах.
Ни в коем случае не трогайте их, а желательно оградите специальным изолирующим слоем, который поможет избежать несчастных случаев. Также перед работой с ними нужно делать разрядку.
Это интересно: Электрический теплый пол своими руками — разбираем подробно
Мой самодельный электрогенератор (Сделай сам)
Мой самодельный электрогенератор (Сделай сам)Exavier’s Проекты
Хотя я изучаю прикладную Экономика, искренне интересуюсь механикой и электричеством. В моем запасе время я пытаюсь проектировать, а иногда даже строить вещи, из которых рисунки.Потому что это моя страсть, и я могу представить, что есть такие, как Я сделал этот сайт, чтобы давать предложения и техническую информацию. Этот информацию не всегда легко найти.
Фото Галерея
Ссылкиэкзавьер мои проекты на telenet.be
_____________________________________________________________________________________________________________
Мой самодельный генератор «Generax 1500»
(не еще не закончено)
Один раз Я купил бензиновый двигатель от старой газонокосилки на Ибазаре (сейчас Ebay), потому что я хотел узнать, как работает четырехтактный двигатель.Я разобрал, почистил все, поставил новые уплотнители и наконец все снова собрал. Но она не заводилась. После того, как снова взял мои инструменты и положил их вместе во второй раз, примерно через две недели, она снова издала свой старый звук. Это я впервые увидел, как она крутится, и она отлично справилась!
Имея сделал все это, подумал я, а почему бы мне не построить что-нибудь полезное с этим кусок красивой техники? Сначала у меня возникла идея сделать мощный водяной насос с ней, но так как я не мог найти подходящие запчасти, я поменял свой ума и решил построить самодельный электрогенератор.
Для изготовления электрогенератора я начал с того двигателя, который у меня уже был. Это Briggs & Stratton 3,5 л.с. с вертикальным валом диаметром 7/8 дюйма (22,22 мм). Серийный номер: Модель 92908 Тип 1282 — 01 Код 82021605 (двигатель с 1982 года!)
Теперь у меня был двигатель, сделал чертеж шасси и хочу в местную компанию с ним. Они сделали его из стали толщиной 4 мм. для меня, так что он определенно будет достаточно силен, чтобы сопротивляться механическая мощность моего самодельного электрогенератора.Отверстие под вал двигателя и масло резервуар они сделали резаком. Отверстие для вала генератора я собираюсь сделать сам. Я оседлал двигатель первый раз.
Следующим шагом стал генератор. Я получил промышленная трехфазная (см. техническую информацию далее) электрическая индукционная мотор для свободный. Мне сказали, что их легко превратить в электрогенератор, просто вращая ось и подключив конденсаторы переменного тока (переменного тока) в параллельно.Я намерен переделать трехфазный генератор / генератор вывод в однофазный, пригодный для домашнего использования. Я вернусь к этому когда описываю электрическую часть. Сначала асинхронный двигатель имел поврежденный серый цвет. но я покрасил его в темно-синий цвет.
Характеристики асинхронного двигателя (согласно паспортная табличка двигателя): Производитель: Mez motoren; Фаза: 3 ~; Мощность: 1,5 кВт / 2 л.с. Частота: 50 Гц; Г / Д 380/220 В; Об / мин: 1410; Cos j: 0,82; Текущее: 3.5 / 6,2 А; IP44. Нажмите
здесь
для таблицы данных производителя.Потому что я почувствовал потребность сделать сварные соединения (для крепления вертикального монтажного кронштейна самодельного генератора к шасси), а сварщика у меня не было, решил начать с чего-то другого, Терминал. Терминал предусматривает главный выключатель, контрольные лампы для первичной и вторичной вольтаж (до и после переключения) и конечно розетка переменного тока.Внутри есть два конденсатора (проводка C-2C), предохранитель (идеально подойдет дифференциальный выключатель + заземление) и все провода. со своими разъемами. Клеммная пластина изготовлена из матовой нержавеющей стали, которую я вырезал. извлекать (ручной пилой!) из другого куска.
В ожидании сварки я уже началось с некоторых расчетов передаточного отношения шкивов (щелкните Вот за .xls файл). После некоторых исследований я предположил, что мой бензиновый двигатель крутится на 3600 выстрелов в минуту на полном газу. В Excel я сделал несколько расчетов и заказал два шкива диаметром 67 и 140 мм (SPA, чугун, втулка 1108 и 1610 г.). Тем не менее, позже я нашел веб-сайт, на котором говорилось, что косилка с вертикальной осью двигатели вращаются со скоростью 0,80 об / мин по сравнению с двигателями горизонтальных косилок. В Кроме того, из-за трансмиссии теряется 10% мощности. Со всем этим взято во внимание надеюсь, что мой самодельный генератор будет иметь обороты не менее 1550.В противном случае мне придется покупать новый шкив мотора чуть большего диаметра. или попробуйте разогнать двигатель косилки.
Вал мотора имеет американские размеры. (7/8 дюйма в диаметре), и я подумал, что 22 мм подойдет. Когда я попробовал Чтобы прикрепить шкив, было ясно, что эти 0,225 мм ДЕЙСТВИТЕЛЬНО имеют значение. Итак, мне пришлось отрегулировать шкив двигателя на сверло от 22 мм до 22,225 мм (7/8 дюйма) с точильным камнем на моей электродрели (третье фото).Это далеко от идеала, и я надеюсь, что это сработает. Токарный станок было бы лучшим решением, если бы, конечно, он у меня был.
На контейнерном парке я заметил старую трехколесный велосипед. Так как я отчаянно искал дешевые качественные диски, это открытие было действительно облегчением. я сразу же установил колеса под деревянную тележка.
Только что заказал книгу «Моторы». в качестве генераторов для микрогидроэнергетики »г. Найджел Смит.Кто-то посоветовал мне эту книгу, потому что автор подробно объясняет, как электрический проводка генератора должна быть сделана.
В комплекте: выбор электродвигателя, эффективность, преимущества и недостатки индукционных генераторов по сравнению с другими типами генератор, требования к конденсаторам, напряжение и частота, соображения нагрузки, преобразование 3 фазы в 1 фазу, запуск двигателя
Как упоминал мой самодельный генератор еще не закончен.Я надеюсь, что то, что я уже сделал, будет работать вместе в удачный способ.
Меня больше всего беспокоит настроенная шкив двигателя и передаточное число шкива. Мне также нужно найти кого-нибудь, кто умеет сваривать мне.
Посмотрим …
_____________________________________________________________________________________________________________
1.Генератор
…
Единственное, что я решил — это производить электричество, но как? Чем больше читаю об этом, тем больше проблем возникало.
Одна возможность для использовать автомобильный генератор , но тогда у вас будет 13,8 В постоянного тока.
Хотя можно преобразовать этот постоянный ток (DC) в 230 В или 115 В переменного тока с инвертором
, это — достаточно дорогое и некачественное решение (зависит от вашего бюджета).Инверторы мощностью более 500 Вт стоят дорого. кликните сюда схемы этой установки.
Другой возможность использовать электродвигатель для выработки напряжения. Мотор может быть используется наоборот как электрогенератор! Генерируемое напряжение зависит от номинального напряжения двигателя (теперь генератора).
Электродвигатели бывают разных типов. Для начала есть AC и DC. моторы. В классе переменного тока есть Induction и Universal моторы .
Что Я так и сделал был второй вариант , при этом он был лучшим и тем менее дорогой. Лучшее, потому что эта установка создает чистый синус волна, и нет квадрата волна как обычный инвертор.Самый дешевый Кстати, потому что я получил бесплатно старый промышленный трехфазный асинхронный электродвигатель от компании, у которой по стечению обстоятельств их было много, и я хотел их привезти. за переработка отходов.
(Я даже мог выбрать из 100!)
Есть два типа индукционных генераторов (двигателей) (также называемых асинхронный двигатели или двигатели с короткозамкнутым ротором ). Как правило, эти двигатели предназначены для использования в приложениях , 1 фаза, или , 3 фазы, .Первый тип — это мотор для домашнего использования, а второй — для промышленного использования (одинаковая нагрузка в киловаттах делится на три кабеля, поэтому каждый кабель имеет меньший ток и не перегревается). В своем генераторе я использовал промышленный тип потому что я получил это и был счастлив, что нашел что-то.
От то, что я слышал, могу сделать вывод, что трехфазный индукционный генератор более эффективен, чем однофазный генератор.
Другой Тип двигателя переменного тока — синхронный двигатель / генератор . Этот мотор реже, и я предполагаю, что вам нужно использовать свои знания силовой электроники, чтобы заставить эти двигатели генерировать. Это тип автомобильного генератора. Есть обмотки в роторе и статоре и статоре дает переменную мощность ротору для определения правильное напряжение статора (при работе генератора). Все генераторы коммерческие используйте этот тип. Можно найти человека, который может заставить эти двигатели генерировать Вот.
А Третий тип электродвигателя под названием универсальный двигатель менее полезен. Это моторы в мелкая бытовая техника, такая как сверлильные станки, вентиляторы для пылесосов, а также генераторы . Они работают как на постоянном, так и на переменном токе. Так что не используйте это или же это но это. Я предполагаю, что эти моторы можно использовать как электрогенераторы, но тогда вам нужно иметь знания в области электроники.Эти двигатели обычно имеют обмотки в их статоре И роторе, и, следовательно, НИКАКОЙ беличьей клетки (см. последний рисунок выше).
Это Веб-сайт дает информация обо всех видах электродвигателей.
Как как вы уже могли видеть, я использовал асинхронный двигатель для выработки энергии. Я сейчас пойду дальше.
I сказал, что я использовал промышленный «трехфазный» асинхронный двигатель в качестве генератор.Что я тоже сказал заключается в том, что мощность делится на три провода, чтобы предотвратить перегрев. Вы могли ошибочно предполагают, что эти выводы соединены параллельно. Нет, реальность больше сложный. Фактически, эти три провода переменного тока имеют «фазовый сдвиг» 120 (360/3), поэтому подключение этих выводов может привести к короткому замыканию. Если если вы хотите узнать об этом больше, нажмите здесь.
В промышленный (3-фазный) асинхронный генератор / двигатель, вы можете сделать два возможных подключения проводки, треугольник (∆) и Уай (Y).
Если мы начинаем с точки зрения генератора, две возможности подключения создают разные сопротивления. Эти сопротивления приносят разные напряжения с их.
Пожалуйста замечание что трехфазный асинхронный двигатель имеет три вывода (возможно, с четвертым, «нейтраль»), по сравнению с асинхронным двигателем домашнего использования, который имеет только два (одна фаза + нейтральный). Я вернусь к этому позже.
При подключении в Delta каждая из трех катушек изначально рассчитана на 220 В (= старое сетевое напряжение, новое 230 В в Бельгии), поэтому при использовании в качестве электрического генератор, катушка тоже будет подавать 220В.
Потому что напряжение между ними два из трех выводов ниже в Delta при той же мощности (в Ватт) ток будет выше, чем в Уай. (P = U x I)
При подключении в Уай, как видно выше, каждый из трех проводов представляет собой комбинацию две катушки. А специальная формула действительно заявляет, что катушка n1 займет 220В и катушка n2 160В.220В + 160 В = 380 В
Та же концепция для звезда : напряжение выше и текущее ниже .
Все эту информацию можно увидеть на заводской табличке электродвигателя.
Кроме того сколько ватт, мощность также будет указана в лошадиных силах (л.с.)
Нажмите Вот копия с объяснением, которую мне дал парень.
Примечание: Для некоторых промышленных электродвигателей каждая из трех опор будет состоять из более чем одной катушки. Затем терминалы нумеруются. от 1 до 9 или 12 вместо 1, 2, 3.
2. Коробка передач …
Если вы хотите производить электричество, вам необходимо подключить индукционный генератор к бензиновый или дизельный двигатель (или что-то более экологичное, например, ветер или водяная турбина).
Вы также можно подключить другой электродвигатель (от 12 В, 24 В до 230 В) к индукционной генератор, например если имеется только батарея на 12 В постоянного тока и вам нужно 120/230 В переменного тока.
Есть Есть несколько вариантов соединения между этими двумя основными частями.
Обороты приводного двигателя будут такими же, как индукционного генератора (или генератора другого типа).
Ремень стяжной. В этой настройке вам понадобятся шкивы. Эти шкивы варьироваться по внешнему диаметру так что вы можете рассчитать соотношение (я вернусь к этому в Двигатель ). Два шкива соединены с ремень. Там всегда есть потери из-за проскальзывания шкива и ремня. Они разные виды ремня.Недавно СПА или
Ремни и шкивы SPB заменяют старые A или B. У новых есть лучшее сцепление и, следовательно, меньше потерь. Также следует обратить внимание на внутренний диаметр (вала) шкивов. Большинство двигателей (американского производства!) Имеют вал дюймовой системы. (1/2 «, 7/8») и, следовательно, для двигателя вам понадобятся шкивы с диаметр в дюймовой системе. Для двигателя это зависит от страны, в которой вы живете.
я изготовил самодельный генератор по второму варианту , с клиноременной муфтой.
Пока собирая информацию, конечно, я нашел сайты, где можно купить трансмиссию части.
Эпицентр ; Mfgsupply ; Robocombat ; Феникс-производитель . Также в местных магазинах косилок / электродвигателей можно найти запчасти.
Примечание: Очень важно установить надлежащую защиту ремня / цепи.Движущиеся части очень опасны для ваших рук и детей!
3. Двигатель
…
Единственный ключевой компонент, которого все еще не хватает, — это источник питания. Как я уже сказал, это может быть всем, что
имеет ось.Для электрогенераторов обычно используют 4-тактный бензиновый или дизельный двигатель. двигатель, как и я.
самые известные бренды — Briggs & Stratton, Honda и Текумсе. На последнем я считаю самые лучшие и самые долговечные двигатели.
Важно выбрать двигатель который достаточно мощный, чтобы приводить в действие самодельный генератор. Дело в том, что если нагрузка применительно к генератору, двигатель должен работать больше, чтобы приводить в действие генератор.Чтобы сделать двигатель сильнее, нужно создать хорошее передаточное число. при этом двигатель вращается быстрее, чем генератор (генератор). Обычный бензин обороты двигателя 1800 об / мин на холостом ходу и 3400-3600 об / мин на полном газу.
Мой соотношение 2,09: 1
Кому убедитесь, что лучше всего умножить мощность двигателя на 746, а затем на 0,50.
Пусть мне объяснить.Теоретически лошадиные силы равно примерно 740 Вт. Так что вы можете возразить, что подключать электрогенератор мощностью 2590 Вт для двигателя Briggs & Stratton мощностью 3,5 л.с. На практике это совсем не работает. Если вы попробуете эту настройку, вы увидите, что двигатель глохнет, обороты будут идти в свободном падении. Это происходит потому, что ни бензиновый двигатель, ни индукционный генератор не имеют 100% эффективность. Общая эффективность 50% пока кажется мне разумной.
Примечание: При настройке каждой части электрический генератор на месте, вы должны быть осторожны, чтобы не поставить топливный бак слишком близко к выхлопной трубе. Вы поймете, что это может создать опасный ситуация.
4. Электрическая система
…
Ранее я упоминал об использовании одно- и трехфазных асинхронных электродвигателей в качестве электрические генераторы.Эти два подхода требуют разного подключения. Однако каждый подход требует использования конденсаторов . В виде ns8o говорит: Емкость помогает наводить токи в проводники ротора и заставляет его производить переменный ток. Вы можно обойтись без конденсаторов, но тогда генератор должен быть подключен к электрическая сеть.
Частота будет определяться скоростью источника питания, а напряжение будет определяется емкостью конденсатора.
3 фазы
двигатели как генератор
С такой промышленный электродвигатель у вас есть три вывода (+ нейтраль). Это проблема, поскольку вы будете подключать однофазные домашние нагрузки. (например, лампы, электродрель, холодильник и т. д.)
к вашему самодельному генератору.
Есть Есть два способа использования промышленного двигателя в качестве электрогенератора в бытовой технике:
Во-первых, чтобы взять питание между любыми двумя из трех проводов .
Таким образом, двигатель можно подключать по схеме звезды или треугольника (в зависимости от напряжение, которое вы хотите). Это можно подключить, например лампу мощностью 100 Вт к электрогенератору мощностью 1500 Вт, взяв питание
от двух из трех проводов (помните: 230 Вольт в треугольнике (120 В в Америке)). Но если вы хотите подключить лампу мощностью 600 Вт к (одной из трех фаз) генератора мощностью 1500 Вт таким образом, она не будет работать. Это потому, что мощность индукционного генератора делится на три (три катушки группы).Можно будет 3 раза подключить пусть я говорю макс. 350 Вт для этого трехфазного индукционного генератора мощностью 1500 Вт. Если вы выберете этот метод, вам придется подключить конденсаторы. над обмотками двигателя.
Метод второй состоит из специального способа подключения, в котором также используются конденсаторы. Этот способ изготовления однофазный выход (230 В) от трехфазного генератора называется методом C-2C (также описано в: Двигатели как генераторы для микрогидроэнергетики от Найджела Смита (требуются технические знания!) и использует два конденсатора.Одно значение C и один стоимостью 2С. Значения всегда измеряются в F (микрофарад). Катушки индукционного генератора должны быть подключены по схеме «Дельта». Значения конденсаторов см. В той же таблице. как указано выше.
Ссылка для умножения РЕАКТИВНАЯ мощность в кВт (Киловатт) на 7,35 для C. Power берется параллельно по соединению C.
когда При выборе номиналов конденсаторов важно выбирать те, которые имеют достаточную уровень напряжения.Они могут взорваться, если этот рейтинг недооценен. За безопасность выбирайте конденсаторы не менее 350 В (в 1,5 раза больше номинала).
Однофазные двигатели в качестве генератора
Такой асинхронные двигатели, возможно, найти проще, поскольку они используются для привода водяных насосов, электрических газонокосилок и стиральных машин. Однако этот вид индукционных генераторов (спроектированных как двигатель) также требует емкости (в параллельно проводам двигателя) и принцип тот же.Однако они будут потребуется больше емкости, чем потребуется трехфазным системам. Видеть электронная таблица вкладка ‘однофазный двигатель> однофазный генератор)’.
Дополнительный информация, важный!
Конденсаторы: Всегда использовать двигатель запустите конденсаторов с напряжением, которое в √3 раза выше, чем напряжение, которое вы хотите генерировать.Итак, для моей модели, которая дает как минимум 230 x 1,73 = 400 В. Также существует двигатель начало конденсаторы. Не используйте их. Они взорвутся, если попадут под ток постоянно.
об / мин: Чтобы начать генерацию, необходимо управляйте двигателем как генератором с частотой вращения немного (+ -6%) выше паспортной. Мой мотор должно быть + — 1500 об / мин вместо номинальной скорости 1410 об / мин.Таким образом, напряжение будет в 1,06 раза больше, чем напряжение, указанное на паспортной табличке. Шахта будет 235 Вольт, что вполне нормально (при приложении нагрузки напряжение будет падение).
Поскольку напряжение слишком сильно падает, это может повредить ваши компоненты, потому что ток будет расти. Может пригодиться установка предохранителя. Чтобы немного сберечь напряжение, вы можете рассчитать соотношение таким образом, чтобы напряжение будет например 270 Вольт на полном газу. Нецелесообразно запускать электрогенератор на это напряжение как на подшипниках, так и на конденсаторах (слишком высокое напряжение: опасность взрыв) не выдержит.
Потребуется ручное управление.
Хотя ручное управление просто хорошо, там существует также электронное управление напряжением / частотой.
Просто найдите индукционный генератор контроллер (IGC) в Google или Yahoo.
Маховик двигателя: маховик бензинового двигателя нужен, чтобы двигатель оставался на скорости.Он должен быть тяжелым, в чугуне. В некоторых двигателях газонокосилок (с вертикальным валом) это маховик выполнен из легкого алюминия, вес переносится винтом лезвие. Если вы используете такой двигатель, как я, используйте тяжелые (чугунные) шкивы или установить новый чугунный маховик.
Шкивы: Убедитесь, что вы приобрели ведущий шкив, имеющий шпоночный паз.Бездельник шкив не будет работать в самодельный генератор потому что они делают не передают мощность от оси на ремень, они просто катятся.
Запуск самодельный генератор: При запуске бензинового двигателя магнитное поле внутри генератора должно постепенно нарастать. Поэтому это необходимо приложить нагрузки после частота вращения генератора выше паспортной.То же самое и с выключением самодельного генератора: сначала необходимо переключить нагрузки! В виде как видите, переключатель может пригодиться (ставить после конденсаторов!).
Если вы Если у вас есть вопросы или предложения, напишите мне на [email protected]
___________________________________________________________________________
Фото Галерея
Ссылки
Как заменить конденсатор в потолочном вентиляторе? 3 способа
Как установить и подключить конденсатор в потолочный вентилятор?
Если вы когда-либо сталкивались с проблемой с потолочным вентилятором, такой как гудение, низкая скорость, не работает вентилятор или вентилятор работает, но вентилятор остановлен даже при правильном питании, тогда вы подходящий форум. из наиболее частых причин — неисправный или перегоревший конденсатор вместо неисправных внутренних обмоток, отказ источника питания или заклинивание подшипников.Вы можете проверить и протестировать конденсатор 6 методами, если он неисправен или находится в хорошем состоянии.
Попросту говоря, в потолочном вентиляторе есть однофазный (асинхронный двигатель с разделенной фазой), где нам нужен пусковой конденсатор, чтобы разделить фазовый угол между пусковой и рабочей обмотками для создания магнитного поля. Конденсатор просто делает это, поскольку он обеспечивает сдвиг опережающей фазы на 90 ° (поскольку через начальную обмотку протекает некоторый ток). Таким образом, напряжение на пусковой и бегущей обмотках имеет разность фаз, которая обеспечивает вращающееся магнитное поле, приводящее к вращению ротора двигателя.
Как упомянуто выше и показано на рисунке ниже, в двигателе потолочного вентилятора есть две обмотки, которые известны как основная (рабочая) и вспомогательная (пусковая) обмотки. Нам нужно подключить конденсатор к пусковой (вспомогательной) обмотке последовательно. Нейтраль должна быть соединена с нейтралью. Не забудьте подключить заземляющий провод к правильному заземлению.
Примечание: Цвета проводки в этом руководстве предназначены только для иллюстрации и пояснения i.е. Эти цвета, используемые в данном руководстве, предназначены только для ознакомления и не обязательно отражают региональные различия. См. Нижние примечания для цветовых кодов проводки в США и ЕС (NEC и IEC). Кроме того, некоторые производители могут использовать провода разных цветов, при этом следуйте региональной цветовой кодировке или обратитесь к руководству пользователя, чтобы получить четкое объяснение. Если вы все еще не уверены, обратитесь к лицензированному электрику для правильной установки.
Заявление об ограничении ответственности: Эти диаграммы должны использоваться только в качестве руководства. Ответственность за использование этого руководства несет установщик.Компания Electric Technology и автор данного руководства не несут ответственности за травмы, убытки или ущерб, возникшие в результате использования этого руководства. Для правильной установки вы можете обратиться к лицензированному электрику. Внимательно прочтите меры предосторожности в конце этого руководства.
Теперь, если у нас неисправный конденсатор, мы можем заменить его тремя разными способами, как показано ниже.
- Замена вышедшего из строя конденсатора в потолочном вентиляторе.
- Подключение пускового конденсатора с потолочным вентилятором.
- Подключение конденсатора 3-в-1 с потолочным вентилятором, переключателем реверса и натяжной цепью.
Связанное сообщение: Как определить размер и количество потолочных вентиляторов в комнате?
Замена неисправного конденсатора в потолочном вентиляторе
Предположим, что простой вентилятор без осветительного комплекта необходимо заменить на новый рабочий конденсатор того же номинала, следуйте инструкциям ниже:
- Прежде всего, выключите выключите главный автоматический выключатель в домашнем распределительном щите, чтобы отключить электропитание.
- Теперь удалите неисправный конденсатор, отрезав точные провода, подключенные к неисправному конденсатору.
- Замените конденсатор новым, подключив красный (под напряжением) провод (от потолочного вентилятора) к первой клемме конденсатора и подключив синий провод ко второй клемме конденсатора.
- Подключите красный и синий провод, наденьте гайку для провода и электрический ответвитель и вставьте его в соединитель проводов, как показано на рисунке ниже.
- Подключите черный (нейтральный) провод потолочного вентилятора ко второму разъему соединителя проводов.
- Теперь подключите фазу и нейтраль к источнику питания. Включите главный автоматический выключатель, чтобы проверить потолочный вентилятор.
Полезно знать: Не подключайте конденсатор к нейтральному проводу, т.е. подключайте конденсатор только красный и черный (или синий и черный, в зависимости от производителя и руководства пользователя), в противном случае, вместо анти-часов В правильном направлении вентилятор начнет вращаться в обратном направлении, то есть в обратном направлении (по часовой стрелке).
Связанное сообщение:
Подключение пускового конденсатора к потолочному вентилятору
Если у вас возникла проблема с пусковым конденсатором потолочного вентилятора, выполните следующие действия, чтобы установить и подключить новый конденсатор.
- Отключите основное питание, отключив автоматический выключатель в DB.
- Удалите перегоревший / неисправный конденсатор из вентилятора, отрезав соответствующие провода.
- Подключите красный провод к первой клемме нового конденсатора, а вторая клемма должна быть соединена с синим проводом с помощью гайки (не забудьте также использовать электрический ответвитель) и подключите к первому слоту соединителя проводов, как показано на рис.
- Теперь подключите красный (под напряжением) провод от соединителя к регулятору скорости вращения вентилятора или диммерному переключателю вентилятора и к SPST (однополюсному однопроходному или одностороннему переключателю) последовательно.
- Подсоедините провод заземления и нейтраль от вентилятора к заземляющему и нейтральному проводам от главного распределительного щита.
- Включите главный выключатель, чтобы проверить, правильно ли работает вентилятор.
Связанные сообщения:
Подключение 3-в-1 Потолочный вентилятор Конденсатор с обратным переключателем и тяговой цепью
Этот метод немного сложен из-за разных проводов в 3-дюймовом -1, и необходимо соблюдать цветовую кодировку проводки, используемую на схеме подключения (цветовые коды проводки NEC и IEC приведены ниже).Чтобы заменить и заменить конденсатор «три в одном» на потолочный вентилятор со встроенным комплектом освещения и переключателем реверса, следуйте приведенным ниже инструкциям.
- Прежде всего, выключите главный выключатель в бытовой электросети, чтобы отключить основное питание.
- Подключите зеленый / желтый провод заземления к бытовой системе заземления.
- Теперь удалите ранее установленный конденсатор в потолочном вентиляторе, отрезав красный и серый провода.
- Сделайте то же самое для выключателя с тяговой цепью, т.е.отсоедините (серый, коричневый, пурпурный и черный) провода от конденсатора до переключателя тягового цепи и переключателя реверса потолочного вентилятора.
- Теперь подключите новый конденсатор 3-в-1, подключив серый провод к слоту 1 в переключателе тянущей цепи, второй серый провод от конденсатора к среднему выводу переключателя реверса.
- Подсоедините коричневый и фиолетовый провод к гнездам 2 и 3 соответственно в переключателе тягового цепи.
- Подключите оранжевый и розовый провода от вентилятора к гнездам 1 и 3 переключателя реверса, как показано на рис.
- Подключите белый провод в качестве нейтрали от главной платы к вентилятору, среднему разъему переключателя заднего хода и световому комплекту.
- Подключите черный провод, находящийся под напряжением (фаза или линия), к L пазу переключателя тяговой цепи. Дополнительное соединение через гайку провода к синему проводу от вентилятора к встроенному световому комплекту, как показано на рис.
- Теперь включите главный распределительный щит, чтобы проверить потолочный вентилятор с помощью переключателя реверса (который используется для изменения направления вращения вентилятора), потяните цепной переключатель для различных скоростей и управления ВКЛ / ВЫКЛ.
Связанное сообщение: Как управлять одной лампой с двух или трех мест?
Цветовые коды проводки NEC и IEC:
Мы использовали красный для Live или фазы , черный для нейтраль и зеленый / желтый для заземления. Вы можете использовать коды конкретных регионов, например I EC — Международная электротехническая комиссия (Великобритания, ЕС и т. Д.) Или NEC (Национальный электрический код [США и Канада], где:
NEC:
Однофазный 120 В Переменный ток:
- Черный = Фаза или Линия
- Белый = Нейтраль
- Зеленый / Желтый = Заземляющий провод :
- Коричневый = Фаза или Линия
- Синий = Нейтраль
- Зеленый = Заземляющий провод Как подключить автоматический и ручной переключатель / переключатель (1 и 3 фазы)
Общие меры безопасности 9 0554
- Электричество — наш враг, если вы дадите ему шанс убить вас, Помните, они никогда не упустят его.Пожалуйста, прочтите все меры предосторожности и инструкции при выполнении этого руководства на практике.
- Отключите источник питания перед обслуживанием, ремонтом или установкой электрического оборудования.
- Используйте кабель подходящего размера с помощью этого простого метода расчета (Как определить подходящий размер кабеля для электромонтажа)
- Никогда не пытайтесь работать от электричества без надлежащего руководства и ухода.
- Work wit
Конденсаторы — learn.sparkfun.com
Добавлено в избранное Любимый 71Введение
Конденсатор — это двухконтактный электрический компонент.Наряду с резисторами и катушками индуктивности, они являются одними из самых фундаментальных пассивных компонентов , которые мы используем. Вам нужно будет очень внимательно поискать схему, в которой не содержит конденсатора.
Особенностью конденсаторов является их способность накапливать энергию ; они похожи на полностью заряженную электрическую батарею. Колпачки , как мы их обычно называем, имеют самые разные критические применения в схемах. Общие приложения включают локальное накопление энергии, подавление скачков напряжения и комплексную фильтрацию сигналов.
рассматривается в этом учебном пособии
В этом руководстве мы рассмотрим всевозможные темы, связанные с конденсаторами, в том числе:
- Как делается конденсатор
- Как работает конденсатор
- Единицы емкости
- Типы конденсаторов
- Как распознать конденсаторы
- Как емкость сочетается последовательно и параллельно
- Применение конденсаторов общего назначения
Рекомендуемая литература
Некоторые концепции в этом руководстве основаны на предыдущих знаниях в области электроники.Перед тем, как перейти к этому руководству, подумайте о том, чтобы сначала прочитать (хотя бы бегло просмотр) эти:
Обозначения и единицы
Условные обозначения цепей
Есть два распространенных способа нарисовать конденсатор на схеме. У них всегда есть две клеммы, которые подключаются к остальной цепи. Обозначение конденсаторов состоит из двух параллельных линий, которые могут быть плоскими или изогнутыми; обе линии должны быть параллельны друг другу, близко друг к другу, но не касаться друг друга (это фактически показывает, как сделан конденсатор.Сложно описать, проще показать:
(1) и (2) — стандартные обозначения цепи конденсатора. (3) — пример символов конденсаторов в действии в цепи регулятора напряжения.
Символ с изогнутой линией (№ 2 на фото выше) указывает, что конденсатор поляризован, что означает, что это, вероятно, электролитический конденсатор. Подробнее об этом в разделе о типах конденсаторов этого руководства.
Каждый конденсатор должен сопровождаться названием — C1, C2 и т. Д.. — и стоимость. Значение должно указывать на емкость конденсатора; сколько там фарадов. Кстати о фарадах …
Единицы измерения емкости
Не все конденсаторы одинаковы. Каждый конденсатор имеет определенную емкость. Емкость конденсатора говорит вам, сколько заряда он может хранить , большая емкость означает большую емкость для хранения заряда. Стандартная единица измерения емкости называется фарад , сокращенно F .
Получается, что фарад — это лот емкости, даже 0,001Ф (1 миллифарад — 1мФ) — это большой конденсатор. Обычно вы видите конденсаторы с номиналом от пико- (10 -12 ) до микрофарад (10 -6 ).
Имя префикса Сокращение Вес Эквивалентные фарады Пикофарад pF 10 -12 0.000000000008 10 -12 0,000000000001 9085-D 9085 9085 9085 9085 9085 9085 9085 9085 9085 0.000000001 F Микрофарад мкФ 10 -6 0,000001 F Милифарад mF 10 -3 10 3 1000 Ф. Когда вы переходите к диапазону емкости от фарада до килофарада, вы начинаете говорить о специальных конденсаторах, которые называются конденсаторами super или ultra .
Теория конденсаторов
Примечание : Материал на этой странице не совсем критичен для понимания новичками в электронике … и к концу все становится немного сложнее. Мы рекомендуем прочитать раздел Как делается конденсатор , остальные, вероятно, можно пропустить, если они вызывают у вас головную боль.
Как делается конденсатор
Условное обозначение конденсатора на самом деле очень похоже на то, как он сделан.Конденсатор состоит из двух металлических пластин и изоляционного материала, называемого диэлектриком . Металлические пластины размещены очень близко друг к другу, параллельно, но диэлектрик находится между ними, чтобы они не соприкасались.
Стандартный сэндвич с конденсаторами: две металлические пластины, разделенные изолирующим диэлектриком.
Диэлектрик может быть изготовлен из любых изоляционных материалов: бумаги, стекла, резины, керамики, пластика или всего, что препятствует прохождению тока.
Пластины изготовлены из токопроводящего материала: алюминия, тантала, серебра или других металлов. Каждый из них подключен к клеммному проводу, который в конечном итоге подключается к остальной цепи.
Емкость конденсатора — сколько в нем фарад — зависит от его конструкции. Для большей емкости требуется конденсатор большего размера. Пластины с большей площадью перекрывающейся поверхности обеспечивают большую емкость, а большее расстояние между пластинами означает меньшую емкость. Материал диэлектрика даже влияет на то, сколько фарад имеет колпачок.Полная емкость конденсатора может быть рассчитана по формуле:
Где ε r — относительная диэлектрическая проницаемость диэлектрика (постоянное значение, определяемое материалом диэлектрика), A — площадь перекрытия пластин друг с другом, а d — расстояние между пластинами.
Как работает конденсатор
Электрический ток — это поток электрического заряда, который электрические компоненты используют, чтобы загораться, вращаться или делать то, что они делают.Когда ток течет в конденсатор, заряды «застревают» на пластинах, потому что не могут пройти через изолирующий диэлектрик. Электроны — отрицательно заряженные частицы — засасываются одной из пластин, и она становится в целом отрицательно заряженной. Большая масса отрицательных зарядов на одной пластине отталкивает, как заряды, на другой пластине, делая ее положительно заряженной.
Положительный и отрицательный заряды на каждой из этих пластин притягиваются друг к другу, потому что это то, что делают противоположные заряды.Но с диэлектриком, сидящим между ними, как бы они ни хотели соединиться, заряды навсегда останутся на пластине (до тех пор, пока им не будет куда-то идти). Стационарные заряды на этих пластинах создают электрическое поле, которое влияет на электрическую потенциальную энергию и напряжение. Когда заряды группируются на конденсаторе, как этот, конденсатор накапливает электрическую энергию так же, как батарея может накапливать химическую энергию.
Зарядка и разрядка
Когда на пластинах конденсатора сливаются положительный и отрицательный заряды, конденсатор становится заряженным .Конденсатор может сохранять свое электрическое поле — удерживать свой заряд, потому что положительный и отрицательный заряды на каждой из пластин притягиваются друг к другу, но никогда не достигают друг друга.
В какой-то момент пластины конденсатора будут настолько заряжены, что просто не смогут больше принимать их. На одной пластине достаточно отрицательных зарядов, чтобы они могли отразить любые другие, которые попытаются присоединиться. Именно здесь вступает в игру емкость конденсатора (фарады), которая говорит вам о максимальном количестве заряда, которое может хранить конденсатор.
Если в цепи создается путь, который позволяет зарядам найти другой путь друг к другу, они выйдут из конденсатора, и он разрядит .
Например, в приведенной ниже схеме аккумулятор может быть использован для создания электрического потенциала на конденсаторе. Это вызовет нарастание одинаковых, но противоположных зарядов на каждой из пластин, пока они не станут настолько полными, что оттолкнут ток от протекания. Светодиод, расположенный последовательно с крышкой, может обеспечивать путь для тока, а энергия, запасенная в конденсаторе, может использоваться для кратковременного освещения светодиода.
Расчет заряда, напряжения и тока
Емкость конденсатора — сколько в нем фарад — говорит вам, сколько заряда он может хранить. Сколько заряда хранит конденсатор в настоящее время, зависит от разности потенциалов (напряжения) между его пластинами. Это соотношение между зарядом, емкостью и напряжением можно смоделировать с помощью следующего уравнения:
Заряд (Q), накопленный в конденсаторе, является произведением его емкости (C) и приложенного к нему напряжения (V).
Емкость конденсатора всегда должна быть постоянной известной величиной. Таким образом, мы можем регулировать напряжение для увеличения или уменьшения заряда крышки. Больше напряжения означает больше заряда, меньше напряжения … меньше заряда.
Это уравнение также дает нам хороший способ определить значение одного фарада. Один фарад (F) — это способность хранить одну единицу энергии (кулоны) на каждый вольт.
Расчет тока
Мы можем пойти дальше по уравнению заряда / напряжения / емкости, чтобы выяснить, как емкость и напряжение влияют на ток, потому что ток — это скорость потока заряда.Суть отношения конденсатора к напряжению и току такова: величина тока , протекающего через конденсатор , зависит как от емкости, так и от того, как быстро напряжение растет или падает . Если напряжение на конденсаторе быстро возрастает, через конденсатор будет индуцироваться большой положительный ток. Более медленный рост напряжения на конденсаторе означает меньший ток через него. Если напряжение на конденсаторе стабильное и неизменное, через него не будет проходить ток.
(Это некрасиво, и это касается вычислений. Это не все, что нужно, пока вы не перейдете к анализу во временной области, разработке фильтров и прочим грубым вещам, так что переходите к следующей странице, если вам не нравится это уравнение. .) Уравнение для расчета тока через конденсатор:
Часть dV / dt этого уравнения представляет собой производную (причудливый способ сказать мгновенная скорость ) напряжения с течением времени, это эквивалентно выражению «насколько быстро напряжение растет или падает в этот самый момент».Большой вывод из этого уравнения заключается в том, что если напряжение стабильно , производная равна нулю, что означает, что ток также равен нулю . Вот почему ток не может течь через конденсатор, поддерживающий постоянное постоянное напряжение.
Типы конденсаторов
Существуют всевозможные типы конденсаторов, каждый из которых имеет определенные особенности и недостатки, которые делают его лучше для одних приложений, чем для других.
При выборе типа конденсатора необходимо учитывать несколько факторов:
- Размер — Размер с точки зрения физического объема и емкости.Нередко конденсатор является самым большим компонентом в цепи. Они также могут быть очень маленькими. Для большей емкости обычно требуется конденсатор большего размера.
- Максимальное напряжение — Каждый конденсатор рассчитан на максимальное падение напряжения на нем. Некоторые конденсаторы могут быть рассчитаны на 1,5 В, другие — на 100 В. Превышение максимального напряжения обычно приводит к разрушению конденсатора.
- Ток утечки — Конденсаторы не идеальны.Каждая крышка склонна пропускать небольшое количество тока через диэлектрик от одного вывода к другому. Эта крошечная потеря тока (обычно наноампер или меньше) называется утечкой. Утечка заставляет энергию, накопленную в конденсаторе, медленно, но верно истощаться.
- Эквивалентное последовательное сопротивление (ESR) — Выводы конденсатора не на 100% проводящие, они всегда будут иметь небольшое сопротивление (обычно менее 0,01 Ом). Это сопротивление становится проблемой, когда через колпачок проходит большой ток, вызывая потери тепла и мощности.
- Допуск — Конденсаторы также не могут иметь точную, точную емкость. Каждая крышка будет рассчитана на свою номинальную емкость, но, в зависимости от типа, точное значение может варьироваться от ± 1% до ± 20% от желаемого значения.
Конденсаторы керамические
Наиболее часто используемый и производимый конденсатор — керамический конденсатор. Название происходит от материала, из которого сделан их диэлектрик.
Керамические конденсаторы обычно бывают физически и емкостными малыми .Трудно найти керамический конденсатор больше 10 мкФ. Керамический колпачок для поверхностного монтажа обычно находится в крошечном корпусе 0402 (0,4 мм x 0,2 мм), 0603 (0,6 мм x 0,3 мм) или 0805. Керамические колпачки со сквозными отверстиями обычно выглядят как маленькие (обычно желтые или красные) лампочки с двумя выступающими клеммами.
Две крышки в радиальном корпусе со сквозным отверстием; конденсатор 22 пФ слева и 0,1 мкФ справа. Посередине — крошечный колпачок 0603 0,1 мкФ для поверхностного монтажа.
По сравнению с не менее популярными электролитическими крышками керамические конденсаторы являются более близкими к идеальным (гораздо более низкими значениями ESR и токов утечки), но их малая емкость может быть ограничивающей.Обычно они также являются наименее дорогим вариантом. Эти колпачки хорошо подходят для высокочастотной связи и развязки.
Электролитический алюминий и тантал
Электролитикихороши тем, что они могут упаковать много емкости в относительно небольшой объем. Если вам нужен конденсатор емкостью от 1 мкФ до 1 мФ, вы, скорее всего, найдете его в электролитической форме. Они особенно хорошо подходят для высоковольтных приложений из-за их относительно высокого максимального номинального напряжения.
Алюминиевые электролитические конденсаторы, самые популярные из семейства электролитических, обычно выглядят как маленькие жестяные банки с обоими выводами, выходящими снизу.
Ассортимент электролитических конденсаторов для сквозных отверстий и поверхностного монтажа. Обратите внимание, что у каждого из них есть метод маркировки катода (отрицательный вывод).
К сожалению, электролитические колпачки обычно поляризованы . У них есть положительный вывод — анод — и отрицательный вывод, называемый катодом.Когда напряжение подается на электролитический колпачок, анод должен иметь более высокое напряжение, чем катод. Катод электролитического конденсатора обычно обозначается знаком «-» и цветной полосой на корпусе. Ножка анода также может быть немного длиннее, как еще один признак. Если на электролитический колпачок подать напряжение в обратном направлении, они выйдут из строя (из-за чего лопнет и разорвется) и навсегда. После лопания электролитик будет вести себя как короткое замыкание.
Эти колпачки также известны своей утечкой — позволяя небольшим токам (порядка нА) проходить через диэлектрик от одного вывода к другому. Это делает электролитические колпачки менее чем идеальными для хранения энергии, что, к сожалению, с учетом их высокой емкости и номинального напряжения.
Суперконденсаторы
Если вы ищете конденсатор, предназначенный для хранения энергии, не ищите ничего, кроме суперконденсаторов. Эти колпачки имеют уникальную конструкцию, обеспечивающую высокую емкость или единиц в диапазоне фарад.
Суперконденсатор 1Ф (!). Высокая емкость, но рассчитана только на 2,5 В. Обратите внимание, что они также поляризованы.
Хотя суперкаперы могут хранить огромное количество заряда, они не справляются с очень высокими напряжениями. Этот суперконденсатор 10F рассчитан только на максимальное напряжение 2,5 В. Более того, это уничтожит его. Суперэлементы обычно устанавливаются последовательно для достижения более высокого номинального напряжения (при уменьшении общей емкости).
Основное применение суперконденсаторов в — хранение и высвобождение энергии , как и батареи, которые являются их основным конкурентом.Хотя суперконденсаторы не могут удерживать столько энергии, сколько батарея того же размера, они могут высвобождать ее намного быстрее и обычно имеют гораздо больший срок службы.
Другое
Электролитические и керамические колпачки покрывают около 80% типов конденсаторов (а суперкапсы только около 2%, но они супер!). Другой распространенный тип конденсатора — пленочный конденсатор , который отличается очень низкими паразитными потерями (ESR), что делает их идеальными для работы с очень высокими токами.
Есть много других менее распространенных конденсаторов. Переменные конденсаторы могут создавать различные емкости, что делает их хорошей альтернативой переменным резисторам в схемах настройки. Скрученные провода или печатные платы могут создавать емкость (иногда нежелательную), поскольку каждый состоит из двух проводников, разделенных изолятором. Лейденские банки — стеклянная банка, наполненная проводниками и окруженная ими — это О. семейства конденсаторов. Наконец, конечно, конденсаторы потока (странная комбинация катушки индуктивности и конденсатора) имеют решающее значение, если вы когда-нибудь планируете вернуться в дни славы.
Последовательные / параллельные конденсаторы
Как и резисторы, несколько конденсаторов могут быть объединены последовательно или параллельно для создания комбинированной эквивалентной емкости. Конденсаторы, однако, складываются таким образом, что полностью противоположны резисторам.
Параллельные конденсаторы
Когда конденсаторы размещаются параллельно друг другу, общая емкость равна сумме всех емкостей .Это аналогично тому, как резисторы добавляются последовательно.
Так, например, если у вас есть три конденсатора номиналом 10 мкФ, 1 мкФ и 0,1 мкФ, подключенные параллельно, общая емкость будет 11,1 мкФ (10 + 1 + 0,1).
Конденсаторы серии
Подобно тому, как резисторы сложно добавить параллельно, конденсаторы становятся странными при размещении в серии . Общая емкость последовательно соединенных конденсаторов Н и обратна сумме всех обратных емкостей.
Если у вас есть только два конденсатора , соединенных последовательно, вы можете использовать метод «произведение над суммой» для расчета общей емкости:
Если продолжить это уравнение, если у вас два конденсатора с одинаковым номиналом, соединенные последовательно , общая емкость составляет половину их значения.Например, два последовательно соединенных суперконденсатора по 10Ф дадут общую емкость 5Ф (это также даст возможность удвоить номинальное напряжение всего конденсатора с 2,5 В до 5 В).
Примеры применения
Существует множество приложений для этого изящного маленького (на самом деле, обычно они довольно большие) пассивного компонента. Чтобы дать вам представление об их широком спектре использования, вот несколько примеров:
Конденсаторы развязки (байпаса)
Многие конденсаторы, которые вы видите в схемах, особенно те, которые имеют интегральную схему, развязывают.Работа развязывающего конденсатора заключается в подавлении высокочастотных шумов в сигналах источника питания. Они снимают крошечные колебания напряжения, которые в противном случае могли бы нанести вред чувствительным микросхемам, из источника напряжения.
В каком-то смысле развязывающие конденсаторы действуют как очень маленький локальный источник питания для ИС (почти как источник бесперебойного питания для компьютеров). Если в источнике питания очень быстро падает напряжение (что на самом деле довольно часто, особенно когда цепь, которую он питает, постоянно переключает требования к нагрузке), разделительный конденсатор может на короткое время подавать питание с правильным напряжением.Вот почему эти конденсаторы также называются байпасными конденсаторами; они могут временно действовать как источник питания, обходя источник питания.
Разделительные конденсаторы подключаются между источником питания (5 В, 3,3 В и т. Д.) И землей. Нередко для обхода источника питания используют два или более конденсаторов с разным номиналом или даже разных типов, потому что некоторые номиналы конденсаторов будут лучше других при фильтрации определенных частот шума.
На этой схеме три развязывающих конденсатора используются для уменьшения шума в источнике напряжения акселерометра.Две керамические 0,1 мкФ и одна танталовая электролитическая 10 мкФ разделенные функции развязки.Хотя кажется, что это может привести к короткому замыканию между питанием и землей, только высокочастотные сигналы могут проходить через конденсатор на землю. Сигнал постоянного тока поступит на микросхему, как и нужно. Другая причина, по которой они называются шунтирующими конденсаторами, заключается в том, что высокие частоты (в диапазоне кГц-МГц) обходят ИС, а не проходят через конденсатор, чтобы добраться до земли.
При физическом размещении развязывающих конденсаторов они всегда должны располагаться как можно ближе к ИС.Чем дальше они находятся, тем менее эффективны.
Вот схема физической схемы из схемы выше. Крошечная черная ИС окружена двумя конденсаторами по 0,1 мкФ (коричневые крышки) и одним электролитическим танталовым конденсатором 10 мкФ (высокая прямоугольная крышка черного / серого цвета).
Чтобы следовать хорошей инженерной практике, всегда добавляйте хотя бы один развязывающий конденсатор к каждой ИС. Обычно хорошим выбором является 0,1 мкФ или даже дополнительные конденсаторы на 1 мкФ или 10 мкФ. Это дешевое дополнение, и они помогают убедиться, что микросхема не подвергается сильным провалам или скачкам напряжения.
Фильтр источника питания
Диодные выпрямителимогут использоваться для преобразования переменного напряжения, исходящего из вашей стены, в постоянное напряжение, необходимое для большинства электронных устройств. Но сами по себе диоды не могут превратить сигнал переменного тока в чистый сигнал постоянного тока, им нужна помощь конденсаторов! При добавлении параллельного конденсатора к мостовому выпрямителю выпрямленный сигнал выглядит следующим образом:
Может быть преобразован в сигнал постоянного тока близкого к уровню, например:
Конденсаторы — упрямые компоненты, они всегда будут пытаться противостоять резким перепадам напряжения.Конденсатор фильтра будет заряжаться по мере увеличения выпрямленного напряжения. Когда выпрямленное напряжение, поступающее в конденсатор, начинает быстро снижаться, конденсатор получит доступ к своему банку накопленной энергии, и он будет очень медленно разряжаться, передавая энергию нагрузке. Конденсатор не должен полностью разрядиться, пока входной выпрямленный сигнал снова не начнет увеличиваться, заряжая конденсатор. Этот танец разыгрывается много раз в секунду, снова и снова, пока используется источник питания.
Цепь питания переменного тока в постоянный.Крышка фильтра (C1) имеет решающее значение для сглаживания сигнала постоянного тока, посылаемого в цепь нагрузки.
Если вы разорвите любой блок питания переменного тока в постоянный, вы обязательно найдете хотя бы один довольно большой конденсатор. Ниже показаны внутренности настенного адаптера постоянного тока на 9 В. Заметили там конденсаторы?
Конденсаторов может быть больше, чем вы думаете! Имеется четыре электролитических крышки, похожие на консервные банки, в диапазоне от 47 мкФ до 1000 мкФ. Большой желтый прямоугольник на переднем плане — это высоковольтный 0.Крышка из полипропиленовой пленки 1 мкФ. И синий колпачок в форме диска, и маленький зеленый посередине — керамические.
Хранение и поставка энергии
Кажется очевидным, что если конденсатор накапливает энергию, одно из множества его применений — подача этой энергии в цепь, как аккумулятор. Проблема в том, что конденсаторы имеют гораздо более низкую плотность энергии , чем батареи; они просто не могут вместить столько энергии, сколько химическая батарея того же размера (но этот разрыв сокращается!).
Плюс конденсаторов в том, что они обычно служат дольше, чем батареи, что делает их лучшим выбором с экологической точки зрения. Они также способны выдавать энергию намного быстрее, чем аккумулятор, что делает их подходящими для приложений, которым требуется короткий, но большой всплеск мощности. Вспышка камеры могла получать питание от конденсатора (который, в свою очередь, вероятно, заряжался от батареи).
Батарея или конденсатор?Батарея Конденсатор Емкость ✓ Плотность энергии ✓ Время заряда / разряда 908 908 908 ✓Фильтрация сигналов
Конденсаторыобладают уникальной реакцией на сигналы различной частоты.Они могут блокировать низкочастотные компоненты или компоненты сигнала постоянного тока, позволяя при этом проходить более высоким частотам. Они похожи на вышибалу в очень эксклюзивном клубе только для высоких частот.
Фильтрация сигналов может быть полезна во всех видах приложений обработки сигналов. Радиоприемники могут использовать конденсатор (среди других компонентов) для отстройки от нежелательных частот.
Другой пример фильтрации сигнала конденсатора — это пассивные схемы кроссовера внутри громкоговорителей, которые разделяют один аудиосигнал на множество.Последовательный конденсатор блокирует низкие частоты, поэтому оставшиеся высокочастотные части сигнала могут поступать на твитер динамика. При прохождении низких частот в цепи сабвуфера высокие частоты в основном могут быть шунтированы на землю через параллельный конденсатор.
Очень простой пример схемы кроссовера аудио. Конденсатор блокирует низкие частоты, а катушка индуктивности блокирует высокие частоты. Каждый из них может использоваться для доставки нужного сигнала настроенным аудиодрайверам.
Снижение рейтинга
При работе с конденсаторами важно проектировать схемы с конденсаторами, которые имеют гораздо более высокий допуск, чем потенциально самый высокий скачок напряжения в вашей системе.
Вот отличное видео от инженера SparkFun Шона о том, что происходит с различными типами конденсаторов, когда вы не можете снизить номинальные характеристики конденсаторов и превысить их максимальное напряжение. Вы можете прочитать больше о его экспериментах здесь.
Покупка конденсаторов
Храните на этих маленьких компонентах накопителя энергии или используйте их в качестве начального блока питания.
Наши рекомендации:
Комплект конденсаторов SparkFun
21 доступно КОМПЛЕКТ-13698Это набор, который предоставляет вам базовый ассортимент конденсаторов, чтобы начать или продолжить работу над электроникой. Нет мес…
9Конденсатор керамический 0.1 мкФ
В наличии COM-08375Это очень распространенный конденсатор емкостью 0,1 мкФ. Используется во всевозможных приложениях для отключения микросхем от источников питания. 0,1 дюйма с интервалом…
1Суперконденсатор — 10Ф / 2.5В
В наличии COM-00746Да, вы правильно прочитали — конденсатор 10 Фарад. Этот маленький колпачок можно зарядить, а затем медленно рассеять на протяжении всего…
3Электродвигатель на 380 в переменного тока по лучшей цене — Выгодные предложения на электродвигатель на 380 в переменного тока от мировых продавцов электродвигателей на 380 в переменного тока
Отличные новости !!! Вы находитесь в нужном месте, чтобы купить электродвигатель переменного тока 380В.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку, надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот лучший электродвигатель переменного тока на 380 В вскоре станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели электродвигатель переменного тока на 380 В на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.
Если вы все еще не уверены в электродвигателе на 380 В переменного тока и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
И, если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести Электрический двигатель 380v ac по самой выгодной цене.
Мы всегда в курсе последних технологий, новейших тенденций и самых обсуждаемых лейблов.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.
.
Однофазный 230 В переменного тока: