Допустимый перекос фаз – Перекос фаз. Причины возникновения и устранение. Защита

Содержание

Перекос фаз. Причины возникновения и устранение. Защита

В трехфазной электрической сети на каждой фазе должно быть одно и то же напряжение, с допустимым отклонением. Если напряжение распределено по фазам неравномерно, то возникает перекос фаз. В результате такого явления в промышленном оборудовании (электродвигатели, трансформаторы) происходит значительное уменьшение мощности. В бытовых условиях такой перекос между фазами может привести к неисправностям электрических устройств и других потребителей энергии.

Когда электрические устройства подключены на одну фазу, то есть риск возникновения перекоса между фазами. Чтобы не допускать нарушения снабжения электрической энергией, необходимо разобраться в том, от чего возникает такое отрицательное явление.

Причины возникновения

Существуют разные причины перекоса по напряжению между фазами. Основной популярной причиной стало неравномерное и неграмотное распределение нагрузки по фазам сети. При появлении перекоса на участке с трехфазным питанием, можно говорить о том, что некоторые фазы эксплуатируются с чрезмерной нагрузкой, а третья фаза нагружена незначительно.

Чаще всего однофазные нагрузки в виде бытовых электрических устройств подключают на одну фазу. Поэтому перекос фаз появляется при одновременном запуске нескольких мощных устройств. Начальными признаками перекоса являются работающие бытовые приборы, у которых заметно снизилась мощность, либо они совсем отключились. При этом приборы освещения стали выдавать тусклый свет, а лампы дневного света при этом мерцают.

Для более точного определения того, есть ли перекос фаз, нужно вызвать специалиста, и на месте провести тщательную проверку. Только путем проведения измерений можно выявить разницу в напряжении на разных фазах.

Последствия и опасность

Главная опасность этого явления состоит в некорректной работе бытовых устройств, и возникновения возможности выхода их из строя. Максимальная часть отрицательных последствий приходится на разные виды электрических двигателей, установленных в различной бытовой технике.

Отрицательные факторы влияния перекоса фаз делятся на три вида:
  1. Возникновение неисправностей подключенных электрических устройств, оборудования и приборов, снижение их срока эксплуатации.
  2. Неисправности источников электроэнергии: повреждения, повышение расхода энергии, снижение срока службы источника.
  3. Негативные факторы для потребителей энергии: повышение затрат на оплату электроэнергии, вероятность получения травм, необходимость проведения ремонта и обслуживания электрооборудования.

Если перекос фаз образовался на автономной отдельной электростанции, то потребление топлива и смазочных материалов в этом случае существенно повысится, а генератор может выйти из строя. Если на одной фазе напряжение выше, чем на двух других фазах, то нарушается электробезопасность, что может привести к возгоранию электропроводки и оборудования.

В результате видно, что последствия этого отрицательного явления существенные, их устранение и решение может привести к значительному материальному ущербу. Для предотвращения таких негативных ситуаций, необходимо заблаговременно принять соответствующие меры.

Способы защиты

Для нормальной эксплуатации трехфазной сети, а также чтобы напряжение на отдельной фазе соответствовала номинальному значению, необходимо применять специальные приборы и устройства. Обычно для этого подключают стабилизатор напряжения.

В быту применяются однофазные исполнения, способные защитить электрооборудование. В производственных условиях используется 3-фазный стабилизатор, включающий в себя три однофазных устройства. Однако полностью устранить фазные перекосы эти приборы не способны, так как они выравнивают напряжение в одной фазе.

Иногда такие устройства сами создают условия для неравномерного распределения электроэнергии. Эта проблема может решиться только с помощью специальных технологий, выравнивающих напряжение между всеми фазами.

Существует несколько способов защиты:
  • Использование устройств, выравнивающих нагрузку по фазам в автоматическом режиме.
  • Создание проекта снабжения электрической энергией объекта с учетом предполагаемых значений нагрузок.
  • Изменение электрической схемы цепи с учетом мощности потребителей.
  • Подключение специального реле, которое будет контролировать величину напряжения на фазах, и отключать питание при выявлении несимметрии.

Такими методами можно защитить электрические устройства от неисправностей, и исключить перекос напряжения.

Симметрирующий трансформатор

Чтобы предотвратить перекос напряжений между фазами и поддерживать определенное значение фазного напряжения, следует применять специальную технологию, позволяющую выравнивать значение напряжения не отдельно на некоторой фазе, а обеспечивать симметричность всех трех фаз, то есть всю трехфазную сеть. Такая альтернативная технология реализована в симметрирующем трансформаторе.

Диапазон измерений
Такой инновационный прибор может работать при 100-процентном перекосе напряжения и способен устранить фазный перекос напряжений в широком интервале их изменений, при любых причинах возникновения этого негативного явления:
  • Перекос во входной сети пинания, возникший вследствие повреждений распределительной сети.
  • Неравномерное разделение нагрузок между фазами.
  • Включение в работу мощного устройства.
  • Смешанные причины перекоса.
Практическое использование
Задачами, разрешаемыми путем включения в работу симметрирующего трансформатора, являются:
  • Равномерное распределение потребителей между фазами.
  • Устранение перекоса фазных напряжений (выравнивание всех фаз между собой в трехфазной сети).
  • Поддержание заданного значения напряжения на каждой фазе.
  • Преобразование трехфазной электрической сети питания в 1-фазную сеть:
    — с гальванической развязкой сети питания и потребителя электроэнергии;
    — без гальванической развязки;
    — с изменением (повышением или снижением) напряжения на его выходе.
  • Преобразование трехфазной сети, состоящей из трех проводов, в трехфазную сеть с четырьмя проводами (создание рабочего нулевого провода для возможности подсоединения нагрузки на фазу).
  • Возможность получения 50% 3-фазной мощности с одной фазы.
  • Применение генераторов с меньшей мощностью для такой же группы потребителей.
  • Включение в работу более мощных нагрузок при ограничениях на допустимую мощность из общей государственной сети, либо при работе от автономного источника.
  • Во время промерзания трубопроводов или обледенения проводов возможен отогрев этих коммуникаций, а также другого оборудования.
Допустимые нормы на перекос фаз

Основным рабочим документом, регламентирующим качество электрической энергии, и нормы несимметрии в трехфазной сети считается ГОСТ13109-97, а допускаемое отклонение нагрузок определяется по документу СП31-110, в котором для вводно-распределительных устройств допускаются разница величины нагрузок между фазами не более 15%, а для распределительных щитов – не более 30%.

Похожие темы:

electrosam.ru

что это такое, причины, последствия, защита

Самая распространенная проблема, порождающая массу деструктивных последствий – перекос фаз в трехфазной сети (до 1,0 кВ) с глухозаземленной нейтралью. При определенных условиях такое явление может вывести из строя электрические приборы и создать угрозу для жизни. Учитывая актуальность проблемы, будет полезным узнать, что представляет собой несимметрия токов и напряжений, а также причины ее возникновения. Это позволит выбрать наиболее оптимальную стратегию защиты.

Что такое перекос фаз?

Данный термин используется для описания состояния сети, при котором возникают неравномерные нагрузки между фазами, что приводит к возникновению перекоса. Если составить векторную диаграмму идеальной трехфазной сети, то она будет выглядеть так, как показано на рисунке ниже.

Диаграмма напряжений в идеальных трехфазных сетяхДиаграмма напряжений в идеальных трехфазных сетях

Как видно из рисунка, в данном случае равны как линейные напряжения (АВ=ВС=СА=380,0 В), так и фазные (АN=ВN=СN=220,0 В). К сожалению, на практике добиться такого идеального равенства нереально. То есть, линейные напряжения сети, как правило, совпадают, в то время как в фазных наблюдаются расхождения. В некоторых случаях они могут превысить допустимый предел, что приведет к возникновению аварийной ситуации.

Пример диаграммы напряжений при возникновении перекосаПример диаграммы напряжений при возникновении перекоса

Допустимые нормы значений перекоса

Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.

Нормы несимметрии напряжения  ГОСТ 13109-97
Нормы несимметрии напряжения  ГОСТ 13109-97

Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.

Вырезка из СП 31-110 (п 9.5)Вырезка из СП 31-110 (п 9.5)

Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность. Первая считается основной, она определяет номинальное напряжение. Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.

Причины перекоса фаз в трехфазной сети

Как уже упоминалось выше, данное состояние электросети чаще всего вызвано неравномерным подключением нагрузки на фазы и обрывом нуля. Чаще всего это проявляется в сетях до 1, кВ, что связано с особенностями распределения электроэнергии, между однофазными электроприемниками.

Обмотки трехфазных силовых трансформаторов подключаются «звездой». Из места соединения обмоток отводится четвертый провод, называемый нулевым или нейтралью. Если происходит обрыв нулевого провода, то в сети возникает несимметрия напряжений, причем перекос напрямую будет зависеть от текущей нагрузки. Пример такой ситуации приведен ниже. В данном случае RН это сопротивления нагрузок, одинаковые по значению.

Перекос фаз, вызванный обрывом нейтралиПерекос фаз, вызванный обрывом нейтрали

В данном примере напряжение на нагрузке, подключенной к фазе А, превысит норму и будет стремиться к линейному, а на фазе С упадет ниже допустимого предела. К подобной ситуации может привести перекос нагрузки, выше установленной нормы. В таком случае напряжение на недогруженных фазах повысится, а на перегруженных упадет.

К перекосу напряжений также приводит работа сети в неполнофазном режиме, когда происходит замыкание фазного провода на землю. В аварийных ситуациях допускается эксплуатация сети в таком режиме, чтобы обеспечить электроснабжение потребителям.

Исходя из вышесказанного, можно констатировать три основные причины перекоса фаз:

  1. Неравномерная нагрузка на линии трехфазной сети.
  2. При обрыве нейтрали.
  3. При КЗ одного из фазных проводов на землю.

Несимметрия в высоковольтных сетях

Вызвать подобное состояние в сети 6,0-10,0 кВ иногда может подключенное к ней оборудование, в качестве характерного примера можно привести дугоплавильную печь. Несмотря на то, что она не относится к однофазному оборудованию, управление тока дуги в ней производится пофазно. В процессе плавки также могут возникнуть несимметричные КЗ. Учитывая, что существуют дугоплавильные установки запитывающиеся от напряжения 330,0 кВ, то можно констатировать, что и в данных сетях возможен перекос фаз.

В высоковольтных сетях перекос фаз может быть вызван конструктивными особенностями ЛЭП, а именно, разным сопротивлением в фазах. Чтобы исправить ситуацию выполняется транспозиция фазных линий, для этого устанавливаются специальные опоры. Эти дорогостоящие сооружения не отличаются особой прочностью. Такие опоры не особо стремятся устанавливать, предпочитая пожертвовать качеством электроэнергии, чем надежностью ЛЭП.

Опасность и последствия

Считается, что наиболее значимые последствия несимметрии связаны с низким качеством электроэнергии. Это, безусловно, так, но нельзя забывать и о других негативных воздействиях. К таковым относится образование уравнительных токов, вызывающих увеличение расхода электрической энергии. В случае с трехфазным автономным электрическим генератором это также приводит к повышенному расходу дизеля или бензина.

При равномерном подключении нагрузки, геометрическая сумма проходящих через нее токов была бы близкой к нулю. Когда возникает перекос, растет уравнительный ток и напряжение смещения. Увеличение первого приводит к росту потерь, второго – к нестабильному функционированию бытовых приборов или другого оборудования, срабатыванию защитных устройств, быстрому износу электроизоляции и т.д.

Перечислим, какие последствия можно ожидать, когда появляется перекос:

  1. Отклонение фазного напряжения. В зависимости от распределения нагрузок возможно два варианта:
  • Напряжение выше номинального. В этом случае большинство электрических устройств, оставленных включенными в бытовые розетки, с большой вероятностью выйдут из строя. При срабатывании защиты результат будет менее трагическим.
  • Напряжение падает ниже нормы. Увеличивается нагрузка на электродвигатели, происходит падение мощности электромашин, растут пусковые токи. Наблюдаются сбои в работе электроники, устройства могут отключиться и не включаться пока перекос не будет устранен.
  1. Увеличивается потребление электричества оборудованием.
  2. Нештатная работа электрооборудования приводит к уменьшению эксплуатационного срока.
  3. Снижается ресурс техники.

Не следует забывать, что перекос может создать угрозу для жизни. При превышении номинального напряжения вероятность КЗ в проводке не велика, при условии, что она не ветхая, а кабель подобран правильно. Более опасны в этом случае электроприборы, подключенные к сети. Когда появляется перекос, может произойти КЗ на корпус или возгорания электроприбора.

Защита от перекоса фаз в трехфазной сети

Наиболее простой, но, тем не менее, эффективный способ минимизировать негативные последствия описанного выше отклонения — установить реле контроля фаз. С внешним видом такого устройства и примером его подключения (в данном случае после трехфазного счетчика), можно ознакомиться ниже.

Реле контроля фаз (А) и пример схемы его подключения (В)Реле контроля фаз (А) и пример схемы его подключения (В)

Данный трехфазный автомат может обладать следующими функциями:

  1. Производить контроль амплитуды электротока. Если параметр выходит за установленные границы, нагрузка отключается от питания. Как правило, диапазон срабатывания прибора можно настраивать в соответствии с особенностями сети. Данная опция имеется у всех приборов данного типа.
  2. Проверка очередности подключения фаз. Если чередование неправильное питание отключается. Данный вид контроля может быть важен для определенного оборудования. Например, при подключении трехфазных асинхронных электромашин от этого зависит, в какую сторону будет происходить вращение вала.
  3. Проверка обрыва на отдельных фазах, при обнаружении такового нагрузка отключается от сети.
  4. Функция отслеживает состояние сети, как только появляется перекос, происходит срабатывание.

Совместно с реле контроля фаз можно использовать трехфазные стабилизаторы напряжения, с их помощью можно несколько улучшить качество электроэнергии. Но данный вариант не отличается эффективностью, поскольку такие приборы сами могут взывать нарушение симметрии, помимо этого на стабилизаторах возникают потери.

Лучший способ симметрировать фазы – использовать для этой цели специальный трансформатор. Этот вариант выравнивания фаз может дать результаты, как при неправильном распределении однофазных нагрузок на автономный 3-х фазный генератор электроэнергии, так и в более серьезных масштабах.

Защита в однофазной сети

В данном случае повлиять на внешние проявления системы электроснабжения не представляется возможным, например, если фазы перегружены, потребители электроэнергии не могут исправить ситуацию. Все, что можно сделать, это обезопасить электрооборудование путем установки реле напряжения и однофазного стабилизатора.

Имеет смысл установить общее стабилизирующее устройство на всю квартиру или дом. В этом случае необходимо высчитать максимальную нагрузку, после этого добавить запас 15-20%.. Это запас на будущее, поскольку со временем количество электрооборудования может увеличиться.

Совсем не обязательно подключать к стабилизатору сети все оборудование, некоторые виды приборов (например, электропечи или бойлеры), могут быть подключены к реле напряжения (через АВ)  напрямую. Это позволит сэкономить, поскольку устройства меньшей мощности стоят дешевле.

www.asutpp.ru

Нормы на перекос фаз

perekos-faz-kakie-normyi-na-perekos-faz-1

Перекос фаз явление в электротехнике встречающееся довольно часто. Практики хорошо знакомы с ним и знают его последствия. А вот причина негативных его проявлений далеко не всем понятна.

Сначала давайте определимся в терминах.  Речь идет о разнице напряжений, между фазами в трехфазной сети или фазными и нулевым проводником в той же трехфазной цепи. Под перекосом мы будем понимать различие этих напряжений.

Напомним, что любая трехфазная цепь может быть выполнена с «глухо заземлённой нейтралью» либо с «изолированной нейтралью». Первая имеет три фазных проводника и, так называемый, нулевой провод. Вторая только три фазных проводника. Соответственно, потребители в первой цепи могут быть соединены как в треугольник, так и на звезду. Во второй только в треугольник. В сети 380/220 В с глухо заземлённой нейтралью потребители, в подавляющем большинстве случаев, подключены по схеме «звезда». Это относится как к асинхронным двигателям, так и к «осветительным нагрузкам». О таких случаях мы будем вести речь в дальнейшем. Сделаем одно замечание. Сопротивление питающих линий является конечным, носит омический характер и должно учитываться при расчете трехфазной цепи.

Так называемый перекос фаз, является отклонением от нормальной разницы между мгновенными значениями линейных напряжений, либо результатом изменения фазового угла между линейными напряжениями. Последний случай можно исключить из рассмотрения, так как он встречается крайне редко.

Когда мы определились с терминами можно перейти к рассмотрению вопроса по существу. И тут становиться всё просто. Предположим, что все нагрузки у нас осветительные. Под этим термином понимают активные нагрузки, например в виде ламп накаливания. Ещё, предположим, что к одной из фаз подключено лампочек значительно больше чем к остальным. Токи, протекающие через них, по законам Кирхгофа будут протекать не только через нулевой проводник но, и через других потребителей. В результате падение напряжения на потребителях других фаз неизбежно вырастет. Это и вызывает перекос фаз.

perekos-faz-kakie-normyi-na-perekos-faz-2Все это можно объяснить и через напряжения. Большой ток одной из фаз создает небольшое, но вполне реальное падение напряжения в нулевом проводе. Это напряжение сдвинуто на угол 120о относительно других фаз. Поэтому напряжение, приложенное к их нагрузкам, является суммой фазного напряжения и напряжения на нулевом проводе.

Крайним случаем перекоса фаз является однофазное замыкание на «землю». В этом случае токи короткого замыкания будут протекать и через потребителей, питающихся от двух других фаз что, неизбежно, вызовет перенапряжение в них.

Ещё одним из случаев того же порядка является обрыв нулевого провода. При этом также нарушается баланс токов в нагрузках. Напряжения в сети могут изменяться крайне непредсказуемо, в зависимости от величины  нагрузки на каждую из фаз. Практики знают, что напряжения в бытовых розетках, в этих условиях могут достигать даже линейных значений. Ещё перекос фаз возникает при обрыве одного из фазных проводников. Такой режим называется неполнофазным.  

В любом случае перекос фаз ведёт к экономическим потерям, связанным с протеканием токов в нулевом проводнике. В теоретических основах электротехники (ТОЭ) для таких расчётов вводят понятия токов прямой, обратной и нулевой последовательностей.

Ещё раз. Существенное увеличение тока одной из фаз трехфазной сети, потребители которой соединены в звезду, незамедлительно ведёт за собой увеличение напряжения на нагрузках других фазных проводов. При этом напряжение перегруженной фазы относительно нулевого провода понижается. Чем это чревато? У ламп накаливания значительно сокращается срок службы либо светоотдача, у асинхронных двигателей, подключенных к такой сети, ухудшается КПД. В конце концов, повышенное напряжение может вывести из строя электронные приборы.

Ещё одно негативное явление это появление гармоник высших порядков при питании различных электрических машин от несбалансированной сети. Речь идет о двигателях, трансформаторах и генераторах. Это связанно с процессами, протекающими в их магнитопроводах.  Гармоники высших порядков часто вызывают сбои в работе электронного оборудования. Поэтому при проектировании электрических сетей необходимо равномерно распределять нагрузки по фазам. Своды правил по проектированию считают предельным разброс нагрузок в 30% в распределительных щитках, а для вводных распредустройств 15%.

Какие требования предъявляются к перекосу фаз нормативными документами? Основным документом, определяющим качество электроэнергии, является ГОСТ 13109-97. Его требования выражаются в терминах нулевых и обратных последовательностей. Не уверены, что стоит грузить читателя столь сложными материями.

Конечно, выявить перекос фаз не сложно с помощью простейших приборов не прибегая к посторонней помощи. Но провести анализ причин перекоса фаз, выработать конкретные рекомендации по его устранению могут только профессиональные специалисты. Наша электролаборатория выполняет любые электротехнические измерения. Мы прошли государственную аккредитацию и имеем соответствующие документы.  Мы с радостью поможем решить ваши проблемы.

Похожие статьи

Поддержите наш проект, поделитесь ссылкой!

elektrolaboratoriya.com

Какие нормы на перекос фаз?

О компании » Вопросы и ответы » Какие нормы на перекос фаз?

Настоятельно рекомендуем избегать перекоса фаз на строящихся объектах, и особенно на объектах, которые реконструируются. Очень просто этого избежать ещё на стадии проектирования, когда проектировщик исходя из данных мощностей электрооборудования, распределяет нагрузки равномерно. Бывают случаи, когда расчёты оказываются неверными по тем или иным причинам и происходит перекос фаз. Нужно очень внимательно следить за соблюдением нормативных  документов для исключения аварийных ситуаций.

Баланс нагрузок между фазными проводниками питающей сети зданий общественного назначения должно быть распределено таким образом, чтобы соотношение между токами наиболее загруженных и наименее загруженных фазных проводников не выходило за пределы 30% в распределительных щитах или щитках и 15% в панелях ВРУ. Прочитать данный норматив вы можете в СП 31-110, редакции 2003 года, пункт 9.5.

Так-же рекомендуем Вам ознакомиться с ГОСТ 13109-97 — О КАЧЕСТВЕ ЭЛЕКТРО ЭНЕРГИИ, п.п 5.5. В этом пункте говорится о несимметрии напряжений (в простонародии «перекос фаз») характеризующиеся следующими показателями: 1. коэффициентом несимметрии напряжений по обратной последовательности; 2. коэффициентом несимметрии напряжений по нулевой последовательности. Допустимые значения коэффициента несимметрии напряжений равны 2,0 и 4,0 % соответственно. 

Это касается всех, кто не доволен низким напряжение в сети, в следствии чего, горение светильников происходит в пол накала, скачками напряжения выражающимися кратковременными вспышками тех-же светильнов. Эти признаки очень часто встречаются в дачных кооперативах, садовых товариществах и деревнях. Если вас тревожат данные проблемы обращайтесь в электролабораторию и мы поможем их решить.

Основным и практически единственным способом проверить и определить перекос фаз является измерение токов на фазных проводниках в ВРУ или распределительных щитах. Данное измерение проводится токовыми клещами, например, наши инженеры пользуются цифровыми клещами токоизмерительными CMP-1. Они точные и очень удобны своим маленьким размером, позволяющим подлезть к любому проводнику в стеснённых условиях. Необходимо при максимально полной нагрузке измерить протекающий ток и сравнить показания. Эти показания не должны отличаться на 15% в ВРУ и на 30% в распределительных щитах.

Внимание: перекос фаз может повлиять на работоспособность бытовой техники и даже вывести её из строя!

Важным параметром фаз является правильное чередование. Соблюдение правильности чередования фаз важно в случаях подключения электродвигателей. При нарушении чередования фаз, двигатель может вращаться в обратную сторону или выйти из строя. Проверить чередование фаз можно прибором TKF-11.

www.megaomm.ru

Перекосы фазы в трехфазных и однофазных сетях тока (ПУЭ): причины и допустимые значения

Рассмотренное в этой публикации явление уменьшает КПД подключенного оборудования, провоцирует аварии. В некоторых ситуациях создает угрозу для жизни и здоровья пользователей. Устранить перекос фаз и обеспечить безопасную эксплуатацию техники можно с помощью комплекса специальных мероприятий.

Типичная причина подобных аварийных ситуаций – перекос фаз 

Типичная причина подобных аварийных ситуаций – перекос фаз

Основные понятия перекоса фаз и параметров сети

Что делать, если перегорел электрический чайник? Замена ТЭНа сопоставима с покупкой нового изделия, поэтому правильное решение кажется очевидным. Однако до посещения магазина следует уточнить, почему произошла авария. Такой подход позволит выявить причину неисправности. Устранение негативных воздействий предотвратит повреждение стиральной машины, кондиционера, телевизора, другой дорогой техники.

Принципиальная схема подключения нагрузок

Принципиальная схема подключения нагрузок

Электропитание частного дома, как правило, организуют по трехфазной схеме. На рисунке показано типовое распределение подключаемых устройств на несколько групп. Такой способ применяют для равномерного распределения нагрузки. Камины, станки, насосы подключают к трем фазам с учетом высокой потребляемой мощности.

Специальные клещи пригодятся для измерения тока в отдельных линиях без нарушения целостности цепей. С помощью мультиметра можно проверить напряжение в контрольных точках. Результаты исследования помогут исправить ошибки.

Диаграммы напряжений

Диаграммы напряжений

В идеальной ситуации соблюдается равенство фазных напряжений. На второй части рисунка показан типичный перекос. Открыв инструкцию производителя, можно узнать рекомендованные технические параметры (220-240 V). Таким образом, при подключении техники в линию А-N допустимый максимум будет превышен почти на 20%: (285-240)/2,4 = 18,75. В этих условиях сильный ток способен вызвать чрезмерный нагрев ТЭНа, вплоть до разрушения.

К сведению. Подобное нарушение правил эксплуатации лишает прав на получение компенсации по официальным гарантиям.

Допустимые значения

Действующими правилами ПУЭ и стандартами ГОСТ 32144-2013 установлены предельные отклонения по несимметричному распределению напряжений в сетях 380 V. Контрольные параметры определяются специальными коэффициентами. Предельные значения не должны превышать 2% (4 %) для нулевой (обратной) последовательности, соответственно.

К сведению. Отмеченные определения выражают в векторной форме. В формулах для расчетов реальную систему с имеющимися отклонениями представляют как сумму симметричных компонентов.

Также для контроля применяют максимальное допустимое отклонение измеренных фазных токов. Отдельные нормы утверждены для типовых распределительных устройств:

  • ВРУ – 15%;
  • ЩР – 30%.

Причины возникновения явления

Кроме различных нагрузок, опасный режим эксплуатации может возникать при обрыве нулевого провода. Эту ситуацию можно рассмотреть на примере типового силового трансформатора, обмотки которого соединены по схеме «звезда».

Обрыв нейтрали

Обрыв нейтрали

Если разорвать цепь, обозначенную на рисунке стрелкой, линия фазы «С» фактически будет выполнять функции нулевого проводника. Именно в этом участке для прохождения тока создаются самые благоприятные условия. По классическим формулам можно посчитать эквивалентное электрическое сопротивление при параллельном соединении нагрузок:

Rэкв = R1*R2*R3/(R1*R2 + R2*R3 + R1*R3).

Если использовать для примера одинаковую величину Rн = 50 Ом, для этого участка Rэкв = 125 000 / (2 500 + 2 500 + 2 500) ≈ 17 Ом.

В новой «нейтрали» напряжение может увеличиться до максимального уровня 380 V. На такой уровень типовая бытовая техника не рассчитана. Одновременно может уменьшиться до 130 V и даже ниже напряжение в связанном контуре линии «А».

Третья типовая причина несимметричности – короткое замыкание фазы на корпус или другую часть конструкции электроустановки, соединенной с заземлением.

Несимметрия в высоковольтных сетях

На выходах генератора, созданного по схемотехнике синхронной машины, стабильность рабочих параметров обеспечивается принципом работы соответствующего оборудования. Однако в некоторых случаях не исключены искажения. Асинхронные ветрогенераторы, например, создают разные уровни напряжений.

В распределительных устройствах подобный дисбаланс – редкое явление. Однако воздушные линии электропередач не создают идеально симметричными. При больших расстояниях увеличивается длина проводников, возрастает разница электрических сопротивлений. Для корректировки по специальной технологии транспозиции устанавливают особые опорные элементы.

Надо отметить! С целью экономии средств подобные конструкции применяют редко.

Асимметрия на стороне нагрузки

В этой части системы однофазный сварочный аппарат или промышленная плавильная установка способна провоцировать рассматриваемые искажения. В частном домохозяйстве нагрузки не подключают с учетом соблюдения правильной пропорциональности.

Асимметричное распределение потребителей электроэнергии по фазам

Асимметричное распределение потребителей электроэнергии по фазам

Опасность и последствия перекоса

Очевидные неприятности, которые провоцирует перекос фаз в трехфазной сети, следует дополнить особенностями эксплуатируемого оборудования. Автономный генератор в таком режиме работы будет выполнять свои функции с худшим КПД. Увеличение компенсационного тока сопровождается дополнительным расходом энергии (топливных ресурсов).

Отклонение напряжения от номинала проявляется следующим образом:

  • высокий уровень провоцирует короткое замыкание, срабатывание защитных автоматов, ухудшает состояние изоляционных оболочек;
  • низкий – уменьшает мощность силовых агрегатов, увеличивает пусковые токи, нарушает функциональность электронных схем.

Отдельно следует подчеркнуть опасные последствия перекоса, если через цепь проходит слишком высокий ток. Чрезмерный нагрев на открытых участках – типичная причина пожаров. Восстановление испорченной проводки в глубине строительных конструкций сопровождается значительными затратами.

Меры защиты

Как бороться с негативными проявлениями, станет понятно после детального изучения определенного проекта. Общая рекомендация – обеспечение равномерного распределения (подключения) нагрузок. Но выполнить это условие не всегда возможно. Наличие разнообразных однофазных потребителей значительно усложняет задачу.

Защита от перекоса фаз в трехфазной сети

Эффективный и достаточно простой способ защиты – специализированное реле. Это устройство в непрерывном режиме контролирует состояние отдельных фаз. При выходе параметров за границы определенного диапазона источник питания отключается.

Регулировка напряжения в трехфазном реле

Регулировка напряжения в трехфазном реле

Дополнительные функции прибора пригодятся на практике. Динамический контроль подключения отдельных фаз (очередности) окажет помощь при работе с асинхронными электродвигателями. Эта опция предотвратит вращение ротора в обратную сторону. Автоматическое отключение источника при разрыве цепи исключит рассмотренные выше аварийные ситуации.

Защита в однофазной сети

Эта часть системы не способна оказать корректирующее влияние на электроснабжение. Для защиты нагрузок по току (напряжению) устанавливают защитные автоматы. Чтобы поддерживать электрические параметры питания на оптимальном уровне, применяют стабилизаторы.

Как исправить проблему с перекосом фаз

Представленные ниже специализированные устройства выбирают с определенным запасом по мощности (20-25%). Это продлит срок службы оборудования, упростит перемещение техники и подключение новых нагрузок. Для экономии средств можно создать защиту только для отдельных групп потребителей.

Стабилизатор

Такие аппараты можно использовать для поддержания заданного уровня напряжения в одной или трех фазах. Как правило, дополнительно обеспечивается фильтрация импульсных помех. Дорогие модели формируют на выходе сигнал с минимальными искажениями синусоиды.

Современный электронный стабилизатор с индикацией рабочих параметров на ЖКИ экране

Современный электронный стабилизатор с индикацией рабочих параметров на ЖКИ экране

Симметрирующий трансформатор

Технику этой категории в соответствующем исполнении применяют в одно,- и трехфазных сетях. С ее помощью:

  • обеспечивают одинаковое распределение нагрузки для источника электропитания вне зависимости от реального распределения токов по фазным линиям;
  • предотвращают падение напряжения (сглаживают переходной процесс) при подключении мощных двигателей и других изделий с индуктивными характеристиками;
  • оптимизируют потребление электроэнергии, когда нагрузка отличается выраженными реактивными параметрами внутреннего сопротивления.

Вместо симметрирующего трансформатора для устранения перекоса применяют комплекты конденсаторов. Также используют комбинированное включение емкостных/ индуктивных компенсационных элементов.

Видео

amperof.ru

Перекос фаз – опасен для жизни и потребителей энергии

Приветствую, дорогой читатель! Спасибо, что проявили интерес к моему дневнику…

Перекос фаз в электросети возникает при неравномерном распределении потребителей энергии и обрыве нулевого провода. Для предупреждения аварийной ситуации и устранения опасности следует придерживаться выверенных рекомендаций и использовать специальные приборы.

Перед тем, как перейти к рассмотрению вопроса — чем же опасен перекос фаз, не помешает небольшое отступление.

В примитивном виде электросеть можно представить в виде генератора, от которого электричество поступает по двум проводам. Нагрузкой могут быть лампочки, электродвигатели и другие устройства.

Наглядным примером может служить, например, однофазный бензоэлектрический агрегат, используемый как аварийный источник электроэнергии. С появлением трехфазного электричества простейшая схема электросети усложнилась.

Родоначальником электрической сети из 3-х фаз считается Доливо-Добровольский. Ее предложил русский ученый в 1891 году. С тех пор в электроэнергетике наблюдается небывалый прорыв. В ближайшем будущем отсутствует какая-либо тенденция ее замены.

Изначально электросеть с тремя фазами создавалась как источник питания для соответствующих нагрузок. В частности, она неплохо согласуется с электродвигателями, когда все три напряжения одинаковы.

Подключение однофазных нагрузок, например, лампочек и компьютеров, к трехфазной сети создает ситуацию, когда напряжения могут стать уже не одинаковыми, и возникает перекос фаз.

Напряжения в трехфазной сети

Вначале перед тем, как перейти к рассмотрению вопроса о перекосе фаз и к какой опасности он приводит, не лишним будет напоминание о видах напряжений, существующих в трехфазной сети, и некоторых других нюансах.

perekos-faz1

Напряжения (токи) рассматриваемой сети, по отношению к активной нагрузке, сдвинуты по циклу на 120 градусов. Между любыми двумя фазами присутствует линейное напряжение, величина которого составляет 380 В. Провод любой из трех фаз, по отношению к нулевому проводу, имеет значение напряжения 220 В, которое называется фазным напряжением.

В современных электрических кабелях жилы имеют цветовую окраску, в соответствии с которой принято их подключать к электросети. Нулевой проводник всегда обозначается синим цветом, а «земляной» — желтым с зелеными полосками.

Для подключения линейного напряжения используются любые другие цвета, кроме отмеченных двух. В зависимости от производителя кабелей набор цветных проводников, подключаемых к фазным шинам, может варьироваться в различных сочетаниях.

Если потребитель электроэнергии нуждается в однофазном напряжении, то он аналогично и называется. К нему подводится как минимум два провода, не считая «земляного», от нейтрали и провода фазного напряжения (220 В). Потребители электроэнергии считаются трехфазными, если для питания требуют напряжения 380 вольт.

Если суммарная мощность электроэнергии составляет меньше 10 кВт, то к таким потребителям, по большей части, подводят однофазное напряжение. Когда в дом введено такое напряжение и нейтральный проводник, то следует обязательно позаботиться об оборудовании надежного контура заземления. Иначе, вероятная возможность фазового перекоса может вызвать необратимые последствия с печальным исходом.

О перекосе фаз «на пальцах»

Перекос напряжений в первом приближении можно сопоставить с шариком, который положен на рычажные весы с коромыслом. Вес шарика можно отождествить с потребляемой мощностью.

В состоянии равновесия шарик будет находиться посредине. Если же коромысло наклонится, то шарик начнет скатываться. Чем ближе шарик к концу коромысла, тем труднее восстановить равновесие таких весов.

В трехфазной электросети относительно перекоса складывается примерно такая же ситуация. С одной стороны, проблема осложняется тем, что вес шарика неизвестен, и он к тому же движется. С другой стороны, у весов коромысло уже с тремя плечами.

Поэтому, по какому коромыслу покатится шарик не понятно. Если вовремя шарик не остановить, то он с конца коромысла упадет на чашу весов, и без вмешательства извне установить весы в равновесие не удастся.

Для выравнивания напряжения в трехфазную сеть был добавлен дополнительный провод, который назвали нулевым или «нейтралью». Величина тока, присутствующая в нейтральном проводнике, осуществляет компенсацию разности токов отдельных фаз, которые могут существенно отличаться своими значениями. Вследствие этого выравнивается фазовая разность потенциалов.

perekos-faz2

На графике этот процесс можно изобразить, например, так:

perekos-faz3

Линии зеленого цвета показывают состояние равновесия. Красным цветом отображены примерные изменения напряжения, которые могут возникнуть при перекосе напряжений в случае трехфазной сети.

Если величина вектора «Фаза С — точка N’» будет больше 300 вольт, то возникает аварийная ситуация. При совпадении точки N с «фазой А» либо с «Фазой В» (предельные значения аварийного положения), то перекос фаз (отрезок N – N’) приблизится к своему крайнему значению и составит 220 вольт в этом случае вектор «Фаза С – N’» будет соответствовать напряжению 380 вольт, взамен номинальных 220 вольт.

Как создается перекос фаз?

Трехфазная электросеть включает в себя высоковольтную и низковольтную части. На границе разделения этих частей сети устанавливаются, как правило, электрические подстанции с трехфазными трансформаторами, которые понижают высоковольтное напряжение.

В первой половине сети перекос напряжений в принципе, нереален, потому что все три фазы нагружены равномерно. Поэтому электроэнергия передается по трем проводам, надобность в четвертом дополнительном проводнике отпадает, что составляет существенную экономию.

Электрическая подстанция распределяет энергию между потребителями. В этой части электросети используются напряжения до 1 тысячи вольт.

Чаще всего аварийная ситуация в виде перекоса напряжений возникает именно в этой части, когда подключаемая нагрузка распределена между фазами неравномерно или при обрыве нулевого проводника. Она объясняется особенностями распределения мощности между однофазным электрооборудованием.

Неравномерное подключение нагрузки

Подавляющая доля мощности электросети потребляется практически трехфазными нагрузками, в качестве которых выступают электродвигатели, индукционные печи и т. д. Нагрузки подобного рода воздействует на все основные элементы электросети одинаково. Когда же львиная доля мощности потребляется однофазным электрооборудованием, то нагрузку между фазами стремятся распределять более-менее равномерно.

В соответствии с руководящими документами допускается отклонение в соотношении нагрузок между тремя проводами в распределительных щитах не более 30%, а напряжение не должно отклоняться от своего номинального значения в пределах ±10%. Тогда ток в нейтральном проводнике не превысит этого значения от среднего тока в фазных проводах.

По этой причине допускается использовать сечение провода нейтрали меньше, чем у остальных проводников. При этом экономия дорогой меди налицо и нулевой провод обычно не представляет повышенной опасности, потому что ток, присутствующий в нем невелик.

Известно, что при касании нулевого проводника электросети, функционирующей в нормальном режиме, особой угрозы не представляет. Однако перекос напряжений создает потенциальную угрозу для жизни. С возникновением такой ситуации не исключено короткое замыкание с массой электрооборудования или его возгорание.

Неисправность электросети также может оказаться причиной перекоса. К широко распространенным дефектам следует отнести выбор сечения кабеля ниже допустимого, замыкание проводов на землю или неисправность из-за ветхости электропроводки. Отсюда очевидно снижение напряжения в одной или двух фазах. Вследствие этого возрастают значения напряжения в других проводах.

Импульсные блоки питания

Массовое распространение электрических приборов, которые конструктивно включают в себя импульсные блоки питания, в частности компьютеры, внесли дополнительные проблемы, связанные с перекосом. В чем же суть этих проблем?

Теоретически электрические колебания переменного тока, снимаемые с выхода генератора гармонические и их можно представить в виде синусоиды. На самом же деле графическое изображение переменного напряжения или тока могут отклоняться от идеальной синусоиды.

perekos-faz4

Если, например, лампы накаливания представляют собой линейные элементы, то они никоим образом не влияют на изменение формы электрических колебаний. В отличие от таких элементов, импульсные блоки питания, то есть ИБП представляют уже нелинейную нагрузку.

Тогда после подключения, например, компьютера к источнику напряжения, имеющего синусоидальную форму тока, он будет изменяться со временем совсем по другому закону.

perekos-faz5

График на рисунке наглядно показывает, ток потребляется ИБП, когда только разность потенциалов в электросети приближается к своему максимальному значению. Когда же напряжение снижается до минимальной величины, то блок питания вообще не потребляет тока. Поэтому заранее предсказать поведение нескольких ИБП в трехфазной электросети затруднительно, что увеличивает вероятность ее асимметрии.

Методы защиты

Несимметрия токов и напряжений в электросети прямым образом оказывает влияние не только на однофазные потребители электроэнергии, но и на трехфазные, не исключая промышленные электросети.

Какие же последствия следует ожидать от перекоса фаз?

  1. Возрастает потребление электроэнергии электрическими приборами, а функционирование с предельно допустимыми параметрами снижает их ресурс.
  2. При значительном превышении напряжения одной из фаз большинство электроприборов, включенных в розетки, могут оказаться неисправными, Устройства защиты снижают такой риск.
  3. Снижение напряжения способствует увеличению нагрузки на электродвигатели – возрастают их токи пуска и падает мощность. Электронные устройства в состоянии выключаться. Их включение возможно только после устранения перекоса фаз.
  4. Возникает повышенная температура в нулевом проводнике, что не исключает его перегорание и возникновение пожара.
  5. По причине перегрузки нейтрали вершина кривой напряжения становится более плоской, что приводит к изменению характеристик картинки на мониторе.
  6. На нулевом проводнике небольшого сечения при увеличенных значениях токов разность потенциалов может составить несколько десятков вольт, что опасно для жизни.

Как уже упоминалось, вероятность возможного возникновения перекоса фаз резко снижается, если выбран электрический кабель подходящего сечения. Такой кабель должен быть рассчитан на максимальную величину потребляемого тока.

Также продуманное равномерное распределение потребителей электроэнергии по фазам играет немаловажную роль. В существующей электросети ошибки проектирования нередко исключаются путем изменения в самых критических ситуациях порядка снабжения электроэнергией потребителей и подводимой мощности потребления.

Дополнением к этому не менее эффективным считается установка стабилизатора фаз. Он от обычного бытового стабилизатора отличается тем, что устраняет не симметрию в сети посредством перераспределения нагрузки либо путем ее усиления.

Учет предполагаемых нагрузок позволяет осуществить правильное проектирование электросети. Следствие такого подхода наблюдается в сбалансированном потреблении электроэнергии так, что участвующие в электропитании объекта фазы имеют равномерную нагрузку.

В бытовых условиях монтаж реле контроля фаз позволяет более просто снять возникшую проблему. Оно монтируется после электросчетчика и имеет примерно следующий вид.

perekos-faz6

В комплексе с этим устройством можно задействовать стабилизаторы напряжения трех фаз. Они позволяют улучшить качество подводимой электроэнергии. Однако это не панацея от всех бед, так как они способны дополнительно нарушать симметрию сети и на них возникают потери. Лучшим вариантом для симметрии фаз будет специальный трансформатор.

Проблема подключения компьютеров

В целях экономии заземление компьютеров осуществляется нередко посредством подсоединения «земли» к нулевому проводнику в распределительном щите. Ниже рисунок демонстрирует схему примерно такого подключения.

perekos-faz7

Из рисунка следует, что в нулевом проводнике за счет протекания по нему тока между двумя и более такими «землями» распределительных щитов здания, установленных на разных этажах, создается определенное значение некоторого напряжения.

Тогда этот тип помехи в местной вычислительной сети действует практически между сетевыми картами системных блоков компьютеров, принадлежащих территориально разным этажам. В конечном итоге, такой перекос фаз приводит к сбою передачи сигналов, а также к неисправности составных частей или самих компьютеров. Метод защиты – устройство дополнительного заземления, не привязанного к нейтрали.

Обрыв нейтрального проводника

Обрыв нулевого провода в 3-х фазной электрической сети самая неприятная авария, которая вызывает немедленно перекос фаз. Она является непосредственной причиной выхода из строя однофазного электрооборудования.

В этом случае величина напряжения становится 380 В, вместо положенных 220 В, что будет катастрофой для электроприбора, рассчитанного на данное напряжение.

На электрических подстанциях в силовых согласующих трансформаторах 3 имеющихся обмотки, соединены по схеме «звезда». Из общей точки их подключения исходит нулевой проводник. В случае его обрыва в электросети создается несимметрия напряжений, то есть перекос фаз, который находится в прямой зависимости от подключенной нагрузки. Ниже рисунок демонстрирует такую ситуацию.

perekos-faz8

Рисунок показывает: если все нагрузки RH одинаковы, то наиболее загруженной окажется фаза C, а разгруженная – фаза А. Обрыв нейтрального проводника вызывает неуправляемый процесс.

Последствия обрыва нулевого проводника

В конечном результате неуправляемого процесса последует перераспределение в фазах разности потенциалов. Проводник фазы, которая подвержена наибольшей загрузке, будет выполнять роль нейтрального провода и напряжение в нем увеличится до 380 вольт. В фазе, загруженной по минимуму, напряжение «проседает» до 127 вольт и ниже.

Тогда, если в домашней электросети будут включены электроприборы, то индикатор будет показывать наличие в розетках двух фаз, то есть 380 В. Все потребители электроэнергии будут запитаны по принципу «Звезда без нуля».

Отсюда следует, что выйдут из строя первыми потребители энергии с двигателями. К их числу следует отнести: холодильники, вентиляторы, сплит-системы, стиральные машины, кондиционеры.

За ними последуют ИБП и приборы, в конструкцию которых включены нагревательные элементы. Точная радиоэлектронная аппаратура, которая содержит элементы локальной защиты пострадает меньше всего. Современный телевизор, скорее всего, отключится, но сгореть не должен.

В худшем положении окажутся потребители электроэнергии, находящиеся «в конце» данной цепочки. На этом участке сети будет наблюдаться превышение допустимых величин нагрузки и положение усугубляется тем, что далеко не все автоматы сработают в штатном режиме.

Тогда возрастает вероятность возгораний источников потребляемой мощности и электропроводки. В этом состоит исключительный эпизод перекоса фаз. Полная асимметрия напряжений сети приводит к поражению электрическим током, если к тому же отсутствует надежное дополнительное заземление.

Методы защиты

Одна из причин обрыва нейтрали указывает на неверное подсоединение нулевого проводника либо нарушение последовательности подключений проводов электриком. Однако аварийная ситуация также может создастся и без человеческого фактора.

Так, например, не исключено «отгорание» нейтрального проводника на электроподстанции или в силовом распределительном щите, обрыв жилы в электрическом кабеле и др. Когда нулевой проводник не надежно закреплен, то он нагревается, окисляется и в конечном итоге перегорает.

Использование больших номиналов предохранителей также может привести к аналогичному результату. Частенько нулевая жила обрывается от обледенений, проведения некачественных ремонтных работ, от сильного ветра и др.

Единственный выход из такого аварийного положения просматривается в немедленном отключении питающего напряжения. Это действие доступно сделать вручную, но не всегда можно успеть. С подобной задачей на высоком уровне справляются автоматические устройства защиты, которые способны моментально отключить сеть при возникновении в ней перенапряжения.

К таким устройствам относятся стабилизаторы, УЗО, в которых предусмотрена защита от повышенного напряжения, дифференциальные автоматы, реагирующие на обрыв нейтрали, автоматические выключатели.

Возможности автоматических выключателей расширяются, если совместно с ними используются расцепители напряжения, срабатывающие от допустимой максимальной и минимальной величины разности потенциалов. Нередко для предупреждения аварийных ситуаций используются специализированные реле напряжения.

perekos-faz9

Эффективен также ограничитель перенапряжения УЗИП. Он отключает электросеть при перенапряжении в электрической проводке, которое возникает из-за обрыва либо «отгорании» нейтрального проводника, при попадании разряда молнии и по ряду других причин. Часто используется в частных домовладениях.

perekos-faz10

Заключение

Таким образом, несмотря на массу выпускаемых приборов, полностью застраховаться от аварийных ситуаций, возникающих при эксплуатации электросетей, все-таки не удается.

Даже при безукоризненно выполненной электропроводке на даче, в частном доме или в квартире, нейтраль может обгореть или оборваться по причинам, независимым от нас.

Тогда перекос фаз неизбежен и возникает серьезная опасность. Отсюда очевидно, что для защиты собственной жизни, своей бытовой техники и радиоэлектроники следует позаботиться заранее.

P.S. Каждому подвластен свой индивидуальный ход мыслей, поэтому при возникновении каких-либо вопросов, дополнений, уточнений и пожеланий обязательно оставляйте их в комментариях. Я постараюсь ответить и совместно расставить все точки над «и».

inbarabin.ru

Перекос фаз. Какие нормы на перекос фаз

Перекос фаз явление в электротехнике встречающееся довольно часто. Практики хорошо знакомы с ним и знают его последствия. А вот причина негативных его проявлений далеко не всем понятна.

Сначала давайте определимся в терминах.  Речь идет о разнице напряжений, между фазами в трехфазной сети или фазными и нулевым проводником в той же трехфазной цепи. Под перекосом мы будем понимать различие этих напряжений.

Напомним, что любая трехфазная цепь может быть выполнена с «глухо заземлённой нейтралью» либо с «изолированной нейтралью». Первая имеет три фазных проводника и, так называемый, нулевой провод. Вторая только три фазных проводника. Соответственно, потребители в первой цепи могут быть соединены как в треугольник, так и на звезду. Во второй только в треугольник. В сети 380/220 В с глухо заземлённой нейтралью потребители, в подавляющем большинстве случаев, подключены по схеме «звезда». Это относится как к асинхронным двигателям, так и к «осветительным нагрузкам». О таких случаях мы будем вести речь в дальнейшем. Сделаем одно замечание. Сопротивление питающих линий является конечным, носит омический характер и должно учитываться при расчете трехфазной цепи.

Так называемый перекос фаз, является отклонением от нормальной разницы между мгновенными значениями линейных напряжений, либо результатом изменения фазового угла между линейными напряжениями. Последний случай можно исключить из рассмотрения, так как он встречается крайне редко.

Когда мы определились с терминами можно перейти к рассмотрению вопроса по существу. И тут становиться всё просто. Предположим, что все нагрузки у нас осветительные. Под этим термином понимают активные нагрузки, например в виде ламп накаливания. Ещё, предположим, что к одной из фаз подключено лампочек значительно больше чем к остальным. Токи, протекающие через них, по законам Кирхгофа будут протекать не только через нулевой проводник но, и через других потребителей. В результате падение напряжения на потребителях других фаз неизбежно вырастет. Это и вызывает перекос фаз.

Все это можно объяснить и через напряжения. Большой ток одной из фаз создает небольшое, но вполне реальное падение напряжения в нулевом проводе. Это напряжение сдвинуто на угол 120о относительно других фаз. Поэтому напряжение, приложенное к их нагрузкам, является суммой фазного напряжения и напряжения на нулевом проводе.

Крайним случаем перекоса фаз является однофазное замыкание на «землю». В этом случае токи короткого замыкания будут протекать и через потребителей, питающихся от двух других фаз что, неизбежно, вызовет перенапряжение в них.

Ещё одним из случаев того же порядка является обрыв нулевого провода. При этом также нарушается баланс токов в нагрузках. Напряжения в сети могут изменяться крайне непредсказуемо, в зависимости от величины  нагрузки на каждую из фаз. Практики знают, что напряжения в бытовых розетках, в этих условиях могут достигать даже линейных значений. Ещё перекос фаз возникает при обрыве одного из фазных проводников. Такой режим называется неполнофазным.

В любом случае перекос фаз ведёт к экономическим потерям, связанным с протеканием токов в нулевом проводнике. В теоретических основах электротехники (ТОЭ) для таких расчётов вводят понятия токов прямой, обратной и нулевой последовательностей.

Существенное увеличение тока одной из фаз трехфазной сети, потребители которой соединены в звезду, незамедлительно ведёт за собой увеличение напряжения на нагрузках других фазных проводов. При этом напряжение перегруженной фазы относительно нулевого провода понижается. Чем это чревато? У ламп накаливания значительно сокращается срок службы либо светоотдача. У асинхронных двигателей, подключенных к такой сети, ухудшается КПД. В конце концов, повышенное напряжение может вывести из строя электронные приборы.

Ещё одно негативное явление это появление гармоник высших порядков при питании различных электрических машин от несбалансированной сети. Речь идет о двигателях, трансформаторах и генераторах. Это связанно с процессами, протекающими в их магнитопроводах.  Гармоники высших порядков часто вызывают сбои в работе электронного оборудования. Поэтому, при проектировании электрических сетей необходимо равномерно распределять нагрузки по фазам. Своды правил по проектированию считают предельным разброс нагрузок в 30% в распределительных щитках, а для вводных распредустройств 15%.

Какие требования предъявляются к перекосу фаз нормативными документами? Основным документом, определяющим качество электроэнергии, является ГОСТ 13109-97.

Его требования выражаются в терминах нулевых и обратных последовательностей. Не уверены, что стоит грузить читателя столь сложными материями.

Конечно, выявить перекос фаз не сложно с помощью простейших приборов не прибегая к посторонней помощи. Но провести анализ причин перекоса фаз, выработать конкретные рекомендации по его устранению могут только профессиональные специалисты.

engineservice24.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *