Где фаза а где ноль: Как определить фазу и ноль без приборов

Как определить фазу и ноль индикаторной отверткой и мультиметром

При монтаже розеток, выключателей, бытовых потребителей приходится сталкиваться с определением фазы и нуля в электропроводке. Если для электромонтажников с опытом эта задача не является проблемой, то у тех, кто впервые коснулся этого вопроса, возникает много непонятных моментов. Поэтому следует разобраться, как и чем можно выявить фазу и ноль в розетке, каково назначение жил электропроводки и можно ли обойтись без специального оснащения.

Содержание

Понятия ноля и фазы

Электрическая энергия в жилой дом поступает от трансформаторной подстанции, основное назначение которой — преобразование высокого напряжения чаще всего в 380 В. К домам электроэнергия подземным или воздушным способом подводится на вводной распределительный щит. Затем напряжение подается к щиткам каждого подъезда. В квартиру от него заходит только одна фаза с нулем, т.е. 220 В и защитный проводник (зависит от конструкции электрической проводки).

Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?

Таким образом, проводник, обеспечивающий подачу тока к потребителю, называется фазным. Внутри трансформатора обмотки соединены в звезду с общей точкой (нейтраль), заземленной на подстанции. К нагрузке она подводится отдельным проводом. Ноль, представляющий собой общий проводник, предназначен для обратного протекания тока к источнику электроэнергии. Кроме этого, нулевой провод выравнивает фазное напряжение, т.е. значение между нулем и фазой.

Заземление, которое часто называют просто землей, не подключается к напряжению. Его назначение — защита человека от воздействия электрического тока в момент возникновения неполадок с потребителем, т.е. при пробое на корпус. Это может происходить при повреждении изоляции проводников и касании поврежденного участка корпуса прибора. Но поскольку потребители заземляются, при возникновении опасного напряжения на корпусе заземление притягивает опасный потенциал к безопасному потенциалу земли.

Как определить фазу и ноль индикаторной отверткой

Один из способов выявить, где фаза и ноль в розетке либо в силовом кабеле, — использовать индикаторную отвертку. Инструмент внешне напоминает отвертку, но внутри у него есть специальная начинка со светодиодом. Прежде чем приступить к измерениям, нужно отключить рубильник, через который напряжение подается в помещение. После этого требуется зачистить концы проверяемых проводов, для чего снимают 1,5 см изолирующего материала.

Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?

Во избежание короткого замыкания между проводами после включения автомата их следует направить в разные стороны. Когда все подготовительные мероприятия будут выполнены, необходимо включить автомат для подачи напряжения. Чтобы понять, как найти фазу и ноль, необходимо выполнить следующие действия:

  1. Отвертку зажимают между двумя пальцами — средним и большим, избегая касания оголенной части жала инструмента.
  2. Указательным пальцем касаются металлического наконечника с противоположной стороны отвертки.
  3. Плоским концом индикатора поочередно дотрагиваются до зачищенных проводников.
  4. При касании тестером фазы светодиод загорится. Второй провод будет соответствовать нулевому. При отсутствии индикации изначально проводник будет являться нулевым.

Как определить фазу и ноль мультиметром

Прибор, которым измеряют напряжение, ток и сопротивление, называется мультиметром. Чтобы выявить фазный и нулевой провод с его помощью, сперва нужно настроить устройство, для чего выбирают необходимый предел измерений. В случае с цифровыми приборами устанавливают 600, 750 или 1000 «~V» или «ACV».

Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?Как найти ноль и фазу индикаторной отверткой, мультиметром и без приборов?

Определение фазы производится следующим образом: один из щупов прибора подключают к контакту розетки или кабеля, а до второго щупа дотрагиваются рукой. При отображении на дисплее значения около 200 В это будет указывать на наличие фазы. Показания могут отличаться, что зависит от отделки пола, обуви и т.п. Если прибор отображает нули либо напряжение в пределах 5-20 В, значит, контакт соответствует нолю.

Как определить фазу и ноль без приборов

Иногда бывают ситуации, когда отвертки для определения фазы либо мультиметра под рукой нет, но нужно выяснить, какой провод чему соответствует. Поэтому следует ориентироваться по цветовой маркировке проводов силового кабеля. В отношении маркировки проводов существует стандарт IEC 60446-2004, которого должны придерживаться производители кабелей, а также электромонтажники, выполняющие подключение той или иной электроарматуры.

Чтобы определить по цвету провода, какому проводнику он соответствует, нужно придерживаться следующей маркировки:

  • синий или голубой — ноль;
  • коричневый — фаза;
  • заземление — зелено-желтый.

Однако фазный провод бывает не только коричневым. Часто встречаются и другие расцветки, например белая или черная, но она будет отличной от земли и нуля. Визуально определить провода можно в распределительной коробке, люстре и других точках запитки.

Есть еще один вариант, как определить, где фаза и ноль при отсутствии приборов. Для этого потребуется лампа накаливания с патроном и двумя небольшими отрезками проводов. После подсоединения проводников к патрону можно начинать работу. Краем одного провода касаются трубы отопительной системы, другим — проверяемых проводников. Если в момент контакта лампа зажигается, то это указывает на наличие фазы. Труба для проведения подобного мероприятия должна быть металлической, поскольку пластиковая не проводит ток.

Нужно учитывать, что этот способ хоть и позволяет выявить фазу и ноль, но является опасным, поскольку велика вероятность получить удар электрическим током. Поэтому более безопасно для рассматриваемых целей использовать неоновые лампочки.

Как найти фазу и ноль в розетке и проводах

проверка фазы в розеткеДля отыскания фазного провода или клеммы в розетке, вам понадобится один из приборов — индикаторная отвертка или мультиметр.

Определение фазы индикаторной отверткой

Наиболее простой метод определения фазы, который подойдет для любого обывателя — это использование индикаторной отвертки, или как ее еще называют «контрольки».индикаторные отвертки и контрольки

Контрольная отвертка по внешнему виду очень похожа на обычную, за исключением своей внутренней начинки. Не советую использовать жало отвертки для откручивания или завинчивания винтов. Именно это чаще всего и приводит ее к выходу из строя.

Как определить фазу и ноль этой отверткой? Все очень просто:

  • жалом отвертки прикасаетесь к контакту
  • нажимаете или дотрагиваетесь пальцем до металлической кнопки в верхней части отвертки
  • если светодиод внутри отвертки загорелся — это фазный проводник, если нет — нулевойопределение фазы в розетке индикаторной отверткой

Не перепутайте индикаторную отвертку с отверткой для прозвонки. Последняя в своей конструкции имеет батарейки. Здесь для того, чтобы определить фазу и ноль, при касании жалом контактов, не нужно дотрагиваться пальцем до металлической площадки

на конце. Иначе отвертка будет светиться в любом случае.

По правилам, лампочка индикатора рассчитанного на 220-380В, должна светиться при напряжении от 50В и более.

Аналогичным образом определяется фаза в розетке, выключателе и любом другом оборудовании.

Меры безопасности при работе с «пробником»

  • никогда не дотрагивайтесь до нижней части отвертки при замерахкуда не прикасаться при работе в пробником
  • отвертка перед измерением должна быть чистой, иначе может произойти пробой изоляции
  • если индикаторной отверткой необходимо определить отсутствие напряжения, а не его наличие, для того чтобы безопасно можно было работать с проводкой, сначала проверьте работоспособность прибора на оборудовании заведомо находящегося под напряжением.

Как определить фазу и ноль мультиметром или тестером

Здесь в первую очередь переключите тестер в режим измерения переменного напряжения. замер напряжения мультиметром dt830Далее замер можно сделать несколькими способами:

  • зажимаете один из щупов двумя пальцами. Второй щуп подводите к контакту в розетке или выключателе. Если показания на табло мультиметра будут незначительными (до 10 Вольт) — это говорит о том, что вы коснулись нулевого проводника. ноль в розетке замер мультиметромЕсли коснуться другого контакта — показания изменятся. В зависимости от качества вашего прибора, это может быть несколько десятков вольт, а также от 100В и выше. Делаем вывод, что в данном контакте фаза.фаза в розетке показания мультиметра
  • если вы боитесь в любом случае прикасаться руками к щупу, можно попробовать по другому. Один стержень вставляете в розетку, а другим просто дотрагиваетесь до стенки рядом с розеткой. Если у вас штукатурка, результат будет похожим с первым измерением.определение фазы и ноля в розетке
  • еще один способ — одним из щупов прикасаетесь к заведомо заземленной поверхности (корпус щита или оборудования), а вторым прикасаетесь к измеряемому проводу. Если он будет фазным, тестер покажет наличие напряжения 220В.замер фазного провода при помощи тестера

Меры безопасности при работе с мультиметром:

  • обязательно перед определением фазы по первому способу (когда зажимаете пальцами щуп) убедитесь, что мультиметр включен в положение «замер напряжения» — значок ~V или ACV. Иначе может ударить током.
  • некоторые «опытные » электрики для определения фазы, используют так называемую контрольную лампочку. Не рекомендую рядовым пользователям такой метод, тем более он запрещен правилами. Используйте только исправные и проверенные измерительные приборы.

В современных квартирах в розетки и распредкоробки заходят трехжильные провода. Фазный, рабочий нулевой и защитный. Как отличить их между собой можно узнать из статьи 4 способа отличить заземляющий проводник от нулевого.

Статьи по теме

Как определить фазу, ноль и заземление самому, подручными средствами?


Провода требующие определения фазы, нуля и жилы заземления


Давайте попробуем разобраться, как в домашних условиях, не обладая сложными специализированными измерительными инструментами и электронными приборами, самому определить где фаза, где ноль, а где земля в проводке.


Из всех известных методов, наиболее простого определения фазы и ноля, мы отобрали самые, по нашему мнению, доступные в реализации и в то же время безопасные. По этой причине, в статье вы не увидите советов — как найти фазу с помощью картошки или же призывов к кратковременному касанию проводов различными частями тела.

 
На самом деле, вариантов определения фазы, нуля или заземления, например, в розетке, без применения специализированного оборудования не так уж и много, и порой, в зависимости от ваших целей и задач, бывает достаточно лишь знать стандарт цветовой маркировки электрических проводов принятый у нас, чтоб их различить.


Маркировка проводов по цвету


Действительно, самый простой способ определить фазу, ноль и землю у электрического провода, это посмотреть цветовую маркировку и сравнить с принятым стандартом. Каждая жила в современных проводах, применяемых в электропроводке, а также электрооборудовании имеет индивидуальную расцветку. Зная какому цвету жил какая соответствует функция (фаза, ноль или заземление), легко можно выполнять дальнейший монтаж.


Довольно часто, этого вполне достаточно, особенно в случаях, когда установка производится в новостройках или местах с довольно новой электропроводкой, сделанной профессиональными, компетентными электромонтажниками по всем современным правилам и стандартам.


Цветовая маркировка жил электрического провода


В нашей стране, как и в Европе в целом, действует стандарт IEC 60446 2004 года, который жестко регламентирует цветовую маркировку электрических проводов. 


Согласно этому стандарту для квартирной электросети:


Рабочий ноль (нейтраль или ноль) — Синий провод или сине-белый


Защитный ноль (земля или заземление) — желто-зеленый провод


Фаза – Все остальные цвета среди которых – черный, белый, коричневый, красный и т.д.

 


Теперь, зная стандарт цветовой маркировки проводов, вы сможете без труда определять, какой провод какую функцию выполняет. Это касается большинства случаев, исключение могут составлять провода, подходящие к выключателям, переключателям и т.д., в силу принципиально иной схемы работы этого электрооборудования.


Если же вы не уверены в точном соответствии цветов жил проводов стандарту IEC 60446 2004, у вас старая проводка, вы не исключаете возможность ошибок или даже халатного отношения электромонтажников к своей работе, а может электриками проложены провода другого стандарта и соответственно иной цветовой маркировки, тогда переходим к практическому методу определения фазы и нуля (рабочего и защитного). 


КАК САМОМУ ОПРЕДЕЛИТЬ ФАЗУ, НОЛЬ и ЗАЗЕМЛЕНИЕ У ПРОВОДОВ


Итак, начнем по порядку:


ОПРЕДЕЛЕНИЕ ФАЗЫ


Для большего удобства, сперва всегда лучше определять какой из имеющихся проводов фаза. О том, как найти фазу цифровым мультиметром мы уже писали, а как быть если его нет, читайте ниже.

 

ОПРЕДЕЛЕНИЕ ФАЗЫ ИНДИКАТОРНОЙ ОТВЕРТКОЙ

 


Индикаторная отвертка для определения фазы в сети

 


Самый простой способ обнаружения фазного провода – это поиск с помощью индикаторной отвертки. Этот простейший инструмент должен быть у любого домашнего мастера, занимающегося электрикой в квартире – будь то полный электромонтаж, простая замена ламп или установка светильников, розеток и выключателей.


Принцип работы индикаторной отвертки прост – при касании жалом отвертки проводника под напряжением и одновременном касании контакта, на задней стороне отвертки, пальцем руки — загорается индикаторная лампа в корпусе инструмента, которая и сигнализирует о наличии напряжения. Таким образом легко можно узнать, какой провод фазный.

 

Определение фазы индикаторной отверткой

 


Принцип действия индикаторной отвертки прост — внутри индикаторной отвертки расположена лампа и сопротивление(резистор), при замыкании цепи (касании нами заднего контакта) лампа загорается. Сопротивление защищает нас от поражения электрическим током, оно снижает ток до минимального, безопасного уровня. 


Этот вариант определения фазы своими силами, наиболее предпочтителен и мы рекомендуем пользоваться именно им, тем более что стоимость индикаторной отвертки более чем доступная. Главным недостатком этого способа, является вероятность ошибочного срабатывания, когда индикаторная отвертка, реагируя на наводки, определяет наличие напряжения там, где его нет.


ОПРЕДЕЛЕНИЕ ФАЗЫ, НУЛЯ И ЗАЗЕМЛЕНИЯ КОНТРОЛЬНОЙ ЛАМПОЙ

 


Контрольная лампа для определения фазы, нуля и заземления


Еще один способ, которым можно определить фазный, нулевой и провод заземления в современной трехпроводной электрической сети, это использование контрольной лампы. Способ неоднозначный, но действенный, требующий особой осторожности.


Чтоб начать определение, в первую очередь необходимо собрать само устройство контрольной лампы. Самый простой способ использовать патрон, с вкрученной туда лампой, а в клеммах патрона закрепить провода со снятой на концах изоляцией. Если же под рукой нет электрического патрона или нет времени что-то мастерить, можно воспользоваться обычной настольной лампой с электрической вилкой.

Контрольная лампа применяемая при определение фазы и нуля у проводов

Технология определения фазы, нули и земли с помощью контрольной лампы максимально проста – поочередно соединяя провода лампы к проводам требующим определения, каждый с каждым. 


Определить фазу и ноль из двух проводов


В случае определения контрольной лампой фазного провода среди двух проводов вы лишь сможете узнать, есть фаза или нет, а какой именно из проводников фазный определить не удастся. Если при соединении проводов контрольной лампы к определяемым жилам она загорится, то значит один из проводов фазный, а второй скорее всего ноль. Если же не загорится, то скорее всего фазы среди них нет, либо нет нуля, чего тоже исключать нельзя.


Таким способом, скорее, удобнее проверять работоспособность проводки и правильность её монтажа. Определять фазу лучше индикаторной отверткой, а вот наличие нуля узнавать так.

 

Срабатывание контрольной лампы при определении нуля и фазы

Определить фазный провод в таком случае можно подключив один из концов, идущих от контрольной лампы, к заведомо известному нулю (например, к соответствующей клемме в электрощите), тогда при касании вторым концом к фазному проводнику, лампа загорится. Оставшийся провод соответственно ноль.


Найти фазу, ноль и заземление из трех проводов:


В такой трехпроводной системе часто возможно точно определить фазный, нулевой и заземляющий провод контрольной лампой.
Соединяем контакты, идущие от контрольной лампы поочередно к жилам требующего определения кабеля.


Действуем методом исключения: 

Находим положение, в котором лампа горит, это будет значить, что один из проводов фаза, а другой ноль.

 


Как определить фазу и ноль

 

 


После чего меняем положение одного из контактов контрольной лампы, далее возможны несколько вариантов:


— Если лампа не загорится (при наличии УЗО или дифференциального автомата защиты проверяемой линии они также могут сработать) значит оставшийся свободным провод – ФАЗА, а проверяемые НОЛЬ и ЗЕМЛЯ.

 

Определение нуля (рабочего нуля) и заземления (земли или защитного нуля)

 


— Если после смены положения лампа ненадолго вспыхнет, при этом сразу сработает УЗО или диф. автомат (если они есть), значит оставшийся свободным провод – НОЛЬ, а проверяемые это ФАЗА и ЗАЗЕМЛЕНИЕ.

Определение провода фазы и земли

— Если линия не защищена устройством защитного отключения (УЗО) или дифференциальным автоматом, и свет будет гореть в двух положениях. В этом случае узнать какой провод рабочий ноль (нуль), а какой защитный (заземление), можно просто отключив в щите учета и распределения электроэнергии вводной кабель от клеммы заземления. После чего так же проверить контрольной лампой все жилы и, опять же методом исключения, в положении, когда лампа не горит опознать проводник заземления.

 


Срабатывание диффиринциального автомата или узо при определении фазы, нуля и заземления

 


Как видите, в различных ситуациях, при разных схемах электропроводки, реализованных в квартире, способы и методы определения нуля, фазы и заземления меняются. Если вы столкнулись с ситуацией, не описанной в этой статье, обязательно пишите в комментариях к статье, мы постараемся вам помочь.


А если вы знаете еще, простые способы того, как в домашних условиях, без специализированного инструмента определить фазу, ноль и землю, пишите в комментариях. Статья будет обязательно дополнена. Главное требование, к методам определения, это простота, возможность обойтись в поиске лишь подручными, бытовыми средствами, имеющимися у многих.

Как определить фазу и ноль мультиметром

Главное, что вы должны знать: у обычного цифрового мультиметра, нет отдельного режима для определения фазы или нуля, узнать это можно лишь увидев на экране величину напряжения или не увидев его.

По большому счету, принцип определения фазы тестером, схож с работой обычной индикаторной отвертки, где фаза определяется по свечению встроенной лампы, которая загорается только при наличии цепи фаза – сопротивление – лампа — ёмкость (человек).

Ток, с фазы, протекающий через такую индикаторную отвертку, проходит через высокое сопротивление, встроенное в индикатор, затем также через лампу в ней, а потом попадает в ёмкость – в качестве которой выступает человек (для этого мы и касаемся задней стороны индикаторной отвертки при определении) и только при наличии всех участников такой цепи, лампа будет гореть.  


Как найти фазу мультиметром


Чтобы определить фазу с помощью мультиметра, выставляем на нём режим определения напряжения переменного тока, который на корпусе тестера чаще всего обозначен как V~, при этом, всегда выбирайте предел измерения — уставку, выше предполагаемого напряжения сети, обычно это от 500 до 800 Вольт. Щупы подключаются стандартно: черный в разъем “COM”, красный в разъем «VΩmA».


Режим измерения напряжения на мультиметре для определения фазы


В первую очередь, перед тем как искать фазу мультиметром, необходимо проверить его работоспособность, а именно работу режима вольтметра – определения напряжения переменного тока. Для этого проще всего попробовать определить напряжение в стандартной, бытовой розетке 220в.


Как проверить мультиметром напряжение в розетке 220в


Для измерения напряжения в розетке цифровым тестером, необходимо вставить щупы в гнезда розеток, полярность при этом неважна, главное при этом — не касаться руками токопроводящих частей щупов.

Еще раз напомню, что на мультиметре должен быть выставлен режим определения напряжения переменного тока, предел измерения выше 220в, в нашем случае 500В, щупы подключены в разъемы «COM» и «VΩmA».

Если мультиметр рабочий и нет проблем с подключением розетки или перебоев с электроснабжением, то прибор покажет вам напряжение близкое к 220-230В.


Измерение напряжения мультиметром в розетке 220В


Такого простого теста достаточно чтобы продолжить поиск фазы тестером. Сейчас, в качестве примера, мы определим какой из двух проводов, например, выходящих из потолка для люстры, фазный.

Если бы провода было три – фаза, ноль и заземление, то достаточно было бы измерить напряжение на каждой из пар, точно так же, как мы определяли его в розетке. При этом между двумя проводами напряжения практически бы не было – между нолем и заземлением, соответственно оставшийся третий провод фазный. Ниже представлена наглядная схема определения.


как определить мультиметром на каком из трех проводов фаза


Если же провода, для подключения светильника, только два и вы не знаете какой из них каакой, то опознать их таким образом не получится. Тогда нам и приходит на помощь метод определения фазы мультиметром, который я сейчас опишу.

Всё достаточно просто, мы просто должны создать условия для протекания через тестер электрического тока, и зафиксировать его. Для этого просто создаём электрическую цепь, по тому же принципу, что и у индикаторной отвертки.

В режиме проверки напряжения переменного тока, с выбранном пределом 500В, красным щупом прикасаемся к проверяемому проводнику, а черный щуп зажимаем пальцами рук либо касаемся им заведомо заземленной конструкции, например, радиатора отопления, стального каркаса стены и т.п. При этом, как вы помните, черный щуп у нас воткнут в разъем COM мультиметра, а красный в VΩmA.


Как найти фазу мультиметром


Если на проверяемом проводе будет фаза, мультиметр покажет на экране достаточно близкую к 220 Вольтам величину напряжения, в зависимости от условий тестирования она может быть разной. Если же провод не фазный, значение будет или нулевым, или очень низким, до нескольких десятков вольт.

Еще раз напомню, ОБЯЗАТЕЛЬНО УБЕДИТЕСЬ ПЕРЕД НАЧАЛОМ ПРОВЕРКИ, ЧТО НА МУЛЬТИМЕТРЕ ВЫБРАН РЕЖИМ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА, а не какой-нибудь другой.

Вы, должно быть скажете, что метод достаточно рискованный, становится частью электрической цепи и добровольно попасть под напряжение захочет не каждый. И хотя такой риск есть, он минимальный, ведь, как и в случае с индикаторной отверткой, напряжение из сети проходит через большое сопротивление резистора, встроенного в мультиметр и удара током не происходит. А работоспособность этого резистора, мы проверили, предварительно измерив напряжение в розетке, если бы его там не было, сложились бы все условия для короткого замыкания, которое, уверяю вас, вы бы сразу обнаружили.

Конечно, как я уже писал выше, лучше вместо руки использовать заземленные конструкции – радиаторы и трубы отопления, стальной каркас здания и т.д. но, к сожалению, такая возможность есть не всегда и нередко приходится браться за щуп самому. Бывалые электрики советуют в таких случаях всё же принять дополнительные меры безопасности: стоять на резиновом коврике или в диэлектрической обуви, касаться щупа сперва кратковременно, правой рукой и лишь не обнаружив опасных воздействий тока, выполнить измерение.

В любом случае это единственный, самый надежный и простой способ определить фазу бытовым мультиметром самому.

 

Как найти ноль мультиметром


как определить ноль мультиметром


Ноль, чаще всего, находится мультиметром относительно фазного провода, т.е. сперва, способом, описанным выше, вы находите фазу, а затем установив красный щуп на неё, касаетесь других проводников и когда тестер на экране покажет 220В (+/- 10%), тогда вы поймете, что второй провод нулевой рабочий или нулевой защитный (заземление).

Определить же то, является провод нулем или заземлением одним мультиметром, довольно сложно, ведь по сути, эти проводники одно и то же и нередко просто дублируют другу друга. В определенных системах заземления ноль и зазмление даже связаны между собой в электрощите и очень тяжело точно их выявить.

Проще всего, в таком случае, отключить от шины заземления в электрощите вводной провод, тогда, во всей квартире или доме, при проверке напряжения, между фазой и проводами заземления, вы не получите 220В, как при проверке нуля и фазы.

Так же стоит отметить тот факт, что если в электрощите установлена дифференциальная защита — УЗО или автоматический выключатель дифференциального тока, он обязательно сработает, при проверке проводов заземления относительно любого другого проводника, даже нулевого.

Если же вы знаете более надежные и универсальные методы определения фазы и нуля цифровым мультиметром – обязательно пишите об этом в комментариях к статье, кроме того приветствуются любые мнения, опыт, здоровая критика или вопрос.

Так же вступайте в нашу группу ВКонтакте, следите за появлением новых материалов.

Как определить фазу и ноль: Инструкция по определению

При монтаже розеток и выключателей освещения, подключении бытовых электроприборов возникает необходимость в определении назначения жил проводки. Как определить фазу и «ноль», а также заземляющий проводник? Эта несложная для профессиональных электромонтеров задача порой ставит в тупик тех, кто мало знаком с правилами устройства электрических сетей. Попробуем разобраться в этом вопросе.

Устройство бытовых электрических сетей

Бытовые электрические сети на входе в распределительный щиток имеют линейное напряжение 380В трехфазного переменного тока. Проводка в квартирах, за редким исключением, имеет напряжение 220В, так как она подключена к одной из фаз и нулевому проводнику. Кроме того, правильно смонтированная бытовая проводка должна быть обязательно заземлена. В домах старой застройки заземляющего проводника может не быть. Таким образом, при монтаже проводки и электроприборов необходимо знать назначение каждого из двух или трех проводов.

Также следует знать правила подключения различных приборов. При монтаже обычной розетки подключение фазного и нулевого проводника производится к клеммам в произвольном порядке, а заземляющий провод, при его наличии, подключают к медной или латунной шине. Выключатель подключают в фазный провод, чтобы при его отключении в патроне осветительного прибора не было напряжения – это обеспечит безопасность при смене ламп. Сложные бытовые приборы в металлическом корпусе необходимо подключать в обязательном соответствии с маркировкой проводов, в противном случае безопасность их использования не гарантирована.

Приборы и инструменты

Прежде чем приступить к электромонтажным работам и определить фазу и ноль в проводке, необходимо подготовить необходимые приборы и инструмент:

  • Мультиметр стрелочный или цифровой;
  • Индикаторную отвертку или тестер;
  • Маркер;
  • Пассатижи;
  • Нож для зачистки изоляции.

Также вам необходимо выяснить, где расположена защитная аппаратура: автоматические выключатели или пробки, УЗО. Обычно их устанавливают в распределительном щитке на площадке или у входа в квартиру. Все операции по подключению электроаппаратуры и зачистку проводов необходимо проводить при отключенных автоматах!

Правила работы с тестером и мультиметром

Проверку фазы с помощью индикаторной отвертки проводят так: отвертку зажимают между большим и средним пальцем руки, не касаясь неизолированной части жала. Указательный палец ставят на металлическийпятачок с торца рукоятки. Жалом задевают оголенные концы проводов, при касании к фазному проводнику загорается светодиод.

Определяем фазу и ноль с помощью индикаторной отвертки

Определяем фазу и ноль с помощью индикаторной отвертки

Мультиметром измеряют напряжение между проводниками. Для этого прибор устанавливают на предел измерения переменного тока со значком «~V» или «ACV» и значением больше 250 В (обычно у цифровых приборов выбирают предел 600, 750 или 1000 В). Щупами одновременно прикасаются к двум проводникам и определяют напряжение между ними. В бытовых электросетях оно должно быть 220В±10%.

Иногда для определения заземляющего проводника необходимо бывает измерить сопротивление. Для этого на мультиметре выставляют предел измерения «Ω» или со значком звонка.

Инструкция по пользованию мультиметром

Инструкция по пользованию мультиметром

Внимание! В режиме измерения сопротивления прикосновение к фазному проводу и заземляющему контуру вызовет короткое замыкание! При этом возможны электротравмы и ожоги!

Визуальный метод определения

Если проводка выполнена по всем правилам, определить фазу, ноль и заземляющий проводник можно по цвету изоляции. Заземление имеет двухцветную желто-зеленую окраску, изоляция нулевого провода бывает синей или голубой, а фазный провод может быть белым, черным или коричневым. Убедиться в правильности подключения можно с помощью визуального осмотра, при этом необходимо проверить соответствие цвета изоляции не только в щитке, но и в распределительных коробках.

Визуальный способ определения фаза и ноль

Визуальный способ определения фаза и ноль

Последовательность визуального осмотра

  1. Откройте щиток и осмотрите автоматические выключатели. В зависимости от расчетной нагрузки их количество может быть разным. Через автоматы могут быть подключены только фазный или фазный и нулевой провод. Заземляющий проводник подключают всегда сразу к шине. Проверьте соответствие цветовой маркировки всех проводов.
  2. Если в щитке цвет изоляции кабеля, уходящего в квартиру, соответствует правилам, вскройте все распределительные коробки и осмотрите скрутки. В них цвета изоляции нуля и заземляющего провода также не должны быть перепутаны.
  3. К фазе в распределительных коробках бывают подключены выключатели. Часто монтаж выполняют двужильным проводом, имеющим другие цвета изоляции, например, белый и бело-голубой. Это не должно вас смутить.
  4. Если монтаж выполнен с полным соответствием цвета изоляции, достаточно проверить фазный провод с помощью индикаторной отвертки.

Определение фазы и нуля в двухпроводной сети

Если ваша проводка выполнена без заземляющего проводника, вам необходимо найти только фазный провод. Сделать это проще всего с помощью индикаторной отвертки.

Индикаторная отвертка поможет нам определить фазу и ноль

Индикаторная отвертка поможет определить фазу и ноль

  1. Отключите автоматический выключатель и зачистите изоляцию проводов на расстоянии 1-1,5 см с помощью ножа. Разведите их на расстояние, исключающее случайное касание проводов.
  2. Включите автоматический выключатель. Индикаторной отверткой поочередно касайтесь зачищенных концов проводов. Светящийся диод укажет на фазный провод.
  3. Отметьте его маркером или цветной изолентой, отключите автоматический выключатель  и выполните необходимые подключения.
  4. При подключении осветительных приборов необходимо также убедиться, что выключатель подключен к фазному проводу, в противном случае при смене лампочек недостаточно будет отключить выключатель, придется каждый раз полностью обесточивать квартиру отключением автомата.

Определение фазы, нуля и заземляющего провода

Если сеть трехпроводная, но выполнена проводом одного цвета, либо вы не уверены в правильности их подключения, необходимо определять назначение проводников перед установкой каждого элемента сети.

Определение фазы и нуля заземляющего провода

Определение фазы и нуля заземляющего провода

  1. Определите описанным выше способом фазный провод с помощью индикаторной отвертки и отметьте его маркером.
  2. Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
  3. Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
  4. Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй – поочередно к двум другим. Лампа загорится при касании нулевого проводника.

Если все указанные мероприятия не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут вызвонку всех цепей. Не забывайте, что речь идет, прежде всего, о безопасности.

Как определить фазу и нуль

инструменты для определения фазы и нуль

Перед тем, как начать процесс определения фазы и нуля, необходимо сделать ряд приготовлений, поскольку для данных работ потребуются следующие приборы и инструменты:

  • мультиметр;
  • индикаторная отвертка;
  • тестер;
  • пассатижи;
  • нож с заточенным лезвием, чтобы снимать изоляцию с проводников;
  • изоляционная лента;
  • маркер для нанесения разметок;

Также, важно помнить, что перед началом любых электромонтажных работ, необходимо отключить автоматы, поскольку несоблюдение данного правила может представлять угрозу для жизни. Помимо этого, требуется убедиться, что весь используемый инструмент обладает надежно заземленными рукоятями.

В противном случае, его использование является небезопасным и не допускается по технике безопасности.

Визуальный метод определения

провода с обозначениями

Данная методика является самым простым способом, поскольку для его реализации не потребуется никаких дополнительных приборов или оборудования.

Необходимо осмотреть проводку, чаще всего она имеет следующие цветовые разграничения:

  1. Провод желто-зеленого цвета является заземлением.
  2. Нуль имеет синий цвет или любые его оттенки вплоть до светло-голубого.
  3. Фаза имеет черный, коричневый или белый цвет.
  4. Необходимо убедиться в соответствии цветов не только в электрощите, но также и в распределителе.

Визуальный осмотр системы должен осуществляться в соответствии со следующим алгоритмом действий:

  1. Открыть электрощит и осмотреть его содержимое. Поскольку расчетная нагрузка может различаться, то и количество установленных автоматов также может быть разным. Через них может быть осуществлено подключение фазы или фазы с нулем, заземление никогда не подсоединяется к автоматическим выключателям, а имеет соединение с шиной. Необходимо убедиться, что все подключенные провода соответствуют цветовой маркировке.
  2. Если цвет изоляции, проведенной от электрощита к домашней сети, соответствует правилам цветовой маркировки, то все равно потребуется вскрытие распределителей для визуального осмотра скруток. Это необходимо для того, чтобы убедиться, что и в них цветовая маркировка изоляции нуля и заземления не была перепутана и соответствует установленным правилам.
  3. Иногда в распределителях осуществляется подключение фазы к автоматическим выключателям. В большинстве случаев, это реализуется при помощи специального провода с двумя жилами, изоляция которого может отличаться цветом.
  4. Если результаты визуальной проверки показали, что цвета изоляции полностью соответствуют правилам, то остается всего лишь проверить фазный проводник, используя для этого индикаторную отвертку.

Определение индикаторной отверткой

индикаторная отвертка

Одним из наиболее простейших способов определения нуля и фазы является использование для этих целей индикаторной отвертки.

Для осуществления данного процесса необходимо придерживаться следующего алгоритма действий:

  1. Первоначально потребуется отключить автомат, от которого происходит питание линии электросети на месте проверки.
  2. Провести зачистку обоих проверяемых проводников, достаточно снять не более 1-2 см. изоляционного слоя.
  3. После этого оба проводника разводятся друг от друга на безопасное расстояние, поскольку после подачи напряжения их случайное соприкосновение может стать причиной короткого замыкания.
  4. Можно приступать к идентификации фазного проводника. Для этого включается автоматический автомат, который подает напряжение, после этого необходимо будет взять индикаторную отвертку и прикоснуться к металлической области, расположенной возле основания рукояти.
  5. Категорически не допускается прикасаться к любым частям индикаторной отвертки, расположенным ниже рукояти, поскольку это вызовет удар электрическим током.
  6. Прикоснуться инструментом к одному из проверяемых проводов, при этом не нужно убирать палец с металлической области.
  7. Загорание лампочки, входящей в конструкцию отвертки, свидетельствует о том, что проводник является фазным. Соответственно второй провод – это нуль. Если загорание лампочки не произошло, наоборот, проводник был нулем, а второй является фазой.

Определение тестером или мультиметром

индикаторная отвертка

мультиметр

Иным распространенным способом определения фазы и нуля является использование специальных приборов – тестера или мультиметра.

Если был выбран именно этот вариант, то необходимо придерживаться следующей последовательности действий:

  1. Используемому прибору задать настройки предельного измерения переменного тока. На современных моделях этому параметру соответствует режим ~V или ACV. Необходимо указать значение равное 600 В, 750 В, 1000 В или иной параметр в зависимости от особенностей модели, главным требованием является, чтобы он превосходил показатель 250 В.
  2. Щупами прибора необходимо коснуться сразу обоих проводов, для того, чтобы определить уровень напряжения между ними. В стандартных бытовых сетях этот показатель равен 220 В, возможное отклонение не должно превышать 10 % в любую из сторон. Подобное значение свидетельствует о том, что проводник является фазой, у нуля уровень напряжение будет совсем незначительным или равным нулю.
  3. В современных электросетях может потребоваться также идентификация проводника с заземлением, для этого требуется определение уровня сопротивления. В таком случае, прибор переводится в соответствующий режим, который имеет условное обозначение в виде значка звонка или омеги.
  4. Необходимо помнить, что когда прибор переведен в режим для определения уровня сопротивления, категорически запрещено одновременное прикосновение к фазе и заземлению, поскольку произойдет короткое замыкание. Имеется риск получения травм.

Определение по маркировке

маркировка проводов

При описании визуального способа идентификации проводников уточнялось, что в большинстве современных электросетей желто-зеленый цвет соответствует защитному нулю, все оттенки синего цвета обозначают рабочий нуль, а любые иные цвета фазу.

Однако, необходимо учитывать, что проводники могут не соответствовать принятой цветовой гамме в следующих случаях:

  1. Проводка проложена в доме старой постройки, где не была произведена реконструкция домашней электросети в соответствии с современными правилами. Чаще всего в ней используются одноцветные проводники.
  2. Проводка проложена в новостройке, но ее монтаж осуществлялся частными лицами, а не профессиональными электриками.
  3. Провода ведут к более сложным бытовым устройствам, например, различным переключателям или выключателям, конструкция которых изначально подразумевает принципиально иную схему функционирования.
  4. Проводка прокладывалась по стандартам, отличающимся от принятых в Европе, поэтому она имеет совершенно иные цветовые обозначения.

В большинстве остальных случаев, цветовая маркировка проводников производится в соответствии с указанными правилами, которые регламентируются соответствующим стандартом IEC, действующем на территории всей Европы.

В ситуациях, когда отсутствует полная уверенность в полном соответствии цветовой гаммы общепринятому стандарту, рекомендуется воспользоваться одним из практических методов для определения нуля и фазы.

Также, можно посоветовать в последствии использовать специальные цветные насадки, которые позволят в будущем не забыть предназначение проводников и не осуществлять процедуру их определения заново.

Определение с помощью картошки

картошка

Еще одним известным методом определения без специальных приборов является вариант, в котором задействуется обычная сырая картошка. Многие специалисты относятся к таким действиям довольно скептически, но подобное решение все равно является действенным.

Для его осуществления необходимо осуществить следующую последовательность:

  1. Взять одну сырую картофелину и разрезать ее на две части.
  2. Зачистить концы двух проводников и воткнуть их в одну из частей картофелины.
  3. Подождать около 10 минут, после чего вытащить оба провода.
  4. Осмотреть картофелину: в месте, где образовался зеленоватый след, был воткнут фазный проводник.

Другие способы определения

компьютерные кулеры

Существует еще несколько альтернативных методик определения фазы и нуля, они редко используются и зачастую подвергаются критике со стороны квалифицированных специалистов. Связано это по большей части с тем, что подобные способы являются более опасными, поэтому проводить их необходимо с максимальной степенью осторожности.

Один их таких методов определения требует задействования обычного компьютерного кулера, его можно применить на практике в тех случаях, когда известны параметры подаваемого напряжения, но неизвестно назначение проводников:

  1. Для реализации необходимо будет использовать красный и черный проводники, выходящие из вентилятора. Иногда в нем имеется и третий провод, который является датчиком оборотов, но он в процессе определения не пригодится.
  2. Красный проводник кулера является фазным, а черный соответствует нулю.
  3. Стандартные вентиляторы рассчитаны на 12 В, а функционировать начинают от 3В, поэтому они лучше всего подходят для проверки от соответствующих источников питания.
  4. Если напряжение превышает показатель 12 В, то потребуется резко прикоснуться проводниками к выводам кулера и посмотреть на реакцию лопастей. Если они остались без движения, то к красному проводнику был подключен нуль, если начали двигаться, то это была фаза.

Для другого способа определения нужна будет контрольная лампа, а его реализация потребует соблюдения следующего алгоритма действий:

  1. Первоначально надо собрать саму контрольную лампу, простейшее устройство будет выглядеть таким образом: вкрутить лампочку в патрон, в его клеммы закрепить проводники, с их концов снять изоляционный слой.
  2. Дальнейший процесс не представляет никакой сложности: тестируемые проводники поочередно соединяются с контактами лампы, во время процесса необходимо наблюдать за ее реакцией.

Среди более безопасных вариантов определения можно выделить следующие альтернативные методы:

  1. Проверка проводников через УЗО, поскольку известно, что при наличии потребителя, подключенного к электросети, замыкание нуля и земли способствует возникновению утечки электрического тока, что моментально отключает защитное устройство. Это поможет идентифицировать нулевой и заземляющий проводник, третий будет являться фазой.
  2. Взять предохранитель и захватить его плоскогубцами, рукоять инструмента при этом должна быть изолирована, чтобы избежать поражения электрическим током. Замкнуть на нем два проводника и проверить результат: если предохранитель сгорел, то это была фаза и земля; если уцелел, то земля и нуль либо фаза и нуль. Поставив несколько поочередных экспериментов с фиксацией результатов, можно будет точно идентифицировать каждый проводник.

Особенности определения фазы и нуля

определение фазы и нуля

В двухпроводной сети

Идентификация проводников в двухпроводной сети является гораздо более простой, поскольку осуществляется самым простым способом, для этого потребуется:

  1. Определить только фазу, поскольку известно, что второй проводник будет являться нулевым.
  2. Для определения фазы в двухпроводной сети идеально подходит индикаторная отвертка, подробный порядок действий был описан выше.

В трехпроводной сети

Немного сложнее ситуация обстоит с современными видами трехпроводных сетей, поскольку в них имеется еще и заземление.

Для определения назначения проводников необходимо придерживаться следующего алгоритма действий:

  1. Фаза определяется при помощи индикаторной отвертки методом, описанным выше. После этого рекомендуется нанести пометку при помощи маркера, чтобы в дальнейшем не перепутать провод.
  2. Для работы с нулем и землей потребуется задействовать мультиметр. Нулевой проводник также может обладать напряжением, что вызывается перекосом фаз, но его показатели никогда не превышают 30 В. Мультиметр нужно переключить в режим работы для измерения напряжения переменного тока, после чего один щуп подключается к фазе, а второй поочередно к оставшимся проводникам. Нуль будет там, где зафиксируется наименьший параметр напряжения.
  3. Иногда оба проводника обладают одинаковыми показателями напряжения. В таком случае, фазу необходимо изолировать, а мультиметр переключить в режим, предназначенный для определения уровня сопротивления. Также, потребуется подобрать внешний заземленный элемент и прикоснуться к нему один щупом прибора, а вторым по очереди к каждому из проверяемых проводников. В том случае, когда мультиметр покажет сопротивление 4Ом или меньше, подключение совершено к земле, если показатель выше, то это нуль.
  4. Однако, показатели сопротивления не являются точными, если нейтраль была подвержена заземлению еще внутри электрощита. Тогда потребуется обнаружить и отключить заземляющий элемент, который подключен к шине. После этого, взять контрольную лампу и поставить описанный ранее эксперимент по ее подключению. Ее загорание происходит только при подключении нулевого проводника.

Устройство бытовых электрических сетей

мужчина режет проводаПоступление электроэнергии в любые жилые строения происходит через трансформаторные подстанции, которые изменяют поступающее высоковольтное напряжение, и на выходе оно уже имеет показатель равный 380 В.

Бытовые электросети современного образца выглядят и функционируют следующим образом:

  1. Трансформаторная обмотка на подстанции имеет особый вид соединения, который придает ей сходство со звездой. Три вывода подключаются к одной общей точке нуля, а другие три на соответствующие клеммы.
  2. Выводы, подключенные к нулю, соединяются и подключаются к заземлению трансформаторной подстанции.
  3. В этом же месте общий нуль разделяется на рабочий нуль и специальный защитный PE-проводник.
  4. Описанная система получила обозначение TN-S, но в старых домах до сих пор действует схема TN-C, которая отличается в первую очередь отсутствием защитного PE-проводника.
  5. Фаза и нуль, после вывода из трансформатора, протягиваются к жилым домам для подключения к вводному электрощиту. Здесь происходит создание трехфазной системы напряжения с показателями 320/220В.
  6. Далее разводка осуществляется по подъездным электрощитам, куда поступает напряжение с фазы 220В и защитный PE-проводник, если его наличие было предусмотрено.
  7. Нулем в квартирной электросети будет являться проводник, который имеет соединение с землей в схеме трансформаторной подстанции и предназначенный для создания необходимого уровня нагрузки от фазы, которая также имеет подсоединение к трансформаторной обмотке, но с противоположной стороны. Главной функцией защитного нуля является отвод токов повреждений, которые могут возникнуть при аварийной ситуации внутри сети.
  8. Происходит равномерное распределение нагрузки, это осуществляется благодаря наличию этажной разводки, а также подключению квартирных электрощитов к определенным линиям на 220 В внутри центрального распределителя в подъезде.
  9. Система, по которой осуществляется подведение напряжения к жилому дому, с точностью повторяет векторные характеристики трансформаторной подстанции и также обладает формой звезды.
  10. Сумма всех токов в трехфазной разновидности электросети складывается в соответствии с векторной графикой внутри нулевого проводника, после чего она возвращается на трансформаторную обмотку в подстанции.

Если внутри жилого помещения отключить все потребители электроэнергии и отключить их от рабочих розеток, то электрический ток внутри сети перестанет протекать даже при подведенном к электрощиту напряжении.

Описанная система устройства бытовой электросети является наиболее оптимальной из всех существующих на сегодняшний день, но и она не застрахована от возможных неисправностей. В большинстве случаев они связаны с нарушением соединений контактов либо обрывом проводников.

Статья была полезна?

0,00 (оценок: 0)

Фаза и нуль в электрике: что значит

В каждом современном доме есть электричество, благодаря которому работают розетки, лампочки и многие другие виды электрооборудования. Включая свет в комнате, пылесос в розетку или заряжая смартфон, мало кто задумывается, как же этот свет и зарядка в гаджете появляются. Что становится причиной работы лампочки и гула пылесоса? Вопросов, если подумать, много, но ответ один — электроэнергия

Фаза и нуль в электрике

Электроэнергия появляется в результате упорядоченного движения заряженных частиц в проводах — электронов. Рождаются эти электроны в огромных электростанциях — таких как, например, Волгоградская ГРЭС (гидроэлектростанция), Нововоронежская АЭС (атомная электростанция) и многих других в нашей стране. Далее по очень толстым проводам эта энергия передается на промежуточные подстанции (как правило, такие стоят по периферии городов), а от них — до местных КТП (комплектная трансформаторная подстанция), которые есть почти в каждом дворе.

Линия электропередач

Уровни напряжения в таких сетях варьируются от 750000 вольт до 380 вольт в конечной КТП. И именно последние делают так, что в розетке обычного дома появляется 220В. Казалось бы, все просто, но! В розетке находятся два провода. И из уроков физики каждый знает, что в электрике есть «фаза» и «нуль». Эти два слова дают нам свет, тепло, воду, газ и многое другое, чем мы пользуемся каждый день. Теперь по-порядку.

КТП

Фаза и нуль: понятия и отличие

Существует такое понятие, как напряжение. Это слово означает степень напряженности электрического поля в данной точке или цепи. Иначе его называют потенциалом. Если очень простыми словами, то это некий поршень, что дает толчок для электронов, чтобы они прошли по проводам и зажгли лампочку в люстре.

В общей цепи (фаза ноль), той, что приходит на люстру или розетку, есть два провода. Один из них и есть фаза. Именно этот провод находится под напряжением. Фаза в электротехнике сравнима с плюсом в автомобиле — это основное питание для сети.

Фаза, ноль, земля в розетке

Нуль — это провод, который не находится под напряжением (это именно то, чем отличается ноль от фазы). Он не перегружен в процессе отбора мощности, но, тем не менее, по нему так же течет электрический ток, только в направлении, обратном фазному. В отсутствии напряжения он является безопасным в плане поражения человека электротоком.

Зачем нужен ноль в электричестве

Нуль замыкает электрическую цепь. Без этого провода в цепи не может быть электрического тока, который и дает мощность для питания бытовых приборов. По сути, нулевой провод — это земля.

Откуда берется ноль в электросети

Начало свое нуль берет от комплектной трансформаторной подстанции 6(10)/0,4 кВ, где трансформатор своей нулевой шиной соединен с контуром заземления. Изначально именно земля является проводником с нулевым потенциалом, и именно поэтому многие путают нуль с землей. ВЛ (воздушная линия электропередачи), выходя из КТП, имеет 4 провода — 3 фазы и нуль, который в начале линии соединен с нулем трансформатора. На протяжении воздушной линии через одну опору производится повторное заземление, которое дополнительно связывает нуль линии с землей, что дает более полноценную связь цепи «фаза — нуль» для того, чтобы у конечного потребителя в розетке было не менее 220В.

Фаза, ноль и земля в проводе

Зачем нужен нуль

Основное назначение нулевого провода — замыкание цепи для создания электрического тока для работы любого электроприбора. Ведь для того, чтобы ток появился, необходима разность потенциалов между двумя проводами. Нуль потому так и называется, что потенциал на нем равен нулю. Отсюда и уровень напряжения 220В — 230В.

Как найти нуль и фазу

В домашних условиях, даже не имея специальных приборов и приспособлений, возможно определить в обычной розетке, какой из двух проводов является фазой, а какой нулем. В этом случае используются электролампа или индикаторная отвертка.

Проверка с помощью электролампы

Для поиска нуля и фазы достаточно взять обыкновенный патрон с лампочкой и прикрутить два провода на его штатные места. Затем один из этих проводов подключить к заземляющим ножам в розетке, а второй — к любому из двух силовых разъемов.

Фазным будет являться тот разъем, при подключении к которому лампочка будет загораться. Это происходит потому, что по Правилам устройства электроустановок (ПУЭ), в вводном электрощите нулевые провода всех розеток должны быть соединены с земляными проводами этих же розеток. А отдельно земляная шина должна быть соединена с защитным контуром заземления. Именно это и обеспечивает наличие надежного нуля во всей цепи энергоснабжения дома.

Электролампа

Обратите внимание! Самостоятельно подобные процедуры допустимо делать только в том случае, когда квалифицированной помощи ждать неоткуда, а также в случае аварийной ситуации (пожар, короткое замыкание, попадание человека под напряжение). Не стоит забывать, что электрический ток очень опасен. Не стоит рисковать своим здоровьем и своей жизнью из-за лампочки!

Индикаторная отвертка

Для того, чтобы определить фазу в сети переменного тока напряжением 220В — 230В, можно использовать бытовой указатель напряжения — индикаторную отвертку. Продается он практически в любом хозяйственном магазине и стоит (в зависимости от конструкции) очень недорого.

Пример исправной индикаторной отвертки

Как правило, инструкции к применению у подобных инструментов нет, поэтому, чтобы не получить электротравму, следует помнить несколько простых правил, применимых к любому инструменту, соприкасающемуся с токоведущими частями:

  1. Использовать инструмент только по назначению (запрещается применять указатель напряжения — индикаторную отвертку — в качестве обыкновенной отвертки для закручивания/откручивания винтов, саморезов, шурупов и т.д.)
  2. Перед использованием инструмента следует внимательно рассмотреть состояние изоляции на рукояти и жале (применимо для любых отверток, в том числе для индикаторных). Ни в коем случае не использовать приспособление, если изоляционное покрытие имеет сколы или вообще отсутствует.
  3. Проверять работоспособность индикаторных устройств необходимо на электроустановках, заведомо находящихся под напряжением (например, в удлинителе, в который включен работающий электроприбор).
Отвертка с изолированным жалом

В случае сомнения в работоспособности индикатора следует считать его неисправным, а электроустановку действующей.

Так же существуют более точные и безопасные приборы для определения наличия напряжения в сети — это мультиметры, токоизмерительные клещи, вольтамперфазометры (ВАФ) и другие.

Мультиметр

В быту, как правило, используются простые мультиметры. Они способны показать наличие напряжения в сети и его значение. Намного безопаснее использовать для определения фазы именно эти приборы, так как их щупы имеют диэлектрическую рукоятку. Принцип определения такой же, как и в случае с патроном — достаточно один щуп приложить к земляному контакту розетки, а второй накладывать на один из двух контактов розетки.

Пример мультиметра

Важно! Как и правила дорожного движения, правила электробезопасности обязательно нужно соблюдать, ведь электрический ток невидим, неслышим и неосязаем, и именно этим он и опасен.

Электроэнергия (согласно второму закону Ньютона) не появляется из ниоткуда и не уходит в никуда. Она производится, транспортируется и потребляется на глазах. Нужно знать, откуда она берется, как к нам попадает и в каком виде. Каждый должен понимать, что в бытовом потреблении есть провода, которые могут нанести вред здоровью человека, а есть и такие, которые совершенно безвредны, поэтому необходимы небольшие знания и минимум приборов для определения и разграничения этих проводов. Но любые манипуляции с электричеством лучше доверять профессионалу — квалифицированному специалисту, чтобы избежать беды.

cmath — Математические функции для комплексных чисел — Документация Python 3.8.5

Этот модуль обеспечивает доступ к математическим функциям для комплексных чисел. функции в этом модуле принимают целые числа, числа с плавающей точкой или сложные числа в качестве аргументов. Они также примут любой объект Python, который имеет __complex __ () или __float __ () метод: эти методы используются для преобразовать объект в комплексное число или число с плавающей точкой, соответственно, и Затем функция применяется к результату преобразования.

Примечание

На платформах с аппаратным и системным уровнем поддержки для подписанных нули, функции, включающие ответвления, непрерывны на и стороны ветви срезаны: знак нуля отличает один сторона ветки срезана с другой. На платформах, которые не Поддержка подписанных нулей непрерывности, как указано ниже.

Преобразования в и из полярных координат

Комплексный номер Python z хранится внутри, используя прямоугольный или декартовых координат.Это полностью определяется его реальным часть з.реал и его мнимая часть з.имаг . В других слова:

Полярные координаты дают альтернативный способ представления комплекса число. В полярных координатах комплексное число z определяется модуль р и фазовый угол фи . Модуль R — это расстояние от до до начала координат, а фаза до против часовой стрелки угол, измеренный в радианах, от положительной оси х к прямой сегмент, который присоединяется к началу координат до z .

Следующие функции могут быть использованы для преобразования из родного прямоугольные координаты в полярные координаты и обратно.

смат. фаза ( x )

Возвращает фазу x (также известную как аргумент из x ), как плавать. фаза (x) эквивалентна math.atan2 (x.imag, x.real) . Результат лежит в диапазоне [- , ] и ветви разрез для этой операции лежит вдоль отрицательной реальной оси, непрерывный сверху.В системах с поддержкой подписанных нулей (что включает в себя большинство систем, используемых в настоящее время), это означает, что знак результата совпадает со знаком x.imag , даже если x.imag равно нулю:

 >>> фаза (сложная (-1,0, 0,0))
+3,141592653589793
>>> фаза (сложная (-1,0, -0,0))
-3,141592653589793
 

Примечание

Модуль (абсолютное значение) комплексного числа x может быть вычисляется с использованием встроенной функции abs () .Здесь нет Отдельная функция модуля cmath для этой операции.

смат. полярный ( x )

Возвращает представление x в полярных координатах. Возвращает пара (r, phi) , где r — это модуль x , а phi — это фаза х . полярный (х) эквивалентен (абс (х), фаза (х)) .

смат. прямой ( р , фи )

Вернуть комплексное число x с полярными координатами r и ph . Эквивалент r * (math.cos (phi) + math.sin (phi) * 1j) .

Силовые и логарифмические функции

смат. exp ( x )

Возврат е возведен в степень х , где е является основой естественного логарифмы.

смат. log ( x [, base ])

Возвращает логарифм x для заданного основания . Если база не является указан, возвращает натуральный логарифм x . Есть один срез ветки, от 0 вдоль отрицательной вещественной оси до -∞, непрерывной сверху.

смат. log10 ( x )

Возвращает логарифм по основанию-10 x .Это имеет тот же срез ветви как log () .

смат. кв.м. ( x )

Возвращает квадратный корень из х . Это имеет тот же срез ветви как log () .

Тригонометрические функции

смат. acos ( x )

Возвращаем арккосинус x . Есть два разреза веток: один простирается прямо от 1 вдоль вещественной оси до ∞, непрерывно снизу.Другой простирается влево от -1 вдоль вещественной оси до -∞, непрерывно сверху.

смат. asin ( x )

Возвращаем арксинус x . У этого есть те же самые сокращения ветви как acos () .

смат. atan ( x )

Возвращает арктангенс x . Есть два среза: один простирается от 1j вдоль мнимой оси до ∞j , непрерывно справа. другой простирается от -1j вдоль мнимой оси до -∞j , непрерывный слева.

смат. cos ( x )

Вернуть косинус х .

смат. грех ( x )

Вернуть синус х .

смат. загар ( x )

Возвращает тангенс x .

Гиперболические функции

смат. Acosh ( x )

Возвращает обратный гиперболический косинус x . Есть один срез ветки, простирается влево от 1 вдоль вещественной оси до -∞, непрерывно сверху.

смат. asinh ( x )

Вернуть обратный гиперболический синус x . Есть два среза веток: Один простирается от 1j вдоль мнимой оси до ∞j , непрерывный справа.Другой простирается от -1j вдоль мнимая ось до -∞j , непрерывная слева.

смат. atanh ( x )

Возвращает обратный гиперболический тангенс x . Есть две ветки у.е.

.
9,3. cmath — Математические функции для комплексных чисел — Документация Python 2.7.18

Этот модуль всегда доступен. Обеспечивает доступ к математическим функциям для комплексных чисел. Функции в этом модуле принимают целые числа, числа с плавающей точкой или комплексные числа в качестве аргументов. Они также примут любой объект Python, который имеет __complex __ () или __float __ () Метод: эти методы используются для преобразования объекта в сложный или число с плавающей точкой, соответственно, и функция затем применяется к Результат конвертации.

Примечание

На платформах с аппаратным и системным уровнем поддержки для подписанных нули, функции, включающие ответвления, непрерывны на и стороны ветви срезаны: знак нуля отличает один сторона ветки срезана с другой. На платформах, которые не Поддержка подписанных нулей непрерывности, как указано ниже.

9.3.1. Преобразования в и из полярных координат

Комплексный номер Python z хранится внутри, используя прямоугольный или декартовых координат.Это полностью определяется его реальным часть з.реал и ее мнимая часть з.имаг . В других слова:

Полярные координаты дают альтернативный способ представления комплекса число. В полярных координатах комплексное число z определяется как модуль r и фазовый угол фи . Модуль R — расстояние от до до начала координат, а фаза до против часовой стрелки угол, измеренный в радианах, от положительной оси х к прямой сегмент, который присоединяется к началу координат до z .

Следующие функции могут быть использованы для преобразования из родного прямоугольные координаты в полярные координаты и обратно.

смат. фаза ( x )

Возвращает фазу x (также известную как аргумент из x ), как плавать. фаза (x) эквивалентна math.atan2 (x.imag, x.real) . Результат лежит в диапазоне [-π, π] и ветви разрез для этой операции лежит вдоль отрицательной реальной оси, непрерывный сверху.В системах с поддержкой подписанных нулей (что включает в себя большинство систем, используемых в настоящее время), это означает, что знак результата совпадает со знаком x.imag , даже если x.imag равно нулю:

 >>> фаза (сложная (-1,0, 0,0))
3,1415926535897931
>>> фаза (сложная (-1,0, -0,0))
-3,1415926535897931
 

Примечание

Модуль (абсолютное значение) комплексного числа x может быть вычисляется с использованием встроенной функции abs () .Здесь нет Отдельная функция модуля cmath для этой операции.

смат. полярный ( x )

Возвращает представление x в полярных координатах. Возвращает пара (r, phi) , где r — это модуль x , а phi — это фаза х . полярный (х) эквивалентен (абс (х), фаза (х)) .

смат. прямой ( р , фи )

Вернуть комплексное число x с полярными координатами r и ph . Эквивалент r * (math.cos (phi) + math.sin (phi) * 1j) .

9.3.2. Степенные и логарифмические функции

смат. exp ( x )

Возвращает экспоненциальное значение e ** x .

смат. log ( x [, base ])

Возвращает логарифм x для заданного основания . Если база не указан, возвращает натуральный логарифм x . Есть один срез ветки, от 0 вдоль отрицательной вещественной оси до -∞, непрерывной сверху.

Изменено в версии 2.4: добавлен аргумент базы .

смат. log10 ( x )

Возвращает логарифм по основанию 10 x .Это имеет тот же срез ветви как log () .

смат. кв.м. ( x )

Возвращает квадратный корень из x . Это имеет тот же срез ветви как log () .

9.3.3. Тригонометрические функции

смат. acos ( x )

Возвращаем арккосинус x . Есть два разреза веток: один простирается прямо от 1 вдоль вещественной оси до ∞, непрерывно снизу.Другой простирается влево от -1 вдоль вещественной оси до -∞, непрерывно сверху.

смат. asin ( x )

Возвращаем арксинус x . У этого есть те же самые сокращения ветви как acos () .

смат. atan ( x )

Возвращает арктангенс x . Есть два среза: один простирается от 1j вдоль мнимой оси до ∞j , непрерывно справа. другой простирается от -1j вдоль мнимой оси до -∞j , непрерывный слева.

Изменено в версии 2.6: направление непрерывности верхнего реза изменено на

смат. cos ( x )

Возвращаем косинус х .

смат. грех ( x )

Вернуть синус х .

смат. загар ( x )

Возвращает тангенс x .

9.3.4. Гиперболические функции

смат. Acosh ( x )

Возвращает обратный гиперболический косинус x . Есть один срез ветки, простирается влево от 1 вдоль вещественной оси до -∞, непрерывно сверху.

смат. asinh ( x )

Вернуть обратный гиперболический синус x . Есть два среза веток: Один простирается от 1j вдоль мнимой оси до ∞j , непрерывный справа. Другой простирается от

.
способов обнаружения и устранения выбросов | Наташа Шарма

Работая над проектом Data Science, что вы ищете? Что является наиболее важной частью фазы EDA? Существуют определенные вещи, которые, если они не будут выполнены на этапе EDA, могут повлиять на дальнейшее статистическое / машинное обучение. Один из них находит «выбросы». В этом посте мы попытаемся понять, что такое выброс? Почему важно идентифицировать выбросы? Какие методы для выбросов? Не волнуйтесь, мы не будем просто проходить теоретическую часть, но мы также сделаем некоторое кодирование и построение графиков данных.

Определение Википедии,

В статистике выброс является точкой наблюдения, которая далека от других наблюдений.

Приведенное выше определение предполагает, что выброс - это нечто, отличное от толпы. Много видео мотивации предлагают отличаться от толпы, особенно Malcolm Gladwell. Что касается статистики, это тоже хорошо или нет? мы узнаем это через этот пост.

Google Image - Wikihow

Видите ли вы что-нибудь другое на изображении выше? Все числа в диапазоне 30-х, кроме номера 3.Это наша особенность, потому что она не рядом с другими числами.

Как мы теперь знаем, что такое выброс, но вас также интересует, как выброс представил населению?

Проект Data Science начинается со сбора данных, и именно тогда выбросы впервые представляются населению. Тем не менее, вы не будете знать о выбросах на этапе сбора. Выбросы могут быть результатом ошибки при сборе данных или просто признаком отклонения в ваших данных.

Давайте рассмотрим несколько примеров. Предположим, вас попросили понаблюдать за игрой индийской команды по крикету, т.е. запустить каждого игрока и собрать данные.

Собранные данные

Как видно из собранных выше данных, все другие игроки набрали 300+, кроме игрока 3, набравшего 10. Эта цифра может быть просто ошибкой набора или она показывает дисперсию в ваших данных и указывает на то, что Player3 работает очень плохо, поэтому нуждается в улучшении.

Теперь, когда мы знаем, что выбросы могут быть либо ошибкой, либо просто дисперсией, как бы вы решили, важны они или нет. Что ж, довольно просто, если они являются результатом ошибки, тогда мы можем их игнорировать, но если это просто дисперсия данных, нам нужно подумать немного дальше. Прежде чем мы попытаемся понять, следует ли игнорировать выбросы или нет, нам нужно знать способы их идентификации.

Большинство из вас могут думать, о! Я могу просто получить пик данных, чтобы найти выбросы так же, как мы это делали в предыдущем примере с крикетом.Давайте подумаем о файле с 500+ столбцами и 10k + строками. Вы все еще думаете, что выброс можно найти вручную? Чтобы облегчить обнаружение выбросов, у нас есть много методов в статистике, но мы обсудим только некоторые из них. В основном мы попытаемся увидеть методы визуализации (самые простые) скорее математическими.

Итак, начнем. Мы будем использовать набор данных о ценах Boston House, который включен в API набора данных sklearn. Мы загрузим набор данных и выделим функции и цели.

 boston = load_boston () 
x = boston.data
y = boston.target
columns = boston.feature_names # создать фрейм данных
boston_df = pd.DataFrame (boston.data)
boston_df.columns_ columns 9001 bost ()
Boston Housing Data

Особенности / независимая переменная будут использоваться для поиска любого выброса. Глядя на приведенные выше данные, кажется, у нас есть только числовые значения, то есть нам не нужно выполнять какое-либо форматирование данных. (Вздох!)

Мы будем следовать двум типам анализа, чтобы найти отклонения - Uni-variate (анализ выбросов одной переменной) и многовариантный (анализ выбросов двух или более переменных).Не заблуждайтесь правильно, когда вы начнете кодировать и составлять графики данных, вы сами увидите, как легко было обнаружить выброс. Для простоты мы начнем с базового метода обнаружения выбросов и постепенно перейдем к методам опережения.

Откройте для себя выбросы с помощью инструментов визуализации

Box plot-

Wikipedia Definition,

В описательной статистике box box - это метод для графического отображения групп числовых данных через их квартили.Графики боксов также могут иметь линий, проходящих вертикально от боксов ( усов ) , что указывает на изменчивости вне верхнего и нижнего квартилей, отсюда и термины «график с усами» и диаграмма «с усами». Выбросы могут быть , нанесены на график как отдельных пунктов.

Вышеприведенное определение предполагает, что при наличии выброса он будет отображаться как точка на блокпосте, но другие группы населения будут группироваться и отображаться в виде блоков.Давайте попробуем сами это увидеть.

 импорт seaborn as sns 
sns.boxplot (x = boston_df ['DIS'])
Boxplot - Расстояние до центра занятости

Над графиком показаны три точки от 10 до 12, это выбросы, так как они не включены в блок другое наблюдение, то есть не где около квартилей.

Здесь мы проанализировали Uni-Variate Outlier, то есть мы использовали столбец DIS только для проверки выброса. Но мы можем сделать многомерный анализ выбросов. Можем ли мы сделать многомерный анализ с помощью бокса? Ну, это зависит, если у вас есть категориальные значения, вы можете использовать это с любой непрерывной переменной и проводить многомерный анализ выбросов.Поскольку в нашем наборе данных Boston Housing нет категориальной ценности, нам, возможно, придется забыть об использовании блочного графика для многомерного анализа выбросов.

Точечная диаграмма -

Википедия Определение

Точечная диаграмма - это тип диаграммы или математическая диаграмма, использующая декартовы координаты для отображения значений, как правило, двух переменных для набора данных. Данные отображаются в виде набора точек , каждая из которых имеет значение , одну переменную , определяющую положение на горизонтальной оси , и значение , другую переменную , определяющую положение на вертикальной оси ,

Как следует из определения, точечная диаграмма - это набор точек, который показывает значения для двух переменных. Мы можем попытаться нарисовать диаграмму рассеяния для двух переменных из нашего набора данных жилья.

 fig, ax = plt.subplots (figsize = (16,8)) 
ax.scatter (boston_df ['INDUS'], boston_df ['TAX'])
ax.set_xlabel ('Доля сторонних торговых площадей) на город ')
ax.set_ylabel (' Ставка налога на полную стоимость недвижимости на 10 000 долларов США)
plt.show ()
Разбросанный участок - доля акций, не связанных с розничной торговлей, в расчете на город v / s Налог на полную стоимость недвижимости

На приведенном выше графике мы можем определить, что большинство точек данных лежат внизу слева, но есть точки, которые находятся далеко от населения, такие как верхний правый угол.

Обнаружение выбросов с математической функцией

Z-Score-

Wikipedia Definition

Z-Score - это число стандартных отклонений со знаком, на которое значение точки наблюдения или данных превышает среднее значение того, что наблюдается или измеряется.

Интуиция за Z-счетом состоит в том, чтобы описать любую точку данных, найдя их связь со стандартным отклонением и средним значением группы точек данных.Z-счет находит распределение данных, где среднее значение равно 0, а стандартное отклонение равно 1, то есть нормальное распределение.

Вам должно быть интересно, как это помогает в определении выбросов? Что ж, при расчете Z-показателя мы масштабируем и центрируем данные и ищем точки данных, которые слишком далеки от нуля. Эти точки данных, которые находятся слишком далеко от нуля, будут рассматриваться как выбросы. В большинстве случаев используется пороговое значение 3 или -3, т. Е. Если значение Z-показателя больше или меньше 3 или -3 соответственно, эта точка данных будет определяться как выбросы.

Мы будем использовать функцию Z-счета, определенную в библиотеке scipy, чтобы обнаружить выбросы.

 из scipy import stats 
import numpy as npz = np.abs (stats.zscore (boston_df))
print (z)
Z-показатель данных жилья в Бостоне

Глядя на код и выходные данные выше, трудно сказать какая точка данных является выбросом. Давайте попробуем определить порог для определения выброса.

порог
 = 3 
отпечатков (np.where (z> 3))

Это даст результат, как показано ниже -

Точки данных, где Z-показатели превышают 3

Не путайте результаты.Первый массив содержит список номеров строк и номеров соответствующих столбцов второго массива, которые означают, что z [55] [1] имеет Z-оценку выше 3.

 print (z [55] [1]) 3.375038763517309 

Так , точка данных - 55-я запись в столбце ZN является выбросом.

Оценка IQR -

На блочном графике используется метод IQR для отображения данных и выбросов (форма данных), но для того, чтобы получить список идентифицированных выбросов, нам нужно будет использовать математическую формулу и извлечь выброс данные.

Wikipedia Definition

Межквартильный диапазон ( IQR ), также называемый midspread или middle 50% , или технически H-спред , является мерой статистической дисперсии, равной разница между 75-м и 25-м процентилем, или между верхним и нижним квартилями, IQR = Q 3 - Q 1.

Другими словами, IQR - это первый квартиль, вычтенный из третьего квартиля; эти квартили можно отчетливо увидеть на графике на графике.

Это мера дисперсии, аналогичная стандартному отклонению или дисперсии, но гораздо более устойчивая к выбросам.

IQR в некоторой степени похож на Z-показатель с точки зрения определения распределения данных и последующего сохранения некоторого порога для определения выброса.

Давайте выясним, что мы можем построить график с использованием IQR и узнать, как мы можем использовать его для поиска списка выбросов, как мы это делали с помощью вычисления Z-показателя. Сначала мы рассчитаем IQR,

 Q1 = boston_df_o1.quantile (0.25) 
Q3 = boston_df_o1.quantile (0.75)
IQR = Q3 - Q1
print (IQR)

Здесь мы получим IQR для каждого столбца.

IQR для каждого столбца

Поскольку у нас теперь есть оценки IQR, пришло время ухватиться за выбросы. Приведенный ниже код даст вывод с некоторыми значениями true и false. Точка данных, где у нас есть False, означает, что эти значения действительны, тогда как True указывает на наличие выброса.

 print (boston_df_o1 <(Q1 - 1.5 * IQR)) | (boston_df_o1> (Q3 + 1.5 * IQR)) 
Обнаружение выбросов с помощью IQR

Теперь, когда мы знаем, как обнаружить выбросы, важно понять, нужны ли они быть удаленным или исправленным.В следующем разделе мы рассмотрим несколько методов удаления выбросов и, если необходимо, вменения новых значений.

Во время анализа данных, когда вы обнаруживаете выброс, одним из наиболее трудных решений может быть вопрос о том, как бороться с выбросом. Должны ли они удалить их или исправить их? Прежде чем говорить об этом, рассмотрим несколько методов устранения выбросов.

Z-счет

В предыдущем разделе мы видели, как можно определить выброс с помощью Z-счет, но теперь мы хотим удалить или отфильтровать выбросы и получить чистые данные.Это можно сделать с помощью всего одного строкового кода, поскольку мы уже рассчитали Z-показатель.

 boston_df_o = boston_df_o [(z <3) .all (axis = 1)] 
С размером выброса и без него из набора данных

Таким образом, вышеуказанный код удален на 90+ строк из набора данных, то есть были удалены выбросы.

IQR Score -

Точно так же, как Z-Score, мы можем использовать ранее рассчитанный IQR для фильтрации выбросов, сохраняя только действительные значения.

 boston_df_out = boston_df_o1 [~ ((boston_df_o1 <(Q1 - 1.5 * IQR)) | (boston_df_o1> (Q3 + 1.5 * IQR))). Any (axis = 1)] boston_df_out.shape 

Приведенный выше код удалит выбросы из набора данных.

Существует несколько способов обнаружения и устранения выбросов, но методы, которые мы использовали для этого упражнения, широко используются и просты для понимания.

Должен ли быть удален выброс или нет. Каждый аналитик данных / ученый данных может получить эти мысли один раз в каждой проблеме, над которой они работают. Я нашел несколько хороших объяснений -

https: // www.исследовательский портал

Чтобы суммировать их объяснения - неверные данные, неправильные расчеты, их можно идентифицировать как выбросы, и их следует отбросить, но в то же время вы можете захотеть исправить их тоже, поскольку они изменяют уровень данных i.е. означает, что вызывает проблемы при моделировании ваших данных. Для бывших 5 человек получают зарплату в 10, 20, 30, 40 и 50 тысяч, и вдруг один человек начинает получать зарплату в 100 тысяч. Рассмотрите эту ситуацию, так как вы являетесь работодателем, новое обновление зарплаты может показаться предвзятым, и вам может потребоваться увеличить зарплату другого сотрудника, чтобы сохранить равновесие. Таким образом, может быть несколько причин, по которым вы хотите понять и исправить выбросы.

В этом упражнении мы видели, как на этапе анализа данных можно столкнуться с некоторыми необычными данными i.Выражение Мы узнали о методах, которые можно использовать для обнаружения и устранения этих выбросов. Но возник вопрос о том, можно ли убрать выбросы. Чтобы ответить на эти вопросы, мы нашли дальнейшие чтения (эти ссылки упоминаются в предыдущем разделе). Надеюсь, что этот пост помог читателям узнать Outliers.

Примечание- Для этого упражнения использовались следующие инструменты и библиотеки.

Framework - Jupyter Notebook, Language - Python, Библиотеки - библиотека sklearn, Numpy, Panda и Scipy, Plot Lib - Seaborn и Matplot.

  1. Boston Dataset
  2. Github Repo
  3. KDNuggets выбросы
  4. Обнаружение выбросов
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *