Как определить межвитковое замыкание электродвигателя: Как определить межвитковое замыкание электродвигателя

Содержание

Как определить межвитковое замыкание электродвигателя

До 40 процентов случаев проблем с электродвигателем связано с межвитковым замыканием. Как правило, оно возникает в катушке обмотки возбуждения. Основные причины:

  • Перегрузка двигателя из-за неправильной его эксплуатации либо механических повреждений. Вследствие этого происходит перегрев обмоток статора и повреждение или разрушение их изоляционного слоя. В результате уменьшается сопротивление цепи, и контакт витков катушки ведет к замыканию и выходу двигателя из строя.
  • «Сухие» или заклинившие подшипники.
  • Заводской брак обмоток (либо их неудачная перемотка).
  • Попадание влаги внутрь агрегата из-за несоблюдения условий его хранения (например, во влажном месте).

Итак, причины более или менее понятны, теперь мы попытаемся разобраться: как определить межвитковое замыкание электродвигателя?

Способы определения межвиткового замыкания двигателя

Если какая-либо часть статора сильно нагревается, стоит прекратить работу и провести диагностику агрегата.

Мы предлагаем следующие варианты:

  • Токовые клещи. Измеряется нагрузка на каждую фазу, и, если на какой-либо из них она значительно увеличена, то это признак межвиткового замыкания. Однако чтобы избежать ошибки из-за, например, перекоса фаз на подстанции, стоит также измерить приходящее напряжение вольтметром.
  • Прозвон обмоток тестером. Прозванивается каждая обмотка в отдельности, затем полученные результаты сопротивления сверяются. Но следует учесть, что этот способ может оказаться неэффективным при замыкании 2-3 витков, т.к. в этом случае расхождение будет небольшим.
  • Измерения мегомметром. Чтобы обнаружить замыкание на корпус, один щуп прикладывается к корпусу двигателя, второй – к выходу обмоток в борно.
  • Проверить межвитковое замыкание электродвигателя также можно визуально. Агрегат разбирается и тщательно осматривается на предмет наличия сгоревшей части обмотки.
  • Проверка с помощью понижающего трехфазного трансформатора и шарика от подшипника или пластинки от трансформаторного железа. Этот способ считается самым надежным. Предупреждение: ни в коем случае не используйте данный алгоритм при напряжении в 380 вольт, это опасно для жизни! Последовательность действий такова: три фазы с понижающего трансформатора подаются на статор предварительно разобранного двигателя. Туда кидается шарик. Если он движется внутри статора по кругу – аппарат в рабочем состоянии. Если через несколько оборотов он «залипает» на одном месте – именно там и находится замыкание. Пластинка прикладывается к железу внутри статора. Если она «примагничивается», причин для беспокойства нет, а ее дребезжание указывает на межвитковое замыкание.

Следует также отметить, что все перечисленные выше способы проверки производятся исключительно с заземленным двигателем.

Таким образом, зная, как проверить обмотку электродвигателя на межвитковое замыкание, вы сможете самостоятельно выявить причину неисправности и принять решение о ее своевременном устранении.


Как проверить статор на межвитковое замыкание мультиметром

В бытовых приборах и оборудовании установлены различные типы электродвигателей. Эти различия зависят от условий эксплуатации, назначения и выполняемых ими функций. Например, в электродрелях, миксерах, кухонных комбайнах, пылесосах, стиральных машинах и других устройствах с частым изменением скорости вращения вала применяются коллекторные двигатели.

Если требуется обеспечить долговременный стабильный режим работы, то в таком оборудовании используются уже асинхронные электродвигатели, наиболее подходящие для небольших самодельных станков. Тем не менее, во всех случаях часто приходится решать вопрос, как проверить якорь электродвигателя в домашних условиях. Современные сервисные услуги достаточно дороги, поэтому очень многие пытаются самостоятельно обнаружить неисправность и выполнить ремонт.

Коллекторные двигатели и основные неисправности якоря

Коллекторные электродвигатели рассчитаны на работу от бытовых сетей, напряжением 220В. Практически все они являются синхронными агрегатами. В отличие от асинхронных электродвигателей, коллекторные устройства состоят из неподвижного статора и вращающейся обмотки на валу – якоря. Напряжение на них подается с помощью щеточно-графитного устройства, которое и есть коллектор.

Основная причина, требующая проверки якоря и других деталей, состоит в появлении искр. Активное искрение свидетельствует об износе щеток и коллекторного узла или нарушении контактов. Кроме того, искры могут появиться в результате межвиткового замыкания, то есть, замыкания обмоток в коллекторе. Появление таких нарушений требует качественной диагностики, начиная с визуального осмотра и заканчивая проверкой мультиметром.

Первоначальный осмотр позволяет выявить оборванные или выгоревшие обмотки, а также выгорание в точках их подключения. Поэтому, в первую очередь следует обращать внимание на состояние обмоток и целостность витков. Если обмотки почернели полностью или частично, это уже указывает на определенные проблемы с якорем. Иногда изоляцию достаточно просто понюхать, чтобы определить характерный запах гари.

Более точную информацию можно получить путем проверки якоря мультиметром. Прозвонка выполняется поэтапно, захватывая все элементы двигателя:

  • Вначале прозваниваются попарные выводы обмоток статора к ламелям. Сопротивления на каждом из них должны иметь одинаковое значение.
  • Далее проверяется сопротивление между ламелями и корпусом якоря. В норме оно должно быть бесконечным.
  • Целостность обмотки проверяется путем прозвонки выводов.
  • После этого проверяется состояние цепи между корпусом статора и выводами якорной обмотки. При наличии пробоя на корпус, бытовое устройство категорически запрещается подключать к напряжению. В этом случае требуется обязательный ремонт или полная замена неисправных деталей.

После ремонта коллекторного электродвигателя нужно соединить все элементы между собой и подключить устройство к питанию 220В. Если агрегат работает нормально, значит ремонт выполнен правильно.

Проверка асинхронного электродвигателя

Кроме коллекторных, в быту можно встретить и асинхронные двигатели, устанавливаемые в некоторых моделях стиральных машин или в компрессорах холодильников. Гораздо чаще они используются в компрессорах, насосах, различных станках и другом оборудовании. Несмотря на высокую надежность, данные электродвигатели также подвержены поломкам и неисправностям. В этих конструкциях роль якоря выполняют обмотки статора, поэтому визуальный осмотр нужно начинать именно с них.

Часто обмотки перестают работать, когда они отсырели или, произошел обрыв витков. Поэтому если двигатель очень долго не эксплуатировался, необходимо выполнить проверку сопротивления изоляции с помощью мегомметра. При отсутствии мгаомметра, агрегат в целях профилактики рекомендуется разобрать и сушить обмотки статора в течение нескольких суток.

Вполне возможно, что причина неисправности кроется не в самом электродвигателе, а связана с какими-либо другими факторами. Поэтому, прежде чем начинать ремонтировать сам агрегат, следует убедиться в наличии напряжения, проверить магнитные пускатели, кабели подключения, тепловое реле. Если в схеме имеется конденсатор, его тоже нужно проверить. При исправности всех перечисленных элементов, можно приступать к разборке двигателя для первичного осмотра. Проверка должна проводиться при полном отсутствии электропитания. Необходимо предотвратить самопроизвольное или ошибочное включение агрегата.

В процессе осмотра, кроме других деталей, особенно тщательно проверяются обмотки статора. Они должны быть целыми, без торчащих или оторванных проводков. Особое внимание следует обращать на черные пятна, указывающие на возможное подгорание проводов. В исправном состоянии проводники имеют темно-красный цвет. Почернение наступает при выгорании электроизоляционного лака, наносимого на их поверхность. При осмотре может быть выявлено полное или частичное выгорание обмотки и межвитковое замыкание. При частичном выгорании двигатель будет работать и быстро нагреваться. Поэтому обмотка в любом случае перематывается полностью.

Если внешний осмотр не дал результатов, дальнейшую диагностику нужно проводить с помощью измерительных приборов. Чаще всего для этих целей используется мультиметр, позволяющий определить целостность обмотки, наличие или отсутствие пробоя на корпус.

В двигателях на 220В прозваниваются пусковая и рабочая обмотки. Сопротивление пусковой должно быть в 1,5 выше, чем у рабочей. В электродвигателях на 380В, подключаемых звездой или треугольником, схема разбирается, после чего поочередно прозванивается каждая обмотка. Сопротивление на каждой из них должно быть одинаковым, с отклонением не более чем на 5%. Также все обмотки обязательно прозваниваются между собой и на корпус. Если значение сопротивления не бесконечно, это свидетельствует о наличии пробоя обмоток на корпус или между собой. В этом случае требуется их полная перемотка.

Отдельно проверяется сопротивление изоляции обмоток двигателя. В этом случае мультиметр не поможет, потребуется мегомметр на 1000В, подключаемый к отдел

Проверка ротора на межвитковое замыкание

1)Износ подшипников вала якоря приводит к снижению зазора между сердечником якоря и полюсными сердечниками, в результате чего может появиться контакт этих деталей. При этом затрудняется вращение якоря, возрастает шум при работе, может также произойти замыкание обмотки якоря на корпус. Изношенные подшипники (втулки) необходимо заменить.

2)Осевой люфт проверяют перемещением якоря вдоль оси вала. Он не должен превышать 0,1 – 0,7 мм. При необходимости его регулируют с помощью установки регулировочных шайб между крышкой стартера и упорным кольцом якоря.

3)Замыкание обмотки якоря на корпус происходит при механическом или тепловом разрушении изоляции проводов. При этом в цепи стартера проходит большой ток, а якорь не вращается. Определяется замыкание контрольной лампой (220В), подключаемой к любой пластине коллектора и валу сердечника якоря.

Рис. 28. Схема проверки якоря стартера

4)Межвитковое замыкание обмотки якоря проверяется с помощью специальных приборов (Э236). Прибор определяет э.д.с. самоиндукции обмоток при вращении якоря в магнитном поле. Сопротивление обмоток сложно замерить, т.к. якорь стартера имеет только 1 – 2 витка в каждой секции, а толщина провода большая, следовательно, сопротивление обмотки очень мало.

Рис. 29. Схема проверки межвиткового замыкания стартера: 1 – щупы; 2 – миллиамперметр; 3 – якорь.

Прижимают щупы прибора к двум соседним пластинам коллектора (замыкается одна секция обмотки якоря). Поворачивают якорь в ту и другую сторону и запоминают отклонение стрелки прибора. Поворачивают якорь, переводя контакты щупа на соседние пластины коллектора. Показания прибора не должны отличаться друг от друга. Если ток в одной из секций будет больше, чем в соседних, то в секции имеется межвитковое замыкание.

Если стрелка прибора не отклониться от 0 при касании какой-нибудь пластины, то в обмотке имеется обрыв, цепь разорвана и э.д.с. самоиндукции не наводится.

Дата добавления: 2015-08-21; просмотров: 1103; Опубликованный материал нарушает авторские права? | Защита персональных данных |

Не нашли то, что искали? Воспользуйтесь поиском:

И мне надо проверить якорь, то ли он замкнутий, оборваний или меж витковое

Прибор Проверки Якорей

Прибор используется для проверки на межвитковое замыкание якорей двигателей и (генераторов) постоянного тока, а также для проверки полюсных катушек.

Принцип работы прибора
Прибор представляет собой трансформатор переменного тока, имеющий только первичную обмотку, с магнитным зазором в сердечнике. В зазор сердечника укладывается проверяемый якорь, и его обмотка становится вторичной обмоткой трансформатора. В случае наличия короткозамкнутых витков в проверяемом якоре, поскольку витки распределены по группам, возникает местное магнитное перенасыщение железа, что легко обнаруживается по дребезжанию стальной пластинки, положенной на железо якоря над витком (например ножовочное полотно). Проворачивем якорь в магнитном зазоре, так что пластинка оказывается над разными катушками. Там где есть межвитковое замыкание пластинка начинает ощутимо вибрировать. Замкнутый виток, теоретически начинает греться (правда, как правило, на больших якорях, слишком медленно, чтобы нагрев можно было практически обнаружить).

Также, при помощи миллиамперметра можно проверить обмотку на обрыв (плохая пайка в петушках и т. д.). Для этого нужно подключать миллиамперметр к соседним ламелям якоря, проворачивая якорь в пазу ППЯ на 1 ламель, между подключениями. У исправного якоря ток со всех соседних ламелей будет одинаковым. Резкое повышение тока (или падение, если разрывов несколько) указывает на обрыв между этими ламелями.

При проверке необходимо сохранять постоянный угол контактов миллиамперметра относительно полюсов прибора, иначе показания на разных парах ламелей будут разные и на исправном якоре.
Резкое повышение тока (или падение, если разрывов несколько) указывает на обрыв между этими ламелями, и наиболее вероятной причиной обрыва (в случае стартерного якоря) является распайка петушков ламелей.
Также, использовать ППЯ можно для обнаружения межвитковых замыканий в полюсных катушках электродвигателей.

Если межвитковое замыкание есть, то катушка начинает нагреваться.

Изготовление ППЯ
Для начала необходимо определиться с размерами прибора, исходя из того, с какими якорями придётся чаще всего иметь дело. Заводской ППЯ, предназначенный для проверки якорей автомобильных стартеров и генераторов постоянного тока имеет магнитный зазор 120х85 мм. Но на нём также можно проверить и якорь от дрели, и якорь от двигателя троллейбуса.

Методика определения межвиткового замыкания якоря на снятом с электровоза электродвигателе

Однако, якоря диаметром менее 50 мм, на нём проверять уже сложно, пластинка в зазоре ведёт себя неустойчиво и норовит соскочить с якоря и прилипнуть к сердечнику ППЯ. Поэтому, если как основное использование прибора, предполагается проверка маленьких якорей, напр. от дрелей и другого мелкого электроинструмента, то слишком большой ППЯ будет уже неудобен.

Железо для намотки ППЯ можно взять от О-образного трансформатора подходящих размеров, вырезать болгаркой магнитный зазор, угол 90°.

Рас

Проверка обмоток электродвигателя. Неисправности и методы

В идеале чтобы была произведена проверка обмоток электродвигателя, необходимо иметь специальные приборы, предназначенные для этого, которые стоят немалых денег. Наверняка не у каждого в доме они есть. Поэтому проще для таких целей научиться пользоваться тестером, имеющим другое название мультиметр. Такой прибор имеется практически у каждого уважающего себя хозяина дома.

Электродвигатели изготавливают в различных вариантах и модификациях, их неисправности также бывают самыми разными. Конечно, не любую неисправность можно диагностировать простым мультиметром, но наиболее часто проверка обмоток электродвигателя таким простым прибором вполне возможна.

Любой вид ремонта всегда начинают с осмотра устройства: наличие влаги, не сломаны ли детали, наличие запаха гари от изоляции и другие явные признаки неисправностей. Чаще всего сгоревшую обмотку видно. Тогда не нужны никакие проверки и измерения. Такое оборудование сразу отправляется на ремонт. Но бывают случаи, когда отсутствуют внешние признаки поломки, и требуется тщательная проверка обмоток электродвигателя.

Виды обмоток

Если не вникать в подробности, то обмотку двигателя можно представить в виде куска проводника, который намотан определенным образом в корпусе мотора, и вроде бы в ней ничего не должно ломаться.

Однако, дело обстоит гораздо сложнее, так как обмотка электродвигателя выполнена со своими особенностями:
  • Материал провода обмотки должен быть однородным по всей длине.
  • Форма и площадь поперечного сечения провода должны иметь определенную точность.
  • На проволоку, предназначенную для обмотки, в обязательном порядке в промышленных условиях наносится слой изоляции в виде лака, который должен обладать определенными свойствами: прочностью, эластичностью, хорошими диэлектрическими свойствами и т.д.
  • Провод обмотки должен обеспечивать прочный контакт при соединении.

Если имеется какое-либо нарушение этих требований, то электрический ток будет проходить уже в совершенно других условиях, а электрический мотор ухудшит свои эксплуатационные качества, то есть, снизится мощность, обороты, а может и вообще не работать.

Проверка обмоток электродвигателя 3-фазного мотора. Прежде всего, отключить ее от цепи. Основная часть существующих электродвигателей имеет обмотки, соединенные по схемам, соответствующим звезде или треугольнику.

Концы этих обмоток подключают обычно на колодки с клеммами, которые имеют соответствующие маркировки: «К» — конец, «Н» — начало. Бывают варианты соединений внутреннего исполнения, узлы находятся внутри корпуса мотора, а на выводах применяется другая маркировка (цифрами).

На статоре 3-фазного электродвигателя применяются обмотки, имеющие равные характеристики и свойства, одинаковые сопротивления. При замере мультиметром сопротивлений обмоток может оказаться, что у них разные значения. Это уже дает возможность предположить о неисправности, имеющейся в электродвигателе.

Возможные неисправности

Визуально не всегда можно определить состояние обмоток, так как доступ к ним ограничен особенностями конструкции двигателя. Практически проверить обмотку электродвигателя можно по электрическим характеристикам, так как все поломки мотора в основном выявляются:

  • Обрывом, когда провод разорван, либо отгорел, ток по нему проходить не будет.
  • Коротким замыканием, возникшим из-за повреждения изоляции между витками входа и выхода.
  • Замыкание между витками, при этом изоляция повреждается между соседними витками. Вследствие этого поврежденные витки самоисключаются из работы. Электрический ток идет по обмотке, в которой не задействованы поврежденные витки, которые не работают.
  • Пробиванием изоляции между корпусом статора и обмоткой.

Способы
Проверка обмоток электродвигателя на обрыв

Это самый простой вид проверки. Неисправность диагностируется простым измерением значения сопротивления провода. Если мультиметр показывает очень большое сопротивление, то это означает, что имеется обрыв провода с образованием воздушного пространства.

Проверка обмоток электродвигателя на короткое замыкание

При коротком замыкании в моторе отключится его питание установленной защитой от замыкания. Это происходит за очень короткое время. Однако даже за такой незначительный промежуток времени может возникнуть видимый дефект в обмотке в виде нагара и оплавления металла.

Если измерять приборами сопротивление обмотки, то получается малое его значение, которое приближается к нулю, так как из измерения исключается кусок обмотки из-за замыкания.

Проверка обмоток электродвигателя на межвитковое замыкание

Это самая трудная задача по определению и выявлению неисправности. Чтобы проверить обмотку электродвигателя, пользуются несколькими способами измерений и диагностик.

Проверка обмоток электродвигателя способом омметра

Этот прибор действует от постоянного тока, измеряет активное сопротивление. Во время работы обмотка образует кроме активного сопротивления, значительную индуктивную величину сопротивления.

Если будет замкнут один виток, то активное сопротивление практически не изменится, и определить омметром его сложно. Конечно, можно произвести точную калибровку прибора, скрупулезно замерять все обмотки на сопротивление, сравнивать их. Однако, даже в таком случае очень трудно выявить замыкание витков.

Результаты гораздо точнее выдает мостовой метод, с помощью которого измеряется активное сопротивление. Этим методом пользуются в условиях лаборатории, поэтому обычные электромонтеры им не пользуются.

Измерение тока в каждой фазе

Соотношение токов по фазам изменится, если произойдет замыкание между витками, статор будет нагреваться. Если двигатель полностью исправен, то на всех фазах ток потребления одинаков. Поэтому измерив эти токи под нагрузкой, можно с уверенностью сказать о реальном техническом состоянии электродвигателя.

Проверка обмоток электродвигателя переменным током

Не всегда можно измерить общее сопротивление обмотки, и при этом учесть индуктивное сопротивление. У неисправного двигателя проверить обмотку можно переменным током. Для этого применяют амперметр, вольтметр и понижающий трансформатор. Для ограничения тока в схему вставляют резистор, либо реостат.

Чтобы проверить обмотку электродвигателя, применяется низкое напряжение, проверяется значение тока, которое не должно быть выше значений по номиналу. Измеренное падение напряжения на обмотке делится на ток, в итоге получается полное сопротивление. Его значение сравнивают с другими обмотками.

Такая же схема дает возможность определить вольтамперные свойства обмоток. Для этого необходимо сделать измерения на различных значениях тока, затем записать их в таблицу, либо начертить график. Во время сравнения с другими обмотками не должно быть больших отклонений. В противном случае имеется межвитковое замыкание.

Проверка обмоток электродвигателя шариком

Этот метод основывается на образовании электромагнитного поля с вращающимся эффектом, если обмотки исправны. На них подключается симметричное напряжение с тремя фазами, низкого значения. Для таких проверок используют три понижающих трансформатора с одинаковыми данными. Их подключают отдельно на каждую фазу.

Чтобы ограничить нагрузки, опыт проводят за короткий промежуток времени.

Подают напряжение на обмотки статора, и сразу вводят маленький стальной шарик в магнитное поле. При исправных обмотках шарик крутится синхронно внутри магнитопровода.

Если имеется замыкание между витками в какой-либо обмотке, то шарик сразу остановится там, где есть замыкание. При проведении проверки нельзя допускать превышения тока выше номинального значения, так как шарик может вылететь из статора с большой скоростью, что является опасно для человека.

Определение полярности обмоток электрическим методом

У обмоток статора имеется маркировка выводов, которой иногда может не быть по разным причинам. Это создает сложности при проведении сборки.

Чтобы определить маркировку, применяют некоторые способы:
  • Слабым источником постоянного тока и амперметром.
  • Понижающим трансформатором и вольтметром.

Статор выступает в роли магнитопровода с обмотками, действующими по принципу трансформатора.

Определение маркировки выводов обмотки амперметром и батарейкой

На наружной поверхности статора имеется шесть проводов от трех обмоток, концы которых не промаркированы, и подлежат определению по их принадлежности.

Применяя омметр, находят выводы для каждой обмотки, и отмечают цифрами. Далее, делают маркировку одной из обмоток конца и начала, произвольно. К одной из оставшихся двух обмоток присоединяют стрелочный амперметр, чтобы стрелка находилась на середине шкалы, для определения направления тока.

Минусовой вывод батарейки соединяют с концом выбранной обмотки, а выводом плюса кратковременно касаются ее начала.

Импульс в первой обмотке трансформируется во вторую цепь, которая замкнута амперметром, при этом повторяет исходную форму. Если полярность обмоток совпала с правильным расположением, то стрелка прибора в начале импульса пойдет вправо, а при размыкании цепи стрелка отойдет влево.

Если показания прибора совсем другие, то полярность выводов обмотки меняют местами и маркируют. Остальные обмотки проверяются подобным образом.

Определение полярности вольтметром и понижающим трансформатором

Первый этап аналогичен предыдущему способу: определяют принадлежность выводов обмоткам.

Далее, произвольным образом маркируют выводы первой любой обмотки для соединения их с понижающим трансформатором (12 вольт).

Две другие обмотки соединяют двумя выводами в одной точке случайным образом, оставшуюся пару соединяют с вольтметром и включают питание. Напряжение выхода трансформируется в другие обмотки с таким же значением, так как у них одинаковое количество витков.

Посредством последовательной схемы подключения 2-й и 3-й обмоток вектора напряжения суммируются, а результат покажет вольтметр. Далее маркируют остальные концы обмоток и проводят контрольные измерения.

Похожие темы:

Как определить обмотки трехфазного двигателя — советы электрика

Как Проверить Трехфазный Двигатель Мультиметром ~ VESKO-TRANS.RU

Как проверить состояние обмотки электрического двигателя

На 1-ый взор обмотка представляет кусочек проволоки смотанной спецефическим образом и в ней нечему особо ломаться. Но у нее есть особенности:

серьезный подбор однородного материала по всей длине;

четкая калибровка формы и поперечного сечения;

нанесение в промышленных критериях слоя лака, владеющего высочайшими изоляционными качествами;

крепкие контактные соединения.

Если в каком-либо месте провода нарушена хоть какое из этих требований, то меняются условия для прохождения электронного тока и движок начинает работать с пониженной мощностью либо вообщем останавливается.

Обратите внимание

Чтоб проверить одну обмотку трехфазного мотора нужно отключить ее от других цепей. Какие электромоторы можно проверить мультиметром? Трехфазный как проверить изоляцию. Во всех электродвигателях они могут собираться по одной из 2-ух схем:

Концы обмоток обычно выводятся на клеммные колодки и маркируются знаками «Н» (начало) и «К» (конец). Как проверить двигатель мультиметром. Время от времени отдельные соединения могут быть спрятаны снутри корпуса, а для выводов употребляются другие методы обозначения, к примеру, цифрами.

У трехфазного мотора на статоре употребляются обмотки с схожими электронными чертами, владеющими равными сопротивлениями. Если при замере омметром они демонстрируют различные значения, то это уже повод серьезно задуматься над причинами разброса показаний.

Как проявляются неисправности в обмотке

Зрительно оценить качество обмоток не представляется вероятным из-за ограниченного допуска к ним. На практике инспектируют их электронные свойства, беря во внимание, что все неисправности обмоток появляются:

обрывом, когда нарушается целостность провода и исключается прохождение электронного тока по нему;

маленьким замыканием, возникающем при нарушении слоя изоляции меж входным и выходным витком, характеризующимся исключением обмотки из работы с шунтированием концов;

межвитковым замыканием, когда изоляция нарушается меж одним либо несколькими близлежащими витками, которые этим выводятся из работы. Ток проходит по обмотке, минуя короткозамкнутые витки, не преодолевая их электронное сопротивление и не создавая ими определенной работы;

пробоем изоляции меж обмоткой и корпусом статора либо ротора.

Проверка обмотки на обрыв провода

Этот вид неисправности определяется замером сопротивления изоляции омметром. Устройство покажет огромное сопротивление — ∞, которое учитывает образованный разрывом участок воздушного места.

Проверка обмотки на возникновение короткого замыкания

Важно

Движок, снутри электронной схемы которого появилось куцее замыкание, отключается защитами от сети питания. Но, даже при резвом выводе из работы таким методом место появления КЗ отлично видно зрительно за счет последствий воздействия больших температур с ярко выраженным нагаром либо следами оплавления металлов.

При электронных методах определения сопротивления обмотки омметром выходит очень малая величина, очень приближенная к нулю. Ведь из замера исключается фактически вся длина провода за счет случайного шунтирования входных концов.

Проверка обмотки на возникновение межвиткового замыкания

Это более сокрытая и трудно определяемая неисправность. Для ее выявления можно пользоваться несколькими методиками.

Способ омметра

Устройство работает на неизменном токе и замеряет только активное сопротивление проводника. Обмотка же при работе за счет витков делает существенно огромную индуктивную составляющую.

При замыкании 1-го витка, а их полное количество может быть несколько сотен, изменение активного сопротивления увидеть очень трудно. Ведь оно изменяется в границах нескольких процентов от общей величины, а тотчас и меньше.

Как прозвонить электродвигатель

Трёхфазный асинхронный электродвигатель, проверка тестером. На практике довольно проверить электродви.

Расположение контактов трехфазного двигателя и прозвонка обмоток

Рассматриваем размещение концов обмоток трехфазного двигателя, определяем, верно ли они подключены.

Можно испытать точно откалибровать устройство и пристально измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в данном случае не всегда будет видна.

Более четкие результаты позволяет получить мостовой способ измерения активного сопротивления, но это, обычно, лабораторный метод, труднодоступный большинству электриков.

Замер токов потребления в фазах

Совет

При межвитковом замыкании меняется соотношение токов в обмотках, проявляется лишний нагрев статора. У исправного мотора токи схожи. Потому прямое их измерение в действующей схеме под нагрузкой более точно отражает реальную картину технического состояния.

Измерения переменным током

Найти полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда может быть. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.

У выведенного из работы мотора можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток дозволит токоограничивающий резистор либо реостат соответственного номинала.

При выполнении замера обмотка находится снутри магнитопровода, а ротор либо статор могут быть извлечены. Баланса электрических потоков, на условие которого проектируется движок, не будет.

Про то как проверить и двигатель от можно ли поверить мультиметром? И как можно.

Потому употребляется пониженное напряжение и контролируются величины токов, которые не должны превосходить номинальных значений.

Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его остается сопоставить с чертами других обмоток.

Эта же схема позволяет снять вольтамперные свойства обмоток. Просто нужно выполнить замеры на различных токах и записать их в табличной форме либо выстроить графики. Если при сопоставлении с подобными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.

Шарик в статоре

Метод основан на разработке вращающегося электрического поля исправными обмотками. Как проверить электродвигатель мультиметром пошаговая. Для этого на их подается трехфазное симметричное напряжение, но непременно пониженной величины. С этой целью обычно используют три схожих понижающих трансформатора, работающих в каждой фазе схемы питания.

Для ограничения токовых нагрузок на обмотки опыт проводят краткосрочно.

Маленькой металлической шарик от шарикоподшипника вводят во крутящееся магнитное поле статора сходу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.

Обратите внимание

Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.

Во время теста нельзя превосходить ток в обмотках больше номинальной величины и следует учесть, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.

Электрическая проверка полярности обмоток

У статорных обмоток может отсутствовать маркировка начала и концов выводов и это сделает труднее корректность сборки.

На практике для поиска полярности употребляются 2 метода:

1. при помощи маломощного источника неизменного тока и чувствительного амперметра, показывающего направление тока;

2. способом использования понижающего трансформатора и вольтметра.

В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.

Проверка полярности посредством батарейки и амперметра

На наружной поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых нужно найти.

При помощи омметра вызванивают и отмечают вывода, относящиеся к каждой обмотке, к примеру, цифрами 1, 2, 3. Потом произвольно маркируют на хоть какой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой в центре шкалы, способной указывать направление тока.

Минус батарейки агрессивно подключают к концу избранной обмотки, а плюсом краткосрочно прикасаются к ее началу и сходу разрывают цепь.

При подаче импульса тока в первую обмотку он за счет электрической индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. При этом, если полярность обмоток угадана верно, то стрелка амперметра отклонится на право при начале импульса и отойдет на лево при размыкании цепи.

Важно

Если стрелка ведет себя по-другому, то полярность просто спутана. Остается только промаркировать выводы 2-ой обмотки.

Еще одна 3-я обмотка проверяется аналогичным образом.

Проверка полярности посредством понижающего трансформатора и вольтметра

Тут тоже сначала вызванивают обмотки омметром, определяя вывода, которые к ним относятся.

Потом произвольно маркируют концы первой избранной обмотки для подключения к понижающему трансформатору напряжения, к примеру, на 12 вольт.

Две оставшиеся обмотки случайным образом скручивают в одной точке 2-мя выводами, а оставшуюся пару подключают к вольтметру и подают питание на трансформатор. Его выходное напряжение трансформируется в другие обмотки с таковой же величиной, так как у их равное число витков.

За счет поочередного подключения 2-ой и третьей обмоток вектора напряжения сложатся, а их сумму покажет вольтметр. Как проверить датчик парктроника мультиметром (тестером. В нашем случае при совпадении направления обмоток данная величина будет составлять 24 вольта, а при разной полярности — 0.

Остается промаркировать все концы и выполнить контрольный застыл.

В статье дан общий порядок действий при проверке технического состояния какого-то случайного мотора без определенных технических черт. Они в каждом личном случае могут изменяться. Смотрите их в документации на ваше оборудование.

Источник: https://vesko-trans.ru/kak-proverit-trehfaznyj-dvigatel-multimetrom/

Как определить начало и конец обмотки в двигателе

В этой статье я расскажу способ, как определить начало и конец обмотки в асинхронном трёхфазном двигателе.

Когда вам может потребоваться данный материал? Только в том случае, если у вас имеется в коробке брно шесть проводов одинакового цвета и на них нет никаких обозначений.

Или ваш двигатель был соединен треугольником, а вы хотите получить возможность соединить его звездой. Как это сделать я писал здесь.

Чтобы проще было объяснять материал, сначала пройдемся по принятым маркировкам выводов обмоток двигателей.

Выводы асинхронного двигателя. Маркировка выводов асинхронного двигателя

Встречаются различные маркировки выводов обмоток двигателя. Отечественная маркировка от С1 до С6 и международная, которую вы видите на рисунке.

В наше время встречаются обе маркировки, но для «обучения» мы будем применять новые обозначения, как более наглядные.

Ранее, я уже говорил, что начало и конец обмоток понятия абсолютно условные, главное условие, которое играет важную роль это такое соединение обмоток, когда магнитные потоки не направлены встречно. Если два одинаковых потока направить встречно, они как бы уничтожают друг друга.

Совет

Нам же надо получить согласованное направление магнитных потоков. В двигателе находятся три обмотки. Грубо говоря, двигатель, это трансформатор с тремя обмотками и сердечником в виде статора.

Таким образом, обмотки в двигателе связывает магнитный поток, который протекает по статору, а его создает ток, который протекает по обмоткам. Ротор – это лишь приятная «вкусняшка», наличие которой позволяет получить из электрической энергии механическую.

Начало и конец обмоток электродвигателя

Ну что ж, приступим. Прежде, чем начинать процедуру, вам нужно подготовиться. Для этого вам потребуются:

  • мультиметр или лампа накаливания (предпочтительнее, конечно же, мультиметр)
  • маркеры для проводов
  • знание техники безопасности, поскольку вы будете работать с опасным напряжением
  • обычная сетевая вилка с проводом
  • что-то, чем вы будете соединять провода, когда приступите к поиску выводов обмотки
  • ну и материал данной статьи.

В качестве маркеров можно использовать кембрики, бумагу с резинками, цветную изоленту и обычные перманентные маркеры, в общем, что угодно, что позволит вам промаркировать выводы. Вам потребуется шесть маркеров, на которых вы напишете обозначения начала и концов обмоток.

Первым делом нужно определить обмотки двигателя

Названия обмоток тоже абсолютно условны. Хотя, если принимать в расчёт такое понятие, как фазировка, то правильное включение дает точное представление о том, в какую сторону будет вращаться вал двигателя и не более того.

Выставляете мультиметр в режим прозвонки, один щуп прикладываете к любому из шести проводов, вторым щупом находите конец, который будет прозваниваться. И эту пару звонящихся концов маркируете. Пусть это будут U1 и U2. Остается четыре конца. Повторяете операцию и еще одну пару снова маркируете. Пусть это будут V1 и V2.

Осталась еще пара концов, их проверяете на всякий случай, чтобы быть уверенными, что обмотка в исправном состоянии и тоже маркируете оставшимися маркерами W1 и W2. Теперь у вас есть три обмотки и вы знаете их выводы. Но не знаете, где начало, а где конец каждой обмотки.

Другими словами, вы не знаете, как направлены магнитные потоки этих обмоток согласно имеющейся маркировке, поскольку она сейчас носит случайный характер.

Как определить начало и конец обмоток

Приступаем к поиску концов. Снова предупрежу о технике безопасности, поскольку сейчас вы будете работать с опасным напряжением 220 вольт. Сама процедура очень простая. Вам надо на одну обмотку присоединить лампу или вольтметр (мультиметр, в режиме измерения напряжения), а две других обмотки соединить последовательно и подать на них напряжение. Теперь рассмотрим эту процедуру подробнее.

С присоединением лампы или вольтмера проблем не возникнет. Допустим это будет обмотка W1-W2. Остается две обмотки. Согласно имеющимся маркерам вы соединяете их в таком порядке, как это показано на рисунке, а именно соединяете между собой U2 и V1.

На выводы U1 и V2 подаете ПЕРЕМЕННОЕ напряжение 220 вольт. Обратите внимание, именно переменное, поскольку постоянное превратит наш двигатель в электромагнит, но при этом напряжение в третьей обмотке наводиться не будет.

На реальном двигателе это будет выглядеть, как на фотографии ниже:

Обратите внимание

Обратите внимание, я специально выделил одним цветом (зеленым) соединенные обмотки на схеме и на фотографии. Теперь, если магнитные потоки обмоток совпадут, то в третьей обмотке будет наведено напряжение. Если посчитать грубо, то чуть меньше 100 вольт. Следовательно, лампочка на третьей обмотке начнет светиться, но не в полный накал.

Если же магнитные потоки будут направлены встречно, то в третьей обмотке напряжение наводиться не будет и лампочка не загорится. Если лампочка загорелась, все отлично, придумайте, как навсегда промаркировать выводы обмоток и приступаем к третьей. Если лампочка не загорелась, значит меняем местами выводы любой обмотки.

Пусть это будет обмотка V1V2 (то есть, если раньше была схема U1→U2→V1→V2, то теперь будет схема  U1→U2→V2→V1) и снова проверяем.

Лампочка засветилась? Отлично! Но прежде чем переходить к третьей обмотке, поскольку мы определили условные начала и концы двух обмоток нужно придумать, как навсегда промаркировать эти выводы, чтобы в дальнейшем вам не пришлось возвращаться к данной процедуре. Теперь будем работать только с третьей обмоткой. Маркеры первых двух трогать уже не будем.

К любой из найденных обмоток подключаем третью, а на освободившуюся подключаем лампочку. То есть на обмотку (пусть будет) U1U2 мы теперь подключаем вольтметр или лампочку, а соединяем обмотки V1→V2→W1→W2. И все повторяем по новой. С одним условием, что маркеры обмоток U и V мы не трогаем. Если лампочка при проверке не загорается, то меняем маркеры только на обмотке W.

Как видите, процедура не слишком сложная и при необходимой сноровке займет не больше 15 минут.

Есть и другие методы определения начал и концов обмоток, но они более сложные и требуют стрелочного вольтметра или сборки несложной схемы, хотя с другой стороны, они более безопасные.

Но этот метод наиболее простой. А если не боитесь электричества и внимательно прочитали технику безопасности, то вместо мультиметра прозванивать обмотки можно той же лампочкой.

Для этого можно использовать такую схему, которую вы видите ниже:

 То есть, можно вообще обойтись без мультиметра. Достаточно одной лампочки на 220 вольт.

На этом всё!

С наилучшими пожеланиями, Я!

Источник: http://potomstvennyjmaster.100ms.ru/rubrik-site/sovetyi/nachalo-konets-obmotki-dvigatelya.html

Как прозвонить электродвигатель мультиметром

Электродвигатели применяются во многих бытовых устройствах, поэтому если прибор, в котором установлен агрегат начинает барахлить, то, во многих случаях, диагностические мероприятия следует начинать с прозвона обмотки движка. Как прозвонить электродвигатель мультиметром, и сделать это правильно, будет подробно описано ниже.

Как прозвонить: условия

Прежде чем проверить электродвигатель на неисправность, необходимо убедиться в том, что шнур и вилка прибора абсолютно исправны.

Обычно об отсутствии нарушения подачи электрического тока в устройство, можно судить по светящейся контрольной лампе.

Убедившись в том, что электрический ток поступает к электродвигателю, необходимо осуществить демонтаж его из корпуса устройства, при этом сам прибор должен быть полностью обесточен, во время выполнения данной операции.

Проверка якоря и статора электродвигателя производится мультиметром.

Важно

Последовательность измерений зависит от модели электрического агрегата, при этом, прежде чем прозвонить электродвигатель, следует убедиться в исправности измерительного прибора.

Наиболее частой «поломкой» мультиметров является уменьшение заряда батареи, в этом случае можно получить искажённые результаты замеров сопротивления.

Прозвонка асинхронного двигателя

Данный вид электродвигателя довольно часто используется в бытовых устройствах работающих от сети 220 В. После демонтажа агрегата из прибора и визуального осмотра, при котором не будут обнаружено короткое замыкание, диагностика осуществляется в такой последовательности:

  1. Произвести замеры сопротивления между выводами двигателя.
    Данная операция может быть осуществлена мультиметром, который должен быть переведён в режим измерения сопротивления до 100 Ом. Исправный асинхронный двигатель должен иметь между одним крайним и средним выводом подключаемой обмотки сопротивление около 30 — 50 Ом, а между другим крайним и средним контактом — 15 — 20 Ом. Данные измерения указывают на полную исправность пусковой и основной обмотки агрегата.
  2. Провести диагностику утечки тока на «массу».
    Чтобы прозвонить агрегат на утечки электрического тока, необходимо перевести режим работы мультиметра в положение измерения сопротивления до 2 000 кОм и поочерёдным соединением каждой клеммы с корпусом электродвигателя определить наличие или отсутствие повреждения изоляции. Во всех случаях, на дисплее мультиметра не должно отображаться каких-либо показаний. Если для измерения утечки используется аналоговый прибор, то стрелка не должна отклоняться в процессе проведения диагностических манипуляций.

Если в процессе измерений были выявлены отклонения от нормы, то агрегат необходимо разобрать для более детальных исследований.

Наиболее распространённой поломкой асинхронных электродвигателей является межвитковое замыкание.

При такой неисправности, прибор перегревается и не развивает полной мощности, а если эксплуатацию устройства не прекратить, то можно полностью вывести из строя электрический агрегат.

Чтобы прозвонить межвитковые замыкания, мультиметр переводится в режим измерения сопротивления до 100 Ом.

Необходимо прозвонить каждый контур статора, и сравнить полученные результаты. Если величина сопротивление в одном из них будет существенно отличаться, то таким образом можно с уверенностью диагностировать межвитковое замыкание обмотки асинхронного электродвигателя.

Как прозвонить коллекторный двигатель

Коллекторный агрегат также можно прозвонить мультиметром. Данный тип электродвигателей используется в цепи постоянного тока. Коллекторные двигатели переменного тока встречаются реже, например в различных электроинструментах. Наиболее качественно прозванивать такие изделия можно в том случае, если полностью разобрать электрический двигатель.

Проверить якорь электродвигателя, а также прозвонить обмотку статора можно будет с помощью мультиметра, который должен быть переведён в режим измерения сопротивления до 200 Ом.

Совет

Наиболее часто статор коллекторного агрегата состоит из двух независимых обмоток, которые и требуется прозвонить мультиметром для определения их исправности.

Точное значение данного показателя, можно узнать в документации к электродвигателю, но о работоспособности обмотки можно судить в том случае, если прибор покажет небольшое значение сопротивления.

В мощных двигателях постоянного тока электрооборудования автомобиля, значение сопротивления статора будет настолько малым, что его отличие от короткозамкнутого проводника, может составлять десятые доли Ома. Менее мощные устройства имеют сопротивление обмотки статора в пределах 5 — 30 Ом.

Для того чтобы прозвонить мультиметром обмотки статора коллекторного электродвигателя, необходимо соединить щупы измерительного прибора с выводами данных обмоток. Если в процессе диагностических мероприятий будет выявлено отсутствие сопротивления даже в одном контуре, дальнейшая эксплуатация агрегата не осуществляется.

Ротор коллекторного электродвигателя состоит из значительно большего количества обмоток, но проверка якоря не займёт много времени. Для того чтобы прозвонить эту деталь, необходимо включить мультиметр в режим измерения сопротивления до 200 Ом и расположить щупы мультиметра на коллекторе таким образом, чтобы они находились на максимальном удалении друг от друга.

Таким образом щупы займут место щёток двигателя и одну из нескольких обмоток якоря можно будет прозвонить. Если мультиметр покажет какое-либо значение, то не снимая щупов измерительного устройства с коллектора, следует провернуть слегка ротор, до момента соединения следующей обмотки со щупами устройства.

Таким образом проверить обмотку можно без особых усилий. Если мультиметр покажет примерно одинаковое значение сопротивления каждого контура, то это будет означать, что якорь устройства абсолютно исправен.

Это нарушение может привести не только к выходу из строя электродвигателя, но и к увеличению вероятности получения электротравмы. Проверить якорь и статор коллекторного двигателя на пробой не составит большого труда, для этого необходимо включить режим измерения сопротивления до 2 000 кОм. Для проверки статора достаточно подключить одну клемму к корпусу, а вторую к одной из обмоток.

Чтобы прозвонить эту часть электродвигателя правильно, во время выполнения данной операции запрещается прикасаться руками к металлической части щупов мультиметра, или к корпусу статора и проводки измеряемого контура.

Обратите внимание

Если не придерживаться этого правила, то можно получить ложноположительные результаты, так как через тело человека будет проходить достаточный электрический потенциал.

В этом случае мультиметр покажет сопротивление человека, а не «пробой» между корпусом статора и обмоткой.

Аналогичным образом измеряется и возможная утечка электротока на корпус якоря электродвигателя.

Чтобы прозвонить отсутствие «пробоя» на массу устройства, необходимо поочерёдно присоединять щупы мультиметра к корпусу и различным обмоткам ротора электромотора.

Для того чтобы прозвонить различные типы электродвигателей с помощью мультиметра, необходимо приобрести мультиметр, который имеет режим измерения сопротивления.

Сверхточность, при осуществлении подобных действий, не требуется, поэтому можно с успехом использовать дешёвые китайские устройства. Прежде чем прозвонить обмотки двигателя мультиметром, необходимо убедиться в его исправности.

Следует также иметь в виду, что неисправность электродвигателя может иметь различные признаки. Даже в том случае если электрический прибор находится в рабочем состоянии, но обороты двигателя не достигают максимального значения, следует незамедлительно прозвонить возможные повреждения обмоток.

При осуществлении любых электромонтажных или диагностических работ, необходимо полностью отсоединить прибор от сети 220 В. или трёхфазного тока.

Источник: https://EvoSnab.ru/instrument/test/prozvonka-elektrodvigatelja-multimetrom

Как прозвонить электродвигатель мультиметром и выявить неисправность

При поломке бытового электроприбора приходится проверять по отдельности все его компоненты.

И если тестирование датчиков затруднений не вызывает — обычно достаточно проверить сопротивление, то с двигателем все не так просто.

Этот узел устроен куда сложнее, и чтобы выявить его неисправность, требуется знать методику проверки. Далее расскажем о том, как прозвонить электродвигатель мультиметром.

Какие электромоторы можно проверить мультиметром

Если в двигателе нет механических повреждений, что обычно определяется визуально, то его неисправность в большинстве случаев обусловлена следующим:

  • произошел обрыв внутренней цепи;
  • случилось замыкание, то есть появился контакт там, где его не должно быть.

Оба дефекта выявляются мультиметром. Сложности возникают только при проверке двигателей постоянного тока: у большинства из них обмотка имеет почти нулевое сопротивление и его приходится замерять косвенным методом, для чего понадобится собрать несложную схему.

Из двигателей переменного тока наиболее востребованы:

  1. Трехфазные асинхронные двигатели работают и при однофазном питании.
  2. Асинхронные одно- и двухфазные с короткозамкнутым ротором конденсаторные. К этому типу относится большинство двигателей бытовых приборов.
  3. Асинхронные с фазным ротором. Такой ротор имеет трехфазную обмотку.

    Двигатели с фазным ротором применяются там, где требуется регулировка частоты вращения и понижение пускового тока: в крановом оборудовании, станках и пр.

  4. Коллекторные. Применяются в ручном электроинструменте.
  5. Асинхронные трехфазные с короткозамкнутым ротором.

Популярность моторов последнего типа объясняется рядом достоинств:

  • простота конструкции;
  • прочность;
  • надежность;
  • низкая стоимость;
  • неприхотливость (не требует ухода).

Все электродвигатели состоят из двух частей: неподвижной и вращающейся. Первая у моторов переменного тока называется статором, у постоянного — индуктором; вторая – соответственно ротором и якорем.

Ремонт асинхронных двигателей

Из асинхронных моторов наиболее распространены двух- и трехфазные. Тестируются они по-разному. Рассмотрим каждую разновидность подробно.

Трехфазный мотор

Обмотка статора такого двигателя состоит из трех частей (фаз), разнесенных на 120 градусов и соединенных по схеме «звезда» или «треугольник». Двигатель работает при выполнении таких условий:

  • намотка выполнена в правильном порядке;
  • между витками, а также между токоведущими частями и корпусом есть надежная изоляция;
  • во всех соединениях имеется хороший электрический контакт.

Сначала проверяется сопротивление изоляции между токоведущими частями и корпусом. Правильнее это делать мегомметром — тестером, способным генерировать напряжение до 2500 В и измерять сопротивления до 300 ГОм.

Подойдет и более распространенный мультиметр: точно замерять сопротивление он не позволит, но пробой выявить способен. Переключатель диапазонов измерений устанавливают на максимальное значение — 2 или 20 МОм.

Трехфазные асинхронные двигатели

Замеры выполняют в таком порядке:

  • проверяют работоспособность прибора, приложив щупы один к другому: в норме на дисплее отображается мизерное значение или число с двумя нулями впереди;
  • касаются обоими щупами корпуса двигателя: при наличии контакта мультиметр также покажет мизерное сопротивление;
  • продолжая удерживать один щуп на корпусе, вторым по очереди касаются выводов каждой фазы: в норме мегомметр показывает 500 – 1000 МОм или более, мультиметр — единицу (символизирует бесконечность).

Низкое сопротивление между обмоткой и корпусом говорит о замыкании, требуется перемотка статора.

Далее проверяют:

  1. Целостность обмотки: данную операцию удобно выполнять, переключив мультиметр в режим прозвонки. Если в цепи обрыва нет, прибор подаст звуковой сигнал, то есть пользователю не приходится вчитываться в показания на дисплее. Концы каждой обмотки находятся в коробке выводов. Отсутствие звукового сигнала или высокое значение сопротивления на дисплее говорит об обрыве цепи.
  2. Короткозамкнутые витки: их сопротивление (достаточно мультиметра) должно лежать в определенных пределах. Завышенное значение говорит об обрыве, низкое — о межвитковом замыкании.

В завершение замеряют сопротивление обмоток. Допускается разница не более 1 Ом.

При большем несоответствии, обмотка с меньшей индуктивностью подгорает из-за более высокой силы тока.

Двухфазный электрический двигатель

В статоре имеются две обмотки:

Замеряют мультиметром сопротивление каждой и сравнивают: в норме сопротивление пусковой вдвое выше, чем у рабочей.

Также двигатель проверяется на предмет замыкания между токоведущими частями и корпусом — по той же схеме, что и трехфазный.

Проверка коллекторных электромоторов

В месте прилегания щеток у коллекторных двигателей имеются секции или ламели.

Порядок проверки:

  1. Мультиметром определяют сопротивление между соседними ламелями. В норме значения для каждой пары одинаковы. При обрыве (бесконечно высокое сопротивление) или коротком замыкании (мизерное сопротивление) меняют таходатчик двигателя.
  2. Замеряется сопротивление между коллектором и корпусом ротора: в норме оно бесконечно высокое.
  3. Прозванивают обмотки статора на целостность.
  4. Проверяют сопротивление между корпусом статора и токоведущими частями: в норме — бесконечно высокое.

Далее определяют сопротивление катушки ротора. Оно крайне мало, потому замерить напрямую мультиметром нельзя — велика погрешность. Применяют косвенный метод:

  1. Последовательно с катушкой соединяют высокоточный резистор малого номинала (около 20 Ом). Высокоточными называют резисторы с допуском не более 0,05%. В цветовой маркировке у них присутствует серая полоса (не путать с серебряной).
  2. Цепь «катушка — резистор» подключается к источнику постоянного тока напряжением 12 В или выше. Чем больше напряжение, тем точнее измерения. В качестве источника на 12 В применяют автомобильный аккумулятор или компьютерный блок питания.
  3. Снимают мультиметром падение напряжения на катушке. Здесь важно соблюдать полярность: щуп, включенный в порт COM (отрицательный потенциал), коротят со стороны «минуса» или массы; второй (подсоединяется в разъем «V/Ω») — со стороны «плюса».

Напряжение, мультиметр измеряет намного точнее сопротивления — с верностью до 0,1 мВ. На этом и основан косвенный метод.

Затем рассчитывают сопротивление катушки по формуле: Rкат = Uкат * Rрез / (12 – Uкат), где

  • Rкат — сопротивление катушки, Ом;
  • Uкат — падение напряжения на катушке, В;
  • Rрез — сопротивление резистора, Ом;
  • 12 — напряжение источника питания, В.

Проверка двигателей постоянного тока

Порядок тестирования:

  1. Проверка сопротивления обмоток: у таких моторов они имеют низкое сопротивление, потому его также определяют косвенно — по напряжению и силе тока. Потребуется два мультиметра: один используется как вольтметр, другой одновременно — как амперметр. На обмотку подается питание от батареи напряжением 4 – 6 В.  Сопротивление рассчитывают по формуле: R = U / I.
  2. Замер сопротивления обмоток якоря и между пластинами коллектора. В норме мультиметр отображает равные значения.

Для сопротивления между пластинами коллектора максимально допустимая разница составляет 10%, при наличии уравнительной обмотки — 30%.

Особенности проверки электромоторов с дополнительными элементами

Дополнительными элементами, электродвигатели оснащаются с целью оптимизации работы или защиты.

Чаще всего применяются:

  1. Термопредохранители: отключают двигатель от электропитания по достижении температуры, опасной для изоляционных материалов. Располагаются на корпусе (крепятся скобой) или под изоляцией обмотки. Во втором случае проверку выполнить проще, поскольку выводы легкодоступны.

    Определить, с какими разъемными ножками связана защитная схема, можно при помощи мультиметра или индикатора фазы (похож на отвертку с лампочкой). В норме сопротивление между выводами термопредохранителя весьма мало (короткое замыкание).

  2. Термореле: часто применяются вместо термопредохранителей.

    Обычно бывают нормально замкнутыми, но встречаются и разомкнутые. Для диагностики по нанесенной на корпус реле маркировке, в справочниках или Интернете, находят сопротивление его компонентов, затем проверяют мультиметром их фактическое значение. Для поиска в Сети, в строке набирают марку реле и следом «Data Sheet» («даташит»).

    Если термореле сгорело, по его параметрам подбирают аналог.

  3. Трехвыводные датчики оборотов двигателя. Устанавливаются в стиральных машинах. Основной элемент датчика — металлическая пластина, на которой при пропускании через нее токов малой величины формируется разность потенциалов.

Запитывается датчик через два крайних вывода. Если коснуться их щупами мультиметра в режиме омметра, в норме он отобразит мизерное сопротивление.

Проверка третьего вывода возможна только в рабочем режиме, когда присутствует магнитное поле. Попытка прозвонить датчик на ходу, то есть при включенной стиральной машине, может привести к травме. Рабочий режим безопаснее сымитировать, демонтировав двигатель и запитав датчик отдельно. Импульсы на выходе датчика формируют путем поворота ротора.

Мультиметр позволяет выявить пусть не все, но многие поломки электродвигателя. В основном при помощи прозвонки выявляются обрывы и короткие замыкания. Полную диагностику проводят на специальных стендах, для измерения сопротивления изоляции требуется мегомметр.

Источник: https://proprovoda.ru/instrument/izmeritelnyj/multimetr/kak-prozvonit-elektrodvigatel.html

Как определить работоспособность электродвигателя

В электрической машине нет движущихся частей, имеющих механическое сопряжение. Поэтому срок службы электродвигателя бесконечно велик, чисто теоретически он вечен. Однако столкновение с суровой действительностью приводит к тому, что он может выйти из строя уже при первом включении. В этой статье пойдет речь о типичных неисправностях электромоторов и способах их диагностики.

Виды неисправностей

Они бывают двух типов:

  1. Электрические. Возникают в девяноста случаях из ста.
  2. Механические. Крайне редки, их возникновение связано с человеческим фактором. Это может быть производственный брак или варварское отношение к технике рабочего персонала. Не исключен и выход из строя подшипников качения на валу машины, но на практике для подобного казуса электродвигатель должен непрерывно проработать несколько лет. Все они характеризуются одним признаком: при попытке вращать вал рукой происходит его полное или частичное заклинивание. Такие электрические машины к использованию непригодны и подлежат ремонту в специализированной мастерской.

Основные электрические неисправности

  • Двигатель не запускается и не издает никаких звуков, запахов, приборы защиты не срабатывают. Классическая неисправность из категории «забыл включить». Проверьте, есть ли напряжение в сети, работают ли приборы управления – контакторы, магнитные пускатели.
  • Электродвигатель гудит, вал не вращается. Причиной этого является отсутствие вращающегося магнитного поля в статоре. В трехфазных электрических машинах наверняка не запитана одна из обмоток. В однофазных – неправильно работает нагрузка, обеспечивающая сдвиг на 900. Первым делом снимается питающее напряжение, поскольку в короткозамкнутом роторе возникает пусковой ток, который в три — четыре раза выше номинального питающего. Если в цепи управления нет приборов защиты – автоматических выключателей, тепловых реле, то может произойти расплавление диэлектрического лака обмоток с последующим частичным (межвитковым) или полным (между фазами или корпусом) замыканием. Проверяется подключение фазы в клеммном щитке двигателя и ее наличие в питающем кабеле, надежность замыкания контактов магнитных пускателей, правильность работы фазосдвигающего элемента схемы управления.
  • Если греется электродвигатель, то это не всегда признак электрической неисправности. Возможно, на валу слишком большое усилие, из-за чего по обмоткам течет чрезмерно сильный ток. Но также это случается при недостаточно надежном электрическом контакте в клеммной коробке. Например, при силе тока свыше 50 А на концы проводников надо устанавливать плоские высоковольтные наконечники, которые меньше греются из-за отсутствия в них поверхностных токов Фуко. Допустимо, чтобы корпус машины был слегка теплым. Если ощущается покалывание или жжение, то это повод остановить ее. Обратите внимание: когда ощущается запах горелой изоляции, то к двигателю лучше не прикасаться рукой, поскольку можно получить удар током. Используйте тестер-пробник с неоновой лампой. Если пренебречь нагревом, то изоляционный лак расплавится, и течение аварии примет необратимый характер – случиться одно или все три вида замыканий: межвитковое, между фазными обмотками, между корпусом электромотора и обмотками. В последнем случае возможно поражение персонала током и возникновение пожара.
  • При попытке включения срабатывают приборы защиты. Искры, пламя, дым, запах горелой изоляции. Этот казус редко случается неожиданно. Обычно ему предшествуют все перечисленные выше признаки – отказ вращаться, «мычание», нагрев. Однако это происходит и в том случае, если при подключении к питающему кабелю неправильно определено начало и конец независимых фазных обмоток, что приводит к короткому замыканию между ними.

Однофазные универсальные коллекторные двигатели, которые работают в ручном инструменте и ряде приборов бытовой техники, например, в стиральных машинах, запускаются всегда, поскольку им не требуется сдвига фаз. Если они не включаются, то нет питания – из-за обрыва в обмотке, неисправности выключателя или питающего кабеля. Межвитковый пробой у них сопровождается потерей мощности.

Самое слабое место таких двигателей – щеточный узел, являющийся подвижным скользящим контактом, склонным к механическому износу.

Искрение щеток не является прямой неисправностью, но его усиление сигнализирует о том, что электрическая связь с коллектором ослабла.

Из-за этого возрастает ток, текущий по обмоткам якоря и статора, что вызывает их нагрев, расплавление диэлектрического лака, физическое перегорание проводников, замыкание между витками или на корпус.

Проверка электродвигателей

Нередко электрикам попадаются электромоторы неизвестного происхождения с темным прошлым. Перед их установкой и подключением они требуют обязательной проверки. В Сети немало советов о том, как прозвонить электродвигатель. При этом упоминаются мегомы, амперы и вольты.

Но весь фокус в том, что вам надо именно «прозвонить» холодный мотор, не подавая при этом на обмотки фазного напряжения. Делается это с помощью мультиметра в режиме звуковой сигнализации.

Если проводники уже соединены в клеммном щитке звездой или треугольником, то порядок действий следующий:

  1. проверяете прохождение тока между корпусом и фазными выводами – надо коснуться каждого из них, держа второй щуп прижатым к винту с мнемосимволом «земля». Результат должен быть отрицательным;
  2. проверяете целостность обмоток, удерживая один из щупов на любом из выводов и последовательно касаясь других. Мультиметр должен издавать писк.

Если в щитке двигателя есть только концы проводов, то определяется начало и конец фазной обмотки. Для этого используется тот же мультиметр с пищалкой. В итоге у вас должно получиться три пары проводников, между общими концами которых прозвон проходит, а с соседними – нет.

Только после этого можно подключать электродвигатель к питающему кабелю и осуществлять пуск. Межвитковое замыкание не приводит к немедленной аварии, поэтому замеры силы тока можно провести на моторе под рабочей нагрузкой.

Лучшим прибором для этого являются измерительные клещи, позволяющие избежать прямого контакта с токоведущими частями. Характерным признаком неисправности является перекос величины тока в одной из обмоток. Обычно это значение равно 1,73 раза.

Важно

При включении катушек звездой ток в поврежденной будет больше, а если используется треугольник, то меньше.

Замер сопротивления обмоток с помощью мультиметра – это заведомый обман, поскольку длина проводника слишком большая, мощности батарейки «Крона» не хватит. Для этого используется гальванический мегомметр с собственным источником тока. Если его нет, то найдите аккумулятор 12 вольт и пустите по обмотке ток. Высчитайте сопротивление, используя закон Ома.

Кто ты, незнакомец?

Добыв двигатель неизвестного происхождения, вы можете не обнаружить на его корпусе шильдика с характеристиками поэтому остро встает вопрос о том, как узнать мощность электродвигателя и пригоден ли он к использованию в вашем случае. Конечно, можно заняться мудрыми вычислениями. Но гораздо проще все решается способом физических измерений.

  1. Диаметр статоров электродвигателей одной мощности примерно одинаков. Имеете неисправный, но с маркировкой? Сравните его с найденным.
  2. Вес электромоторов напрямую зависит от количества выдаваемых им киловатт. Если корпус современный, силуминовый, то 1 кВт – это 10 килограмм. Со старинным чугунным можете накинуть еще пять.

Кроме мощности, интересна и скорость вращения электродвигателя. Она зависит от количества полюсов. Если на статоре три обмотки, то их два, а скорость вращения равна частоте сети, умноженной на 60: 50 Гц х 60 = 3000 об/мин. Каждая последующая группа дополнительных обмоток увеличивает количество полюсов вдвое, а обороты уменьшает на то же значение.

Для их подсчета можно попытаться использовать остаточное намагничивание ротора. Для этого в одну из фазных обмоток включают стрелочный амперметр с пределом измерений в 100–200 мА. Аккуратно поворачивают вал двигателя, совершая полный оборот. Считают число отклонений стрелки. Это и есть количество полюсов.

В противном случае надо снять крышку корпуса со стороны крыльчатки и посчитать число обмоток.

Теперь вы имеете представление о характерных признаках неисправностей и о том, как проверить электродвигатель. Если у вас есть хоть малейшие подозрения, что электрическая машина не вполне «здорова», лучше откажитесь от ее использования и найдите замену, ведь жизнь и здоровье дороже.

Источник: https://electriktop.ru/bytovaya-tehnika/kak-opredelit-rabotosposobnost-elektrodvigatelya.html

Как проверить двигатель мультиметром

30.03.2017

Электродвигатель – основная составляющая любой современной бытовой электротехники, будь то холодильник, пылесос или другой агрегат, использующийся в домашнем хозяйстве. В случае выхода какого-либо прибора из строя в первую очередь необходимо установить причину поломки.

Чтобы узнать, в исправном ли состоянии находится мотор, его необходимо проверить. Нести аппарат в мастерскую для этого необязательно, достаточно располагать обычным тестером.

Прочитав эту статью, вы узнаете, как проверить электродвигатель мультиметром, и сможете справиться с этой задачей самостоятельно.

Какие электромоторы можно проверить мультиметром?

Существуют разные модификации электрических двигателей, и перечень их возможных неисправностей достаточно велик. Большинство неполадок можно диагностировать, воспользовавшись обычным мультиметром, даже если вы не специалист в этой области.

Современные электродвигатели разделяются на несколько видов, которые перечислены ниже:

  • Асинхронный, на три фазы, с короткозамкнутым ротором. Этот тип электрических силовых агрегатов является самым популярным благодаря простому устройству, которое обеспечивает легкую диагностику.
  • Асинхронный конденсаторный, с одной или двумя фазами и короткозамкнутым ротором. Такой силовой установкой обычно оснащается бытовая техника, запитывающаяся от обычной сети на 220В, наиболее распространенной в современных домах.
  • Асинхронный, оснащенный фазным ротором. Это оборудование имеет более мощный стартовый момент, чем моторы с короткозамкнутым ротором, в связи с чем его используют как привод в крупных силовых устройствах (подъемники, краны, электростанки).
  • Коллекторный, постоянного тока. Такие двигатели широко используются в автомобилях, где они играют роль привода вентиляторов и насосов, а также стеклоподъемников и дворников.
  • Коллекторный, переменного тока. Этими моторами оснащается ручной электроинструмент.

Первый этап любой диагностики – визуальный осмотр. Если даже невооруженным взглядом видны сгоревшие обмотки или отломанные части мотора, понятно, что дальнейшая проверка бессмысленна, и агрегат нужно везти в мастерскую. Но зачастую осмотра недостаточно, чтобы выявить неполадки, и тогда необходима более тщательная проверка.

Ремонт асинхронных двигателей

Наиболее распространены асинхронные силовые агрегаты на две и на три фазы. Порядок их диагностики не совсем одинаков, поэтому следует остановиться на этом более подробно.

Трехфазный мотор

Существует два вида неисправностей электрических агрегатов, причем независимо от их сложности: наличие контакта в неположенном месте или его отсутствие.

В состав трехфазного мотора, работающего от переменного тока, входит три катушки, которые могут быть соединены в форме треугольника или звезды. Имеется три фактора, определяющих работоспособность этой силовой установки:

  • Правильность намотки.
  • Качество изоляции.
  • Надежность контактов.

Замыкание на корпус обычно проверяется при помощи мегомметра, но если его нет, можно обойтись обычным тестером, выставив на нем максимальное значение сопротивлений – мегаомы. Говорить о высокой точности измерений в этом случае не приходится, но получить приблизительные данные возможно.

Перед тем, как измерить сопротивление, убедитесь, что двигатель не подключен к электросети, иначе мультиметр придет в негодность. Затем нужно произвести калибровку, поставив стрелку на ноль (щупы при этом должны быть замкнуты). Проверять исправность тестера и правильность настроек, кратковременно касаясь одним щупом другого, необходимо каждый раз перед измерением величины сопротивление.

Приложите один щуп к корпусу электромотора и убедитесь, что контакт имеется. После этого снимите показания прибора, касаясь двигателя вторым щупом. Если данные в пределах нормы, соединяйте второй щуп с выводом каждой фазы поочередно. Высокий показатель сопротивления (500-1000 и более МОм) свидетельствует о хорошей изоляции.

Как проверить изоляцию обмоток показано в этом видео:

Совет

Затем необходимо убедиться, что все три обмотки целы. Проверить это можно, прозвонив концы, которые выходят в коробку выводов электродвигателя. Если обнаружен обрыв какой-либо обмотки, диагностику следует прекратить до устранения неисправности.

Следующий пункт проверки – определение короткозамкнутых витков. Довольно часто это можно увидеть при визуальном осмотре, но если внешне обмотки выглядят нормально, то установить факт короткого замыкания можно по неодинаковому потреблению электротока.

Двухфазный электрический двигатель

Диагностика силовых агрегатов этого типа несколько отличается от вышеописанной процедуры. При проверке мотора, оснащенного двумя катушками и запитывающегося от обычной электросети, его обмотки нужно прозвонить при помощи омметра. Показатель сопротивления рабочей обмотки должен быть на 50% меньше, чем у пусковой.

Обязательно должно измеряться сопротивление на корпус – в норме оно должно быть очень большим, как и в предыдущем случае. Низкий показатель сопротивления говорит о необходимости перемотки статора. Конечно, для получения точных данных такие измерения лучше проводить при помощи мегомметра, но такая возможность в домашних условиях имеется редко.

Проверка коллекторных электромоторов

Разобравшись с диагностикой асинхронных моторов, перейдем к вопросу о том, как прозвонить электродвигатель мультиметром, если силовой агрегат относится к коллекторному типу, и каковы особенности таких проверок.

Чтобы правильно проверить работоспособность этих двигателей при помощи мультиметра, нужно действовать в следующем порядке:

  • Включить тестер на Ом и попарно замерить сопротивление коллекторных ламелей. В норме эти данные различаться не должны.
  • Измерить показатель сопротивления, приложив один щуп прибора к корпусу якоря, а другой – к коллектору. Этот показатель должен быть очень высоким, стремиться к бесконечности.
  • Проверить статор на целостность обмотки.
  • Измерить сопротивление, прикладывая один щуп к корпусу статора, а другой – к выводам. Чем выше будет полученный показатель, тем лучше.

Проверить электродвигатель при помощи мультиметра на межвитковое замыкание не получится. Для этого используется специальный аппарат, с помощью которого производится проверка якоря.

Подробно проверка двигателей электроинструмента показана в этом видео:

Особенности проверки электромоторов с дополнительными элементами

Зачастую электрические силовые установки оснащаются дополнительными компонентами, предназначенными для защиты оборудования или оптимизации его работы. Наиболее распространенными элементами, встраивающимися в мотор, являются:

  • Термопредохранители. Они настроены на срабатывание при определенной температуре таким образом, чтобы избежать сгорания и разрушения изолирующего материала. Предохранитель убирается под изоляцию обмоток или фиксируется к корпусу электрического мотора стальной дужкой. В первом случае доступ к выводам не затруднен, и их без проблем можно проверить с помощью тестера. Также можно мультиметром или простой индикаторной отверткой определить, к каким разъемным ножкам выходит защитная схема. Если температурный предохранитель находится в нормальном состоянии, то он должен показывать при измерении короткое замыкание.
  • Термопредохранители могут быть с успехом заменены температурными реле, которые бывают как нормально разомкнутыми, так и замкнутыми (второй тип более распространен). Марка элемента проставляется на его корпусе. Реле для различных типов двигателей выбирается в соответствии с техническими параметрами, ознакомиться с которыми можно, прочитав эксплуатационные документы или найдя нужную информацию в интернете.
  • Датчики оборотов двигателя на три вывода. Обычно ими комплектуются моторы стиральных машин. Основой принципа работы этих элементов является изменение разности потенциалов в пластинке, через которую проходит слабый ток. Питание подается по двум крайним выводам, которые обладают небольшим сопротивлением и при проверке должны показывать короткое замыкание. Третий вывод проверяется только в рабочем режиме, когда на него действует магнитное поле. Не следует измерять величину электропитания датчика при включенном двигателе. Лучше всего вообще снять силовой агрегат и подать ток отдельно на датчик. Для возникновения импульсов на выходе датчика покрутите ось. Если ротор не оснащен постоянным магнитом, придется на время проверки установить его, сняв предварительно сенсор.

Обычного мультиметра, как правило, достаточно для диагностики большинства неполадок, которые могут возникать в электромоторах. Если установить причину неисправности этим прибором не представляется возможным, проверка производится с помощью высокоточных и дорогостоящих аппаратов, которые имеются только у специалистов.

В этом материале содержится вся необходимая информация о том, как правильно проверить электродвигатель мультиметром в бытовых условиях. При выходе любой электротехники из строя самое главное – прозвонить обмотку мотора, чтобы исключить его неисправность, поскольку силовая установка имеет наиболее высокую стоимость по сравнению с другими элементами.

Источник: https://YaElectrik.ru/elektroprovodka/kak-proverit-elektrodvigatel-multimetrom

Межвитковое замыкание электродвигателя

 

Межвитковое замыкание электродвигателя

 

Причины  межвиткового замыкания

Если вы читали предыдущие статьи,  то знаете что межвитковое замыкание электродвигателя составляет 40%  неисправностей электродвигателей.  Причин для межвиткового замыкания может быть несколько.

 Перегруз электродвигателя —  нагрузка на электроустановку превышает норму  вследствие чего обмотки статора нагреваются и изоляция обмоток разрушается что приводит к межвитковому замыканию.  Нагрузка может возникнуть из за неправильной эксплуатации оборудования. Номинальную нагрузку можно определить по паспорту электроустановки или прочитать на табличке электродвигателя.  Также перегруз может возникнуть из за механических повреждений самого электродвигателя.  Заклинившие или сухие подшипники тоже могут стать причиной межвиткового «коротыша».

Не исключена возможность  заводского брака обмоток, и если электродвигатель перематывался в кустарной мастерской, то большая вероятность что «межвитняк» уже стучится в ваши двери.

Также неправильная эксплуатация  и хранение электродвигателя может стать причиной попадания влаги внутрь двигателя  отсыревшие обмотки тоже весьма распространенная  причина межвиткового замыкания.

Как правило с таким замыканием электродвигатель уже не жилец, и работать будет весьма непродолжительное время.   Я думаю хватит разбирать причины давайте перейдем к вопросу « как определить межвитковое  замыкание».

 

 

Поиск межвиткового замыкания.

 

Определить межвитковое замыкание не слишком сложно, и для это есть несколько подручных способов.

Если при работе  электромотора  какая то  часть статора нагрелась больше чем весь двигатель, то вам стоит подумать  об остановке и точной диагностике.

Также помогут определить замыкание обыкновенные токовые клещи, меряем по очереди нагрузку на каждую фазу и если на одной из них она больше чем на других то это признак того что возможно есть межвитняк обмотки.  Но следует учитывать что может быть перекос фаз на подстанции для того что бы убедится мереям вольтметром приходящие напряжение.

 

 

Можно прозвонить обмотки тестером.  Для этого  прозваниваем каждую обмотку в отдельности и сверяем полученные результаты сопротивления. Этот способ может и не сработать если замыкают всего пару витков, то расхождение будет минимальным.

Не будет лишним брякнуть электродвигатель мегомметром  в поиске замыкания на корпус, один щуп прикладываем к корпусу электродвигателя,  а второй к  по очереди к выходу обмоток в борно.

 

Если у вас остались еще сомнения, то вам придется разобрать электромотор.  Сняв крышки и ротор,  визуально рассматриваем обмотки. Вполне вероятно, что вы увидите сгоревшую часть. 

Ну и самый точный способ  проверки межвиткового замыкания это проверка при помощи трехфазного понижающего трансформатора (36-42 вольта) и шарика от подшипника.

 

 

На стартер разобранного электродвигателя подаем  три фазы с понижающего трансформатора.  С маленьким разгоном кидаем  туда шарик, если шарик начинает бегать по кругу внутри статора то все в порядке. Если он, сделав пару оборотов  прилип к одному месту, то значит там межвитковое замыкание.

Вместо шарика можно использовать пластинку от трансформаторного железа, прикладываем  внутри статора к железу и в том месте где межвитковое она начнет дребезжать, а там где все в порядке пластина будет примагничиваться.

 

Обязательно используйте все выше перечисленные способы с заземленным  электродвигателем и строго при помощи понижающего трансформатора.

Проверка  шариком и пластинкой  при напряжении в 380 вольт  запрещена и очень опасна для  вашей жизни.

 

 

 

< Немного об электродвигателях Центровка электродвигателей >
< Предыдущая   Следующая >

5 методов тестирования двигателей, которые вы должны применять

Блог

Эффективная работа электродвигателя означает больше, чем просто адекватную производительность; энергоэффективность, эксплуатационные расходы, срок службы и надежность системы взаимосвязаны с общим состоянием двигателя. Чтобы держать эти переменные под контролем, критически важны регулярные моторные испытания и мониторинг. Даже базовое диагностическое тестирование может позволить значительно сэкономить средства и время, уменьшив потребность в техническом обслуживании, ремонте и общие потребности в рабочей силе.

Различные элементы, включая выравнивание, вентиляцию, вибрацию и уровни смазки, могут повлиять на работоспособность вашего электродвигателя. Поэтому, когда двигатель не запускается, работает с перебоями, выделяет большое количество тепла, регулярно отключает предохранители или работает ненадежно, важно изолировать основную причину проблемы путем оценки основных уровней и условий системы.

Иногда неисправность двигателя возникает из-за источника питания, проводов параллельной цепи или контроллера двигателя.Иногда загрузка заклинивает, заедает или несовместима. Иногда возникает неисправность самого двигателя — сгоревший провод, обрыв или плохое соединение, отказ обмотки или ухудшение критической изоляции или подшипников.

Устранение неисправностей и мониторинг этих элементов перед тем, как приступить к ремонту, могут иметь большое значение для снижения затрат, трудозатрат и времени простоя, а также обеспечивают лучшую защиту от сбоев в будущем, поскольку вы будете лучше оснащены необходимой информацией для планирования эффективного обслуживания. и содержание.

Основные параметры и инструменты для испытаний двигателей: первичный анализ

Существует огромный набор диагностических инструментов, доступных для точного определения проблем двигателя — клещи, датчики температуры, мегомметры, анализаторы обмоток и осциллографы, и это лишь некоторые из них. И в зависимости от конкретной области проблемы, каждый инструмент может помочь осветить проблему по-разному.

Хорошее эмпирическое правило при поиске неисправностей в двигателе — в первую очередь полагаться на свои чувства: двигатель горячий или перегревается? Пахнет или звучит необычно? Физически он ведет себя неустойчиво? Чтобы начать оценку, сначала проверьте основные характеристики двигателя: уровни тока, мощность, напряжение и сопротивление.

Предварительные тесты обычно проводятся с использованием универсального мультиметра, который может предоставить диагностическую информацию для всех типов двигателей.

Методы испытаний двигателей: устранение проблемы

Сложные, мощные инструменты, электродвигатели являются критически важными компонентами в широком спектре оборудования и инструментов, от самых маленьких электронных вентиляторов до самого крупного производственного и промышленного оборудования. Без двигателей многие основные производственные функции были бы серьезно нарушены, если не невозможны; моторы — это сердцебиение повседневной работы.

Следовательно, отказ двигателя может быть чрезвычайно дорогостоящим и серьезным, что приведет к незапланированным простоям и незапланированным затратам на техническое обслуживание. Но если посвятить время тщательному тестированию двигателя — как в рамках регулярных программ технического обслуживания, так и при первых признаках неисправности — проблемы с двигателем можно надежно спрогнозировать, предотвратить, изолировать и решить с минимальным перерывом в обслуживании.

Ниже приведены лишь некоторые из множества доступных моторных тестов.

1. Тест Hipot на диэлектрическую прочность: определение эффективности изоляции кабеля

Испытание высоким потенциалом (hipot), также известное как испытание на электрическую прочность изоляции, проводится после проведения первоначального визуального осмотра и испытаний сопротивления изоляции, выполняемого как обнаружение слабости и возможности отказа в изоляции кабеля или провода.

Испытание на высоковольтное напряжение с использованием переменного или постоянного напряжения включает подачу тока между электрическими цепями и корпусом. Уровни перенапряжения, применяемые во время этого испытания, уникальны для каждой машины и ее заданного напряжения. При оценке прочности новых обмоток стандартное испытание проводится при непрерывном приложении 1000 вольт, 50-60 Гц, плюс удвоенное номинальное напряжение машины в течение 60 секунд.

Hipot-испытание следует проводить только один раз при полной прочности, а затем при 85% прочности при дополнительных испытаниях, чтобы избежать чрезмерного напряжения оцениваемой изоляции.В случае восстановленной изоляции испытание следует проводить при 60% нормального испытательного напряжения, чтобы избежать перегрузки материала.

2. Испытание на скачок напряжения: изоляция коротких замыканий и обнаружение перегорания

Критически важная часть комплексного планового технического обслуживания двигателя, импульсные испытания могут надежно выявить перегорания двигателя и предложить помощь в прогнозировании отказа двигателя в будущем.

Испытания на импульсные перенапряжения позволяют идентифицировать закороченные витки проводов двигателя и повреждение изоляции проводов, что является одним из первых явных признаков электрического пробоя.Химические отложения, ошибки при изготовлении или перемотке, рутинное движение при запуске и интенсивное использование могут привести к износу изоляции обмоток двигателя.

С помощью испытательной машины типа Baker или Electrom технические специалисты и специалисты по техническому обслуживанию могут безопасно подавать импульс или скачок напряжения на каждый набор обмоток двигателя, чтобы изолировать их рабочие характеристики как по отдельности, так и по сравнению друг с другом.

Стандарты испытаний на импульсные перенапряжения определены стандартом IEEE 522, который устанавливает соответствующие уровни напряжения для широкого диапазона типов и условий обмотки.

3. Тест Меггера: оценка критических характеристик изоляции

Мегомметр (или «Megger» по его торговому наименованию) тестер сопротивления изоляции позволяет проводить надежные периодические испытания общих характеристик изоляции инструментов, приборов, двигателей, катушечных кабелей, конденсаторов, подсистем распределения питания и практически любых вид электрооборудования или высокопроизводительной проводки.

Тестер Megger подает высокое напряжение в систему в течение заданного периода времени, измеряя ток утечки через изоляцию.Это измерение выражается как сопротивление и при периодическом тестировании может использоваться для построения графика и оценки состояния общей изоляции двигателя с течением времени. Эта важная информация может указывать на характер износа и повреждений, позволяя операторам опережать потребности в техническом обслуживании и решать проблемы до того, как произойдет серьезное повреждение.

Сложный тестер, Megger необходимо настраивать, подключать и эксплуатировать очень осторожно, чтобы предотвратить повреждение оборудования и травмы оператора, вызванные высоким уровнем напряжения.Кроме того, испытываемые двигатели должны быть отключены и изолированы для надлежащего наблюдения — ключевой аспект полного анализа обмотки двигателя.

4. Испытание на падение напряжения: анализ сопротивления в цепях с высоким током

Из множества доступных тестов двигателей, тест падения напряжения является одним из самых быстрых, простых и потенциально наиболее ценных, позволяющих легко оценить качество и эффективность работы вашей схемы. Проверка падения напряжения может быть легко выполнена с помощью базовой нагрузки и цифрового вольтметра (DVM).После того, как нагрузка приложена, цифровой мультиметр может измерить соединение под напряжением на предмет падения напряжения в цепи под нагрузкой.

Поскольку электрический ток вызывает дугу на пути наименьшего сопротивления, избыточный ток естественным образом течет к цифровому вольтметру и создает показания. И, если цепь ранее была прервана, DVM может создать временный поток, чтобы попытаться изолировать область сброшенного питания.

Индикация падения напряжения часто является ранним признаком того, что требуется чистка, техническое обслуживание или текущий ремонт.

5. Тест на потери в сердечнике: обеспечение качества и надежности

В то время как каждый двигатель испытывает некоторую внутреннюю потерю энергии, повышенная или ненормальная потеря мощности может указывать на более серьезную проблему — физические повреждения, перегрев или неэффективную намотку или перемотку. Фактически, потери в сердечнике могут быть причиной самых больших потерь энергии в электродвигателях и даже во всех производственных системах.

Тестер потерь в сердечнике может указать разницу между входной и выходной мощностью двигателя, и затем эти статистические данные могут быть сопоставлены с приемлемыми уровнями и отраслевыми стандартами.Хотя некоторая потеря является нормальным явлением, значительная потеря может выявить устранимые проблемы до того, как они станут серьезными. Это также может быть убедительным индикатором того, что двигатели нуждаются в замене, помогая гарантировать, что даже перемотанный двигатель сохраняет свои идеальные характеристики и эффективность.

Стандарт ANSI / EASA AR100-2105

Все вышеперечисленные испытания проводятся в соответствии со стандартом ANSI / EASA AR100-2105, в котором изложены рекомендуемые методы ремонта — и, следовательно, испытаний — вращающихся электрических устройств.Версия AR100 2015 года, которая была представлена ​​в 1988 году и ранее пересматривалась в 2001, 2006 и 2010 годах, включает более 100 изменений, направленных на дальнейшее улучшение качества, безопасности и производительности двигателя. Описанные выше тесты — это лишь небольшая часть тестов, предлагаемых Renown Electric.

Компаниям, стремящимся улучшить качество, производительность и срок службы своих двигателей, сначала следует убедиться, что магазин, с которым они сотрудничают, проводит испытания в соответствии с рекомендациями AR100; это демонстрирует приверженность передовым методам и соблюдение важнейших отраслевых норм.

Регулярное техническое обслуживание и испытания двигателей с помощью Renown Electric

Тестирование двигателей — это недорогой и недорогой способ продлить срок службы вашего оборудования. Регулярно планируемая диагностика и тщательное устранение неисправностей при первых признаках проблемы могут привести к более эффективному и своевременному ремонту, более эффективным операциям и менее частым повреждениям всей системы.

Команда Renown Electric предлагает поддержку клиентов 24 часа в сутки, семь дней в неделю, работая над тем, чтобы ваш двигатель работал в оптимальном режиме.Программы обслуживания и диагностика неисправностей — лишь один из аспектов наших возможностей; мы предоставляем первоклассные ремонтные услуги в широком спектре отраслей на протяжении более трех десятилетий.

Обратитесь к нашим специалистам сегодня за помощью в продлении срока службы вашего двигателя!


Пуск асинхронного двигателя — методы запуска

Трехфазный асинхронный двигатель — это Самозапуск . Когда источник питания подключен к статору трехфазного асинхронного двигателя, создается вращающееся магнитное поле, ротор начинает вращаться, и асинхронный двигатель запускается.Во время пуска скольжение двигателя составляет единиц , а пусковой ток очень велик.

Назначение стартера — не просто запустить двигатель, но он выполняет две основные функции. Они следующие.

  • Для уменьшения сильного пускового тока
  • Для защиты от перегрузки и пониженного напряжения.

Трехфазный асинхронный двигатель можно запустить, подключив двигатель напрямую к полному напряжению источника питания. Двигатель также можно запустить, подав на двигатель пониженное напряжение при запуске двигателя.

Крутящий момент асинхронного двигателя пропорционален квадрату приложенного напряжения. Таким образом, двигатель создает больший крутящий момент, когда он запускается при полном напряжении, чем когда он запускается при пониженном напряжении.

Существует три основных метода запуска асинхронного двигателя с сепаратором . Они следующие.

Устройство прямого пуска

Метод прямого пуска асинхронного двигателя прост и экономичен. В этом методе пускатель подключается непосредственно к питающему напряжению.Таким методом запускаются малые двигатели мощностью до 5 кВт, чтобы избежать колебаний напряжения питания.

Пускатель звезда-треугольник

Метод пуска трехфазных асинхронных двигателей звезда-треугольник очень распространен и широко используется среди всех методов. В этом методе двигатель работает с обмотками статора, соединенными треугольником.

Пускатель автотрансформаторный

Автотрансформатор используется в обоих типах соединений, т. Е. Соединении звездой или треугольником.Автотрансформатор используется для ограничения пускового тока асинхронного двигателя.

Вышеуказанные три пускателя используются для асинхронного двигателя с ротором с сепаратором.

Пускатель асинхронного двигателя с контактным кольцом Способ пуска асинхронного двигателя

В стартере асинхронного электродвигателя с контактным кольцом полное напряжение питания подается на стартер. Схема подключения асинхронного двигателя пускателя с контактным кольцом показана ниже.

Подключено полное пусковое сопротивление, что снижает ток питания статора.Ротор начинает вращаться, и сопротивление ротора постепенно снижается по мере увеличения скорости двигателя. Когда двигатель работает с номинальной скоростью при полной нагрузке, пусковые сопротивления полностью отключаются, а контактные кольца замыкаются накоротко.

РАЗДЕЛ 4 ЭЛЕКТРОДВИГАТЕЛИ БЛОК 17: ВИДЫ ЭЛЕКТРОДВИГАТЕЛЕЙ

1 РАЗДЕЛ 4 ЭЛЕКТРОДВИГАТЕЛИ БЛОК 17: ВИДЫ ЭЛЕКТРОДВИГАТЕЛЕЙ

2 ЗАДАЧИ УСТРОЙСТВА Изучив этот модуль, читатель должен уметь описывать различные типы открытых однофазных двигателей, используемых для привода вентиляторов, компрессоров и насосов.Опишите применение различных типов двигателей. Укажите, какие двигатели имеют высокий пусковой момент. Перечислите компоненты, которые вызывают у двигателя более высокий пусковой момент. Опишите многоскоростной двигатель с постоянным разделенным конденсатором и укажите, как получаются разные скорости.

3 ЗАДАЧИ УСТРОЙСТВА Изучив этот блок, читатель должен уметь объяснить работу трехфазного двигателя.Опишите двигатель, используемый для герметичного компрессора. Объясните клеммные соединения двигателя в различных компрессорах. Опишите различные типы компрессоров, в которых используются герметичные двигатели. Опишите использование двигателей с регулируемой скоростью.

4 ИСПОЛЬЗОВАНИЕ ЭЛЕКТРОДВИГАТЕЛЕЙ Используется для вращения вентиляторов, насосов и компрессоров. Облегчение циркуляции воздуха, воды, хладагента и других жидкостей. Двигатели предназначены для конкретных применений. Всегда необходимо использовать правильный двигатель. Большинство двигателей работают по схожим принципам.

5 Вентиляторы используются для перемещения воздуха Насосы используются для перемещения жидкостей

6 ЧАСТИ ЭЛЕКТРОДВИГАТЕЛЯ Статор с обмотками двигателя Стационарная часть двигателя Ротор Вращающаяся часть двигателя Подшипники Обеспечивают свободное вращение вала двигателя Концевые раструбы Поддерживают подшипники и / или вал Корпус Удерживает все компоненты двигателя вместе и упрощает монтаж двигателя

7 Электрические соединения корпуса и статора Конец ротора Крепление раструба Базовый вал Детали электродвигателя

8 ЭЛЕКТРОДВИГАТЕЛИ И МАГНЕТИЗМ Для создания вращения используются электричество и магнетизм. Статор имеет изолированные обмотки, называемые ходовыми обмотками. Ротор может быть построен из стержней. Ротор с короткозамкнутым ротором. Расположен между обмотками рабочего колеса. Обороты ротора в магнитном поле

.

9 Магнит, поддерживаемый сверху N S N S Так как полюса отталкиваются друг от друга, магнит будет вращаться Стационарный магнит

Стационарный магнит 10 Н S

11 N S стационарный магнит

12 N N S S Стационарный магнит

13 N S Стационарный магнит

14 N S Стационарный магнит

15 S N Когда противоположные полюса выровнены друг с другом, вращение остановится N S Стационарный магнит

16 ОПРЕДЕЛЕНИЕ СКОРОСТИ ДВИГАТЕЛЯ По мере увеличения числа полюсов скорость двигателя уменьшается Скорость двигателя (об / мин) = Частота x 120 Число полюсов В США частота составляет 60 Гц. Например, 2-полюсный двигатель будет вращаться со скоростью 60 x = = 3600 об / мин Двигатель будет вращаться со скоростью ниже расчетного значения Скольжение = разница между расчетной и фактической скоростью двигателя

17 ПУСКОВАЯ ОБМОТКА Позволяет двигателю запускаться в правильном направлении Пусковая обмотка имеет более высокое сопротивление, чем рабочая обмотка Намотка с большим количеством витков, чем рабочая обмотка Обмотка с проводом меньшего диаметра, чем рабочая обмотка Удаляется из активной цепи после запуска двигателя

18 ХАРАКТЕРИСТИКИ ПУСКА И РАБОТЫ Холодильные компрессоры имеют высокий пусковой крутящий момент Пусковой крутящий момент Сила вращения, запускающая двигатель Сила заторможенного ротора (LRA) Сила тока полной нагрузки (FLA) Номинальная сила тока нагрузки (RLA) Двигатель может запускаться с неравномерным давлением на нем Небольшие вентиляторы не работают требует большого пускового момента

19 ЭЛЕКТРИЧЕСКИЕ ИСТОЧНИКИ ПИТАНИЯ Жилые дома снабжены однофазным питанием Дома могут получать питание от трансформатора Питание подается на панель автоматического выключателя или блок предохранителей Автоматические выключатели защищают каждую отдельную цепь Питание распределяется по всему дому Типичные жилые панели обеспечивают напряжение 115 и 230 вольт Для коммерческих и промышленных объектов требуется трехфазное питание

20 Отдельные цепи 115 В с однофазными выключателями на 115 В L1 L2 Главные автоматические выключатели Двухполюсные выключатели на 230 В и цепи на 230 В Шина нейтрали и заземления ПАНЕЛЬ ВЫКЛЮЧАТЕЛЯ ЖИЛЫХ ЦЕПЕЙ

21 ОДНОФАЗНЫЕ ОТКРЫТЫЕ ДВИГАТЕЛИ Двигатели для жилых помещений работают при напряжении 115, 208 или 230 В Коммерческие двигатели работают при напряжении до 460 В Некоторые двигатели предназначены для работы при одном из двух разных напряжений (двигатели с двумя напряжениями) Двигатели с двумя напряжениями подключаются по-разному для каждого напряжения Некоторые двигатели имеют реверсивное вращение.

22 ДВИГАТЕЛЬ С ДВУМЯ НАПРЯЖЕНИЕМ (230 В) Пусковая обмотка Пусковой выключатель Пусковая обмотка Питание 230 В Обмотки хода соединены последовательно друг с другом для высоковольтного применения

23 ДВИГАТЕЛЬ НАПРЯЖЕНИЯ (115- Вольт) Пусковая обмотка Пусковой выключатель Пусковые обмотки Источник питания 115 В Рабочие обмотки подключены параллельно друг другу для низковольтных приложений

24 РАЗДЕЛЕННЫХ ДВИГАТЕЛЯ Две отдельные обмотки двигателя Хорошая эффективность работы Средняя величина пускового момента Скорость обычно составляет от об / мин Скорость двигателя определяется количество полюсов Проскальзывание — это разница между расчетной и фактической скоростями двигателя

25 ЗАПУСК НАМОТКА Маленький провод Большое количество витков Высокое сопротивление L1 РАБОЧАЯ ОБМОТКА Большой провод Малое количество витков Низкое сопротивление L2

26 120 Вольт РАБОТА Ротор ПУСК НАЧАЛО ПУСК

27 ЦЕНТРОБЕЖНЫЙ ВЫКЛЮЧАТЕЛЬ Обычно используется на открытых двигателях для обесточивания пусковой обмотки. Размыкает контакты, когда двигатель достигает примерно 75% своей номинальной скорости. Когда контакты размыкаются и замыкаются, возникает искра (дуга). Не используется в атмосфера хладагента

28 ПУСКОВАЯ НАМОТКА Маленький провод Большое количество витков Высокое сопротивление ЦЕНТРОБЕЖНЫЙ ПЕРЕКЛЮЧАТЕЛЬ L1 РАБОЧАЯ ОБМОТКА Большой провод Малое количество витков Низкое сопротивление L2

29 КОНДЕНСАТОРНЫЙ ДВИГАТЕЛЬ Двухфазный двигатель с запуском и рабочие обмотки Пусковой конденсатор способствует запуску двигателя за счет увеличения пускового момента Пусковой конденсатор подключается последовательно с пусковой обмоткой двигателя Пусковой конденсатор удаляется из цепи при удалении пусковой обмотки Пусковой конденсатор увеличивает фазовый угол

30 ПУСК КОНДЕНСАТОРА ДВИГАТЕЛЬ L1 ПУСК ПУСК КОНДЕНСАТОРА РАБОТА L2

31 ФАЗОВЫЙ УГОЛ Число электрических градусов между током и напряжением В резистивной цепи ток и напряжение находятся в фазе друг с другом, а фазовый угол равен нулю Ток может опережать или отставать от напряжения В индуктивных цепях ток отстает от напряжения В емкостных цепях ток ведет к напряжению

32 КОНДЕНСАТОР-ЗАПУСК, КОНДЕНСАТОРНЫЙ ДВИГАТЕЛЬ Самый эффективный однофазный двигатель Часто используется с вентиляторами и нагнетателями с ременным приводом Рабочий конденсатор повышает эффективность работы Работа конденсатор в цепи при подаче питания на двигатель Пусковой и рабочий конденсаторы подключены параллельно Сила тока двигателя возрастет, если рабочий конденсатор выходит из строя

33 КОНДЕНСАТОР-ЗАПУСК, КОНДЕНСАТОР-ДВИГАТЕЛЬ (CSCR) РАБОЧИЙ КОНДЕНСАТОР ЗАПУСК КОНДЕНСАТОРА L1 L2

34 ПОСТОЯННОЕ РАЗДЕЛЕНИЕ КОНДЕНСАТОР (PSC) ДВИГАТЕЛЬ Простейший двигатель с расщепленной фазой Используется только рабочий конденсатор Низкий пусковой момент и хорошая эффективность работы Могут быть одно- или многоскоростные двигатели Многоскоростные двигатели имеют выводы для каждой скорости При уменьшении сопротивления скорость двигателя увеличивается При увеличении сопротивления двигатель скорость уменьшается

35 ДВИГАТЕЛЬ С ПОСТОЯННЫМ РАЗДЕЛЕНИЕМ КОНДЕНСАТОРА (PSC) РАБОЧИЙ КОНДЕНСАТОР L1 L2

36 ДВИГАТЕЛЬ С ТЕНЕННЫМИ ПОЛЮСАМИ Очень низкий пусковой крутящий момент Не так эффективен, как двигатель PSC Часть рабочей обмотки заштрихована, чтобы обеспечить дисбаланс магнитного поля. позволяет двигатель для пуска. Для защиты обмотки рабочего колеса используются толстые медные провода или ленты. Изготовлены в дробном диапазоне мощности

37 ЗАТЕМНЕННЫЕ ПОЛЮСНЫЕ ПОЛОСЫ ДВИГАТЕЛЯ С ТЯЖЕЛЫМ МЕДНЫМ ДВИГАТЕЛЕМ

38 ТРЕХФАЗНЫЙ ДВИГАТЕЛЬ Обычно используется в коммерческих целях. иметь трехфазный источник питания. Питание от трех однофазных цепей питания. Отсутствие пусковой обмотки или конденсаторов. Очень высокий пусковой крутящий момент. Вращение двигателя может быть изменено переключением любых двух силовых ветвей.

39 ТРЕХФАЗНЫЙ ИСТОЧНИК ПИТАНИЯ 220В L1 L2 L3 ЭТИ ТРИ ИСТОЧНИКА ПИТАНИЯ ВЫРАБАТЫВАЮТСЯ НА 120 ГРАДУСОВ ОТ ФАЗЫ КАЖДОГО ДРУГОГО

40 ОДНОФАЗНЫХ ГЕРМЕТИЧЕСКИХ ДВИГАТЕЛЕЙ Герметично изолированы от внешнего воздуха Аналогично однофазным двигателям Используйте реле для удаления пусковой обмотки g от контура В них не используются центробежные переключатели. Для повышения эффективности часто используются рабочие конденсаторы. Разработаны для работы в атмосфере хладагента. Клеммы двигателя, обозначенные как общие, запуск и работа.

41 ПОТЕНЦИАЛЬНОЕ РЕЛЕ Используется на двигателях, требующих высокого пускового момента Катушка с очень высоким сопротивлением Нормально замкнутые контакты Реле работает от индуцированного напряжения на пусковой обмотке. Контакты размыкаются при повышении индуцированного напряжения. Когда двигатель выключается, индуцированное напряжение падает, и контакты реле замыкаются.

42 2 ПОТЕНЦИАЛЬНОЕ РЕЛЕ 1 5 Нормально замкнутые контакты, подключенные между клеммы 1 и 2 Катушка подключена между клеммами 2 и 5

43 КОНДЕНСАТОР-ЗАПУСК, КОНДЕНСАТОР-РАБОТАЮЩИЙ ДВИГАТЕЛЬ (CSCR) ПУСКОВОЙ КОНДЕНСАТОР L1 РАБОЧИЙ КОНДЕНСАТОР L2

44 РЕЛЕ ТОКА Используется на двигателях с дробной мощностью Используется с дозаторами с фиксированной диафрагмой. Катушка с низким сопротивлением, последовательно включенная с обмоткой рабочего хода. Нормально разомкнутые контакты, последовательно соединенные с обмоткой запуска. При запуске запитана только обмотка рабочего хода. Двигатель потребляет ток заторможенного ротора. Повышенный ток замыкает контакты реле. Обмотка запуска находится под напряжением. и двигатель запускается Сила тока падает, и контакты реле размыкаются

45 ЗАПУСКНАЯ ОБМОТКА Маленький провод Большое количество витков Высокое сопротивление МАГНИТНОЕ РЕЛЕ ТОКА (CMR) L1 РАБОЧАЯ ОБМОТКА Большой провод Малое количество витков Низкое сопротивление L2

46 ПОЛОЖИТЕЛЬНЫЙ КОЭФФИЦИЕНТ ТЕМПЕРАТУРЫ (PTC) ПУСКОВОЕ УСТРОЙСТВО Термисторы изменяют сопротивление при изменении температуры Во время запуска сопротивление PTC составляет от 4 до 10 Ом. Во время работы двигателя поток тока выделяет тепло, которое вызывает увеличение сопротивления. Сопротивление может увеличиваться до 10 000–12 000 Ом

47 ДВУХСКОРОСТНЫЕ ДВИГАТЕЛИ КОМПРЕССОРА Используются для управления производительностью компрессоров Изменения скорости достигаются путем изменения проводки Термостат контролирует изменения проводки Считается, что два компрессора в одном корпусе Один двигатель вращается при 1800 об / мин, другой — на 3600 Двухскоростных компрессорах имеют более трех клемм двигателя

48 ДВИГАТЕЛИ СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ Некоторые односкоростные двигатели имеют более трех клемм двигателя У некоторых есть вспомогательные обмотки компрессора для повышения КПД двигателя Некоторые двигатели имеют обмоточные термостаты, подключенные через кожух компрессора Трехфазные двигатели имеют один термостат для каждой обмотки Обмоточные термостаты соединены последовательно

49 ТРЕХФАЗНЫЕ ДВИГАТЕЛИ КОМПРЕССОРА Используются в крупных коммерческих / промышленных приложениях Обычно имеют три клеммы двигателя. Конденсаторы не требуются. Сопротивление на каждой обмотке одинаковое. Трехфазные двигатели имеют высокую звезду. крутящий момент Некоторые более крупные трехфазные двигатели компрессоров работают как устройство с двойным напряжением

50 ДВИГАТЕЛИ С ПЕРЕМЕННОЙ СКОРОСТЬЮ Скорость двигателя снижается в условиях низкой нагрузки Напряжение и частота определяют скорость двигателя Новые двигатели управляются электронными схемами Двигатели постоянного тока с регулируемой скоростью с электронной коммутацией (ECM) Двигатели постоянного тока Двигатели могут увеличиваться или уменьшаться для уменьшения износа двигателя. Переменный ток можно преобразовать в постоянный с помощью выпрямителей.

51 ПРЕОБРАЗОВАТЕЛИ ПОСТОЯННОГО ТОКА (ВЫПРЯМИТЕЛЯ) Выпрямитель с фазовым управлением Преобразует мощность переменного тока в мощность постоянного тока Использует кремниевые выпрямители и транзисторы Конденсаторы сглаживают выпрямитель постоянного напряжения Диодный мостовой выпрямитель Не регулирует напряжение постоянного тока Диоды не регулируются Напряжение и частота регулируются на инверторе

52 ИНВЕРТОРЫ Изменяйте частоту для получения желаемой скорости Шестиступенчатый инвертор Принимает напряжение f Из преобразователя Может управлять напряжением или током Широтно-импульсный модулятор (ШИМ) Получает фиксированное постоянное напряжение от преобразователя Напряжение подается на двигатель импульсами Короткие импульсы на низкой скорости, длинные импульсы на высокой скорости

53 ДВИГАТЕЛИ С ЭЛЕКТРОННОЙ КОММУТАЦИЕЙ (ЭБУД) Используемые на вентиляторах с открытым приводом менее 1 л.с. Якорь коммутируется с помощью постоянных магнитов Двигатели откалиброваны на заводе Двухкомпонентный двигатель: секция двигателя и органы управления Двигатель можно проверить с помощью омметра Элементы управления можно проверить с помощью тестового модуля Неисправные органы управления можно заменить

54 ОХЛАЖДЕНИЕ ЭЛЕКТРИЧЕСКИХ ДВИГАТЕЛЕЙ Все двигатели должны охлаждаться Двигатель герметичного компрессора охлаждается воздухом и хладагентом Открытые двигатели охлаждаются воздухом Открытые двигатели должны располагаться в местах с хорошей подачей воздуха Некоторые очень большие двигатели охлаждаются водой

55 РЕЗЮМЕ УСТРОЙСТВА — 1 Двигатели облегчают циркуляцию воздуха , вода, хладагент и другие жидкости В некоторых случаях требуется высокий пусковой крутящий момент Компоненты двигателя включают корпус, ротор, статор, концевые раструбы, подшипники и опору двигателя Электричество и магнетизм создают вращение двигателя Скорость двигателя определяется числом полюсов Стартовая обмотка имеет более высокую сопротивление, чем рабочая обмотка. Важные значения силы тока двигателя — LRA, FLA и RLA.

56 ОБЗОР УСТРОЙСТВА — 2 корпуса питаются однофазным питанием. Некоторые двигатели рассчитаны на работу при более чем одном напряжении. Двигатели с разделенной фазой имеют средний пусковой момент и хорошая эффективность работы Центробежный переключатель размыкает и замыкает свои контакты в зависимости от скорости двигателя Реле тока размыкает и замыкает свои контакты в зависимости от тока, протекающего через рабочую обмотку

57 ОБЗОР УСТРОЙСТВА — 3 Реле потенциала размыкает и замыкает контакты в зависимости от наведенного напряжения на пусковая обмотка Конденсаторные пусковые двигатели используют пусковые конденсаторы для увеличения пускового момента двигателя. Пусковая обмотка и пусковой конденсатор удаляются из цепи после запуска двигателя. Пуск конденсатора, в двигателях с конденсаторным режимом используются как пусковой, так и рабочий конденсаторы. Рабочие конденсаторы помогают увеличить мощность двигателя. КПД

58 ОБЗОР УСТРОЙСТВА — 4 В двигателе PSC используется только рабочий конденсатор.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *