Стоит ли доверять композитной арматуре
Композитная арматура – сравнительно молодой в строительстве материал, который, несмотря на свой возраст, успел себя положительно зарекомендовать среди сообщества строителей, и прочно обосноваться на стройплощадке, потеснив стальную арматуру. Это – материал, состоящий из нескольких компонентов. Точнее, основных компонентов два:
- Волокна, которые несут основную нагрузку, и непрерывно тянутся по всей длине арматурного стержня. Объем волокон должен быть не менее 75% от массы арматуры.
- Связующее на основе термореактивных смол, благодаря которому компоненты соединяются в единое целое.
Диаметр арматуры, согласно нормативному документу ГОСТ 31938-2012, устанавливается и используется следующий: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 28 и 32 мм. Из них диаметры от 4 до 8 производятся и продаются в скрученном виде (мотках, барабанах), что облегчает транспортировку. Остальные диаметры производятся и продаются в прутках со стандартной длиной 6 – 12 метров.
Состав композитной арматуры бывает различный, и, в зависимости от компонентов, меняются свойства и себестоимость готового продукта.
Какая бывает композитная арматура
Классификация композитной арматуры в соответствии с составом волокон, несущих основную нагрузку, следующая:
- стеклопластиковая,
- базальтокомпозитная;
- углекомпозитная,
- арамидокомпозитная
- комбинированная композитная арматура.
В последнем варианте разные волокна комбинируются в необходимой пропорции. Оптимальный вариант по себестоимости и свойствам – стеклопластиковая арматура, которая и получила наибольшее распространение.
На наружную оболочку композитной арматуры следует обратить особое внимание. Арматура (и композитная, и стальная) должна как можно плотнее сцепляться с бетоном, который она армирует, и эту задачу решает именно наружная поверхность. У разных производителей оболочка выполнена по-разному; например, где-то – это выступы волокон определённой формы, где-то – песок крупной фракции, и т. д.
Как правильно укладывать композитную арматуру
Перед заливкой бетонного элемента композитная арматура укладывается и вяжется в виде пространственного жесткого каркаса. Если вы покупали материал в бухте, её необходимо размотать, разрезать на нужные отрезки, и дать ей распрямиться, отлежаться, вернуть свою форму.
Далее, мы определяем необходимую для нашего бетонного изделия форму каркаса (или прибегая к помощи квалифицированных специалистов, или ищем информацию в интернете, и на свой страх и риск сами проектируем каркас). К сожалению, каждое изделие индивидуально, и в каждом конкретном случае правильный путь – это работа инженера-проектировщика, который в составе проекта дома, опираясь на расчетные данные проекта дома, предоставит дополнительно формы и размеры каркасов для армирования, а также диаметр арматуры и другие данные.
В местах пересечения прутков их необходимо зафиксировать. Фиксация выполняется либо при помощи специальных кляймеров (это идеальный вариант), либо при помощи пластиковых хомутов, если нет специализированного крепежа. Угловые пересечения прутков могут быть выполнены либо в металле (комбинируем композитный каркас и стальную арматуру), либо могут быть изготовлены на заводе-производителе цельнолитым элементом.
Так, как композитный каркас имеет малую жесткость и меняет свои размеры от малейших наружных воздействий, его необходимо закрепить. Идеальным решением будет применение стальных элементов каркаса, которые увеличат жесткость и позволят композитным пруткам не сдвинуться с места при заливке бетоном.
Что лучше: композитная или стальная арматура?
Поскольку до композитной арматуры свойства бетона улучшали исключительно стальной арматурой, и композитная арматура является прямым конкурентом стальной, повсеместно принято сравнивать два вида арматуры. Сравним и мы.
Итак, плюсы композитной арматуры:
- Вес. Композитная арматура весит меньше в несколько раз.
- Форм-фактор. Композитная арматура малых диаметров продается в скрученном виде, в бухтах. Это позволяют транспортировать её на личном автомобиле.
- Коррозия на стеклопластиковую арматуру не распространяет свое действие, в отличие от стальной арматуры. Вследствие этого, более долгая служба.
- Не проводит электричество. Не создает препятствий для радиосигналов, для сигналов мобильных телефонов.
- Более устойчива к воздействию отрицательных температур. Сталь при низких температурах становится более хрупкой, композитная арматура сохраняет свои свойства.
- Теплопроводность небольшая, вследствие этого дом, армированный композитной арматурой, в холодное время года лучше сохраняет тепло.
- Экологична. Не наносит вред природе при разложении.
Минусы композитной арматуры:
- Не пластична. Арматуру в условиях строительства часто необходимо гнуть, с последующим сохранением формы. Стальная арматура гнется и фиксируется в согнутом положении, а вот стеклопластиковая, к сожалению, нет. После того, как термореактивная смола-связующее затвердеет, изменить её форму уже нельзя, можно только сломать. Но выход есть, и даже не один: можно заказать на заводе арматуру какой угодно формы или комбинировать стальную и композитную арматуру.
- Не сваривается. К сожалению, сварка композитной арматуры невозможна. Но есть решение. Если есть такая необходимость, можно использовать композитную арматуру, оканчивающуюся металлическими прутками. Соединение композитной арматуры и металлического прутка выполняется на производстве.
- Не стойка к тепловому разрушению. Держит температуру до 150-160 градусов по цельсию. То есть, при пожаре бетон, армированный стальной арматурой, при разрушении повиснет на прутках стали, а вот бетон с композитной арматурой после нагрева более 150 градусов, просто упадет.
- Высокая вредность при резке. При обработке образуются мельчайшие острые частицы, загрязняющие рабочее пространство, угрожающие дыхательным путям, органам зрения.
- Не жесткая. Модуль упругости композитной арматуры меньше аналогичного у стальной в 4 раза. То есть, для того, чтобы армированный композитной арматурой бетон работал на растяжение так же, как армированный стальной арматурой, нужно увеличить диаметр композитной арматуры. Пример: диаметр стальной арматуры 12 мм, диаметр композитной арматуры должен быть 24 мм. То есть, это не выгодно экономически, и для перекрытий лучше брать стальную арматуру.
Вывод: Композитная арматура имеет как плюсы, так и минусы. Поэтому, в каждом конкретном случае нужно тщательно взвесить все качества стальной и композитной арматуры, и выбрать для себя нужный вариант в соответствии с конкретной ситуацией.
Композитная арматура — применение в строительстве, характеристики и сравнение
Изобретение композитной арматуры знатоки строительного дела относят к 60-м годам прошлого столетия. В этот период в США и в Советском Союзе были начаты активные исследования ее свойств.
Однако, несмотря на достаточно солидный возраст, данный материал до сих пор не знаком большинству застройщиков. Восполнить пробел знаний о стеклопластиковой арматуре, ее свойствах, достоинствах и недостатках вам поможет эта статья.
Попутно отметим, что материал этот весьма спорный. Производители хвалят его на все лады, а строители-практики относятся с недоверием. Простые граждане смотрят на тех и на других, не зная кому верить.
Что такое композитная арматура, как она производится и где применяется?
Коротко структуру композитной арматуры можно охарактеризовать как «волокно в пластике». Ее основа – стойкие к разрыву нити из углерода, стекла или базальта. Жесткость композитному стержню придает эпоксидная смола, обволакивающая волокна.
Для лучшего сцепления с бетоном на прутья наматывается тонкий шнур. Он сделан из того же самого материала, что и основной стержень. Шнур создает винтовой рельеф, как у стальной. Твердение эпоксидной смолы происходит в сушильной камере. На выходе из нее композитную арматуру немного вытягивают и нарезают. Некоторые производители до момента твердения полимера обсыпают пластиковые стержни песком для улучшения сцепления с бетоном гладких участков.
Область применения стеклопластиковой арматуры нельзя назвать очень широкой. Ее используют в качестве гибких связей между облицовкой фасада и несущей стеной, а также укладывают в дорожные плиты и опалубку резервуаров. В каркасах, усиливающих ленточные фундаменты и бетонные полы, пластиковую арматуру применяют не так часто.
Ставить композитные стержни в плиты перекрытия, перемычки и другие конструкции, работающие на растяжение, не рекомендуется. Причина – повышенная гибкость данного материала.
Физические свойства композитной арматуры
Модуль упругости у полимерного композита существенно ниже, чем у стали (от 60 до 130 против 200 ГПа). Это значит, что там, где металл вступает в работу, предохраняя бетон от образования трещин, пластик еще продолжает сгибаться. Прочность на разрыв у стеклопластикового стержня в 2,5 раза выше, чем у стального.
Основные прочностные параметры композитной арматуры содержатся в таблице №4 ГОСТ 31938-2012
Здесь мы видим основные классы композитного материала: АСК (стеклопластиковая композитная), АБК (базальтовое волокно), АУК (углеродная), ААК (арамидокомпозитная) и АКК (комбинированная – стекло + базальт).
Наименее прочная, но самая дешевая — арматура из стекловолокна и базальтовый композит. Самый надежный и вместе с тем самый дорогой материал делают на основе углеродного волокна (АУК).
К прочностным свойствам материала мы еще вернемся, когда будем сравнивать его с металлом.
А пока рассмотрим другие характеристики данного материала:
- К положительным качествам композита относится его химическая инертность. Он не боится коррозии и воздействия агрессивных веществ (щелочной среды бетона, морской воды, дорожных химреагентов и кислот).
- Вес пластиковой арматуры в 3-4 раза меньше, чем стальной. Это дает экономию при транспортировке.
- Низкая теплопроводность материала улучшает энергосберегающие характеристики конструкции (нет мостиков холода).
- Композитная арматура не проводит электричества. В конструкциях, где она используется, не возникает коротких замыканий электропроводки и блуждающих токов.
- Композитный пластик магнитноинертен и радиопрозрачен. Это позволяет использовать его в строительстве сооружений, где должен быть исключен фактор экранирования электромагнитных волн.
Стеклопластиковый стержень под 90 градусов на стройке не согнешь
Недостатки композитной арматуры:
- Невозможность гибки с малым радиусом в условиях стройки. Гнутый стержень нужно заранее заказывать у производителя.
- Невозможность сваривать каркас (минус относительный, поскольку даже для стальной арматуры лучший способ соединения – вязка, а не сварка).
- Низкая термостойкость. При сильном нагреве и пожаре бетонная конструкция, армированная композитными стержнями, разрушается. Стекловолокно не боится высокой температуры, но связующий ее пластик теряет прочность при нагреве выше +200 С.
- Старение. Общий минус всех полимеров. Неметаллическая арматура не исключение. Ее производители завышают срок эксплуатации до 80-100 лет.
Вязка пластиковыми хомутами или стальной проволокой – единственный возможный метод сборки каркаса
Какая арматура лучше металлическая или стеклопластиковая?
Один из главных аргументов, приводимых в пользу стеклопластиковой при сравнении с металлической арматурой, – более низкая цена.
Причина путаницы состоит в том, что продавцы пластика берут в расчет так называемый «эквивалент» диаметра. Логика здесь такая: неметаллическая арматура на разрыв прочнее строительной стали. Поэтому полимерный стержень меньшего диаметра выдержит такую же нагрузку, как и более толстая стальная арматура. На основании этого делается вывод: для армирования конструкции пластика нужно меньше, чем металла. Отсюда и появляется более «низкая» цена.
Для аргументированного сравнения композита с металлом необходим нормативный документ. Сегодня такое руководство уже имеется. Это приложение «Л» к приказу Минстроя России № 493/пр от 08.07. 2016 г.
В пункте Л.2.3. малопонятном для рядовых застройщиков, но весьма интересном для профессионалов содержатся два понижающих коэффициента для всех видов композитной арматуры.
Для примера рассмотрим самую распространенную стеклопластиковую (АСК):
- При действии продолжительной нагрузки предел ее прочности на растяжение должен умножаться на 0,3. То есть, вместо 800 МПа мы получаем 240 МПа (800х0,3=240).
- Если конструкция работает на открытом воздухе, то полученный результат нужно умножить еще на 0,7 (240 МПа х 0,7 = 168 МПа).
Таблица с понижающим коэффициентом для композитной арматуры
Таблица с коэффициентами, учитывающими условия эксплуатации
Далее, как требует норматив, полученные 168 МПа нужно разделить на коэффициент надежности (запас прочности), равный 1,5. В итоге мы получим 112 МПа.
Теперь можно корректно сравнивать прочность пластиковой арматуры с металлической. Для примера возьмем строительную сталь марки А500. У нее предельное сопротивление растяжению с учетом запаса прочности составляет 378 МПа. У стеклопластикового композита мы получили всего 112 МПа.
Наше маленькое исследование наглядно иллюстрирует таблица реальной, а не теоретической равнопрочной замены стальной арматуры на композитную. Ей можно пользоваться при выборе и покупке.
Просмотрев данную таблицу, нетрудно заметить, что пластика для равноценной замены металла требуется не меньше, а больше металла. Только самый дорогой углеродоволоконный материал (АУК) превосходит сталь равного с ним диаметра.
Сортамент и цена композитной арматуры
Самая востребованная на стройке – арматура из стеклопластикового композита. Ее сортамент и средние цены мы свели в одну таблицу.
О том, сколько весит пластиковая арматура разных диаметров вы можете получить информацию из таблицы ниже.
Продают материал в бухтах по 200, 100 и 50 метров и в виде стержней любой длины.
Выводы и рекомендации
Принимая во внимание ценовой фактор (равнопрочный со сталью композит обойдется дороже) мы не можем рекомендовать композитную арматуру для повсеместного применения в частном строительстве.
Для армирования ригелей, плит перекрытия, несущих балок, колонн и диафрагм жесткости специалисты настойчиво советуют не ставить ее. Как конструктивную такую арматуру использовать можно. Для армирования плитных фундаментов она может использоваться.
Плитный фундамент с каркасом из стеклопластиковой арматуры
Для усиления свайных ростверков и ленточных фундаментов лучше купить стальные прутья.
Что такое армирование и матрица в композитах?
Слово «составной» означает «состоящий из двух или более отдельных частей». Таким образом, материал, состоящий из двух или более отдельных составляющих материалов или фаз, может считаться композитным материалом . Армирование и матрица являются двумя фазами композиционного материала.
Однако мы признаем материалы композитами только тогда, когда составляющие фазы не растворяются друг в друге и имеют существенно разные физические свойства, и, таким образом, свойства композита заметно отличаются от свойств составляющих.
Материал считается композиционным, если
- Комбинация материалов должна приводить к значительным изменениям свойств
- Содержание составляющих, как правило, более 10 % 5), чем другой компонент
Один компонент называется усиливающей фазой , а тот, в который он встроен, называется матрицей. Материал армирующей фазы может быть в форме волокон, частиц или хлопьев. Материалы матричной фазы обычно являются непрерывными.
Армирование в композитах
Армирование может представлять собой волокна, частицы ткани или усы. эти усиления в основном используются для повышения механических свойств композита.
Основной целью армирования является
- Обеспечение превосходных уровней прочности и жесткости композита.
- Армирующие материалы (графит, стекло, карбид кремния, оксид алюминия) могут также обеспечивать тепло- и электропроводность, контролируемое тепловое расширение и износостойкость в дополнение к структурным свойствам.
- Наиболее широко используемой формой армирования в высокоэффективных композитах являются жгуты волокон (нескрученный пучок непрерывных нитей).
- Волокнистые мононити используются в ЧВК, ММС и ОМЦ; они состоят из одного волокна диаметром обычно ≥100 мкм.
- В ММС частицы и рубленые волокна являются наиболее часто используемой морфологией армирования, и они также применяются в ФМС.
- Усы и тромбоциты в меньшей степени используются в ЧВК и ММС.
Матричный материал в композитах
Матричный материал представляет собой однородный и монолитный материал, в который встроена и полностью непрерывна система армирования композита.
Основное назначение Матрицы
- Связывать между собой арматуру благодаря своим когезивным и адгезионным характеристикам.
- Для передачи нагрузки на арматуру и между арматурами матрица позволяет полностью использовать прочность арматуры, обеспечивая эффективную передачу нагрузки от внешних сил на арматуру.
- Матрица обеспечивает жизненно важную неупругую реакцию, так что концентрации напряжений резко снижаются, а внутренние напряжения перераспределяются из-за сломанной арматуры.
- Для защиты арматуры от окружающей среды и манипуляций.
- Матрица также придает композиционному материалу твердую форму, что облегчает обращение с ним во время производства и обычно требуется для готовой детали.
- Будучи непрерывной фазой, матрица, таким образом, контролирует поперечные свойства, межслойную прочность и прочность композита при повышенных температурах.
- Поскольку арматура обычно прочнее и жестче, матрица часто является «слабым звеном» в композите с точки зрения конструкции.
Заключение
Мы обсудили основное назначение армирования и матрицы в композиционных материалах. Если у вас все еще есть какие-либо мысли по этой теме, сообщите нам об этом в разделе комментариев ниже.
Арматура — композитные материалы | CompositesLab
Арматура может быть ориентирована для обеспечения индивидуальных свойств в направлении нагрузок, действующих на конечный продукт.
Многие материалы способны усиливать полимеры. Некоторые материалы, такие как целлюлоза в древесине, являются природными продуктами. Однако большинство коммерческих подкреплений созданы руками человека. Существует множество коммерчески доступных форм армирования, отвечающих конструктивным требованиям пользователя. Возможность адаптировать архитектуру волокна позволяет оптимизировать производительность продукта, что приводит к снижению веса и стоимости.
Хотя многие виды волокон используются в качестве армирующих материалов в композитных ламинатах, стекловолокна составляют более 90 процентов волокон, используемых в армированных пластмассах, потому что они недороги в производстве и имеют относительно хорошие характеристики прочности к весу.
- Стекловолокно: На основе алюмо-известково-боросиликатной композиции стекловолокно «E» или «E-CR» считается преобладающим армирующим материалом для композитов с полимерной матрицей из-за их высоких электроизоляционных свойств, низкой восприимчивости к влагостойкостью и высокими механическими свойствами. Стекло E-CR отличается от стекла E-стекла превосходными свойствами коррозионной стойкости. Другие коммерческие составы включают стекло «S» с более высокой прочностью, термостойкостью и модулем, H-стекло с более высоким модулем и стекло AR (щелочестойкое) с превосходной коррозионной стойкостью.
Стекло, как правило, является хорошим ударопрочным волокном, но весит больше, чем углерод или арамид. Стекловолокно обладает превосходными механическими характеристиками, в некоторых формах прочнее стали. Более низкий модуль требует специальной обработки конструкции, где жесткость имеет решающее значение. Стеклянные волокна прозрачны для радиочастотного излучения и используются в радиолокационных антеннах. - Углеродные волокна: Углеродные волокна изготавливаются из органических прекурсоров, включая ПАН (полиакрилонитрил), вискозу и смолы, причем последние два обычно используются для низкомодульных волокон. Термины «углеродное» и «графитовое» волокно обычно используются взаимозаменяемо, хотя технически графит относится к волокну, состав которого составляет более 99 процентов углерода, по сравнению с 93-95 процентами для углеродных волокон на основе ПАН. Углеродное волокно обеспечивает самую высокую прочность и жесткость среди всех армирующих волокон. Высокотемпературные характеристики особенно важны для углеродных волокон. Основным недостатком волокон на основе ПАН является их высокая относительная стоимость, которая является результатом стоимости основного материала и энергоемкости производственного процесса. Композиты из углеродного волокна более хрупкие, чем стекло или арамид. Углеродные волокна могут вызвать гальваническую коррозию при использовании рядом с металлами. Для предотвращения этого используется барьерный материал, такой как стекло и смола.
- Арамидные волокна (полиарамиды): Наиболее распространенным синтетическим волокном является арамид. Арамидное волокно представляет собой ароматический полиимид, представляющий собой искусственное органическое волокно для композитного армирования. Арамидные волокна обладают хорошими механическими свойствами при низкой плотности с дополнительным преимуществом в виде ударной вязкости или устойчивости к повреждениям/ударам. Они характеризуются достаточно высокой прочностью на растяжение, средним модулем и очень низкой плотностью по сравнению со стеклом и углеродом. Арамидные волокна являются изоляторами электричества и тепла и повышают ударопрочность композитов. Они устойчивы к органическим растворителям, горюче-смазочным материалам. Арамидные композиты не так хороши по прочности на сжатие, как стеклянные или углеродные композиты. Сухие арамидные волокна прочны и используются в качестве тросов или канатов, а также часто используются в баллистических целях. Кевлар®, пожалуй, самый известный пример арамидного волокна. Арамид является преобладающей заменой органического армирующего волокна для стальных брекеров в шинах.
- Новые волокна: Полиэфирные и нейлоновые термопластичные волокна недавно были введены как в качестве основного армирования, так и в сочетании со стекловолокном. Привлекательные характеристики включают низкую плотность, разумную стоимость и хорошую ударопрочность и сопротивление усталости. Хотя полиэфирные волокна обладают довольно высокой прочностью, их жесткость значительно ниже, чем у стекла. Более специализированные армирующие материалы для обеспечения высокой прочности и использования при высоких температурах включают металлы и оксиды металлов, например те, которые используются в самолетах или аэрокосмической промышленности.
Независимо от материала арматура доступна в формах, подходящих для широкого спектра процессов и требований к конечному продукту. Материалы, поставляемые в качестве армирующих материалов, включают ровинг, измельченное волокно, рубленые нити, непрерывный, рубленый или термоформуемый мат. Армирующие материалы могут быть разработаны с уникальной архитектурой волокна и предварительно отформованы (формованы) в зависимости от требований к продукту и производственного процесса.
- Многосторонние и односторонние ровинги: Ровинги используются в основном в термореактивных смесях, но могут использоваться и в термопластах. Ровинги с несколькими концами состоят из множества отдельных прядей или пучков нитей, которые затем нарезаются и случайным образом укладываются в полимерную матрицу. В таких процессах, как листовая формовочная смесь (SMC), преформа и напыление, используется многосторонний ровинг. Многосторонние ровницы также могут использоваться в некоторых приложениях для намотки нити и пултрузии. Ровница с одним концом состоит из множества отдельных нитей, намотанных в одну прядь. Продукт обычно используется в процессах, использующих однонаправленное армирование, таких как намотка волокна или пултрузия.
- Маты и вуали: Армирующие маты и нетканые вуали обычно описываются по весу на единицу площади. Например, мат из рубленого волокна весом 2 унции будет весить 2 унции на квадратный ярд. Тип армирования, дисперсия волокон и количество связующего, используемого для скрепления мата или вуали, определяют различия между продуктами мата. В некоторых процессах, таких как ручная укладка, связующее необходимо растворить. В других процессах, особенно при компрессионном формовании и пултрузии, связующее должно выдерживать гидравлические силы и растворяющее действие матричной смолы во время формования. Таким образом, с точки зрения связующего, производятся две основные категории матов или вуалей, известные как растворимые и нерастворимые связующие.
- Тканые, сшитые, плетеные и трехмерные ткани: Существует множество типов тканей, которые можно использовать для усиления полимеров в композитах. Разнонаправленное армирование получают путем переплетения, вязания, сшивания или плетения непрерывных волокон в ткань из крученой и крученой пряжи. Ткани могут быть изготовлены с использованием практически любого армирующего волокна. Наиболее распространенные ткани изготавливаются из стекловолокна, углерода или арамида. Ткани обладают направленной прочностью и высокими нагрузками армирования, которые часто встречаются в высокопроизводительных приложениях. Ткани позволяют точно разместить армирование. Это невозможно сделать с размолотыми волокнами или рублеными нитями, а возможно только с непрерывными нитями с использованием относительно дорогого оборудования для укладки волокон. Из-за непрерывной природы волокон в большинстве тканей отношение прочности к весу намного выше, чем у версий с разрезанными или рублеными волокнами. Сшитые ткани позволяют настроить ориентацию волокон в структуре ткани. Это может иметь большое преимущество при проектировании с учетом устойчивости к сдвигу или кручению.
- Однонаправленные: Однонаправленные армирующие материалы включают ленты, жгуты, однонаправленные жгуты и ровинг (представляющие собой наборы волокон или прядей). Волокна в этой форме выровнены параллельно в одном направлении и не извиты, что обеспечивает высочайшие механические свойства. Композиты с использованием однонаправленных лент или листов обладают высокой прочностью в направлении волокон. Однонаправленные листы тонкие, и для большинства структурных применений требуется несколько слоев. Типичные области применения однонаправленного армирования включают высоконагруженные композитные материалы, такие как компоненты самолетов или гоночные лодки.
- Препрег: Препрег – готовый материал, изготовленный из армирующей формы и полимерной матрицы. Пропускание армирующих волокон или форм, таких как ткани, через ванну со смолой используется для изготовления препрега. Смола насыщается (пропитывается) волокном, а затем нагревается для продвижения реакции отверждения на различные стадии отверждения.