Как определить фазу мультиметром: Как определить фазу и ноль мультиметром – RozetkaOnline.COM

Содержание

Как определить фазу и ноль мультиметром – RozetkaOnline.COM

Продолжаем изучать возможности цифрового мультиметра и способы его применения в быту. В данной статье я расскажу, как с его помощью можно определить фазу и ноль.

Довольно часто, в процессе монтажа электрооборудования, например, при подключении светильников, установке розеток и выключателей или при диагностике неисправностей электросети, нужно найти какой из проводов заземление, фаза и ноль. Как это можно сделать самому, без специального оборудования, я писал ЗДЕСЬ, сейчас же мы сделаем это мультиметром.

Главное, что вы должны знать: у обычного цифрового мультиметра, нет отдельного режима для определения фазы или нуля, узнать это можно лишь увидев на экране величину напряжения или не увидев его.

По большому счету, принцип определения фазы тестером, схож с работой обычной индикаторной отвертки, где фаза определяется по свечению встроенной лампы, которая загорается только при наличии цепи фаза – сопротивление – лампа – ёмкость (человек).

Ток, с фазы, протекающий через такую индикаторную отвертку, проходит через высокое сопротивление, встроенное в индикатор, затем также через лампу в ней, а потом попадает в ёмкость – в качестве которой выступает человек (для этого мы и касаемся задней стороны индикаторной отвертки при определении) и только при наличии всех участников такой цепи, лампа будет гореть.  

Как найти фазу мультиметром

Чтобы определить фазу с помощью мультиметра, выставляем на нём режим определения напряжения переменного тока, который на корпусе тестера чаще всего обозначен как V~, при этом, всегда выбирайте предел измерения – уставку, выше предполагаемого напряжения сети, обычно это от 500 до 800 Вольт. Щупы подключаются стандартно: черный в разъем “COM”, красный в разъем «VΩmA».

В первую очередь, перед тем как искать фазу мультиметром, необходимо проверить его работоспособность, а именно работу режима вольтметра – определения напряжения переменного тока. Для этого проще всего попробовать определить напряжение в стандартной, бытовой розетке 220в.

Как проверить мультиметром напряжение в розетке 220в

Для измерения напряжения в розетке цифровым тестером, необходимо вставить щупы в гнезда розеток, полярность при этом неважна, главное при этом – не касаться руками токопроводящих частей щупов.

Еще раз напомню, что на мультиметре должен быть выставлен режим определения напряжения переменного тока, предел измерения выше 220в, в нашем случае 500В, щупы подключены в разъемы «COM» и «VΩmA».

Если мультиметр рабочий и нет проблем с подключением розетки или перебоев с электроснабжением, то прибор покажет вам напряжение близкое к 220-230В.

Такого простого теста достаточно чтобы продолжить поиск фазы тестером. Сейчас, в качестве примера, мы определим какой из двух проводов, например, выходящих из потолка для люстры, фазный.

Если бы провода было три – фаза, ноль и заземление, то достаточно было бы измерить напряжение на каждой из пар, точно так же, как мы определяли его в розетке. При этом между двумя проводами напряжения практически бы не было – между нолем и заземлением, соответственно оставшийся третий провод фазный. Ниже представлена наглядная схема определения.

Если же провода, для подключения светильника, только два и вы не знаете какой из них каакой, то опознать их таким образом не получится. Тогда нам и приходит на помощь метод определения фазы мультиметром, который я сейчас опишу.

Всё достаточно просто, мы просто должны создать условия для протекания через тестер электрического тока, и зафиксировать его. Для этого просто создаём электрическую цепь, по тому же принципу, что и у индикаторной отвертки.

В режиме проверки напряжения переменного тока, с выбранном пределом 500В, красным щупом прикасаемся к проверяемому проводнику, а черный щуп зажимаем пальцами рук либо касаемся им заведомо заземленной конструкции, например, радиатора отопления, стального каркаса стены и т.п. При этом, как вы помните, черный щуп у нас воткнут в разъем COM мультиметра, а красный в VΩmA.

Если на проверяемом проводе будет фаза, мультиметр покажет на экране достаточно близкую к 220 Вольтам величину напряжения, в зависимости от условий тестирования она может быть разной. Если же провод не фазный, значение будет или нулевым, или очень низким, до нескольких десятков вольт.

Еще раз напомню, ОБЯЗАТЕЛЬНО УБЕДИТЕСЬ ПЕРЕД НАЧАЛОМ ПРОВЕРКИ, ЧТО НА МУЛЬТИМЕТРЕ ВЫБРАН РЕЖИМ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА, а не какой-нибудь другой.

Вы, должно быть скажете, что метод достаточно рискованный, становится частью электрической цепи и добровольно попасть под напряжение захочет не каждый. И хотя такой риск есть, он минимальный, ведь, как и в случае с индикаторной отверткой, напряжение из сети проходит через большое сопротивление резистора, встроенного в мультиметр и удара током не происходит. А работоспособность этого резистора, мы проверили, предварительно измерив напряжение в розетке, если бы его там не было, сложились бы все условия для короткого замыкания, которое, уверяю вас, вы бы сразу обнаружили.

Конечно, как я уже писал выше, лучше вместо руки использовать заземленные конструкции – радиаторы и трубы отопления, стальной каркас здания и т.д. но, к сожалению, такая возможность есть не всегда и нередко приходится браться за щуп самому. Бывалые электрики советуют в таких случаях всё же принять дополнительные меры безопасности: стоять на резиновом коврике или в диэлектрической обуви, касаться щупа сперва кратковременно, правой рукой и лишь не обнаружив опасных воздействий тока, выполнить измерение.

В любом случае это единственный, самый надежный и простой способ определить фазу бытовым мультиметром самому.

 

Как найти ноль мультиметром

Ноль, чаще всего, находится мультиметром относительно фазного провода, т.е. сперва, способом, описанным выше, вы находите фазу, а затем установив красный щуп на неё, касаетесь других проводников и когда тестер на экране покажет 220В (+/- 10%), тогда вы поймете, что второй провод нулевой рабочий или нулевой защитный (заземление).

Определить же то, является провод нулем или заземлением одним мультиметром, довольно сложно, ведь по сути, эти проводники одно и то же и нередко просто дублируют другу друга. В определенных системах заземления ноль и зазмление даже связаны между собой в электрощите и очень тяжело точно их выявить.

Проще всего, в таком случае, отключить от шины заземления в электрощите вводной провод, тогда, во всей квартире или доме, при проверке напряжения, между фазой и проводами заземления, вы не получите 220В, как при проверке нуля и фазы.

Так же стоит отметить тот факт, что если в электрощите установлена дифференциальная защита – УЗО или автоматический выключатель дифференциального тока, он обязательно сработает, при проверке проводов заземления относительно любого другого проводника, даже нулевого.

Если же вы знаете более надежные и универсальные методы определения фазы и нуля цифровым мультиметром – обязательно пишите об этом в комментариях к статье, кроме того приветствуются любые мнения, опыт, здоровая критика или вопрос.

Так же вступайте в нашу группу ВКонтакте, следите за появлением новых материалов.

Как определить фазу и ноль мультиметром: руководство

Цифровой мультиметр очень полезная вещь в быту. С помощью тестера просто определить, какой из проводов фаза, ноль, а какой заземление.

Определение фазы и ноля в электрике

Любая электросеть, как бытовая, так и промышленная может быть с постоянным током или с переменным. При постоянной подаче электронапряжения электроны перемещаются в одном направлении, при переменной подаче это направление постоянно меняется.

Переменная сеть в свою очередь состоит из двух частей – рабочей и пустой фазы. На рабочую, которую называют в электричестве так и называют — «фазой», подаётся рабочее электронапряжение, а на пустую, которая получила название «ноль» — нет. Она нужна для создания замкнутой сети для работы и подключения электроприборов, а также для заземления сети.

Правила использования мультиметра

Для определения фазы и нуля с помощью мультиметра необходимо очистить концы жил от изоляции, развести их в разные стороны, чтобы избежать контакта, который спровоцирует короткое замыкание, и подать следом электронапряжение.

На мультиметре установить измерительный предел переменного напряжения выше 220 В. В гнездо с меткой «V» вставить щуп для измерения напряжения. Прикоснуться им к очищенной жиле и следить за дисплеем. Если значение до 20В – это фазный провод, если показаний нет совсем – это ноль.

Для правильного использования мультиметра необходимо соблюдать следующие правила:

  • Противопоказано использовать прибор при повышенной влажности.
  • Нельзя применять вышедшие из строя измерительные щупы.
  • Запрещено измерять параметры со значением, превышающим верхний предел прибора измерения.
  • Во время измерительной процедуры нельзя крутить переключатель и менять пределы.

Как мультиметр поможет найти фазу

Чтобы мультиметр показал, в каком из проводов находится фаза, на приборе нужно выставить режим для определения напряжения переменного тока, который обозначается как V~, установив предел измерения от 500 до 800 В. Подключение щупа производится стандартно, чёрный в разъем «COM», красный в «VmA».

Как мультиметр показывает ноль

После того, как определился провод с фазой легче всего найти нулевой. Установив красный щуп на фазу касаетесь других проводников, после чего тестер должен показать значение около 220 В. Из этого будет понятно, что второй провод — это или нулевой защитный, или нулевой рабочий.

Определить мультиметром, где нулевой защитный провод, а где нулевой рабочий весьма сложно, так как они дублируют друг друга. Лучше всего отключить от шины заземления в электрическом щитке вводной провод, тогда в проверяемом помещении между фазой и проводами заземления не будет 220 В, как при проверке фазы и нуля.

Определяем прибором землю

Наличие заземляющего контакта не говорит о том, что этот контакт на самом деле заземлён. Довольно часто этот провод не подсоединяется никуда, а только создаёт видимость для пользователя. Грамотные электромонтёры для земли выбирают провод с полосой, но если мастер был неопытным или халатно отнёсся к данному заданию, то о цветовой маркировке могли и не вспомнить. В таких ситуациях напряжение лучше всего измерять, прикасаясь к трубам водоснабжения или отопления. На проводе с заземлением уровень напряжения будет меньше, чем на нулевом.

Другие варианты проверки

Кроме перечисленных способов проверки фазы и нуля мультиметром, существует проверка с использованием контрольной ламы.
Способ довольно необычный и требует особой осторожности, но действенный.

Для такого устройства необходим патрон, лампа, провод со срезанной на концах изоляцией. При использовании лампы удастся определить — есть фаза или нет, а какой именно фазный проводник — установить не получится. Если во время соединения проводки контрольной лампы с определяемыми жилам она засветится, тогда один из проводов фазный, а второй вероятнее ноль. Если не засветится, то фазы нет либо фазы, либо ноля, что тоже возможно.

Отвертка с индикатором нам в помощь

Конструкция инструмента проста. Внутри встроена лампочка. Жало на одном конце, шунтовый контакт на другом.

Суть проверки контрольной отвёрткой состоит в выполнении следующих действий:

  • Отключаем подачу тока от щитка.
  • Очистить от изоляции жилы, которые нужно проверить на 1 см.
  • Разъединяем их в разные стороны во избежание соприкосновения.
  • Произвести подачу напряжения включив вводный автомат.
  • Жало отвёртки поднести к оголённой проводке.
  • Если при выполнении этого действия загорается индикаторное окошко, значит это фаза, если отсутствует, значит это ноль.
  • Пометьте нужную жилу, отключите коробку автомат и выполните подсоединение коммутационного аппарата.

При работе с пробником всем необходимо соблюдать правила безопасности, которые заключаются в том, что при проведении замера нельзя касаться отвертки в нижней части. Инструмент нужно содержать в чистоте. Прежде чем определять отсутствие напряжения(в отличии от его присутствия) в розетке, можно проверить прибор на исправность с помощью другого электрооборудования, которое находится под напряжением.

По цвету проводов

Самым простым и надёжным способом определения фазы и нуля является по цвету проводов.
Но только в том случае, когда вы точно уверены, что электропроводка подключена по всем правилам!
В основном всегда жила с фазой чёрного, коричневого, белого или серого цвета, а ноль синий или голубой. Также могут быть жили зелёного цвета или же жёлто-зелёного, это говорит о наличии проводника с заземлением.
В таком случае можно обойтись и без измерительных приборов, согласно цвету, понятно, где находится фаза, а где ноль.

При монтаже электропроводки самую большую угрозу несут фазные жилы. Чтобы не произошла ситуация, влекущая за собой летальный исход – они окрашены в кричащие яркие цвета. Это сделано для того, чтобы при определенных обстоятельствах электрик из нескольких проводов мог быстро выбрать самые опасные и отнестись к ним с осторожностью.

Как найти фазу и ноль

Выполняя работы по дому, часто возникает необходимость отремонтировать розетку или выключатель, перевесить люстру или установить новую розетку. Для подключения дополнительного электрооборудования необходимо уметь отличить фазу от нуля. Это довольно просто, если дом построен недавно, а электропроводку делали квалифицированные специалисты.

Простой способ определения

Для того чтобы самому найти назначение каждого проводника достаточно знать правила цветового обозначения электропроводов. Современные коттеджи должны иметь контур заземления. А это значит, что разводка выполнена трехпроводным кабелем, а цвета должны соответствовать:

  • Желто-зеленая оплетка обозначает подключение жилы к контуру заземления;
  • Синий или голубой цвет говорит, что это нулевая жила;
  • Фазный провод обозначают любым другим цветом. Он может быть красным, белым, коричневым, фиолетовым и т. п.

Таким образом, в идеале должна маркироваться вся электропроводка. Однако нет гарантии, что ее монтаж производил действительно специалист или на вводе не переключались электропровода.

ВАЖНО! Никогда не доверяйте цветовому обозначению кабеля, если не вы производили монтаж электропроводки.

Инструменты и материалы для выполнения работы

Прежде чем приступить к работе, необходимо приготовить инструменты и материалы, которые могут потребоваться во время ремонта:

  • индикаторная отвертка для определения фазы и нуля;
  • тестер или мультиметр, но ими нужно знать, как определить фазу ноль или землю;
  • плоскогубцы и кусачки — бокарезы;
  • маркировочный материал. Это могут быть цветной термоусадочный кембрик или маркировочные клипсы.

Всегда перед началом работы необходимо определить ноль и фазу.

Как с помощью индикаторной отвертки определить фазную жилу кабеля

Для того чтобы узнать, где ноль, а где фаза пользуются как индикаторной отверткой, так и мультиметром. Если ремонт производит не специалист, у которого нет соответствующих приборов, то для определения, где фазовый провод достаточно иметь индикатор.

Его можно купить в магазине за символическую плату. Методика определения очень проста, достаточно вставить жало индикаторной отвертки в розетку, а пальцем руки дотронуться до контакта на ее ручке. Если загорелся индикатор, то это и есть фазная жила.

Если проводка в доме двухжильная, то второй проводник будет нулевым. Сейчас уже не выполняют электропроводку в квартирах и домах двухжильным кабелем.

Если проводка старая, бывают случаи, когда индикатор определяет фазу в розетке на обоих контактах. Аналогичная ситуация может быть и при монтаже новой электропроводки.

В этом случае определение фазы будет затруднено, такая ситуация возникает, если нулевой проводник в щитке не подключен. Достаточно подсоединить его в щитке или распределительной коробке.

Все работы, связанные с монтажом, переключением или подключением проводов, следует производить при отключенных автоматах, т. е. проводка должна быть обесточена. Подробнее про индикаторы напряжения можно узнать тут.

Работа с мультиметром

Специалист, выполняющий работы должен иметь понятие, как проверить мультиметром напряжение в сети. Для этого достаточно вставить щупы в розетку, предел измерений устанавливают на напряжение больше измеряемого.

А измерения производиться на переменном напряжении. Показания должны соответствовать напряжению сети 220 вольт. Электрик, производящий монтаж электропроводки, обязан уметь пользоваться измерительными приборами.

Он должен иметь понятие, как с помощью мультиметра определить фазу или ноль. Специалист, который умеет работать с тестером, знает не только как можно определить фазу или ноль. Но и сможет проверить целостность электропроводки.

При монтаже осветительных приборов возникает необходимость в проверке исправности лампочек. Важно не только иметь знания, как проверить лампочку мультимтером, но и учитывать, что энергосберегающие и светодиодные лампы таким прибором проверить невозможно.

Определение напряжения без индикатора и мультиметра

Если у электрика нет под рукой мультиметра или измерительной отвертки, он должен понимать, как определить фазу с помощью контрольной лампы.

ВАЖНО! Пользоваться контрольной лампой могут только профессиональные электрики, знакомые с техникой безопасности и имеющие специальный допуск работы в электроустановках.

Что необходимо знать перед началом ремонта

Прежде чем приступать к ремонту электропроводки необходимо иметь ввиду:

  • некоторые специалисты утверждают, что на нулевом проводе отсутствует напряжение. Эти утверждения ошибочные;
  • в розетке не обязательно знать, где фазный контакт, а где нулевой, что в корне неправильно. Существует оборудование, которое при подключении требует строгого соблюдения полярности;
  • в целях соблюдения техники безопасности, следует понимать, как правильно подключить выключатель света, что подключается к светильнику — ноль или фаза.

Трехпроводная электропроводка

Если электропроводка выполнена трехпроводным кабелем, то у электрика не должно возникнуть затруднений, как определить заземление. Согласно нормам желто-зеленый провод всегда подсоединяют к контуру заземления.

Иногда проводку выполняют отдельными проводами без учета цветового обозначения. Используют провода, какие есть под рукой. В этом случае необходимо воспользоваться тестером или мультиметром.

Прежде всего, определяют, на какой провод подводится фаза. Для этого проще всего воспользоваться индикаторной отверткой. Применяя следующий алгоритм проверки можно узнать назначение двух других проводов.

Измеряя напряжение на жилах кабеля, можно понять, где земля. Между фазной и нулевой жилами  напряжение всегда будет выше, чем между фазной и землей.

Данная методика применима только в коттеджах или индивидуальных домах. Где имеется отдельный контур заземления. В многоквартирных домах применяют схему с глухо заземленной нейтралью. В этом случае показания прибора будут одинаковыми.

Существует еще один способ как определить провод заземления. Он справедлив только при условии, если подводящие в дом провода промаркированы.

Для того чтобы знать как определить где фаза, а где ноль достаточно прозвонить прибором все провода и таким образом довольно легко определяется назначение электропроводов.

Если у вас нет опыта или не знаете как с помощью индикаторной отвертки или с помощью мультиметра определить ноль или фазу в проводах. Следует обратиться за помощью к профессиональному электрику.

Перед началом самостоятельного ремонта электропроводки необходимо изучить технику безопасности при работе с электроустановками. Не стоит слушать советы как проверить фазу или ноль без приборов, даже если проверенный способ кажется достоверным.

Всегда нужно помнить, что электричество не определяется нашими органами чувств. У него нет звука, запаха или цвета. Поэтому люди, не имеющие опыта работы с электричеством, чаще всего получают травмы от электричества. Если вы не знаете, как определить фазу ноль и землю, как проверить напряжение в розетке, лучше доверить эти работы профессионалам.

Как определить фазу: мультиметром, индикаторной отверткой

Знания, как определить «фазу», необходимы для подключения приемников электрического тока. Существуют несколько методов проверки, но перед их рассмотрением нужно ознакомиться с основными терминами освещаемой темы.

Существует несколько способов найти фазу и ноль в розетке.

Понятия «нуля» и «фазы»

Электрический ток — это упорядоченное движение отрицательно заряженных частиц.

Если электроны перемещаются только в одном направлении, такой ток называют постоянным, если в разных — переменным.

Проводники бывают трех видов:

  1. «Фаза» — рабочий контакт. На него подается напряжение.
  2. «Ноль» («нуль») — проводник, по которому ток протекает обратно к генератору, замыкая цепь.
  3. «Земля» — провод, соединяющий любую точку сети с заземляющим элементом. Он нужен для защиты от удара электрическим током.

Почему важно правильно идентифицировать фазный провод

При подсоединении приборов к сети используют проводник рабочей «фазы». Напряжение подается непосредственно на источник потребления. Ошибкой будет подключение приемника к «нулю», ведь при размыкании цепи (выключении прибора) сеть все равно остается под напряжением. Это хорошо прослеживается, если подсоединить выключатель лампочки к нулевому проводу. В таком случае патрон находится под напряжением постоянно. Это подключение опасное, когда необходимо поменять лампу или сам плафон.

Фазный провод важно правильно идентифицировать.

Способы определения рабочей «фазы» и «нуля» с помощью приборов

Проводник с рабочей «фазой» имеет такое же напряжение, как и в розетке: 220В. Оно необходимо для функционирования бытовых электроприборов. В нулевом проводнике напряжение тока очень слабое. Идентификация проводов осуществляется методом исключения, как только выявляется фазный контакт.

Существуют несколько способов определения «фазы»: по цвету проводов, по буквенной маркировке и с помощью приборов — индикаторной отвертки и мультиметра.

Индикаторная отвертка

Устройство отвертки обеспечивает удобное и безопасное ее использование

Величину напряжения с помощью индикаторной отвертки определить невозможно — она лишь показывает наличие его в проводнике.

Перед проверкой напряжения для безопасности нужно выполнить ряд манипуляций:

  • обесточит сеть;
  • зачистить провода от изолирующего материала;
  • развести концы проводов друг от друга как можно дальше во избежание короткого замыкания;
  • включить ток в сети.
Индикаторная отвертка показывает наличие тока в проводнике.

Сама диагностика проводится очень просто:

  1. Нужно прикоснуться жалом инструмента поочередно к оголенным проводам. Держать при этом отвертку необходимо за ручку большим и средним пальцами. До металлического стержня во время теста дотрагиваться опасно, т. к. по нему проходит ток.
  2. В то же время указательным пальцем нужно нажать на металлический пятачок с торца отвертки. Прикасаясь к контактной площадке, человек выступает как элемент цепи, заземляя ее. При наличии напряжения в проводнике загорится светодиодная лампочка, в ином случае проводник нулевой.

В конструкцию индикаторной отвертки встроен резистор, который ограничивает силу тока до безопасного для человека значения. При помощи пружины он передает сигнал к лампочке.

Такой метод особенно удобен при проверке розеток, т. к. жало отвертки позволяет быстро добраться до контакта.

Мультиметр

С помощью мультиметра измеряют все характеристики электросети. Соответственно, и наличие напряжения в проводнике он тоже показывает. Кроме того, прибор определяет характер каждого провода — «земли», «нуля» и «фазы». Измерить напряжение возможно на любом участке цепи, будь то щиток, розетка или кабель.

Порядок действий:

  1. Для проверки фазы выставляют на приборе режим «Переменное напряжение». Выбирают максимально допустимый предел: 600-750 В.
  2. Один щуп мультиметра зажимают между пальцами, а другим дотрагиваются до контакта. Незначительные показания вольтажа будут соответствовать «нулю», а цифры, близкие к 220 В, характеризуют «фазу».

Когда электрик при проверке зажимает один щуп пальцами, током его не бьет из-за того, что в мультиметре установлено большое входное внутреннее сопротивление, а токи имеют сотые доли миллиампера.

Из-за внутреннего сопротивления в приборе разные модели могут показывать неодинаковые цифры. Но это не является критичным.

Мультиметр измеряет все характеристики электросети.

Важно не перепутать режимы при тестировании. Если проверяющий случайно выберет «Измерение тока» и прикоснется рукой к одному из щупов во время идентификации, он получит электрический разряд.

Зажимать щуп в целях заземления не обязательно пальцами. В некоторых розетках уже установлен заземленный контакт. Металлическая труба отопительной системы тоже может служить для этой цели, и электрики часто ею пользуются.

Определив «фазу» с помощью тестера, вычислить «нуль» и «землю» становится проще.

Если прикоснуться одним щупом к «фазе», а другой к «нулю», то прибор покажет 220 В. А при замыкании «фазы» и «земли» значение будет намного меньшее 220 В.

Альтернативные методы без использования приборов

Если ситуация складывается так, что ни индикаторной отвертки, ни мультиметра нет, а выяснить, какой контакт фазный, необходимо, используют визуальный способ определения контакта.

На кабеле часто встречается буквенное обозначение характеристик проводников. Так, за «фазой» закрепилась буква L, за «нулем» — N, а за «землей» — PE.

Иногда электрики при монтаже дополнительно маркируют фазный провод подвешенной биркой с обозначением. Но более простым решением считается цветовая маркировка проводов. Правильное подключение их (в соответствии со стандартом) впоследствии облегчает работу электрикам, позволяя быстро ориентироваться в проводке.

По цвету провода

Цвета изоляции проводов подбирают таким образом, чтобы они максимально отличались друг от друга:

  1. «Фаза» имеет часто белый, черный или коричневый цвет.
  2. «Нуль» — синий и его оттенки.
  3. «Земля» — желто-зеленый.

Но не всегда нормативы подключения проводников соблюдаются. Потому ради безопасности лучше проверить напряжение в проводах независимо от их визуальной маркировки.

Стандарт маркировки проводов

С помощью контрольной лампы

Этот способ считается самым рискованным, но выручает в ситуации, когда привычных тестеров нет под рукой. Проверяющему нужна лампа, закрученная в патрон, из которого отходят 2 провода. Для безопасного использования такого «прибора» лучше к концам проводов прикрепить щупы, а саму лампу обернуть защитным кожухом.

Одним отводом лампы нужно прикоснуться к металлической трубе (или другому заземляющему элементу), а вторым проверять контакт. Если лампа загорится, то диагностируемый контакт — «фаза».

Определить проводники можно и путем исключения:

  1. Поочередно прикасаются отводами лампы к двум из трех контактов, которые нужно идентифицировать. Если лампа горит, значит, на этот момент задействована пара «фаза» — «нуль».
  2. Чтобы определить фазный и нулевой проводники, одним из отводов тестера дотрагиваются до следующего из проверяемой тройки контакта. Лампочка тухнет при отсоединении от «фазы». Но случится это, только если в сети установлен защитный автомат. При его отсутствии индикатор горит даже в положении «земля» — «нуль».
  3. Для идентификации «земли», если не установлен защитный автомат, следует убрать заземление с кабеля и повторить тест. Теперь на этом проводнике лампа гореть не будет.

Собрать контрольную лампочку в домашних условиях несложно. Для этого понадобятся 2 проводника, соединенные с патроном, и сама лампочка, вкрученная в него.

В целях безопасности лампу лучше использовать неоновую, а на провода электрики рекомендуют закрепить щупы — это обезопасит и облегчит эксплуатацию «контрольки».

Поскольку метод с лампочкой является небезопасным, лучше его избегать.

Контрольная картофелина

Для самого необычного способа определения фазы потребуются 2 провода и картофель. В разрезанный пополам клубень вставляют 2 проводника на максимальном друг от друга расстоянии. Один накидывают на что-то заземленное (трубу отопительной системы), другой — на проверяемый контакт. Спустя 5-10 минут осматривают срез картофелины. Если на нем появилось пятно, то проверяемый проводник — «фаза». Если пятно отсутствует — «нуль».

Полезные советы и общие рекомендации

Работа с электропроводкой требует внимательности и осторожности.

Электрики советуют:

  1. Не полагаться полностью на цветовую дифференциацию проводов или их маркировку, проверять контакты тестерами еще раз. Случаи нарушения норм электромонтажа нередки.
  2. По возможности избегать определения напряжение в проводниках с помощью «контрольки» или картофелины. Такие способы считаются экстремальными, и без опыта работы ими лучше не злоупотреблять.
  3. При эксплуатации мультиметра подробно изучить инструкцию перед применением. Обратить внимание на настройку прибора.

Монтаж проводки по стандартам облегчит дальнейшее подключение приемников и продлит срок службы всей электросети. Кроме того, выполнение необходимых норм по установке сделает потребление электроэнергии комфортным и безопасным.

Как легко и быстро определить фазу и ноль мультиметром, если нет индикаторной отвертки или она сломалась | Мастерская Самоделок

Часто при ремонте проводки возникает необходимость найти фазу и ноль в розетке. Сделать это достаточно просто при помощи индикаторной отвертки, но бывают такие случаи, когда ее просто нет или же сломалась, а определить где фаза, а где ноль нужно прямо сейчас. Не все знают, что сделать это можно и без индикаторной отвертки.

Надо определить, где фаза, а где ноль.

Надо определить, где фаза, а где ноль.

В данной статье я расскажу, как легко и быстро определить фазу и ноль мультиметром. Модель мультиметра здесь роли не играет, подойдет любой, у которого есть функция измерения напряжения.

Будем определять фазу и ноль мультиметром.

Будем определять фазу и ноль мультиметром.

Первым делом необходимо переключить мультиметр в режим измерения переменного напряжения и выставить предел до 600 вольт. На моем мультиметре пределы выставляются автоматически, поэтому я просто выбираю режим измерения переменного напряжения.

Выставляю режим измерения переменного напряжения.

Выставляю режим измерения переменного напряжения.

Важно не перепутать режим измерения напряжения V с режимом измерения тока A, поэтому внимательно смотрим на выбранную надпись сверху.

Далее минусовым щупом мультиметра касаемся пальца руки.

Держим палец на минусовом щупе.

Держим палец на минусовом щупе.

В таком положении, держа минусовой щуп на пальце, вставляем плюсовой щуп в один из полюсов розетки.

Напряжение на приборе почти 5 вольт.

Напряжение на приборе почти 5 вольт.

Если значение напряжения на мультиметре колеблется в районе 5-6 вольт, это значит, что щуп находится в нулевом полюсе розетки, простыми словами, на нуле.

Затем вставляем щуп в другой полюс и смотрим на показания мультиметра.

Напряжение на приборе 100 вольт.

Напряжение на приборе 100 вольт.

Если напряжение на мультиметре от 50 и вплоть до 200 вольт, это значит, что щуп находится в фазном полюсе розетки, то есть в фазе.

Вот так легко и быстро можно найти фазу и ноль при помощи мультиметра, если вдруг сломалась индикаторная отвертка или ее просто нет. Также не стоит бояться, что при поиске фазы таким способом минусовой щуп ударит током, этого не произойдет из-за слишком высокого сопротивления самого прибора.

Кому понравилась статья, ставьте лайки, пишите комментарии и подписывайтесь на канал.

Как мультиметром найти фазу без ошибок

Ремонт и монтаж бытовой проводки своими руками требуют умения грамотно определять потенциалы напряжения, отличать фазу ноль и землю внутри домашней электрической схемы.

За многолетнюю практику электрика встретил много ошибок, которые допускают новички. Написал эту статью, чтобы вы их не повторяли. Делюсь опытом, как мультиметром найти фазу безопасно и быстро.

Информацию разбил на несколько частей, сосредоточив первоначальное внимание на особенностях и устройстве измерительного прибора. Бывалым электрикам можно сразу перейти к третьему разделу.

Содержание статьи

Что такое фаза, ноль и земля: краткое объяснение простыми словами

Прежде чем начать разбираться с проводами в квартире следует хорошо представлять, откуда и какими способами появляются в ней потенциалы напряжения, чем отличаются способы заземления.

Современные промышленные генераторы вырабатывают трехфазную систему токов.

Напряжение по проводам или кабелям поступает к потребителю от трансформаторных подстанций.

При этом в квартиру многоэтажного дома обычно заводится 220 вольт, определяемые между потенциалами одной из фаз и общего нуля. На ввод частного дома может поступать и полноценное трехфазное питание.

Более подробно об этом можно прочитать в статье про электрическое напряжение.

Во времена СССР внутри жилых помещений для экономии материалов использовалась двухпроводная схема питания, когда на электрическую розетку квартиры подавалось два потенциала:

  1. одной из трех фаз;
  2. общего нуля, который является заземлением одного вывода обмотки трансформаторной подстанции и обозначается латинскими буквами PEN.

Эта самая простая система заземлений больше не имеет никаких дополнительных контуров.

Современная схема подключения жилых помещений более сложная. В ней отдельно смонтированы потенциалы заземления выходной обмотки трансформаторной подстанции двумя магистралями, разделяющими PEN:

  1. рабочего ноля N, который используется только для протекания токов, обеспечивающих полезную работу бытовых механизмов;
  2. защитного проводника PE, предназначенного для отвода опасных токов утечек при аварийных ситуациях на электрическом оборудовании.

Разновидностями современной системы заземлений, обладающих дополнительным защитным контуром, являются ее модификации: TN-C-S, TT.

Сейчас у жителей частных домов есть возможность сделать защитное заземление своими руками и спастись от случайных аварийных ситуаций.

Тем же людям, кто проживает в старых многоквартирных домах, приходится ждать очереди, когда государство переведет их на более безопасную систему. А новые здания строятся с учетом существующих нормативов ПУЭ.

Таким образом, в современной квартире можно встретить две системы подключения бытовых приборов, выполненных по двухпроводной или трехпроводной схеме.

Для них выпускаются свои два вида электрических розеток, к которым монтируются 2 либо 3 провода.

Для их подключения разработаны определенные правила монтажа.

Таким образом: потенциалы рабочего ноля N и земли РЕ объединены на заземленной части выходной обмотки трансформаторной подстанции. В старой схеме они подводятся одним проводником PEN, а в новой — двумя раздельными.

Требования ПУЭ к монтажу РЕ проводника очень жесткие, в нем должно обеспечиваться минимально допустимое сопротивление протеканию аварийного тока. Он монтируется без использования коммутационных аппаратов на проводах повышенной надежности.

В рабочий ноль могут включаться контакты автоматических и дифференциальных выключателей, УЗО, коммутационных аппаратов, а рабочие провода подбираются для передачи только обычных нагрузок.

За счет этих двух требований и благодаря удалению бытовой проводки от трансформаторной подстанции на стороне потребителя между РЕ и N создается небольшая разность потенциалов, которую можно замерить обыкновенным вольтметром.

Почему мультиметр необходимо переводить в режим вольтметра при проверке фазы

До массового появления в продаже цифровых приборов нам в электролабораторию друзья и знакомые частенько приносили для ремонта сгоревшие аналоговые тестеры.

Причина их повреждения практически всегда была одна: неправильный выбор режима измерения при подключении прибора к цепям напряжения.

При этом в лучшем случае выгорали цепочки подключения резисторов с кнопками и переключателями, а в худшем — высочувствительная измерительная головка с токопроводящими пружинками. Последние неисправности чаще всего ремонту не поддавались.

Люди просто не понимали, что тестер, как и цифровой мультиметр, производит измерения на основе закона Ома.

Разница только в том, что тестер работает с аналоговыми величинами, а мультиметр — оцифрованными. Но принципы подключения обоих типов приборов одинаковы, сводятся к двум простым правилам:

  1. при измерении напряжения переключатели ставят в то положение, которое вводит калиброванное сопротивление, ограничивающее ток через токоизмерительную головку или датчик;
  2. замер неизвестной величины напряжения всегда необходимо выполнять на режиме максимального значения шкалы прибора.

Неправильное положение переключателей, переводящих прибор в режим омметра или амперметра, чаще всего встречается у новичков по невнимательности и из-за низких навыков.

На моей памяти есть случай, когда два опытных электрика, понадеявшись в спешке друг на друга, спалили дорогой образцовый вольтметр — эталон класса точности 0,2.

Прибором пришлось срочно воспользоваться для выставления уставок зарядного устройства аккумуляторной батареи оперативного тока 220 вольт на подстанции 330 кВ.

Один работник держал прибор в руках горизонтально и подал концы с щупами второму для выполнения замера. Никто из них не обратил внимания, что переключатель стоял на низшем пределе измерения. В результате протекания повышенного тока измерительная головка выгорела полностью.

Этот случай не типичный, но наглядно показывает, что электричество никому и никаких ошибок не прощает. Ток течет туда, где ему оказывается меньшее сопротивление.

Неправильное подключение мультиметра или тестера к цепям напряжения кроме повреждения самого измерительного прибора создает режим короткого замыкания, вредного для бытовых потребителей и проводки.

Поэтому перед установкой измерительных щупов на цепи напряжения необходимо проверять исходное положение переключателей прибора в режим вольтметра.

Вообще-то стоит заметить, что элитные цифровые мультиметры оборудованы встроенной электронной схемой, защищающей прибор от неправильного подключения к цепям напряжения, а у бюджетных моделей она отсутствует.

Ее в народе часто называют «защитой от дурака». Во многих случаях она может спасти прибор и бытовую сеть, но постоянно использовать эти ее возможности все же я не рекомендую: подключайте вольтметр правильно всегда.

Технические приемы в картинках: как мультиметром искать потенциалы напряжения в электропроводке

Сейчас производители выпускают очень большой ассортимент цифровых измерительных приборов. Они имеют различные органы управления, внешний вид, конфигурацию. Поэтому точно показать положение кнопок и переключателей для всех моделей невозможно.

Однако при их выпуске соблюдается определенные стандарты маркировки переключающих устройств и органов индикации. По этому вопросу у меня на сайте есть статья, объясняющая, как пользоваться любым мультиметром новичку.

В ней я нарисовал и показываю обобщенную модель с максимальным расположением кнопок управления и переключателей, где подробно в табличной форме объясняю положение каждого органа. Читайте и пользуйтесь.

Для постоянного использования себе выбрал бюджетный карманный мультиметр Mestek MT102 с большим количеством функций и сделал подробный обзор его возможностей отдельной статьей.

Это прибор буду использовать при демонстрации приемов работы по определению разности потенциалов между проводами и контактами.

Вначале показываю, как им пользоваться для измерения напряжения в розетке. На этом примере мы сразу решаем две задачи:

  1. Определяем техническую исправность самого мультиметра и его концов для подключения.
  2. Контролируем наличие питания 220 вольт в квартире.

Концы для мультиметра — специальные провода с наконечниками для соединения прибора с измеряемой схемой выполнены красным и черным цветом.

По этой расцветке они всегда должны вставляться в соответствующие гнезда нижнего блока. Причем красный конец обычно подключается справа.

Если на приборе есть дополнительные красные гнезда, то они используются только для измерения больших токов или на пределе милли-, микроампер.

Центральным переключателем я свой Mestek MT102 перевел в режим измерения вольтметра, выбрав положение «V», а кнопкой «SEL» указав режим измерения параметров переменного тока «АС».

Только после этого подключенные к прибору концы установил в розетку для измерения напряжения.

На дисплее появилось значение 242,8 вольта, что укладывается в норму.

После этого можно сделать вывод, что в розетке имеется напряжение, а Mestek MT102 и его концы исправны и им можно пользоваться дальше. Подготовительные процедуры закончены, но дальнейшую работу начинающему электрику может облегчить знание расцветки жил кабелей.

Правила цветовой маркировки проводов: как их следует учитывать

Расцветка жил значительно упрощает монтаж электрической проводки и поиск в ней неисправностей. Поэтому производители ее наносят на изоляцию, а профессиональные электрики стараются придерживаться правил монтажа.

Правила цветовой маркировки предполагают обозначение:

  • защитного РЕ проводника желто-зеленым цветом;
  • рабочего ноля синим или голубым;
  • фазы — остальными: белым, оранжевым, коричневым, черным, серым, красным, фиолетовым.

Обратите внимание, что не всегда кабель и провод имеет подобное разнообразие расцветок. Изоляция жил часто может иметь какой-то один оттенок. Да и не все монтажники, а особенно домашние мастера придерживаются этого правила.

Цветовая маркировка призвана облегчить поиск неисправностей и монтажные работы, она является дополнительным способом определения фазы и рабочего ноля. Но полностью полагаться на этот метод нельзя.

Кстати, во время работы не раз приходилось наблюдать, как в спешке устранения неисправностей даже на ответственных вторичных цепях оборудования 330 кВ на подстанции опытным электрикам приходилось заменять и прокладывать провода из тех, какие есть под рукой, не обращая внимание на их расцветку.

Какие безобразия творятся в бытовой домашней сети, допускаемые необученным персоналом, можете представить сами.

Последовательность поиска фазы вольтметром: пошаговая инструкция из 3 типовых случаев

Работа состоит из подготовительной и основной части.

На первоначальном этапе проверяем исправность измерительного прибора и его концов, как я показал выше. Во многих случаях эта короткая процедура экономит дальнейшее рабочее время. Делайте ее привычкой, ибо плохой контакт в гнезде, оборванная жила, севшие батарейки питания, любые другие дефекты доставят много неприятностей.

Вариант №1. Трехпроводная бытовая схема питания

Определение наличия фазного потенциала на проводе буду показывать на примере проводки с жилами однотонной изоляции. На них предполагаем наличие фазы, земли и ноля. Будем их определять.

Далее все делаем за 2 шага.

Шаг №1. Попарный замер напряжения между проводами

Произвольно помечаем все три провода. Например, присваиваем им номера, буквы или располагаем сверху вниз либо слева направо.

При этом помним, что они находятся под напряжением и прикасаться к ним можно только с соблюдением правил безопасности, не создавая контакт тела с токоведущими жилами.

Для наглядности я расположил их вертикально и присвоил номера №1÷3. Затем щупами вольтметра последовательно замеряем разность потенциалов между токоведущими жилами.

Допустим, мы увидели 220 вольт между проводами 1 и 2, а также 2 и 3.

А между жилами №1 и 3 вольтметр показывает доли вольта, близкие к нулю.

Шаг №2. Анализ результатов измерения

На основе этих замеров можно сделать вывод, что общий провод №2 для двух случаев измерения 220 вольт является фазным.

Вариант №2. Двухпроводная бытовая сеть

Имеем два провода с фазой и нулем, но не знаем где находится какой потенциал.

Шаг №1. Замер напряжения между проводами

Вначале проверяем разность потенциалов между токоведущими жилами. При исправной цепи мы должны увидеть 220 вольт, как я показал на фотографии розетки выше при проверке исправности прибора.

Шаг №2. Замер напряжения между каждым проводом и контуром земли

Один конец от вольтметра крокодилом подключаем на водопроводный кран, батарею отопления или любую другую заземленную металлическую конструкцию. Вторым щупом поочередно касаемся токоведущих жил.

В одном положении вольтметр покажет что-то близкое к нолю, а в другом — 220 вольт. На этом проводе и будет присутствовать потенциал фазы.

Оба случая проверки напряжения для двух- и трехпроводной схемы хорошо подходят для оценки наличия фазы в соответствующих типах розеток.

Вариант №3. Принцип определения фазы на емкостном токе

Здесь используется та же технология, что и при проверке напряжения обычной индикаторной-отверткой.

Внутри индикатора стоит высокоомный резистор, ограничивающий ток через тело оператора на землю до безопасной величины: нескольких милли- или микроампер, достаточных для свечения неоновой либо светодиодной лампочки.

Когда человек касается пальцами контакта на торце отвертки, то, если имеется потенциал фазы на противоположном конце лезвия, создается емкостной ток и лампочка горит. В противном случае ее свечения не будет.

Схема протекания емкостного тока выглядит следующим образом.

Заменив индикатор мультиметром в этом методе вполне можно найти фазу, что я и показываю на очередной фотографии.

Один щуп вольтметра установлен в гнездо розетки, а второго касаюсь пальцами. На табло вы видите показание 73 вольта. При этом я сижу в кресле, находящемся на сухом деревянном полу.

За счет хорошей изоляции тела от контура земли мой Mestek MT102 сильно занижает величину фазного потенциала. Поэтому я делаю второй эксперимент.

Снял с ноги носок и притронулся голой стопой к окрашенному радиатору батареи отопления. Вот что получилось.

Mestek MT102 показал уже 175 вольт, что ближе к истине.

Этим методом пользоваться можно, но цифрам дисплея верить нельзя: они приблизительные и зависят от качества заземления тела.

На другом контакте розетки вы вольты таким способом замера не увидите.

Как отличить провод нуля от земли в трехпроводной схеме

Когда мы нашли фазу, то на двух оставшихся исправных проводах будут потенциалы рабочего нуля и РЕ проводника. Их нам необходимо различить.

Для этого первоначально используем цветовую маркировку, если она применена правильно. Но обязательно рекомендую выполнить для достоверности электрические замеры.

Надо просто еще раз внимательно измерить величину разности потенциалов между фазой и этими двумя проводами. Землей будет тот провод, где показание мультиметра чуть больше. На нем меньшие потери напряжения из-за высоких требований к монтажу и отсутствию коммутационных аппаратов внутри цепи.

Третий оставшийся провод — рабочий ноль. Для практики можно измерить разность потенциалов между землей и нулем, сравнить ее с отличием замеров между этими проводами с фазой.

Небольшие отклонения будут вызваны:

  • классом точности прибора;
  • качеством подключения концов;
  • отличием арифметических действий от методов векторной алгебры.

3 заключительных совета из личного опыта

Здесь я поделюсь тремя случаями, которые должны помочь вам облегчить жизнь при общении с электричеством, исключить типичные ошибки.

Удлинитель для мультиметра

Работая тестером на различных объектах мне пришлось изготовить простой удлинитель его концов.

На самодельное пластиковое мотовильце намотал длинный гибкий провод и припаял к нему два штеккера. На фото показаны крокодил и самодельный щуп из спицы велосипеда, закрытый корпусом шариковой ручки. Они легко надеваются и снимаются в зависимости от необходимых задач.

Этот удлинитель занимает мало места, не путается, очень выручает меня при прозвонке удаленных объектов. Он же будет полезен при проверке фазы методом емкостного тока.

«Неисправный телевизор»

Этот случай произошел, когда у нас еще работали черно-белые кинескопные телевизоры.

Соседка с пятого этажа пришла с просьбой: “Помоги, у меня телевизор перестал включаться”. Пришлось брать тестер и инструменты. Первым делом измерил напряжение в розетке: 220 вольт, норма.

Дальше вскрыл заднюю крышку и стал проверять цепи питания подачи напряжения на трансформатор. Все вызвонил, а неисправности не нашел, предохранители и провода целые, кнопки рабочие.

Еще раз проверил розетку: опять 220. Пришлось сильно задуматься. В итоге взял удлинитель, подключил его в другой комнате и запитал телевизор. Он заработал.

Стал разбирать розетку. Алюминиевая лапша 2,5 квадрата. Оба конца исправны, тестер показывает напряжение 220. Включил настольную лампа, а она не горит. Опять возвращаюсь к вольтметру и вижу всего 40 вольт.

Делаю вывод: под нагрузкой где-то пропадает контакт. Лезу в распределительную коробку, осматриваю соединения. Прощупываю провода и замечаю внутри изоляции обломанную жилу: концы подвижны, но соприкасаются.

Когда через них проходит маленький ток от тестера, то контакт надежный, а при увеличении нагрузки от настенной лампы или телевизора он ухудшается и цепь не работает.

Раньше такие неисправности хорошо выявлялись контрольной лампой. Сейчас она запрещена правилами по ряду причин. Однако проверять наличие фазы на проводе под нагрузкой более правильно, чем без нее.

«Электрик по совместительству»

Десяток лет назад встал вопрос о ремонте ванной и туалета. Жене порекомендовали хорошего плиточника по имени Сергей. Он профессионально занимается отделочными работами, имеет опыт, показывает фотографий в своем портфолио.

Цена устроила, договорились. Сергей приступил к работе. По ходу дела он взял на себя весь ремонт, как сейчас говорят, «помещения под ключ», включая сантехнику, электрику, замену дверей.

Во время не удачного демонтажа старой дверной рамы рухнула небольшая часть стены с замурованной проводкой. Одни провода оборвались, а на других повис кусок бетона. (В этом месте был установлен трёхклавишный выключатель и розеточный блок.)

Сергей попытался разобрать образовавшийся клубок и получил сильный удар током. Автоматы отключили короткое замыкание, а неудачный электрик впал в шоковое состояние.

К его счастью в этот момент я пришел с работы и увидел всю эту картину. Сергей сразу заявил, что дальше он с этой неисправностью сам не справится, а от электричества теперь будет держаться подальше.

Пришлось мне браться за прозвонку и монтаж всей проводки. Вам же хочу напомнить, что работы под напряжением относятся к опасным. Их допускается выполнять только обученному персоналу, обладающему:

  1. специальными знаниями;
  2. практическими навыками;
  3. крепким физическим здоровьем.

Если хоть одно из этих требований отсутствует, то беда неминуема. Дабы ее не было — привлекайте профессиональных электриков. Вот и вся информация о том, как мультиметром найти фазу. Можете ее дополнить в комментариях или задать дополнительные вопросы. Я отвечу.

Как определить фазу и ноль без приборов как найти мультиметром

В состав любого кабеля в обязательном порядке входит одна нулевая жила и одна либо несколько фазных.

От правильного определения функционального назначения жил кабеля зависит простота монтажа и эксплуатации системы электроснабжения, а также безопасность лиц, обслуживающих ее и производящих какие-либо электромонтажные работы.

Основные понятия

Давайте сперва разберемся, что такое ноль и фаза в электричестве.

Итак, фаза в электричестве – это проводник, по которому электрический ток движется в направлении энергопринимающего устройства. Ноль, в свою очередь, является проводником, по которому электрический ток движется в обратном направлении.

Современные требования, предъявляемые к безопасности организации электрических сетей, предполагают также наличие еще одного проводника в составе токоведущего кабеля, который будет выполнять защитную функцию. Заземляющий проводник – это элемент, преднамеренно соединенный с заземляющим контуром и предназначенный для того, чтобы уберечь человека от поражения электрическим током.

Неправильное определение, а также соединение нулевых и фазных жил токоведущего кабеля может привести к непредвиденным ситуациям – короткому замыканию, выходу из строя дорогостоящего оборудования и поражению человека электрическим током. По этой причине чрезвычайно важно уметь отличать фазный и нулевой проводники.

Как отличить фазу от нуля

Существует целый ряд способов – как профессиональных, так и не очень – для определения функционального назначения проводников, входящих в состав кабеля.

С применением мультиметра

Как мультиметром определить фазу и ноль

Просто и надежно определить, где ноль, а где фаза в электропроводке, можно при помощи мультиметра (тестера). Прежде всего, необходимо включить мультиметр в режим измерения переменного напряжения и выбираем подходящий предел измерения (выше напряжения в электрической сети). Далее вы можете избрать один из описанных ниже способов идентификации фазного проводника.

  1. Один из щупов мультиметра зажимается пальцами, другим необходимо коснуться той или иной жилы токоведущего кабеля. В случае соприкосновения щупа с фазой на дисплее мультиметра отобразится показание, приближенное к 220 В.
  2. Если вы ни в коем случае не желаете прикасаться к щупам мультиметра руками, то один из них, как и в предыдущем случае, скоммутируйте с идентифицируемым контактом, а другим дотроньтесь до оштукатуренной стены либо заведомо заземленной металлической поверхности.
  3. Как упоминалось выше, в современных системах электроснабжения предусмотрен также заземляющий проводник. Чтобы разобраться в назначении жил трехжильного либо многожильного кабеля следует попеременно касаться пар проводов щупами мультиметра. На его дисплее при контакте с фазой и нулем, а также с фазой и заземлением будет отображаться значение напряжения, близкое к 220 В (при этом фаза и заземление дают меньшее значение, нежели фаза и ноль). При одновременном касании щупами нулевого и заземляющего проводов, как и при касании двух фаз, на дисплее мультиметра будет «0».

Важно! При идентификации проводников по первому из вышеописанных методов обязательно убедитесь в том, что мультиметр включен в режим измерения напряжения, до того, как будете касаться пальцами одного из его щупов.

Как определить ноль и фазу индикаторной отверткой или отверткой для прозвонки сети

Со специальной индикаторной отверткой работать еще проще. Этот инструмент внешне очень похож на отвертку обыкновенную, но имеет относительно непростую внутреннюю конструкцию. Такую отвертку в народе также называют «контролькой».

 

Индикаторные отвертки

Важно! Не следует применять индикаторную отвертку для осуществления манипуляций над винтовыми соединениями (откручивания винтов и их закручивания). Такие действия являются наиболее распространенной причиной выхода из строя описываемого устройства.

Для того, чтобы определить функциональное назначение кабельных жил с ее помощью, нужно просто поочередно коснуться каждой из них жалом данного инструмента, нажимая при этом специальную кнопку в торцевой его части. Если в процессе указанных манипуляций светодиодная лампочка на отвертке загорится, значит, вы касаетесь фазного проводника, в противном случае – нулевого.

Не стоит путать индикаторную отвертку с отверткой, предназначенной для прозвонки сети. Последней также можно определить функционал той или иной жилы, однако нажимать на металлическую пластину в ее верхней части не нужно – иначе отвертка будет светиться в любом случае. Отвертка для прозвонки сети предусматривает в своей конструкции наличие батареек.

Визуальное определения фазы и нуля

При отсутствии вышеупомянутого инструментария вы можете задаться вопросом, как определить фазу и ноль без приборов. Одним из таких способов является их визуальная идентификация. Дело в том, что в соответствии с требованиями к монтажу электропроводки изоляция каждой жилы кабеля должна быть окрашена в свой собственный цвет.

При этом если с заземлением и нулем все понятно – они должны иметь желто-зеленую (желтую, зеленую) и синюю (голубую) окраску соответственно, то изоляционный слой фазного провода может быть выполнен в одном из следующих цветов: коричневый, черный, серый, а также красный, фиолетовый, розовый, белый, оранжевый, бирюзовый, — в зависимости от действующих на момент прокладки кабельной трассы нормативов.

По цвету проводки

Помимо цветовой, имеет место и буквенно-цифровая маркировка кабельных жил. В соответствии с ней ноль, фаза и земля обозначаются соответственно буквами N (neutral), L (line), PE (protectearth).

Контрольная лампочка

Еще один способ решения вопроса, как найти фазу и ноль без приборов, это самостоятельная сборка так называемой контрольной лампочки. Для ее изготовления потребуется обыкновенная лампа накаливания, подходящий к ней патрон, а также два отрезка медного провода (примерно по 50 сантиметров длиной).

Лампочка вкручивается в патрон, а проводники подключаются к его контактам. Другой конец одного из проводников необходимо закрепить на зачищенном до металлического блеска радиаторе системы отопления (либо на иной заведомо заземленной поверхности), а другим концом второго следует попеременно касаться проводников неопределенного функционала. При этом во время контакта с фазным проводом лампочка должна начать светиться.

Важно! В случае планирования систематического использования контрольной лампочки целесообразно ее саму поместить в защитный кожух, а к концам подсоединенных к патрону проводников прикрепить щупы (как у мультиметра).

Контрольной лампочкой

Контрольная картофелина

Название данного подраздела звучит весьма абсурдно, но тем не менее можно определить функциональное назначение токоведущих жил электрического кабеля и при помощи обыкновенной картофелины. Как и в вышеописанном методе с использованием самодельной контрольной лампочки, нам понадобятся два пятидесятисантиметровыхпровода.

Картофель разрезается пополам и в срез овоща на довольно приличном друг от друга расстоянии вставляются подготовленные проводники. Далее конец одного размещается на отопительной батарее(либо на иной заведомо заземленной поверхности), а конец другого соединяется с идентифицируемой жилой кабеля. Чтобы получить результат, придется подождать пять-десять минут. Если по прошествии указанного времени на срезе картофелины образовалось темное пятно, значит вы проверяли фазный проводник. Если изменений не произошло – нулевой.

Важно! Последние два из вышеописанных методов идентификации функционала токоведущих проводников кабеля системы электроснабжения вы используете на свой страх и риск. При работе с такого рода конструкциями следует соблюдать предельную осторожность, чтобы не получить поражение электрическим током.

Разобравшись с тем, что такое фаза и ноль в электричестве, а также найдя для себя сразу несколько ответов на вопрос, как найти эти самые фазу и ноль в проводке, вы можете выбрать любой подходящий для вас способ. Тем не менее, для того, чтобы проверить фазу и ноль, рекомендуем вам такие методы, как проверка тестером либо специализированной отверткой.

Как проверить трехфазное напряжение

В жилых домах и на большинстве малых предприятий используется однофазный электрический ток, но это не та форма, которую принимает электричество, когда оно перемещается по электросети. Электроэнергетические предприятия вырабатывают трехфазный электрический ток высокого напряжения, который передается и преобразуется в двухфазный и однофазный ток через трансформаторные коробки. Трехфазный ток зарезервирован для использования на фабриках и аналогичных установках, где он питает большие двигатели, электрические печи и другую тяжелую технику.Проверить трехфазное напряжение можно, осмотрев трехфазный трансформатор.

TL; DR (слишком длинный; не читал)

Чтобы проверить трехфазное напряжение, с помощью электрического мультиметра проверьте все шесть проводов в коробке трансформатора, начиная с проводов с маркировкой линии и заканчивая проводами с маркировкой нагрузка.

Перед тестированием

Перед тестированием трехфазного напряжения крайне важно проявить осторожность и принять соответствующие меры безопасности. Рекомендуется надевать заземляющий браслет.Когда все будет готово, переведите выключатель двигателя высоковольтного трансформатора в положение «выключено». Выкрутите винты, удерживающие крышку на выключателе, и снимите крышку. Настройте мультиметр на определение напряжения переменного или постоянного тока в зависимости от того, что указано на коробке, подключите выводы щупа к «общему» и «вольтному» разъему и выберите диапазон напряжения несколько выше, чем напряжение, которое вы собираетесь проверить.

Испытательные линии

Установив и откалиброванный мультиметр, проверьте внутреннюю часть трансформатора.В высоковольтных передачах чаще всего используются три провода: всего вы должны увидеть шесть проводов, по три с каждой стороны коробки. Клеммы, к которым прикреплены эти провода, должны быть помечены L1, L2 и L3 с одной стороны и T1, T2 и T3 с другой — провода L являются входящими или линейными проводами, каждый из которых несет одну фазу трехфазного тока. . Чтобы проверить входящее напряжение, поместите один из щупов мультиметра на L1, а другой — на L2. Подождите, пока мультиметр покажет напряжение, а затем повторите тесты, проверяя L1 и L3, затем L2 и L3.Если трансформатор работает нормально, показания напряжения должны быть одинаковыми после каждого теста.

Тестовые нагрузки

После проверки входящего напряжения необходимо проверить выходное напряжение. Не снимая коробку, проверьте мультиметром выводы T1 и T2, как вы это делали с линейными проводами. Проверьте T2 и T3, затем T1 и T3. Показание напряжения для каждого теста должно быть нулевым вольт. Когда вы будете готовы, осторожно включите коробку и повторите этот тест проводов нагрузки, чтобы определить исходящее трехфазное напряжение.Между тестами должно быть небольшое изменение напряжения.

Как проверить чередование фаз с помощью мультиметра

К сожалению, проверить чередование фаз стандартным мультиметром невозможно. Чередование фаз необходимо проверять с помощью специального тестера, такого как fluke 9040 или Amprobe PRM-6. Эти тестеры позволяют техническим специалистам гарантировать, что такое оборудование, как насосы и компрессоры, не будет повреждено из-за неправильного вращения. Если у вас нет доступа к тестеру чередования фаз, вместо этого можно выполнить ударное испытание двигателя.

Как использовать тестер вращения двигателя

Тестер вращения может быть подключен к трехфазному двигателю и проводам питания, чтобы определить, как двигатель будет вращаться после подачи питания.

  1. Отключите питание двигателя и заблокируйте / заблокируйте, если необходимо.
  2. Вставьте три измерительных провода в тестер вращения.
  3. Прикрепите зажимы типа «крокодил» к соответствующим проводам двигателя. Например, подключите зажим «крокодил» L1 к проводу T1.
  4. Проверните вал двигателя по часовой стрелке. Тестер покажет вращение по часовой стрелке или против часовой стрелки.
  5. Если тестер показывает вращение против часовой стрелки при повороте вала по часовой стрелке, поменяйте местами два провода и повторяйте тест, пока тестер не покажет правильное направление вращения.
  6. Обозначьте провода двигателя A, B, C.

Теперь вам нужно проверить направление напряжения питания.

  1. Отключить питание двигателя и заблокировать / пометить при необходимости.
  2. Подсоедините зажимы типа «крокодил» к трехфазному источнику питания.
  3. Подайте питание на цепь и посмотрите, в каком направлении показывает тестер вращения. Если указанное вращение отличается от желаемого вращения, снова заблокируйте его и поменяйте местами любые два провода, затем повторите тест.
  4. Обозначьте провода как A, B, C.
  5. Снова заблокируйте и подсоедините соответствующие питающие провода к выводам двигателя с такой же этикеткой.

При правильном выполнении этот тест гарантирует, что желаемое направление вращения будет достигнуто с первого раза.Использование этого метода может занять немного больше времени, но если неправильное вращение может повредить оборудование, нет лучшего способа, чем использовать тестер чередования фаз.

Как загнать мотор

Ударное испытание двигателя — отличный способ проверить вращение, если подключенное оборудование, двигающееся назад, не вызовет повреждений. Если возможно, двигатель может также подвергаться ударам без нагрузки на выходной вал.

В зависимости от способа подключения двигателя замена проводов может занять много времени, если вращение неправильное.Если соединения выполняются с помощью разъемных болтов и резиновой ленты для сращивания, рекомендуется приобрести несколько резиновых сапог, которые могут временно закрыть разъемные болты, пока выполняется ударное испытание.

Всегда проверяйте безопасность проводки и отсутствие короткого замыкания при выполнении ударного испытания.

Некоторые рабочие закрывают пускатели двигателей изолированной отверткой, чтобы выполнить ударное испытание. Это небезопасная практика, и ее не следует выполнять. Поскольку может возникнуть дуговая вспышка, безопаснее использовать альтернативные средства для ударных испытаний двигателя, например:

  • Толчок с клавиатуры, если двигатель управляется плавным пуском или ЧРП
  • Использование кнопок толчкового режима / тестирования
  • Активация органов управления на консоли оператора
  • Внесение изменений в логику ПЛК для проведения функционального теста

Когда Вы готовы к функциональному испытанию, попросите кого-нибудь наблюдать за двигателем, чтобы проверить направление вращения.Быстро толкните двигатель и проверьте направление вращения. Если вращение неправильное, заблокируйте и поменяйте местами любые два провода.

Зачем нужна проверка вращения?

Разве не достаточно просто поменять местами Т-отведения утром, если вращение неправильное?

Меня научили проверять все, что я делаю. Я искренне верю, что проверка вашей работы выделит вас среди других торговцев. Меньше всего я хочу, чтобы оператор запускал машину утром, а цепь двигалась в обратном направлении, создавая для них беспорядок и заставляя меня плохо выглядеть!

И хотя вращение нельзя проверить с помощью мультиметра, нам доступны несколько других вариантов.

Как измерить напряжение переменного тока

Шаги для измерения напряжения переменного тока цифровым мультиметром

  1. Поверните шкалу на ṽ. Некоторые цифровые мультиметры (DMM) также включают m ṽ. Если напряжение в цепи неизвестно, установите диапазон на максимальное значение напряжения и установите диск на ṽ.
    Примечание: Большинство мультиметров включаются в режиме автоматического выбора диапазона. При этом автоматически выбирается диапазон измерения в зависимости от имеющегося напряжения.
  2. Сначала вставьте черный провод в разъем COM.
  3. Затем вставьте красный провод в гнездо VΩ. Когда закончите, снимите провода в обратном порядке: сначала красные, затем черные.
  4. Подключите щупы к цепи: сначала черный, затем красный.
    Примечание: напряжение переменного тока не имеет полярности.
    Осторожно: Не позволяйте пальцам касаться кончиков проводов. Не позволяйте наконечникам касаться друг друга.
  5. Считайте результат измерения на дисплее. Когда закончите, сначала удалите красный провод, затем черный.

Другие полезные функции при измерении переменного напряжения

  1. Нажмите кнопку RANGE, чтобы выбрать конкретный фиксированный диапазон измерения.
  2. Нажмите кнопку HOLD, чтобы зафиксировать стабильное измерение. Его можно просмотреть после завершения измерения.
  3. Нажмите кнопку MIN / MAX, чтобы зафиксировать минимальное и максимальное значение. Цифровой мультиметр подает звуковой сигнал каждый раз, когда записывается новое показание.
  4. Нажмите относительную кнопку (REL), чтобы установить мультиметр на определенное эталонное значение. Отображаются измерения выше и ниже эталонного значения.
    Примечание: Избегайте этой распространенной и серьезной ошибки: вставлять измерительные провода в неправильные входные гнезда.Это может привести к опасной вспышке дуги. При измерении переменного напряжения обязательно вставьте красный провод во входное гнездо, обозначенное V, а не A. На дисплее должен отображаться символ ṽ. Подключение измерительных проводов к входам A или MA и последующее измерение напряжения вызовет короткое замыкание в измерительной цепи.

Анализ измерений напряжения переменного тока

  • В общем, все источники переменного напряжения отличаются от колебаний переменного напряжения по системам распределения электроэнергии.
  • Напряжение, которое отличается от ожидаемого, с большей вероятностью будет ниже нормального.
  • Как правило, напряжение, измеренное в системах переменного тока, должно находиться в пределах от -10% до + 5%.
  • Измерения напряжения в различных точках системы различаются. См. Таблицу ниже.
Диапазоны напряжения системы *
Питание Диапазон обслуживания Диапазон точки использования
Удовлетворительно Приемлемо
Приемлемо 126 110-127 110-126 106-128
120/240, 1Φ 114/228 — 126/252 110/220 — 127/254 110/220 — 126 / 252 106/212 — 127/254
120/208, 3Φ 114/197 — 126/ 110/191 — 127/220 110/191 — 126/218 106 / 184 — 127/220
120/240, 3Φ 114/228 — 126/252 110/220 — 127/254 110/220 — 126/252 106/212 — 127/254
277/480, 3Φ 263/456 — 291/504 254/440 — 293/508 25 4/440 — 291/504 264/424 — 293/508

* в вольтах

Ссылка: Принципы цифрового мультиметра, автор Glen A.Мазур, американское техническое издательство.

Связанные ресурсы

Мультиметр Портативный научный трехфазный цифровой фазовый вольт-амперный клещи для измерения переменного напряжения и переменного тока ETCR4700: Automotive

Питание

Щелочные батареи постоянного тока 9 В (1,5 В LR6 × 6)

Потребление

Максимум около 80 мА с включенной подсветкой, батарея работает непрерывно около 10 часов

Около 5 мА с отключенной подсветкой, батарея работает непрерывно около 16 часов

Режим отображения

ЖК-дисплей, 240 точек × 160 точек

Размер измерителя

Длина, ширина, высота : 196 мм × 92 мм × 54 мм

Размер зажима

Токоизмерительные клещи круглые: 35 мм × 40 мм

Диапазон измерения

(автоматический сдвиг)

Напряжение переменного тока : 0.00 В ~ 600 В (автоматическое переключение)

Переменный ток : 0 мА ~ 400 А (автоматическое переключение)

Фаза : 0 ~ 360 °

Частота : 45,00 Гц ~ 65,00 Гц

Активная мощность : 0 Вт ~ 240 кВт

Реактивная мощность : 0 Вт ~ 240 кВАр

Полная мощность : 0 Вт ~ 240 кВА

Коэффициент мощности : -1 ~ + 1

Сумма векторов тока : 0A ~ 1200A

Разрешение

Напряжение 0,01 В переменного тока

Ток :0002 мА переменного тока

9 0,1 °

Частота 0,01 Гц

Активная мощность : 0,1 Вт

Реактивная мощность : 0.1VAR

Полная мощность : 0,1 ВА

Коэффициент мощности : 0,001

Сумма векторов тока 0,1 A

Последовательность фаз

Положительная последовательность фаз : U1 、 U2 、 U3 или I1 、 I2 、 I3 курсоры мигают слева направо справа

Отрицательная последовательность фаз : U1 、 U2 、 U3 или I1 、 I2 、 Курсоры I3 мигают в порядке справа налево

SampleRate

Примерно 2 раза в секунду

Удержание данных

Нажмите кнопку HOLD, чтобы сохранить данные, » Появляется символ DH «

Хранение данных

500 наборов

Интерфейс RS232

Интерфейс USB-RS232, загрузка данных в компьютер для анализа и управления

Автоматическое выключение

Автоматическое выключение через 15 минут после запуска для снижения расхода заряда батареи

Подсветка

Подходит для темного места и в ночное время

Обнаружение напряжения

Символ низкого заряда батареи «» появляется, чтобы напомнить о замене батареи, когда напряжение батареи упало ps ниже 7.2В.

Вес

Основной блок около 550 г акмин.

Объяснение основных измерений трехфазной мощности

Хотя однофазное электричество используется для питания обычных бытовых и офисных электроприборов, системы трехфазного переменного тока почти повсеместно используются для распределения электроэнергии и подачи электричества непосредственно на оборудование с более высокой мощностью.

В этой технической статье описываются основные принципы трехфазных систем и различие между различными возможными соединениями для измерения.

  • Трехфазные системы
  • Соединение звездой или звездой
  • Соединение треугольником
  • Сравнение звезды и дельты
  • Измерения мощности
  • Подключение однофазного ваттметра
  • Однофазное трехпроводное соединение
  • Трехфазное трехпроводное соединение (метод двух ваттметров)
  • Трехфазное трехпроводное соединение (метод трех ваттметров)
  • Теорема Блонделя: необходимое количество ваттметров
  • Трехфазное, четырехпроводное подключение
  • Настройка измерительного оборудования

Трехфазные системы

Трехфазное электричество состоит из трех напряжений переменного тока одинаковой частоты и одинаковой амплитуды.Каждая фаза переменного напряжения отделена от другой на 120 ° (Рисунок 1).

Рис. 1. Форма сигнала трехфазного напряжения

Эту систему можно схематически представить как осциллограммами, так и векторной диаграммой (рис. 2).

Рисунок 2. Векторы трехфазного напряжения

Зачем нужны трехфазные системы? По двум причинам:

  1. Три разнесенных вектора напряжения могут использоваться для создания вращающегося поля в двигателе. Таким образом, двигатели можно запускать без дополнительных обмоток.
  2. Трехфазная система может быть подключена к нагрузке таким образом, чтобы количество необходимых медных соединений (и, следовательно, потери при передаче) было вдвое меньше, чем они были бы в противном случае.

Рассмотрим три однофазные системы, каждая из которых выдает 100 Вт на нагрузку (рисунок 3). Общая нагрузка составляет 3 × 100 Вт = 300 Вт. Для подачи питания 1 ампер протекает через 6 проводов, и, таким образом, возникают 6 единиц потерь.

Рисунок 3. Три однофазных источника питания — шесть единиц потерь

В качестве альтернативы, три источника могут быть подключены к общей обратной линии, как показано на рисунке 4. Когда ток нагрузки в каждой фазе одинаков, нагрузка считается равной. сбалансированный. При сбалансированной нагрузке и трех токах, сдвинутых по фазе на 120 ° друг от друга, сумма тока в любой момент равна нулю, и ток в обратной линии отсутствует.

Рис. 4. Трехфазное питание, сбалансированная нагрузка — 3 единицы потерь

В трехфазной системе под углом 120 ° требуется только 3 провода для передачи энергии, для которой в противном случае потребовалось бы 6 проводов. Требуется половина меди, и потери при передаче по проводу уменьшатся вдвое.

Соединение звездой или звездой

Трехфазная система с общим подключением обычно изображается, как показано на Рисунке 5, и называется соединением «звезда» или «звезда».

Рисунок 5. Соединение звездой или звездой — три фазы, четыре провода

Общая точка называется нейтральной точкой.Эта точка часто заземляется на источнике питания из соображений безопасности. На практике нагрузки не сбалансированы идеально, и четвертый нейтральный провод используется для передачи результирующего тока.

Нейтральный проводник может быть значительно меньше трех основных проводов, если это разрешено местными правилами и стандартами.

Рисунок 6. Сумма мгновенных напряжений в любой момент времени равна нулю.

Соединение треугольником

Три однофазных источника питания, о которых говорилось ранее, также могут быть подключены последовательно.Сумма трех сдвинутых по фазе напряжений на 120 ° в любой момент равна нулю. Если сумма равна нулю, то обе конечные точки имеют одинаковый потенциал и могут быть соединены вместе.

Соединение обычно выполняется, как показано на Рисунке 7, и называется соединением «треугольник» по форме греческой буквы «дельта», Δ.

Рисунок 7. Соединение треугольником — трехфазное, трехпроводное

Сравнение звездой и треугольником

Конфигурация «звезда» используется для распределения питания между однофазными бытовыми приборами в доме и офисе.Однофазные нагрузки подключаются к одной ветви звезды между линией и нейтралью. Полная нагрузка на каждую фазу распределяется в максимально возможной степени, чтобы обеспечить сбалансированную нагрузку на первичное трехфазное питание.

Конфигурация «звезда» также может подавать одно- или трехфазное питание на более мощные нагрузки при более высоком напряжении. Однофазные напряжения — это напряжения между фазой и нейтралью. Также доступно более высокое межфазное напряжение, как показано черным вектором на Рисунке 8.

Рисунок 8. Напряжение (фаза-фаза)

Конфигурация «треугольник» чаще всего используется для питания трехфазных промышленных нагрузок большей мощности.Различные комбинации напряжений могут быть получены от одного трехфазного источника питания по схеме «треугольник», однако путем подключения или «ответвлений» вдоль обмоток питающих трансформаторов.

В США, например, дельта-система на 240 В может иметь обмотку с расщепленной фазой или обмотку с центральным отводом для обеспечения двух источников питания 120 В (рис. 9).

Рис. 9. Конфигурация треугольником с обмоткой «расщепленная фаза» или «отвод от средней точки»

Из соображений безопасности центральный отвод может быть заземлен на трансформаторе. 208 В также имеется между центральным ответвлением и третьей «верхней ветвью» соединения треугольником.

Измерения мощности

Мощность в системах переменного тока измеряется с помощью ваттметров. Современный цифровой ваттметр с выборкой, такой как любой из анализаторов мощности Tektronix, умножает мгновенные выборки напряжения и тока вместе для расчета мгновенных ватт, а затем берет среднее значение мгновенных ватт за один цикл для отображения истинной мощности.

Ваттметр обеспечивает точные измерения истинной мощности, полной мощности, реактивной мощности вольт-ампер, коэффициента мощности, гармоник и многих других параметров в широком диапазоне форм волн, частот и коэффициента мощности.

Чтобы анализатор мощности дал хорошие результаты, вы должны уметь правильно определять конфигурацию проводки и правильно подключать ваттметры анализатора.

Подключение однофазного ваттметра

Рисунок 10. Однофазные, двухпроводные измерения и измерения постоянного тока

Требуется только один ваттметр, как показано на рисунке 10. Системное подключение к клеммам напряжения и тока ваттметра несложно. Клеммы напряжения ваттметра подключены параллельно к нагрузке, и ток проходит через клеммы тока, которые включены последовательно с нагрузкой.

Однофазное трехпроводное соединение

В этой системе, показанной на рисунке 11, напряжения вырабатываются одной обмоткой трансформатора с центральным отводом, и все напряжения синфазны. Эта система широко распространена в жилых домах Северной Америки, где доступны один источник питания 240 В и два источника питания 120 В, которые могут иметь разную нагрузку на каждую ногу.

Для измерения общей мощности и других величин подключите два ваттметра, как показано на Рисунке 11 ниже.

Рисунок 11. Однофазный трехпроводной метод ваттметра

Трехфазное трехпроводное соединение (метод двух ваттметров)

При наличии трех проводов требуются два ваттметра для измерения общей мощности.Подключите ваттметры, как показано на рисунке 12. Клеммы напряжения ваттметров соединены фаза с фазой.

Рисунок 12. Трехфазное, трехпроводное, метод 2 ваттметра

Трехфазное трехпроводное соединение (метод трех ваттметров)

Хотя для измерения общей мощности в трехпроводной системе требуются только два ваттметра, как показано ранее, иногда удобно использовать три ваттметра. В соединении, показанном на Рисунке 13, ложная нейтраль была создана путем соединения клемм низкого напряжения всех трех ваттметров вместе.

Рисунок 13. Трехфазное, трехпроводное (метод трех ваттметров: установите анализатор в трехфазный, четырехпроводной режим).

Трехпроводное трехпроводное соединение имеет преимущества индикации мощности в каждой фазе (не возможно при подключении двух ваттметров) и фазных напряжений.

Теорема Блонделя: необходимое количество ваттметров

В однофазной системе всего два провода. Мощность измеряется одним ваттметром. В трехпроводной системе требуется два ваттметра, как показано на рисунке 14.

Рисунок 14. Доказательство для трехпроводной системы «звезда»

В общем, количество требуемых ваттметров равно количеству проводов минус один.

Проба для трехпроводной системы звездой

Мгновенная мощность, измеренная ваттметром, является произведением мгновенных значений напряжения и тока.

  • Ваттметр 1 показание = i1 (v1 — v3)
  • Показание ваттметра 2 = i2 (v2 — v3)
  • Сумма показаний W1 + W2 = i1v1 — i1v3 + i2v2 — i2v3 = i1v1 + i2v2 — (i1 + i2) v3
  • (Из закона Кирхгофа: i1 + i2 + i3 = 0, поэтому i1 + i2 = -i3)
  • 2 показания W1 + W2 = i1v1 + i2v2 + i3v3 = общая мгновенная мощность в ваттах.

Трехфазное, четырехпроводное соединение

Три ваттметра необходимы для измерения общей мощности в четырехпроводной системе. Измеренные напряжения представляют собой истинные напряжения между фазой и нейтралью. Междуфазные напряжения могут быть точно рассчитаны по амплитуде и фазе межфазных напряжений с использованием векторной математики.

Современный анализатор мощности также будет использовать закон Кирхгофа для расчета тока, протекающего в нейтральной линии.

Настройка измерительного оборудования

Для заданного количества проводов требуются N, N-1 ваттметров для измерения общих величин, таких как мощность.Вы должны убедиться, что у вас достаточно количества каналов (метод 3 ваттметра), и правильно их подключить.

Современные многоканальные анализаторы мощности вычисляют общие или суммарные величины, такие как ватты, вольты, амперы, вольт-амперы и коэффициент мощности, напрямую с использованием соответствующих встроенных формул. Формулы выбираются в зависимости от конфигурации проводки, поэтому настройка проводки имеет решающее значение для получения точных измерений общей мощности. Анализатор мощности с функцией векторной математики также преобразует величины между фазой и нейтралью (или звездой) в величины фаза-фаза (или дельта).

Коэффициент √3 может использоваться только для преобразования между системами или масштабирования измерений только одного ваттметра в сбалансированных линейных системах.

Понимание конфигурации проводки и выполнение правильных соединений имеет решающее значение для выполнения измерений мощности. Знакомство с обычными системами электропроводки и запоминание теоремы Блонделя поможет вам установить правильные соединения и получить результаты, на которые вы можете положиться.

Список литературы

Основы измерения трехфазной мощности — инструкция по применению от Tektronix

Ваттметр — это прибор для измерения электрической мощности (или скорости подачи электрической энергии) в ваттах любой данной цепи.Электромагнитные ваттметры используются для измерения полезной частоты и мощности звуковой частоты; другие типы требуются для радиочастотных измерений. Источник: Википедия

Источник: Портал электротехники

Методы испытаний трехфазных двигателей

Электродвигатели, как известно, сложно диагностировать. Когда двигатель не запускается, перегревается, постоянно отключается или издает шум, существует множество возможных причин. Некоторые компании могут решить проблему, просто заменив двигатель полностью.Однако это не рентабельное решение — большинство проблем с электродвигателями можно полностью устранить с помощью решений, которые стоят значительно дешевле, чем новый двигатель. Но как определить, как отремонтировать двигатель с минимальными затратами?

Хотя электродвигатели могут быть сложными, их не нужно диагностировать. Понимание основ электродвигателей может помочь вам понять, в чем может быть проблема, а надлежащие диагностические инструменты могут помочь вам выявить и прояснить проблему. В этой статье мы специально обсудим трехфазные системы и способы их диагностики при возникновении проблем.

Содержание

О трехфазных системах
Типы испытаний для трехфазных двигателей
Что делать дальше
Обратитесь в Global Electronic Services по ремонту для проверки трехфазных двигателей

Что такое трехфазные системы?

Фазные системы — это блоки питания переменного тока, которые определяются количеством фаз в блоке питания. Однофазное питание обеспечивает одну фазу на 120 вольт, а двухфазное или двухфазное питание состоит из двух переменных токов, подаваемых по двум проводам.Трехфазное питание — это тип силовой цепи, который характеризуется тремя источниками однофазного переменного тока. Система разделяет обратный путь, разделяя каждую фазу на 120 градусов, что приводит к постоянной мощности в течение каждого цикла и большей мощности в целом. По сравнению с однофазным питанием, трехфазные схемы питания обеспечивают в 1,732 раза больше мощности при том же токе, что приводит к более экономичной системе в целом.

Трехфазные системы разработаны по-разному, чтобы соответствовать различным потребностям. Например, звездообразная конфигурация может использоваться в случаях, когда источник питания должен питать как однофазные, так и трехфазные нагрузки, такие как лампы и нагреватели, соответственно.Количество мощности также может отличаться. В большинстве коммерческих зданий используются схемы 208 Y / 120 В для повышения гибкости питания как мощных, так и маломощных нагрузок, в то время как промышленные предприятия используют схему 480 Y / 277 В для максимального увеличения мощности, доступной для мощного оборудования.

Типы испытаний трехфазных двигателей

Если трехфазный двигатель обнаруживает проблемы, такие как сбой при запуске, перегрев или нестабильное питание, в вашем распоряжении есть несколько диагностических инструментов и методов.Эти инструменты и методы обсуждаются ниже. Однако перед тестированием обязательно примите соответствующие меры безопасности. К ним относятся:

  • Ношение защитного защитного снаряжения: Это защитное снаряжение может включать в себя заземляющие ремни, перчатки и любое другое подходящее защитное снаряжение для окружающей среды.
  • Наличие всех инструментов под рукой: Некоторые распространенные диагностические инструменты включают в себя универсальные мультиметры, клещи-клещи, датчики температуры и осциллографы. Эти инструменты помогут вам не оставлять двигатель без присмотра.
  • Отключение двигателя от питания: Когда вы будете готовы, переведите выключатель двигателя трансформатора, чтобы отключить его от питания. Будьте осторожны, чтобы убедиться, что питание действительно отключено — на некоторых двигателях выключатель такой же, как выключатель включения / выключения, поэтому переключение выключателя в положение включения приведет к включению двигателя. Кроме того, обязательно отключите все оборудование и проводку, которые не будут включены в процесс тестирования.
  • Разряд до и после испытания: Перед началом испытаний и после каждого электрического испытания обязательно разрядите двигатель, так как он обладает определенной емкостью.Это можно сделать, зашунтировав проводники на землю и друг на друга перед повторным подключением.
  • Проверьте заводскую табличку: Паспортная табличка или характеристики двигателя содержат ценную информацию о двигателе, например, предполагаемую силу тока двигателя. Эта информация может использоваться для оценки исправности двигателя по сравнению с его предполагаемой конструкцией.

На этом этапе подготовьте мультиметр к тестированию. Это включает в себя настройку мультиметра на определение напряжения переменного тока и установку диапазона напряжения на разумный уровень, основанный на технических характеристиках коробки.В следующих нескольких тестах в основном используется этот инструмент, поэтому мы объясним, как проверить трехфазный двигатель с помощью мультиметра.

1. Общие проверки

Самый простой осмотр — это визуальный осмотр. Как только двигатель будет отключен и вы будете готовы начать осмотр, снимите крышку двигателя. Как только он будет удален, вы можете начать проверять двигатель на наличие визуальных признаков повреждения. Вот некоторые вещи, на которые следует обратить внимание во время этого процесса:

  • Общие повреждения: Общие повреждения обычно легко обнаружить.Это может появиться в виде следов ожогов или вмятин. По всему двигателю проверьте, нет ли признаков перегрева или повреждения окружающей среды.
  • Состояние вала: Вручную проверните вал двигателя, чтобы оценить его состояние. Это должно быть легко, если только двигатель не очень большой. Вал должен вращаться плавно, без заеданий и незакрепленных деталей. Более новые двигатели могут испытывать некоторые трудности при вращении из-за жестких допусков, неиспользования или влажности окружающей среды, которые необходимо будет устранить с помощью смазки и дальнейшего осмотра.Однако старые двигатели могут иметь более серьезные препятствия, которые требуют ремонта или замены.
  • Качество соединения: Осмотрите все соединения внутри двигателя на предмет признаков износа или повреждения и оцените любые провода вне двигателя на предмет возможных обрывов. С любыми оборванными проводами следует обращаться с осторожностью и заменять их.

После того, как двигатель прошел общий осмотр, дважды проверьте свои инструменты для осмотра и приступайте к поиску и устранению неисправностей электрических свойств двигателя.

2. Проверка целостности цепи

Проверка целостности цепи — проверка сопротивления между двумя точками. Если сопротивление низкое, две точки электрически соединены. Если сопротивление выше, цепь разомкнута. Проверка целостности заземления определяет, подключен ли двигатель к земле.

Чтобы завершить проверку целостности заземления, установите мультиметр в режим непрерывности. Как только это будет сделано, поместите одну точку на раму двигателя, а другую точку на известное соединение с землей, предпочтительно в области, близкой к установке двигателя.Хороший двигатель должен давать показания менее 0,5 Ом. Однако, если значение превышает 0,5 Ом, это означает, что изоляция двигателя нарушена и может вызвать поражение электрическим током. Для определения причин этого отказа может потребоваться дальнейшее тестирование.

3. Тест источника питания

Следующим тестом, который необходимо завершить, является тест источника питания. Это проверяет, соответствует ли входящий источник питания ожидаемому и соответствует проектным характеристикам двигателя.Тест источника питания можно выполнить, проверив напряжение, подаваемое на двигатель, с помощью мультиметра. Сравните это со спецификациями, указанными на паспортной табличке. Если подаваемое напряжение значительно ниже или выше указанного, это может быть одним из источников ваших проблем.

В дополнение к этому тесту проверьте, что клемма источника питания находится в хорошем состоянии. Повреждение и плохое соединение также могут быть причиной любых отклонений или проблем с производительностью.

Услуги по ремонту источников питания

4.Проверка целостности обмотки двигателя переменного тока

Затем осмотрите двигатель изнутри и провода, участвующие в трехфазном токе. Настройте и откалибруйте мультиметр по напряжению и найдите шесть проводов трехфазного двигателя.

Если вы посмотрите на коробку, вы увидите шесть проводов, по три с каждой стороны. На каждой стороне коробки должны быть клеммы, к которым подключаются эти провода. На одной стороне будут клеммы с маркировкой L1, L2 и L3 или линия 1, линия 2 и линия 3. На другой стороне будут клеммы с маркировкой T1, T2 и T3 или нагрузка 1, нагрузка 2 и нагрузка 3.Клеммы L обозначают линейные провода с входящим током, а клеммы T обозначают отходящие провода. Исключением являются европейские двигатели, которые будут иметь обозначения U, V и W. Эти провода следует проверить, чтобы определить исправность источника питания двигателя. Это можно проверить с помощью следующих методов:

  • Тест на отсутствие питания: Чтобы проверить входящее напряжение, поместите щупы мультиметра в разные положения клемм L, когда питание коробки выключено. Снимите показания для соединения L1-L2, соединения L1-L3 и соединения L2-L3.Эти показания должны быть такими же, если мотор работает нормально. Для системы 230/400 В ожидаемое напряжение должно быть 400 В между каждой из трехфазных линий питания.
  • Проверка линии на нейтраль: Если имеется доступная клемма нейтрали, поместите один щуп мультиметра на нее, а другой — на каждую клемму линии. Значение напряжения должно составлять половину от значения напряжения, полученного во время предыдущего теста.
  • Проверка отсутствия питания на выходе: Этот тест аналогичен приведенному выше, но проверяет исходящее напряжение.Пока коробка выключена, снимите показания между выводами T1 и T2, выводами T1 и T3 и выводами T2 и T3. В этом случае показание напряжения должно быть нулевым для каждого теста.
  • Тест исходящего питания: Осторожно включите блок и повторите те же тесты, что и выше, проверяя каждую перестановку Т-выводов. Между каждой комбинацией отведений не должно быть никаких различий.

Если показания отличаются от ожидаемых результатов и проверка блока питания не выявила проблем, это может указывать на проблемы с исправностью трехфазного двигателя переменного тока.Чаще всего это говорит о том, что мотор перегорел.

Ремонтные услуги AC / DC

5. Испытание сопротивления изоляции

Проверка сопротивления изоляции — это следующий тест, который необходимо провести для определения общего состояния двигателя. Это делается путем сравнения сопротивления между каждой парой фаз двигателя и между каждой фазой двигателя и корпусом. Это можно сделать с помощью тестера изоляции или мегомметра. Тесты должны быть заполнены следующим образом:

  • Фазовое сопротивление: Возьмите тестер изоляции и установите его на 500 В.Возьмите каждый конец и поместите его в разные перестановки L1, L2 и L3 и запишите каждое показание.
  • Сопротивление между фазой и землей: Возьмите тестер изоляции, используя ту же настройку, и проверьте каждый провод от фазы к корпусу двигателя. Минимальное значение сопротивления изоляции должно составлять 1 МОм. Если значение меньше 0,2 МОм, замените двигатель.

Любые ошибки во время этого цикла тестирования могут указывать на проблемы с изоляцией, что является проблемой, когда речь идет о безопасности и функциональности двигателя.

6. Тест рабочего тока

Этот последний тест определяет, сколько энергии потребляется для привода двигателя. Более мощные двигатели потребляют больше тока, измеряемого в амперах. Перед тестированием важно проверить силу тока, необходимую вашему двигателю — обычно это указано на паспортной табличке.

Когда вы будете готовы, выполните следующие действия, которые помогут вам измерить трехфазный ток:

  • Подготовка к тесту: Настройте мультиметр на измерение ампер и настройте его на правильный диапазон ампер для вашего двигателя в соответствии со спецификациями, указанными на паспортной табличке.Во время теста обязательно надевайте резиновые перчатки, чтобы защитить себя от поражения электрическим током.
  • Включите двигатель: Включите двигатель и найдите клеммы. Положительная клемма будет помечена знаком плюс, и к ней будет подключен красный провод. Отрицательная клемма будет помечена знаком минус, и к ней будет подключен черный провод.
  • Размещение датчиков: Поместите отрицательный датчик мультиметра на отрицательную клемму двигателя, затем поместите положительный датчик на положительную клемму.Во избежание травм всегда держите руки подальше от движущихся частей.

Когда датчики подключены, снимите показания в амперах и выключите двигатель. Показание в амперах должно быть в пределах допустимого диапазона, если он работает правильно. Показание в амперах не должно превышать спецификацию производителя, но должно быть на уровне или немного ниже указанного значения силы тока. Если показание в амперах значительно ниже спецификации или вне допустимого диапазона, это может указывать на проблемы с двигателем.

Что делать дальше

Если вы завершите тесты и обнаружите одну или несколько проблем с двигателем, вы можете сделать несколько вещей в зависимости от решаемой проблемы.Некоторые проблемы, такие как неисправная проводка или поврежденный вал, могут потребовать замены проблемных деталей. Однако более серьезные проблемы, такие как проблемы с изоляцией, могут потребовать полностью нового двигателя. Однако, если вы не совсем уверены, что делать или откуда возникла проблема, возможно, стоит позвонить в службу ремонта электроники, чтобы оценить двигатель. Global Electronic Services может помочь.

Компания Global Electronic Services специализируется на ремонте промышленной электроники. Мы работали с более чем 60 000 крупнейших и наиболее передовых производителей и дистрибьюторов в мире, охватывающих широкий спектр отраслей.Независимо от того, связана ли ваша проблема с электродвигателем, серводвигателем, гидравлической системой или пневматической системой, мы можем помочь вам найти решение.

Выбирая Global, вы выбираете высококачественное обслуживание клиентов и круглосуточную поддержку. Наши обученные на заводе и сертифицированные технические специалисты обеспечивают отличные сроки выполнения работ — от одного до пяти дней, и мы даже предлагаем двухдневное срочное обслуживание. Также мы предоставляем 10-процентную гарантию стоимости ремонта.

Если вы заинтересованы в том, чтобы Global работала с вашим трехфазным двигателем, свяжитесь с нами сегодня по телефону или воспользуйтесь нашей простой онлайн-формой, чтобы запросить ценовое предложение.

Запросить цену

Трехфазное напряжение + расчеты

Трехфазное электричество. В этом уроке мы узнаем больше о трехфазном электричестве. Мы расскажем, как генерируются 3 фазы, что означают цикл и герц, изобразим форму волны напряжения по мере ее генерации, вычислим однофазное и трехфазное напряжения.

Прокрутите вниз, чтобы посмотреть обучающее видео на YouTube по трехфазному напряжению + расчеты

Итак, в нашем последнем трехфазном руководстве мы рассмотрели основы того, что происходит внутри трехфазных систем электроснабжения, и в этом руководстве мы сделаем шаг вперед и немного глубже рассмотрим, как эти системы работают, и основные математика позади них.

Мы используем вилки в наших домах для питания наших электрических устройств. Напряжение от этих вилок варьируется в зависимости от того, где мы находимся. Например: в Северной Америке используется ~ 120 В, в Европе ~ 230 В, в Австралии и Индии ~ 230 В, а в Великобритании ~ 230 В.
Это стандартные напряжения, установленные правительственными постановлениями каждой страны. Вы можете найти их в Интернете, или мы можем просто измерить их дома, если у вас есть подходящие инструменты.

Находясь в Великобритании, я измерил напряжение в стандартной домашней розетке.Вы можете видеть, что я получаю около 235 В на этой вилке, используя простой счетчик энергии. В качестве альтернативы я могу использовать мультиметр, чтобы прочитать это. Значение немного меняется в течение дня, иногда выше, а иногда ниже, но остается в определенных пределах.

Если у вас нет счетчика энергии или мультиметра, они очень дешевые и полезные, поэтому я рекомендую вам их приобрести.

Теперь эти напряжения в розетках в наших домах однофазные от соединения звездой. Они возникают при соединении одной фазы с нейтралью или, другими словами, только одной катушкой от генератора.
Но мы также можем подключиться к двум или трем фазам одновременно, то есть к двум или трем катушкам генератора, и если мы это сделаем, мы получим более высокое напряжение.

В США мы получаем 120 В от одной фазы или 208 В от двух или трех фаз.
Европа мы получаем однофазный 230 В или 400 В
Австралия и Индия получаем однофазный 230 В или 400 В

Если я подключу осциоскоп к однофазной сети, я получу синусоидальную волну. Когда я подключаюсь ко всем трем фазам, я получаю три синусоиды подряд.

Итак, что здесь происходит, почему у нас разные напряжения? и почему мы получаем эти синусоидальные волны?

Итак, напомним.Получаем полезную электроэнергию, когда много электроны движутся по кабелю в том же направлении. Мы используем медные провода, потому что каждый из миллиардов атомов внутри медного материала имеет слабосвязанные электрон в самой внешней оболочке. Этот слабо связанный электрон может свободно перемещаться. между другими атомами меди, и они действительно движутся все время, но случайным образом направления, которые нам не нужны.

Чтобы заставить их двигаться в одном направлении, мы перемещаем магнит по медной проволоке. Магнитное поле заставляет свободные электроны двигаться в одном направлении.Если мы намотаем медную проволоку в катушку, тогда мы сможем поместить больше атомов меди в магнитное поле и сможем переместить больше электронов. Если магнит движется вперед только в одном направлении, тогда электроны текут только в одном направлении, и мы получаем постоянный или постоянный ток, это очень похоже на воду, текущую в реке прямо из одного конца в другой. Если мы перемещаем магнит вперед, а затем назад, мы получаем переменный или переменный ток, при котором электроны движутся вперед, а затем назад. Это очень похоже на морской прилив, вода постоянно течет назад и вперед снова и снова.

Вместо того, чтобы целый день двигать магнитом вперед и назад, инженеры вместо этого просто вращают его, а затем помещают катушку медной проволоки вокруг улица. Мы разделяем катушку на две, но держим их соединенными, а затем размещаем один сверху и один снизу, чтобы закрыть магнитное поле.

Когда генератор запускается, северный и южный полюсы магнита находятся непосредственно между катушками, поэтому катушка не испытывает никакого эффекта и электроны не движутся. Когда мы вращаем магнит, северная сторона проходит через верхнюю катушку, и это толкает электроны вперед.По мере того, как магнитное поле достигает своего максимума, все больше и больше электронов начинают течь, но затем оно проходит максимум и снова направляется к нулю. Затем южный магнитный полюс встречает и тянет электроны назад, и снова количество движущихся электронов меняется, так как сила магнитного поля изменяется во время вращения.

Если мы построим график изменения напряжения во время вращения, то мы получим синусоидальную волну, в которой напряжение начинается с нуля, увеличивается до максимума, а затем уменьшается до нуля.Затем входит южный полюс и тянет электроны назад, поэтому мы получаем отрицательные значения, снова увеличиваясь до максимального значения, а затем снова опускаясь до нуля.

Эта схема дает нам однофазное питание. Если мы добавим вторая катушка вращается на 120 градусов относительно первой, тогда мы получаем вторую фазу. Эта катушка испытывает изменение магнитного поля в разное время по сравнению с к первой фазе, поэтому форма волны будет такой же, но с задержкой. Форма волны фазы 2 и не начинается, пока магнит не вращается в Вращение на 120 градусов.Если мы затем добавим третью катушку, вращающуюся на 240 градусов от сначала мы получаем третью фазу. Снова эта катушка испытает изменение магнитное поле в другое время по сравнению с двумя другими, поэтому его волна будет равна к остальным, за исключением того, что он будет отложен и начнется при 240 градусах вращение. Когда магнит вращается несколько раз, он в конечном итоге просто образует непрерывное трехфазное питание с этими тремя формами волны.

Когда магнит совершает 1 полный оборот, мы называем это циклом. Мы измеряем циклы в герцах или Гц.Если вы посмотрите на свои электрические устройства, вы увидите 50 Гц или 60 Гц — это производитель, который сообщает вам, к какому типу источника питания необходимо подключить оборудование. Некоторые устройства могут быть подключены к любому из них.

Каждая страна использует 50 Гц или 60 Гц. Северная Америка, некоторые из Южная Америка и несколько других стран используют 60 Гц в остальном мире использует 50 Гц. 50 Гц означает, что магнит совершает 50 оборотов в секунду, 60 Гц означает магнит совершает 60 оборотов в секунду.

Если магнит совершает полный оборот 50 раз в секунду, что составляет 50 Гц, то катушка в генераторе испытывает изменение полярности магнитного поля 100 раз в секунду (север, затем юг или положительный, затем отрицательный), поэтому напряжение изменяется между положительное значение и отрицательное значение 100 раз в секунду.Если это 60 Гц, то напряжение будет изменяться 120 раз в секунду. Поскольку напряжение подталкивает электроны к созданию электрического тока, электроны меняют направление 100 или 120 раз в секунду.

Мы можем рассчитать, сколько времени требуется для завершения одного поворота, используя формулу Time T = 1 / f.
f = частота. Таким образом, источник питания с частотой 50 Гц занимает 0,02 секунды или 20 миллисекунд, а источник питания 60 Гц — 0,0167 секунды или 16,7 миллисекунды.

Раньше мы видели, что напряжение в розетках разные во всем мире.

Эти напряжения известны как среднеквадратичное значение или среднеквадратичное значение. Мы рассчитаем это немного позже в видео. Напряжение, выходящее из розеток, не может быть постоянно 120, 220, 230 или 240 В. Мы видели по синусоиде, что она постоянно меняется между положительными и отрицательными пиками.

Например, пики на самом деле намного выше.
В США напряжение в розетке достигает 170 В
Европа достигает 325 В
Индия и Австралия достигает 325 В

Мы можем рассчитать это пиковое или максимальное напряжение по формуле:

Поскольку три фазы испытывают магнитное поле в разное время, если мы сложим их мгновенные напряжения вместе, мы просто получим ноль, потому что они компенсируют друг друга, мы рассмотрим это позже.

К счастью, одному умному человеку пришла в голову идея использовать среднеквадратичное значение напряжения, равное средней мощности, рассеиваемой чисто резистивной нагрузкой, которая питается током постоянного тока.

Другими словами, они рассчитали напряжение, необходимое для питания ограничительной нагрузки, такой как нагреватель, питаемый от источника постоянного тока. Затем они выяснили, каким должно быть переменное напряжение, чтобы выделять такое же количество тепла.

Давайте очень медленно повернем магнит в генераторе, а затем вычислим напряжения для каждого сегмента и посмотрим, как это формирует синусоидальную волну для каждой фазы.

ЭКОНОМИЯ ВРЕМЕНИ: Загрузите нашу трехфазную таблицу Excel здесь
USA 👉 http://engmind.info/3-Phase-Excel-Sheet
EU 👉 http://engmind.info/3-Phase-Excel-EU
ИНДИЯ 👉 http://engmind.info/3-Phase-Excel-IN
UK 👉 http://engmind.info/3-Phase-Excel-UK
АВСТРАЛИЯ 👉 http://engmind.info/3-Phase- Excel-AU

Если разделить окружность генератора на сегментов, разнесенных на 30 градусов, что дает нам 12 сегментов, мы можем видеть, как каждая волна сделал. Я также нарисую график с каждым из сегментов, чтобы мы могли вычислить напряжение и построить это.Кстати, вы можете разделить это на столько сегментов, сколько вам нравится, чем меньше отрезок, тем точнее расчет.

Сначала нам нужно преобразовать каждый сегмент из градусов в радианы. Мы делаем это по формуле:

Для первой фазы мы вычисляем мгновенное напряжение на каждом сегменте по формуле.
(мгновенное напряжение просто означает напряжение в данный момент времени)

Так, например, при повороте на 30 градусов или 0,524 радиана мы должны получить значение
84.85 для источника питания 120 В
155,56 для источника питания 220 В
162,63 для источника питания 230 В
169,71 для источника питания 240 В

Просто выполните этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Синусоидальные напряжения фазы 1 на 30-градусных сегментах

Теперь, если мы построим график, то мы получим синусоидальную волну, показывающую напряжение в каждой точке во время вращения. Вы видите, что значения увеличиваются по мере того, как магнитное поле становится сильнее и заставляет течь больше электронов, затем оно уменьшается, пока не достигнет нуля, где магнитное поле находится точно между север и юг через катушку, поэтому это не имеет никакого эффекта.Затем наступает южный полюс и начинает тянуть электроны назад, поэтому мы получаем отрицательное значение, и оно увеличивается по мере изменения напряженности магнитного поля южных полюсов.

Для фазы 2 нам нужно использовать формулу

«(120 * pi / 180))» эта конечная часть просто учитывает задержку, потому что катушка находится на 120 градусов от первой.

Пример при 30 градусах для фазы 2 мы должны получить значение
-169,71 для источника питания 120 В
-311,13 для источника питания 220 В
-325.27 для питания 230 В
339,41 для питания 240 В

Так что просто завершите этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Для фазы 3 нам нужно использовать формулу

Пример: при 30 градусах для фазы 3 мы должны получить значение
84,85 для источника питания 120 В
155,56 для источника питания 220 В
162,63 для источника питания 230 В
169,71 для источника питания 240 В

Так что просто завершите этот расчет для каждого сегмента, пока таблица не будет заполнена для 1 полного цикла.

Теперь мы можем изобразить это, чтобы увидеть форму волны фаз 1.2 и 3 и то, как меняются напряжения. Это наш трехфазный источник питания, показывающий напряжение на каждой фазе при каждом повороте генератора на 30 градусов.

Если мы затем попытаемся суммировать мгновенное напряжение для всех фазы на каждом сегменте, мы видим, что они компенсируют друг друга. Так что вместо мы собираемся использовать эквивалентное среднеквадратичное напряжение постоянного тока.

Чтобы сделать это для фазы 1, мы возводим в квадрат мгновенное значение напряжения для каждого сегмента.Сделайте это для всех сегментов для полного цикла.

Затем сложите все эти значения вместе и затем разделите это число на количество сегментов, которое у нас есть, в данном случае у нас есть 12 сегментов. Затем извлекаем квадратный корень из этого числа. Это дает нам среднеквадратичное значение напряжения 120, 220, 230 В или 240 В в зависимости от того, для какого источника питания вы рассчитываете.

Это фазное напряжение. Это означает, что если мы подключим устройство между любой фазой и нейтралью, тогда мы получаем среднеквадратичное значение 120, 220, 230 или 240 В, как если бы у вас дома была розетка.

Сделаем то же самое для двух других фаз. Возведите в квадрат значение каждого мгновенного напряжения.

Если нам нужно больше мощности, мы подключаем между двумя или тремя фазы. Мы рассчитываем подаваемое напряжение, возводя в квадрат каждый из мгновенных значений. напряжения на фазу, затем сложите все три значения на сегмент и затем возьмите квадратный корень из этого числа.

Вы увидите, что трехфазное напряжение выходит на

.

208 В для источника питания 120 В
380 В для источника питания 220 В
398 В для источника питания 230 В
415 В для источника питания 240 В

Мы можем получить два напряжения от трехфазного источника питания.
Мы называем меньшее напряжение нашим фазным напряжением и получаем его, подключая любую фазу к нейтрали. Именно так мы получаем напряжение от розеток в наших домах, потому что они подключены только к одной фазе и нейтрали.

Мы называем большее напряжение линейным напряжением и получаем его, соединяя любые две фазы. Так мы получаем больше энергии от источника питания.

Например, в США многим приборам требуется 208 В, потому что 120 В просто недостаточно мощно, поэтому нам приходится подключаться к двум фазам.В Северной Америке мы также можем найти системы на 120/240 В, которые работают по-другому. Мы рассмотрим это в другом уроке.


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *