Схема армирования ленточного фундамента: Как правильно армировать ленточный фундамент

Содержание

Как армировать ленточный фундамент своими руками: инструкция

Армирование ленточного фундамента – процедура обязательная, без выполнения которой невозможно гарантировать качественное возведение будущей постройки. Работа по армированию фундамента очень важна, но в исполнении не очень сложна и если разобраться во всех тонкостях и нюансах, то сделать ее можно без проблем своими руками.

Материалы и инструмент

Для армирования ленточного фундамента используют, как стальные пруты, так и стеклопластиковую арматуру, мы остановимся на стальных прутах (как выбрать стальную арматуру читайте тут), потому как стеклопластик во – первых дорогое удовольствие, во – вторых его очень редко применяют для загородного домостроения по ряду причин.

Итак, с этим разобрались идем дальше, для работы нам нужно приобрести:

Материал Параметры
Рабочая арматура Диаметром 12мм.
Конструктивная арматура Диаметром 8мм.
Вязальная проволока Предназначенная для армирования
Цемент
Марки М – 250, 300.
Песок Средней фракции

 

Из инструментов подготовим:

  • Емкость для замешивания бетона или бетономешалку;
  • Строительный миксер;
  • Болгарку;
  • Лопату;
  • Плоскогубцы;
  • Перчатки.

Подготовительные работы

Первое: Нужно рассчитать и приобрести арматуру и вязальную проволоку. В расчете необходимого количества арматуры нет ничего сложного. Горизонтальные направляющие, для которых используется арматура 12мм, обычно укладывается с шагом 30 — 60 см. Поперечные и вертикальные секций формируются арматурой 8мм, с шагом 40 – 70см. Зная эти данные очень легко прикинуть сколько погонных метров арматуры необходимо купить именно для ваших целей, плюс берите небольшой задел и приобретайте на 10% больше чем вам надо.

Важно: Для ленты высотой меньше 90 см обычно используется двухрядный каркас, при высоте более 90 см вяжется трех и более ярусный каркас.

Насчет вязальной проволоки все еще проще, ее на каждое соединение уходит примерно 25 – 30см.

Второе:

После того, как материал доставили на место строительства, его нужно тщательно осмотреть и очистить от грязи и ржавчины. Многие данной операцией пренебрегают, но нужно помнить, что посторонние «включения» могут хоть несущественно, а все же ухудшить рабочие характеристики бетона.

Пошаговая инструкция по армированию ленточного фундамента

Шаг 1: Формируем бетонное основание. Для этого на дно траншеи, толщиной 20 -30 см насыпаем песок, трамбуем его и заливаем бетоном слоем 5 – 10см. Так мы защитим нижнюю арматуру от появления коррозии.

Совет: в целях экономии можно не «заморачиваться» с заливкой «подошвы», а гидроизолировать траншею обыкновенной плотной полиэтиленовой пленкой.

Шаг 2: Устанавливаем опалубку. На этом этапе останавливаться не будем потому, как у нас есть статья на тему «как поставить опалубку для фундамента», где все подробнейше расписано.

Шаг 3: Начинаем вязать арматуру. Проделать данную работу можно, как непосредственно в траншее, так и рядом с ней. Удобнее конечно же связать отдельные секции недалеко от места монтажа, а потом установить их в положенное место. Общая схема будет следующей.

Важно: Сварку для соединения арматуры между собой применять крайне не рекомендуется, при таком способе крепления места стыков очень быстро начнут ржаветь. 

Сборку конструкции следует начинать с нижних поперечных прутов (8мм), их выкладываем с шагом не более 80см друг от друга. Затем на них продольно укладываем рабочую арматуру (12мм), расстояние между продольными прутами не должно превышать 40 см, если же оно больше 40 см, то добавляем в конструкцию еще один стержень. Места соединений поперечных и продольных прутьев закрепляем вязальной проволокой.

Итак, ранее мы сформировали нижний уровень каркаса, далее следует закрепить вертикальные перемычки (8мм). Делается это так – в местах соприкосновения продольных и поперечных прутьев арматуры устанавливаем вертикально еще один прут и связываем его проволокой с основной конструкцией, таким образом производим монтаж всех необходимых вертикальных элементов.

Важно: Будьте внимательны и при установке следите чтобы вертикальная арматура была закреплена по отношению к продольной четко под 90 градусов.

Следующим этапом сборки каркаса будет установка верхних поперечных и продольных прутьев. Все действия те – же, к вертикально закрепленной арматуре с помощью вязальной проволоки с перехлестом по краям не менее 20см, крепим сначала поперечные, а затем продольные элементы арматуры.

Способом, описанным выше собираем необходимое количество секций, устанавливаем их в траншею если сборка проводилась не в ней и с помощью дистансеров жестко закрепляем каркас по отношению к опалубке, зазор между ними оставляем в 3 -5 см.

Основная часть работ на этом закончена, но остался самый важный этап, армирование ленточного фундамента по углам.

Шаг 4: Крепление арматуры по углам. Здесь нужно быть предельно внимательными и сделать работу максимально качественно, потому как углы фундамента принимают на себя наибольшее концентрированное напряжение. Для армирования фундамента по углам применяют П или Г- образные техники усиления. Как правильно сделать данную работу смотрите ниже.

Для прямых углов:

Для углов больше 160 градусов:

Ну и перекрестия армируются так:

Все на этом работа закончена, удачного вам строительства.

Видео:

Армирование ленточного фундамента – основа прочности здания

Правильно построенный фундамент – гарантия прочного, сухого, теплого дома. Из разновидностей фундаментов ленточный средний по затратам материалов и трудоемкости. Использованный арматурный каркас делает из бетонной ленты жесткую раму, выдерживающую значительные нагрузки от стен, перекрытий, кровли, внутреннего наполнения дома.

Для чего нужно армировать ленточный фундамент?

Особенностью мелкозаглубленного облегченного ленточного фундамента является обязательность его армирования. Известно, что бетонные изделия очень прочные на сжатие, менее прочные на сдвиг, и малопрочные на изгиб и разрыв. Компенсируют такие недостатки бетона традиционным способом – созданием композитного материала, в котором одно вещество прекрасно работает на сжатие, а другое – на разрыв. Хорошо сжимаемое вещество дополняют волокнами или стержнями из материала плохо рвущегося и получают новый материал, свойства которого расчетом можно изменять в больших пределах.

Поэтому тонкий слой бетона, известного людям уже более 3 тыс. лет только в XIX веке придумали упрочнить стальной сеткой. Хотя строители знали, что хорошо разрывающаяся глина прекрасно армируется прочной на разрыв соломой.

В случаях, когда на участке неоднородные грунты, армирование ленточного фундамента обеспечит жесткость его рамной конструкции, берущей на себя всю нагрузку от здания и равномерно ее распределяющую.

Общая высота ленточного фундамента обычно от 0,7 – 0,8 м до 1,5 м при ширине от 0,3 до 0,5 м. При длине стены здания от 7 – 10 м такая полоса бетона рассматривается как бетонная балка. Она будет работать на прогиб, когда ее края нагрузить значительно больше, чем середину или наоборот. Т. е. бетон будет нагружен изгибающими усилиями. Защитить балку от разрушения можно поместив в ее толщу в верхней и нижней части продольные стальные или композитные стержни с регулярной профилировкой поверхности. Они за счет профилировки воспримут на себя разрывающие усилия и не дадут растрескаться бетону.

Особенности конструкции армирующего каркаса

Ленточный фундамент фактически состоит из монолитных длинных балок, работающих на изгиб при неравномерных нагрузках сверху от элементов здания и неравномерных просадок снизу от разной плотности грунта.

Поэтому и армируются они в двух зонах балки:

  • сверху, под защитным слоем из бетона – от нагрузок на концах балки, когда середина находится на опоре;
  • снизу, чуть выше нижнего защитного слоя – при нагрузке на середину полосы ленты и опорах под углами здания.

В схеме армирования ленточного фундамента несколько продольных стержней нижнего ряда удерживаются на определенном расстоянии от слоя стержней верхнего ряда вертикальными поперечными стержнями, идущими с шагом от 300 до 500 – 700 мм.

По ширине продольные пруты арматуры удерживаются горизонтальными поперечными стержнями, расположенными с тем же шагом, что и вертикальные.

Поперечные стержни арматуры предназначены:

  • воспринимать поперечные усилия, прилагаемые к балке;
  • ограничивать увеличение образовавшихся трещин;
  • удерживать положение продольных стержней по требованиям чертежа;
  • удерживать стержни от выпучивания в любую сторону.

Стержни связываются проволокой или свариваются в объемный каркас. Его высота и ширина меньше на удвоенную толщину защитного слоя бетона.

Основные функции защитного слоя бетона:

  • сохранение арматуры от внешнего, в т. ч. и агрессивного воздействия, в основном, воды или водяного пара;
  • передача нагрузок от бетона на арматуру;
  • обеспечение анкеровки, т. е. «зацепляемости» арматуры в толще бетона;
  • обеспечение стыка элементов арматуры;
  • обеспечение стойкости арматуры в пламени пожара.

Обычно толщина защитного слоя от 25 – 30 мм до 50 – 60 мм.

Требования к арматуре для ленточного фундамента

В качестве продольной арматуры для мелкозаглубленных фундаментов используют стальную или композитную арматуру с профилированной поверхностью. Профили на стержнях обеспечивают передачу большей нагрузки от изгибающегося бетона на арматурный стержень, чем при гладкой поверхности стержня.

Обычно используют стержни диаметром от 10 до 16 – 18 мм.

Для поперечного армирования обычно берут гладкие стержни диаметром 6 – 8 мм.

Количество стержней, их диаметр, шаг арматуры при установке, толщину защитного слоя, способы и конструкции для армирования углов фундамента и мест пересечения с внутренними несущими стенами должен рассчитывать профессиональный строитель, имеющий высшее образование и практику в этом деле. Он же и отразит принятые решения в чертежах ленточного фундамента, в т. ч. и разработает схему армирования ленточного фундамента.

В СНиП 52-01-2003 по бетонным и железобетонным конструкциям в п. 5.3 изложены требования к арматуре как стальной, так и композитной.

Стальная арматура может быть гладкая и профилированная, горячекатаная, профилированная упрочненная термомеханически, холоднодеформированная, т. е. упрочненная механически без нагревания.

Правильное армирование углов ленточного фундамента

Угловые участки ленточного фундамента – зоны концентрации разнородных напряжений. Две сходящиеся под углом «балки» монолитной конструкции могут иметь в этой зоне нагрузки противоположного направления. Кроме того может быть разная по величине нагрузка от разных стен. На угол могут действовать напряжения растяжения от одной стены и сжатия от другой. Разнородные напряжения должна выдерживать каркасная конструкция угла. Для этого должно быть обеспечено сопряжение каркасов.

Поэтому армирование производится усилением арматурного каркаса как минимум в 2 раза. Для этого поступают следующим образом:

  • арматурный продольный стержень первого каркаса, являющийся внутренним по отношению к наружной части фундамента пропускается вперед и загибается под прямым углом, так, чтобы отогнутая длина была не менее 50 диаметров стержня;
  • стержень передвигается, пока он не примкнет к наружному стержню перпендикулярного второго арматурного каркаса, образуется первый нахлест;
  • наружный стержень перпендикулярного второго каркаса тоже сгибается и подводится к наружному стержню первого каркаса, образуется второй нахлест;
  • внутренний стержень второго каркаса сгибается, сгиб передвигается к наружному стержню первого каркаса и прикладывается ко второму нахлесту;
  • первый и второй нахлесты и перекрест внутренних стержней перевязываются проволокой или свариваются, обвязываются (свариваются) и вертикальные и горизонтальные поперечные стержни.

Как вариант – наружные стержни не сгибаются, а гнется кусок арматуры в виде Г-образного хомута, оба конца которого перевязываются с обоими наружными стержнями.

Для стыковки балок для несущих внутренних стен с наружными балками вязку делают так, как указано на рисунках.

Идея та же, что и при армировании в углах – перевязка или сварка внутренних стержней с наружными или с добавочными элементами в виде Г- или П-образных элементов или петель из арматуры. Ни в коем случае не делать простое пересечение стержней.

Этапы строительства ленточного армированного фундамента

Этапы строительства такие:

  • Выкапывание котлована или траншей. Глубина должна учитывать глубину тела фундамента и противопучинистой подушки.
  • Разметка. (см. статью «Как разметить ленточный фундамент своими руками»).
  • Засыпать в траншею песчаную подушку и утрамбовать ее, потом – щебневую.
  • Установить и закрепить щиты опалубки. Уложить на дно и стены слой гидроизоляции в виде полиэтиленовой пленки.
  • Связать и подготовить продольные куски арматурных каркасов. Установить их в опалубку и проверить равенство расстояний от опалубки до каркаса с обеих сторон. В качестве дистанционных элементов использовать заранее заготовленные бруски из бетона или специальные пластиковые стойки-«стульчики». Те же расстояния обеспечить и в нижней части каркаса. Куски кирпича не использовать.
  • Правильно связать угловые части каркасов и места пересечения с несущими стенами.
  • Проверить установку каркасов – защитные расстояния, высоту, горизонтальность, правильность и полноту увязки, и другие требования, изложенные в чертеже фундамента.
  • Залить бетонный раствор одним заходом и тщательно провибрировать его. Выждать 10 – 15 дней и можно снимать опалубку.
  • Основа дома будет готова на 10 – 15 день после заливки, ее можно понемногу нагружать строительством стен. Полная готовность будет на 28 – 30 день после окончания бетонирования.

Основные ошибки при армировании

Ошибок делается много и разных, но главные из них такие:

  1. Для арматурного каркаса не делается защитный слой бетона или делается недостаточной толщины. Как дистанционные прокладки используются куски керамического или даже силикатного кирпича, хорошо пропускающие воду.
  2. Не используется пленка для предотвращения вытекания жидкого цементного «молочка» через деревянную опалубку. Или большие щели в опалубке – через них тоже течет.
  3. Нет гидроизоляции между подошвой и стенками ленточного фундамента – при высокой водопроницаемости бетона коррозия его разрушит за 10 – 15 лет, в т. ч. его будет «рвать» ржавеющая арматура.
  4. Песчано-щебневая смесь под подошвой имеет крупный щебень и не закрыта сверху гидроизоляцией от бетона.
  5. Бетон при заливке подается порциями через день или реже – получают две или три балки с независимым армированием. Интервалы – не более 1,5 – 2 часов.
  6. Укладка стержней в углах с обычным поворотом

наружных и внутренних стержней или, что еще хуже с их простым перекрещиванием.

Армирование ленточного фундамента: правила, схемы, инструкции

Дата: 24 апреля 2017

Просмотров: 4125

Коментариев: 0

При выполнении строительных мероприятий по возведению жилых зданий и объектов производственного назначения используются различные типы оснований, обеспечивающих устойчивость возводимого сооружения. Широко применяются основы, выполненные по периметру строения. Для укрепления такой конструкции выполняется армирование ленты.

Необходимость армирования ленточного фундамента обусловлена свойствами бетона, сохраняющего целостность под воздействием сжимающих нагрузок, но одновременно, склонного к появлению трещин под действием изгибающих моментов и растяжения. Компенсировать этот серьезный недостаток бетонного монолита позволяет армирование монолитного ленточного фундамента, повышающее устойчивость и период эксплуатации возводимых строений.

Основание здания воспринимает значительные нагрузки, связанные с реакцией почвы, массой строения и другими факторами. Арматурный каркас подвергается повышенным концентрациям напряжений, обеспечивая целостность бетонного массива. Ошибки армирования фундамента, связанные с разрушением нулевого уровня, могут вызывать фатальные последствия.

Фундамент – это основа постройки любого назначения, он представляет собой самую важную частью какого бы то ни было здания

Именно поэтому рассмотрим детально, как правильно армировать ленточный фундамент, остановимся на критериях выбора арматур, технологии армирования ленточного фундамента.

Расчетный этап

На проектной стадии важно квалифицированно рассчитать, какая нужна арматура для ленточного фундамента. Это позволит сформировать надежную основу, обеспечивающую прочностные характеристики возводимого здания при длительном ресурсе эксплуатации. Выполняя расчет на подготовительном этапе работ, следует проанализировать множество факторов:

  • особенности почвы в условиях конкретной строительной площадки;
  • действующие нагрузки, который воспринимает арматурный каркас;
  • масса здания, обусловленная особенностями конструкции и используемыми материалами;
  • климатические условия в районе строительства;
  • реакцию почвы, связанную с близким расположением грунтовых вод и промерзанием грунта при отрицательной температуре.

Правила армирования ленточного фундамента предусматривают особый подход к выбору материала в основе

По результатам проектных работ определяется диаметр арматуры для ленточного фундамента и принимается решение о степени заглубления основания в грунт:

  1. На ограниченную до 0,5 м глубину для твердых почв, не склонных к пучению.
  2. На увеличенную ниже уровня промерзания грунта глубину погружения для проблемных почв.

На этом варианты не исчерпываются. Ведь строительная наука не стоит на месте, разрабатываются новые опорные конструкции, обладающие повышенной прочностью. Внедрен и проверен в эксплуатации новый вариант основания, когда монолитная усиленная плита заливается на предварительно выполненный ленточный армированный каркас. Какая лучше конструкция основы, определяют на проектной стадии с учетом конкретных условий реальной местности. В зависимости от особенностей выбранной согласно проекту основы, проектировщиками принимается решение, выполнять ли армирование ленты или производить армирование фундаментной плиты, а также какую арматуру лучше использовать для фундамента.

Критерии выбора арматуры

Правильное армирование ленточного фундамента определяет прочностные характеристики опорной конструкции. Принимая решение, выполнить армирование плиты, расположенной на ленточной базе, или произвести усиление стандартного основания, ориентируйтесь на особенности маркировки арматурных прутьев.

Армирование монолитного ленточного фундамента предусматривает необходимость соблюдения определенных правил

Выполняйте армирование основания стальными прутками, имеющими следующие характерные особенности:

  • наличие индекса «С» в обозначении стальных стержней свидетельствует о возможности использования электросварочного оборудования для объединения элементов с общим каркасом;
  • присутствие заглавной буквы «К» в аббревиатуре подтверждает стойкость прутков к коррозии, возникающей при насыщении бетона влагой;
  • обозначение класса изделия А2 и А3, что позволяет применять стальные прутки, зафиксированные в общем каркасе проволокой, с сохранением прочности каждого из соединяемых элементов. Использование электрической сварки для фиксации таких прутков не допускается.

Необходимой эксплуатационной прочностью обладает арматура для фундамента, изготовленная из стальных стержней сечением 10–12 мм. Оптимальный диаметр арматуры для ленточного фундамента определяется согласно расчётам, учитывающим конкретные условия эксплуатации, особенности грунта и значения действующих нагрузок.

О необходимости усиления

Насколько необходимо укреплять бетонный массив стальной проволокой? Ведь бетон обладает достаточно высокими прочностными характеристиками. Действительно, бетон имеет повышенную устойчивость к сжимающим нагрузкам, но требует усиления от губительного воздействия разрывных усилий.

Наибольшая вероятность растяжения – на поверхности основания, именно там следует расположить арматуру

Компенсировать эту особенность бетона позволяет укладка стальных стержней на двух уровнях основы. Такое решение повышает прочностные характеристики массива, позволяя сохранять целостность под воздействием изгибающих нагрузок, крутящих моментов и разрывных усилий.

Бетонная основа дополнительно укреплена вспомогательными прутками, расположенными в вертикальной плоскости. Вертикальные элементы обеспечивают фиксацию прутков верхнего и нижнего уровня силового каркаса.

Процесс усиления основания

В процессе усиления основания ленточного типа укладывайте все стержни арматуры в опалубку, которую следует предварительно смонтировать. Укладка арматуры в ленточный фундамент осуществляется по довольно простому алгоритму:

  1. Установите вертикальные стальные прутья диаметром 1–2 см по контуру размеченного основания.
  2. Обеспечьте интервал между стержнями, который должен составлять 50–80 см.
  3. Привяжите к вертикально расположенным пруткам, используя проволоку, горизонтально расположенные прутья нижнего и верхнего уровня.
  4. Применяйте подкладки, обеспечивающие гарантированный зазор от нижнего пояса усиления до основания.
  5. Укрепите дополнительными стальными прутьями участки, находящиеся посередине основания.

Таким способом производится армирование фундаментной плиты ленточного типа, обеспечивающее целостность бетонного массива, воспринимающего значительные нагрузки.

при составлении схемы армирования следует учитывать необходимость расположения прутьев сверху и снизу, диаметр элементов при этом должен составить предел от 10 до 12 мм

Застройщики интересуются, сколько использовать горизонтально расположенных стержней для каждого пояса, как лучше для обеспечения эксплуатационной прочности? Количество уровней усиления остается неизменным. Горизонтально расположенная арматура укладывается всегда на верхнем и нижнем ярусах каркаса, образуя надежную пространственную конструкцию. Выполняя армирование плиты ленточного типа, обращайте внимание на ширину будущей бетонной основы. От этого зависит, в каком количестве уложить арматуру в каркас усиления:

  • при ширине основы 40 см и меньше используют два арматурных стержня для каждого из поясов пространственного каркаса;
  • делать армирование основы увеличенной ширины следует, применяя по три стержня на каждом ярусе арматурного усиления;
  • в нагруженных конструкциях увеличенной ширины используется для укрепления по 4 горизонтальных стержня арматуры для каждого пояса.

Размеры стержней, вбитых по контуру, должны равняться толщине основы. При соединении с помощью вязальной проволоки перпендикулярно расположенных стержней, проверьте длину выступающей части вертикального прутка, которая должна составлять до 10 см.

Специфика укрепления углов

Угловые элементы арматурного каркаса воспринимают значительные усилия, связанные с воздействием сжимающих и растягивающих нагрузок. Важно правильно делать армирование угловых участков, чтобы не допустить образования нежелательных трещин и разрушения целостности бетонного монолита в угловых зонах.

Довольно часты такие случаи, когда деформация приходится именно на угловые части и обходит середину

Как уложить прутья в угловых зонах, чтобы не допустить ошибки? Помните, запрещается устанавливать угловые стержни перпендикулярно друг к другу. Их следует на специальном приспособлении выгнуть. Важно обеспечить нахлест арматуры, соединить радиусными элементами прутки каждого пояса. Величина перекрытия прутьев, расположенных в угловой зоне, должна быть более 25 см. В этом случае, когда опалубка будет заполняться бетонным раствором, не произойдет разрушения усиливающего контура в угловых участках.

Какую арматуру лучше использовать для фундамента с целью надежного крепления угловых участков? Применяйте стержни начиная с класса A2, имеющего маркировку A300, и заканчивая классом A6 с маркировкой А1000. Прутки имеют рифленую поверхность, производятся методом горячего проката, обеспечивают повышенную адгезию с бетонным массивом. Какая арматура лучше? Всё зависит от величины действующих нагрузок. Чем выше класс стержней, тем больше запас прочности. Укрепление угловых зон также можно осуществить, используя арматурную сетку с ячейками квадратного сечения (2х2 см).

Методы крепления прутков

Правильно выполненная армировка определяет прочность фиксации элементов каркаса. Помните об этом, производя армирование плиты ленточной основы. Застройщики интересуются: как армировать ленточный фундамент своими руками, обеспечив надежное крепление стержней? Существуют следующие виды фиксации:

  1. Применение проволоки для вязания, позволяющей с помощью специального приспособления соединять стержни. Это обеспечивает жесткое расположение арматуры в каркасе.
  2. Использование сварочного оборудования, применение которого позволяет соединить стальные прутья. Но такая армированная конструкция не будет иметь необходимой жесткости. Это связано с нарушением структуры металла, возникающей при сварке в точках соединения.

Как правильно сделать фиксацию стальных прутков? Ведь существуют несколько способов крепления элементов. Не сомневайтесь, применяйте вязальную проволоку – эффективное средство, в надежности которого убедились профессиональные строители. Использование сварки нежелательно, так как при нагрузках происходит повреждение целостности каркаса с последующим появлением трещин на поверхности бетонного массива.

Подводим итоги

Материал статьи призван помочь качественно выполнить армирование фундамента своими руками. Ознакомившись с технологией работ, самостоятельно можно армировать фундамент, не прибегая к услугам наемных рабочих. Это ответственная операция, результат которой зависит от того, какая арматура используется, и как соблюдается технологическая последовательность выполнения операций.

На сайте: Автор и редактор статей на сайте pobetony.ru
Образование и опыт работы: Высшее техническое образование. Опыт работы на различных производствах и стройках — 12 лет, из них 8 лет — за рубежом.
Другие умения и навыки: Имеет 4-ю группу допуска по электробезопасности. Выполнение расчетов с использованием больших массивов данных.
Текущая занятость: Последние 4 года выступает в роли независимого консультанта в ряде строительных компаний.

Основные этапы армирования ленточного фундамента частного дома

Большинство людей предполагают, что фундамент это просто бетонная глыба, на определенную глубину закопанная в землю и вместе с тем не все осознают, что для улучшения эксплуатационных характеристик такого фундамента, главным образом его прочности и надежности его необходимо армировать.

Еще 150 лет назад стали дополнительно армировать ленточный фундамент, создавая тем самым не что иное, как железобетонную конструкцию. Такая конструкция вполне способна выдержать серьезные нагрузки, порой возникающие даже на уже возведенных объектах.

Проще говоря, армирование предназначено для того чтобы фундамент здания мог противостоять нагрузкам имеющим место в любом возведенном здании. Эти нагрузки обычно возникают либо из-за неоднородности грунта, либо из-за различной массы отдельных элементов сооружения, в результате чего разные участки фундамента испытывают разные нагрузки и в то время как металл пытается противостоять нагрузкам растяжения, бетон противостоит нагрузкам сжатия.

При этом стоит учитывать, что именно растяжение чаще всего становится причиной образования трещин в фундаменте и в связи с этим армирование играет важную роль в долговечности всей конструкции.

Материалы и инструменты для армирования ленточного фундамента

Для того чтобы армирование ленточного фундамента не доставляло никаких неудобств необходимо заранее позаботится о заготовке нужных материалов, а это:

  • арматура;
  • вязальная проволока;
  • крючок для вязки.

При этом стоит учитывать, что из опыта для строительства частного дома вполне достаточно арматуры диаметром от 6 до 10 мм.
Естественно что, чтобы заготовить необходимый материал необходимо предварительно произвести кое-какие расчеты и для это не нужно упускать из виду вот что:

  • для изготовления продольных элементов каркаса необходимо использовать арматуру большего диаметра, так как эти элементы испытывают большие нагрузки;
  • при этом использовать необходимо арматуру, имеющую ребра, что позволит добиться максимального сцепления с грунтом, а толщина прута зависит от изменения характеристик грунта по периметру здания;
  • также, выполняя армирование ленточного фундамента, во избежание начала процессов коррозии характерных для большинства металлов арматуру необходимо минимум на 50 мм утопить в бетон со всех сторон, но при этом не нужно ее утапливать слишком глубоко в верхней части, ведь именно эта часть воспринимает основные нагрузки;
  • для изготовления поперечных и вертикальных стоек, соединяющих продольные элементы каркаса можно использовать прутья толщиной от 6 мм, которые могут быть гладкими;
  • расстояние между этими элементами должно быть в пределах 100-300 мм.

Используя эти размеры можно примерно рассчитать необходимое количество метров арматуры, для этого достаточно подсчитать, сколько необходимо одинаковых прутков для создания каркаса и умножить это число на их длину. Как правило, такие расчеты оказываются довольно точными.

Этапы армирования ленточного фундамента

Рассчитав и заготовив необходимое количество арматуры можно переходить к созданию каркаса, который обычно подгоняется под размеры фундамента. Исходя из того, что обычно фундамент имеет ширину равную 400 мм и высоту не более 1200 мм лучше всего делать каркас трех уровневым, используя для этого арматуру толщиной 10 мм, а соединять основание с верхним и промежуточным уровнем лучше 8 мм арматурой.

При этом если не отходить от технологии армирования ленточного фундамента, то результатом должен стать каркас, высота которого вдвое больше ширины. Из-за того что фундамент имеет малую ширину и большую длину основные нагрузки возникают именно продольной проекции, поэтому вертикальные и поперечные элементы являются в большей степени конструктивными и на них можно немного сэкономить.

Также технология армирования подразумевает армирование углов фундамента изогнутыми прутьями, хотя большинство предпочитает не заморачиваться и просто устанавливает перпендикулярно друг другу два каркаса, ни одно здание, так построенное, еще не упало, и не упадет.

Одним из этапов армирования ленточного фундамента будет вязка арматуры для чего необходимо запастись собственно арматурой, проволокой и специальным крючком. При этом не нужно для создания каркаса использовать сварку, такой каркас может лопнуть, не выдержав нагрузок, хотя будет несколько жестче вязанного. Изготовив каркас можно переходить к очередному этапу строительных работ, который еще больше приблизит к финалу.


Похожие материалы:

Новые материалы:

Предыдущие материалы:


Армирование ленточного фундамента - схема монтажа

Фундамент – это основа любой постройки. Именно от хорошего фундамента будет зависеть качество эксплуатации дома и его долговечность. Фундамент, как правило, состоит из затвердевшей бетонной смеси. Для придания жесткости бетонной основе, ее необходимо армировать специальными стальными прутьями по определенным правилам.

Существует схема армирования ленточного фундамента, следуя которой строитель заложит крепкую и долговечную основу для дома.

Что такое ленточный фундамент и зачем его армировать

Ленточный фундамент – это один из самых распространенных бетонных оснований. Он представляет собой ленточную конструкцию, выполненную по периметру и дома, а также в местах перегородок.

Ленточный фундамент имеет такие преимущества:

  • выдерживает большие нагрузки различных строений, выполненных из кирпича, камня, блоков;
  • предусматривает обустройство подвального помещения;
  • подходит для неоднородных грунтов, где существует риск проседания и вспучивания.

Таким образом, фундамент испытывает двойную нагрузку: сверху давят тяжелые стены, а снизу действует растяжение грунта. Последний факт особенно актуален для любой постройки. Ведь в результате зимнего промерзания, влажный грунт увеличивается в объеме. Если фундамент не достаточно жесткий, то его целостность может нарушиться, что приведет к появлению трещин на стенах и риску разрушения дома.

Но бетон сам по себе хорошо справляется с этими нагрузками. Так зачем надо еще дополнительно закладывать стальные прутья?

Это связано с тем, что нагрузка в разных точках фундамента – разная. Ведь состояние грунта неодинаково в различных местах, как и давление дома, то и нагрузка на фундамент будет отличаться.

Чтобы уравнять этот физический показатель, в бетонное основание закладывают стальные прутья, которые обеспечивают равномерное распределение нагрузки по всей площади фундамента.

к содержанию ↑

Тип и количество арматуры для укрепления фундамента

Армирующие прутья бывают 2 видов: стальные и композитные. Металлическая арматура применяется чаще, так как ее эффективность проверена годами.

Применение стеклопластика используется для тех строений, где повышены требования к ограничению радиопомех, магнитного поля, химического воздействия.

Металлическая арматура бывает стержневая и проволочная. Для ленточного фундамента берут стержневую арматуру периодического профиля класса А-3 или по ГОСТу А400. Этот стройматериал имеет хорошую адгезию с бетоном и из него вяжут нижнюю и верхнюю часть каркаса.

Из гладких прутьев, сечением до 1 см изготавливают вертикальную и поперечную часть каркаса. Гладкие прутья называют монтажными. Поперечную арматуру следует выбирать класса А-1 или по ГОСТу А240.

Чтобы рассчитать количество необходимых материалов, необходимо знать геометрические параметры фундамента и требования к каркасу.

Обычно каркас-сетку выполняют в 2-3 ряда. Шаг между вертикальными прутьями: 40-70 см, а горизонтальными – 30-60 см. Если заглубленный фундамент имеет высоту менее 1 м, то для него понадобиться 2-3 продольных уровня.

Для примера рассмотрим фундамент высотой 60 см, а шириной – 30 см. Данная основа заложена под строение, длина и ширина которого по 5 м.

В этом случае выполняют двухъярусную сетку с шагом 0,5 м. Для 4 продольных линий по 20 м, потребуется 80 погонных метров рабочей арматуры. Расчет монтажных вертикальных прутьев берут с учетом отступов от поверхности в 5 см. Если количество пересечений = 51, то получаем общую длину прутьев: 1,4 м * 51 = 71,4 м. Рекомендуется покупать материал с запасом в 10%.

Таким образом, путем сложения чисел, получаем общее количество необходимой арматуры: 80 + 71,4 + 10% ~ 170 погонных метров.

Видео о том как правильно армировать пространственный каркас мелкозаглубленного ленточного фундамента:

к содержанию ↑

Правила закладки стальных прутьев в бетонную основу

Перед выполнением металлического каркаса, железные прутья следует очистить и проверить их качество.

Технология армирования ленточной основы выполняют по такому алгоритму:

  1. В вырытую траншею засыпают песчано-щебневую подушку, толщиной 5 см. Это надо для предупреждения коррозии железных прутков.
  2. Выполняют опалубку и заливают тонкий бетонный слой.
  3. Сверху укладывают поперечные прутья с шагом 80 см.
  4. Формируя каркас, укладывают продольные прутки, перпендикулярно предыдущим стержням, в 2 ряда. Места пересечений связывают. Нижний уровень каркаса готов.
  5. В местах стыков устанавливают вертикальные гладкие прутки. Важно соблюдать при этом перпендикулярность.
  6. К вертикальным прутьям крепят верхний ярус каркаса. Он представляет собой рамку, прутья в которой закреплены с интервалом 20 см.
  7. Верхний ярус комплектуют продольными прутками, которые скрепляются с остальными прутьями хомутами или проволокой.
  8. Арматурный скелет жестко закрепляют к опалубке. Зазор между железной конструкцией и опалубкой должен составлять 3-5 см.
  9. Контролируют качество креплений и убирают лишний мусор.

Самое важное при выполнении каркаса – это надежно закрепить прутья между собой, особенно в углах фундамента. Здесь важно соблюдать ровные углы и перпендикулярность. Существует 2 способа объединения стержней: сварка и вязание проволокой.

Сварка в частном строительстве нежелательна, так как данный метод не обеспечивает должного качества перпендикулярной конструкции. Строители часто пренебрегают требованиями норм и варят вручную контактной сваркой, а не дуговой.

Предпочтительным методом соединения стержней является вязание проволокой, диаметром 0,8-3 мм. Это осуществляется с помощью вязального крючка. Качество такого соединения гораздо выше, чем в предыдущем варианте. Недостатками метода являются: большая трудоемкость процесса и малая жесткость по сравнению со сварной конструкцией.

к содержанию ↑

Схема армирования ленточного фундамента

На рисунке 1 изображена схема усиления фундамента под одноэтажный дом, размером 10х6 м.

Рисунок 1. Схема армирования ленточного фундамента

В качестве продольных прутков берут стержни класса А-3, диаметром 12 мм; поперечными прутками выступает арматура, диаметром 8 мм, класса А-1.

Шаг перекрытий составляет 0,6 м, а в области углов – 0,2 м. Углы и Т-образные пересечения усиливают вутами – арматурой класса А-3, диаметром 12 мм. В области примыканий вуты кладут внахлест, который равен: 50*d, где d – диаметр прутка.

Армирование углов и Т-образных стыков можно выполнить с использованием специальных лапок. Они представляют собой своеобразные уголки, с длиной полочек, равных: 50*d, где d — диаметр арматуры. Например, если диаметра арматура 10 мм, то загиб лапок равен 500 мм. Пример такого крепления показан на рисунке 2.

Рисунок 2. Схема армирования угла лапками

Подведя итог, можно выделить основные правила армирования фундамента:

  1. Диаметр рабочих прутков должен быть не менее 12 мм.
  2. Продольные (рабочие) прутья в совокупности с поперечной арматурой образуют каркас, элементы которого сваривают или связывают.
  3. Для средней величины фундамента, необходимо 3-4 продольных прутка.
  4. Диаметр поперечных стержней равен 6-8 см, которые укладывают с шагом 200-600 мм.
  5. Толщина ленточной основы принимают не менее 300 мм.
  6. Углы и Т-образные пересечения усиливают специальными вутами или лапками. Диаметр этих креплений должен быть равен диаметру рабочих прутков.

Металлический каркас в конструкции фундамента – залог крепкого дома и комфортного проживания в нем.

Как французы делают ленточный фундамент:

Схема армирования ленточного фундамента — Всё про бетон

Армирование – это строительный процесс, который используется с целью усиления стойкости конструкции и повышения периода ее эксплуатации. Он представляет собой формирование сборного скелета, выступающего как защитный компонент, который противостоит воздействию почвы на стенки конструкции.

Чтобы добиться максимального результата следует четко рассчитать, сколько необходимо арматуры, а также точно провести армирование фундамента здания.

Правильное армирование ленточного фундамента своими руками

В основании фундамента первостепенным компонентом выступает бетонная смесь, сформированная из цемента, просеянного песка и чистой воды. Поскольку этот раствор не обладает достаточными физическими характеристиками, способными предоставить гарантию на отсутствие разнотипных деформаций в фундаменте конструкции, дополнительно используют металл.

Он позволяет увеличить степень противостояния сдвигам основания, резким изменениям температур и иным отрицательно воздействующим факторам. Сам по себе металл пластичен, но он способен обеспечить достойную фиксацию, поэтому армирование – важный и необходимый процесс во всем комплексе строительства.

Армирование следует проводить лишь в местах, где существует большая степень уязвимости к растяжениям. Чаще всего оно встречается на поверхности, поэтому следует в обязательном порядке армировать верхний уровень основания. В целях избежания коррозии материала, следует его защитить слоем бетонного раствора.

Допустимый показатель расстояния арматурного пояса от поверхности должен составлять около 5 см.

Зоны возможной деформации:

  • нижняя часть, когда наблюдается прогибание его середины вниз;
  • верхняя часть – выгибание каркаса вверх.

Для среднего уровня основания армирование проводить необязательно, поскольку в этой зоне практически не существует растягивания.

Учитывая возможные варианты деформации, следует обязательно выполнить армирование низа и верха, используя арматуру с ребристой поверхностью и диаметром в пределах 10–12 мм. В подобном варианте наблюдается наиболее тесный контакт с бетонным раствором. Иные элементы скелета могут быть небольшого диаметра и иметь сглаженную поверхность.

Если проводится армирование фундамента с шириной до 40 см, используются 4 прута арматуры диаметром 10–16 мм, которые соединены в каркас с диаметром 8 мм.

Ленточный тип основания большой длины имеет сравнительно незначительную ширину, из-за чего в нем могут присутствовать только продольные растяжения без поперечных. Поэтому в данной ситуации лучше всего использовать гладкие и тонкие прутья для формирования каркаса, а не для принятия на основание больших нагрузок.

Больше всего следует уделять внимание при армировании углов, поскольку во многих случаях деформации происходят именно в этой части конструкции. Армирование углов конструкции необходимо проводить так, чтобы один из концов согнутого металла уходил в одну стену, а другой – в иную. Поскольку не каждый материал арматуры поддается сварке, скреплять элементы между собой лучше, используя проволоку.

Правила верного армирования фундамента ленточного типа:

  1. Работа начинается с установления опалубки, которая с внутренней стороны обкладывается пергаментом. Данная процедура в дальнейшем позволяет быстрее разобрать созданную конструкцию.
  2. Затем следует вбить арматурные прутья в грунт траншеи на расстоянии 5 см от опалубки и с шагом в 40–60 см. Длина прутьев должна быть равной глубине фундамента.
  3. На дно траншеи укладывается подставка размером в 8–10 см, а поверх нее формируется 2 или 3 нитки ряда арматуры. Как подставку можно применить обыкновенный кирпич, уложенный на ребро.
  4. Верхний и нижний пояс из арматуры с поперечными соединениями прикрепляется к вертикальным стержням.
  5. В местах, где происходит пересечение элементов, необходимо проводить крепление проволокой или сваркой.

Обязательно соблюдайте расстояние до будущей поверхности фундамента, для этого можно использовать кирпичи.

  1. Установив арматуру, следует сделать вентиляционные отверстия и провести заливку бетона.

Наличие вентиляционных дыр и отверстий увеличивает амортизационные показатели и предотвращает возникновение гнили.

Идеальным вариантом считается использование схемы для ленточного фундамента, состоящей из примитивных геометрических фигур, таких как квадрат или прямоугольник, тогда каркас проще смонтировать правильно, а фундамент в результате получается более надежным и крепким.

Основные ошибки армирования ленточного фундамента

Самые известные и часто допускаемые ошибки:

  1. Углы. Главная проблема и ошибка уложить стержни угла крест-накрест. Из-за подобной укладки в фундаменте очень часто возникают трещины. 
  2. Гидроизоляционный материал. Очень часто при создании опалубки забывают об использовании гидроизоляции, вследствие чего вода вымывает цемент и делает бетон менее устойчивым и прочным. Также это способствует возникновению усадочных трещин. Слой гидроизоляции следует очень хорошо и тщательно прикрепить к опалубке, чтобы устранить формирование нежелательных складок и впадин в фундаменте.
  3. Заливка бетона. Заполнение ленточного фундамента бетонной смесью по высоте очень часто не доходит до краев, а долив, проводят лишь через пару дней. Технология подобного типа уже не являет собой конструкцию из монолита, она похожа на две обыкновенные балки с однослойным армированием, которые объединяет между собой скрепление слоев бетонной смеси и поперечной арматуры. Заливка бетона при создании фундамента должна быть беспрерывной, а максимально допустимый интервал для перерыва должен быть не более двух часов.
  4. Вентиляция. Огромную ошибку совершают при установке и в процессе эксплуатации продухов необходимых для вентиляции холодного подполья. Они выполняются из труб диаметром 10 см. Самая минимальная площадь, требуемая для продуха, должна быть около 0,05 м2 (приблизительно 20х25 см).

Запрещается закрывать продухи на зиму, поскольку это приводит к отсутствию вентиляции и загниванию конструкции.

Зачем нужна арматура в ленточном фундаменте?

Со временем у любого дома возникает просадка, поскольку грунт, находящийся под подошвой основания, поддается давлению сверху и уплотняется. Чем больше давления на него оказывают, тем сильнее и быстрее он уплотняется. Если возникающий напор распределен равномерно по всей площади ленточного фундамента, то в этом нет особой проблемы.

Как правило, в реальных условиях давление на основание не симметрично из-за чего здание оседает неравномерно. Чтобы избежать подобной проблемы в фундаменте применяются ленты различной ширины, но даже этот прием не всегда способствует устранению и уравнению давления на фундамент.

Неравномерному осадку фундамента способствует:

  1. Разнообразные включения грунтовой почвы.
  2. Неравномерная и непостоянная влажность.
  3. Различные достройки и пристройки.
  4. Протечка водонесущих коммуникаций.
  5. Отсутствие с какой-либо стороны отмостки и т. п.

Под влиянием указанных причин осадки, поверхность грунта под фундаментом становится кривой относительно вертикального направления здания. Больше всего подвержены воздействию углы конструкции и места с большими перепадами нагрузки.

В подобной ситуации в фундаментной ленте возникает внутренне напряжение, которое способствует возникновению изгибающихся моментов и трещин. Чтобы устранить нежелательное давление на основание, снизить количество трещин и изгибов внутрь фундамента добавляют арматуру.

Какая арматура нужна для фундамента?

Существует два варианта, используемой в строительстве арматуры:

  1. Стальная, которая подразделяется на:
    • стержневую;
    • проволочную.
  2. Композитная арматура. Она применяется сравнительно редко из-за характерных для нее минусов.

Чтобы армировать фундамент ленточного типа используют стержневую арматуру в качестве основного (рабочего) материала и гладкую как дополнительного.

Главное свойство для рабочей арматуры способность быстро и хорошо сцепляться с бетоном. Подобный тип арматуры производят с периодическим профилем, подразделяя его по показателям прочности на классы.

Согласно ГОСТу, существовавшему в период СССР, для частного типа строительства применяется арматура класса А-ΙΙΙ или аналог А400 (по современному ГОСТу). Для поперечной арматуры используется гладкий стержень класса А-Ι или А240 (современный ГОСТ).

Между арматурой старого и современного образца существует отличие в виде измененного профиля серповидной формы, в остальных аспектах отличия отсутствуют.

Чтобы правильно выбрать арматуру для фундамента в магазине следует просто обратить внимание на обозначения:

  • Индекс С указывает на то, что арматурный прокат свариваемый;
  • Индекс К свидетельствует о том, что арматура обладает стойкостью к процессам коррозийного растрескивания, возникающих в связи с давлением на фундамент.

Если эти индексы отсутствуют на упаковке лучше не покупать такой подобный материал.

Конструктивные требования к ленточным фундаментам и их армированию

В связи с отсутствием возможности провести точный расчет диаметра для ленточного фундамента были разработаны специальные конструктивные требования к его армированию:

  1. У рабочих стержней должен быть диаметр минимум 12 мм. 
  2. Количество продольных прутьев должно быть минимум 4, а лучше 6.
  3. Продольные прутья соединяются между собой в пространственный каркас при помощи вязания проволоки или сваривания.
  4. Шаг для поперечного армирования должен быть 20–60 см, а диаметр арматуры 6–8 мм.
  5. Места с наиболее высоким уровнем возможной осадки, а также Т-образные пересечения требуют усиленного армирования с помощью арматурных лапок или вутов с диаметром равным тому, который используется для продольных стержней.
  6. Толщина ленточного типа основания, как правило, составляет около 30 см.

Сколько нужно арматуры для ленточного фундамента?

Для фундамента используется арматура с небольшим диаметром, например, для малоэтажного строительства употребляется арматура с диаметром 10–12 мм, несколько реже – 14 мм.

В независимости от высоты основания для армирования понадобится сделать два пояса из ребристой арматуры класса А3 на расстоянии 5 см от нижней и верхней части фундамента. Поперечные и вертикальные прутья могут быть выполнены из гладкого типа арматуры класса А1.

Для ширины фундамента около 40 см достаточно применить 4 продольных стержня арматуры, из которых два находится внизу и два вверху. Если ширина фундамента больше 40 см или строительство ведется на подвижных грунтах, следует применить больше стержней приблизительно 3 – 4 для верхнего и столько же для нижнего пояса.

Чтобы провести расчет количества необходимой арматуры существует два метода:

Самостоятельный подсчет
Пример. Длина фундамента под здание 6 на 10 м с двумя стенами будет равна 48 метрам (6+10+6+10+6+10=48м).

Если ширина основания 60 см, а армирование состоит из 6 продольных прутьев, то их длина составит 288 метров (6*48=248м).

Шаг между поперечными и вертикальными стержнями соблюдается в 0,5 м, ширина фундамента – 60 см, высота – 1,9 м, отступы стержней от каркаса по 5 см.

В этом случае длина гладкой арматуры с диаметром 6 мм на каждое соединение составляет 640 см или 6,4 м. ((60-5-5)*2+(190-5-5)*3=640 см), а соединений будет 97 штук (48/0,5+1=97 шт.), на них потребуется 620,8 метров арматуры (97*6,4=620,8м).

Для каждого соединения необходимо 6 пересечений для вязки арматуры и приблизительно 12 частей вязальной проволоки. На одну связку требуется 30 см проволоки. Исходя из этих данных, общий расход проволоки составит 349,2 м (0,3*12*97=349,2 м).

Использование коэффициента армирования

Для зданий с небольшой этажностью существует уже выведенный строителями показатель количества арматуры, который составляет 80 кг/м3

Пример. Если для фундамента необходимо 20 м3 бетонного раствора, значит, арматуры понадобится 20*80=1600 кг. Подсчет бетона делать несложно, необходимо лишь знать периметр дома, длину внутренних стен, задать высоту ленты 30 см и помножить ее на ширину.

Чтобы расчет был более экономным лучше всего сделать более точный подсчет необходимого количества арматуры, нарисовав схему армирования. А затем, просчитав погонаж на продольную и поперечную арматуру, вут, а также добавив к этому приблизительно 10 %, которые уйдут на обрезки, умножить полученный результат на вес погонного метра для каждого из используемых диаметров арматуры.

Армирование ленточного фундамента — вязать или варить?

Прутья из металла можно соединять между собой в каркас с помощью вязания или сваривания. Каждый вариант обладает своими положительными и отрицательными качествами.

Главным недостатком сваривания выступает, отсутствие возможности провести качественное поперечное соединение, используя ручной электрод. На заводах каркасы и сетки соединяют, применяя контактный, а не дуговой тип сварки.

В связи с этим очень часто наблюдаются недостаточно прочные соединения (непровар) или ослабление продольного стержня (подрез). Также большим недостатком сваривания является то, что не все материалы поддаются сварке, например, арматура класс А3 делается из стали марки 35ГС, которая не сваривается.

Также если учесть, что для сваривания необходим сам аппарат, наличие знаний, умение им пользоваться, а также расход электричества, то больше преимущества в строительстве отдают вязанию.

Вязание проводится с использованием проволоки диаметром 0,8–3 мм, а в качестве инструмента выступает специальный вязальный крючок. Единственным недостатком такого варианта соединения является высокая трудоемкость.

Какие материалы применяются для армирования?

Для армирования необходимы следующие материалы:

  1. Стальная либо композитная арматура, стержни которой выполненные из стеклопластика или металла.
  2. Зажимной инструмент (вязальный крючок).
  3. Стальная проволока (стяжные хомуты) для вязки. Для металла с индексом С, можно использовать сварку. В этом случае необходим сварочный аппарат.
  4. Ножовка по металлу и т. д.

Правильное армирование ленточного фундамента на долгие годы укрепит здание, снизит количество трещин в основании и на стенах, а также убережет конструкцию от осадки.

Статья о правильном армировании ленточного фундамента своими руками

К рассмотрению предлагаем монолитный ленточный фундамент, т.к. сборный менее распространен.

Основные ошибки армирования ленточного фундамента.

Фундамент в процессе эксплуатации подвергается различным нагрузкам от веса самого дома, от движения грунтов и от морозного пучения. При давлении дома нижняя часть испытывает нагрузку на растяжения, верхняя на сжатие. Так же необходимо помнить о силах морозного пучения, подъемная сила которых может превысить вес дома и вызвать растяжение в верхней части ленточного фундамента. Неправильное армирование ленточного фундамента может привести к его разрушению, и, как следствие, разрушению стен и всего здания. Поэтому к армированию ленточного фундамента надо подойти очень серьезно, фундамент - основа всего здания. В этой статье мы приведём подробные чертежи и схемы армирования ленточного фундамента.

Чертёж 1. Нагрузки действующий не фундамент дома

Основную нагрузку на сжатие воспринимает бетон, а на растяжение арматура. Поэтому необходимо армировать нижнюю и верхнюю части фундамента. Армирование средней части фундамента смысла не имеет, так как он почти не испытывает нагрузок.

Чертёж. 2  Схема армирования каркаса ленточного фундамент; 1 - продольные стержни, 2 - хомуты

Продольная арматура, воспринимает основные нагрузки, она укладывается в нижней и верхней части фундамента. Для продольных стержней используется горячекатаная стержневая арматура класса А3. Если высота фундамента больше 150 мм, то необходимо установить вертикальную и поперечную арматуру. Для нее обычно используется горячекатаная стержневая  гладкая арматура класса А1 диаметром 6-8мм. Поперечное и вертикальное армирование лучше выполнить единим хомутом, который свяжет армирование в единый каркас. Продольная арматура должна быть расположена внутри каркаса. Связка арматуры в единый каркас ограничивает распространение трещин в бетоне и закрепляет арматурные стержни в нужном положении. Расстояния между прутами продольного армирования и шаг поперечного армирования ленточного фундамента определяется СНиП 52-01-2003:

7.3.4 Минимальное расстояние между стержнями арматуры в свету следует принимать в зависимости от диаметра арматуры, размера крупного заполнителя бетона, расположения арматуры в элементе по отношению к направлению бетонирования, способа укладки и уплотнения бетона.
Расстояние между стержнями арматуры следует принимать не менее диаметра арматуры и не менее25 мм.
Продольная арматура
7.3.6 Расстояние между стержнями продольной рабочей арматуры следует принимать с учетом типа железобетонного элемента (колонны, балки, плиты, стены), ширины и высоты сечения элемента и не более величины, обеспечивающей эффективное вовлечение в работу бетона, равномерное распределение напряжений и деформаций по ширине сечения элемента, а также ограничение ширины раскрытия трещин между стержнями арматуры. При этом расстояние между стержнями продольной рабочей арматуры следует принимать не более двукратной высоты сечения элемента и не более400 мм, а в линейных внецентренно сжатых элементах в направлении плоскости изгиба — не более500 мм.
Поперечное армирование
 7.3.7 В железобетонных элементах, в которых поперечная сила по расчету не может быть воспринята только бетоном, следует устанавливать поперечную арматуру с шагом не более величины, обеспечивающей включение в работу поперечной арматуры при образовании и развитии наклонных трещин. При этом шаг поперечной арматуры следует принимать не более половины рабочей высоты сечения элемента и не более300 мм.

Для соединения арматуры не рекомендуется использовать сварку, так как при высокой температуре свойства металла ухудшаются. Сваривать допускается только арматуру, которая в своей маркировке имеет букву «С», например А500С. Все другие марки арматуры связываются между собой при помощи вязальной проволоки.

Чертёж 3.  Схема армирования ленточного фундамента, связка арматуры

Так же при армировании ленточного фундамента надо помнить, что арматура не должна соприкасаться с грунтом и опалубкой, чтобы не допустить ее ржавления. Защитный слой для фундамента должен быть 50-80мм.

Следует уделить повышенное внимание армированию углов примыканий ленты фундамента, ведь угол железобетонной конструкции испытывает концентрированное напряжение. Для армирования углов и перекрестий требуется гнуть из арматуры класса А3 специальные углы. Нельзя армировать углы железобетонных лент простым перекрестием. При таком армировании фундамент будет представлять собой не единую жесткую раму, а набор отдельных не связанных друг с другом балок.

В народном строительстве родилась и прочно закрепилась недопустимая форма армирования углов и стыков лент фундамента при помощи простых связанных перекрестий. На рисунке ниже нарисованны чертежи армирования углового премыкания каркаса. Сверху - неправильный вариант (продольная арматура просто перекрещивается, дополнительных усилений, нет дополнительной поперечной и вертикальной арматуры). Снизу - изображен правильный вариант армирования.

Чертёж. 4  Неправильное армирование углов фундамента

Чертёж. 5  Схема армровния углов фундамента

При армировании премыканий лент фундамента ("Т" образных перекрестий) так же не допускается простых перекрестий, требуются дополнительные усиления (рис 6-7).

На чертеже стыки продольной арматуры (1) выполнены "перекрестиями", без дополнительных усилений. В зоне перекрестия нет дополнительных хомутов.

Чертёж. 6 Неправильная схема армирования примыканий каркасов

Чертёж. 7 Правильная схема армирования примыканий каркасов

Для украшения дома часто используют эркер - выступающая из плоскости фасада часть помещения. В каркесе фундамента под эркер сгибается тупой угол. При армировании тупых углов лент надо внутреннюю продольную арматуру пропускать через каркас и подвязывать к наружной, ставить дополнительное "Г" - образное усиление и дополнительные поперечные хомуты (рис 8).

Чертёж. 8 Армирование тупого угла фундамента. Слева - неправильное, Справа - правильное

Наверное, каждый, кто сталкивался с заливкой фундамента, видел неправильные схемы армирования стыков каркаса. На строительных форумах много мастеров и советчиков. Люди не сведующие в строительстве строят так свои дома, есть даже фотографии с примерами такого армирования. Но все эти советы не соответствуют строительным нормам. Неизвестно сколько простоит такое здание, так как такое  «армирование» со временем приводит к отколам слоев фундамента по ширине и образованием трещин у углов.

Общий смысл правильного армирования угла – это обеспечение жесткой связи лент фундамента. Для этого требуется связать арматуру в единый каркас, при помощи хомутов. В местах стыка арматуры и на углах устанавливаются дополнительные П-образные или Г-образные усиления. Поперечное и вертикальное армирование (хомуты) для ленты фундамента рекомендуется ставить не реже 3/8 от высоты сечения фундамента, но не реже 25 см.  В зоне угловой анкеровки арматуры хомуты ставится в два раза чаще, чем для средней части ленты.

P.S. Фундамент - основа Вашего дома. Существует множество факторов, таких как конфигурация здания, грунты, технология стоительства стен, этажность, тип перекрытий и пр., которые необходимо учитывать при выборе типа фундамента и его конфигурации. Настоятельно рекомендуем перед началом строительства проконсультироваться со специалистами! Если вы планируете строительство дома по технологии несъёмной опалубки Техноблок, обратитесь к нам до начала строительства. Мы поможем Вам не допустить ошибок, разработаем конфигурацию фундамента, сделаем проект, проведём контроль качества на всех этапах строительства и всё это совершенно бесплатно!

Статья выполненна специалистами компании "ТЕХНОБЛОК".


Системы железобетонных подушек и ленточных фундаментов

Предоставьте информацию, относящуюся к установленным поставкам, которая необходима для эксплуатации и технического обслуживания. Информация, касающаяся подробного обслуживания, также должна быть предоставлена ​​в соответствующих руководствах в формате PDF.

Имя Определение
Доступность Проблемы доступности, которым удовлетворяет объект.
Вид актива Индикация того, является ли объект неподвижным или подвижным.
Категория Код классификации, например Uniclass2015.
Код исполнения Требование соответствия нормам, которым объект удовлетворяет
Цвет Характерный или основной цвет продукта.
Составляющие Необязательные составные элементы, детали или отделка.
Описание Описание типа объекта для детализации любого замысла дизайна.
Единица длительности Ожидаемая продолжительность жизни (типичное значение - годы)
Срок службы Типичный срок службы объекта.
Характеристики Другие важные характеристики или особенности, относящиеся к спецификации продукта.
Отделка Характерная или первичная отделка продукта.
Марка Стандартная оценка, которой соответствует продукт.
Производитель Электронный адрес организации, ответственной за поставку или изготовление объекта
Материал Характеристический или первичный материал продукта.
Номер модели Номер продукта, позиции или единицы, присвоенный производителем объекта.
Номер модели Название объекта, используемое производителем.
Имя Уникальное удобочитаемое буквенно-цифровое имя, начинающееся с типа продукта.
Номинальная высота Обычно это вертикальный или второстепенный характерный размер.
Номинальная длина Обычно больший или основной горизонтальный размер.
Номинальная ширина Номинальная ширина продукта, обычно характерный или вторичный горизонтальный или характерный размер.
Стоимость замены Ориентировочная стоимость замены агрегата.
Форма Характерная форма изделия.
Размер Характерный размер продукта.
Показатели устойчивого развития Описание проблем устойчивого развития, которым удовлетворяет объект
Описание гарантии Описание содержания гарантии и любых исключений.
Срок гарантии (труд) Срок гарантии.
Срок гарантии (по частям) Срок гарантии на детали.
Единица срока гарантии Срок гарантии (типичное значение - годы).
Гарант (труд) Электронный адрес организации, ответственной за гарантийное обслуживание.
Гарант (запчасти) Адрес электронной почты организации, ответственной за гарантию на детали.
Идентификатор актива Идентификатор, присвоенный активу, который позволяет отличить его от других активов.
Штрих-код Идентификационный штрих-код (или RFID), присвоенный экземпляру продукта (для каждого экземпляра).
Дата установки Дата установки изготовленного изделия (для каждого экземпляра).
Серийный номер Серийный номер, присвоенный экземпляру продукта производителем (для каждого экземпляра).
Номер метки Номер тега, присвоенный экземпляру продукта владельцем (для каждого экземпляра).
Дата начала гарантии Дата начала действия гарантии.

Ленточный фундамент | ЭНЕРГЕТИЧЕСКИЙ ПИСАТЕЛЬ

Спецификация писательской работы

Напишите оригинальный, хорошо структурированный, тщательно проработанный, длинный (около 2000 слов) пост в блоге о ленточных фундаментах, их преимуществах, недостатках, конструктивных особенностях и т. Д. Включите следующие основные ключевые слова: ленточный фундамент, ленточный фундамент.

Результат

  • Количество слов: 2064
  • Уникальность: 100% (Advego Plagiatus)
  • Оценка читаемости (Flesch): 59
  • Плотность ключевого слова:
    1. ленточный фундамент: 26 (1,89%)
    2. ленточный фундамент: 24 (1,74%)

Правильно спроектированный и построенный фундамент - ключ к прочной и безопасной эксплуатации любого здания или сооружения. Существует несколько типов фундаментов, но ленточные фундаменты, несомненно, являются наиболее популярными в частном домостроении.Ленточный фундамент - это, по сути, непрерывная полоса из железобетона, замкнутая по периметру и уложенная под всеми стенами строящегося дома, равномерно распределяя его вес. Эта конструкция обеспечивает сопротивление пышной силе почвы и сводит к минимуму вероятность проседания или перекоса стен. Благодаря тому, что нет необходимости использовать тяжелое механическое оборудование для возведения ленточного фундамента, любой желающий может сделать это самостоятельно, не нанимая дорогостоящих подрядчиков.

Содержание

Ленточный фундамент Назначение

Ожидаемая продолжительность жизни ленточного фундамента

Проектирование ленточного фундамента

Преимущества ленточного фундамента

Недостатки ленточного фундамента

Монолитные / сборные фундаменты

Глубина закладки фундамента

Оптимальная ширина стены

Строительные материалы

Возможные проблемы в строительстве

Фундамент подвала

Заключение

Список литературы

Ленточный фундамент Предполагаемое использование

Назначение фундамента данного типа основано на распределении нагрузки на надземные конструкции (стены).Он предназначен для создания прямого сопротивления движению грунта, т.е. для предотвращения проваливания здания в рыхлый грунт или смещения его по осям в любом направлении при деформации грунта вокруг или непосредственно под домом. Ленточный фундамент выдерживает огромные нагрузки. Значит, на нем можно строить как легкие конструкции, так и тяжелые дома. Этот тип фундамента также намного экономичнее и проще в установке, чем другие типы фундаментов.

В каких случаях целесообразно выбирать этот тип фундамента? Выбирайте ленточный фундамент, если:

  • грунт вашей строительной площадки неровный, есть вероятность сильной осадки
  • вы собираетесь использовать в доме или строении тяжелые материалы, такие как бетонные блоки, кирпичи (стены имеют плотность 1000 кг / куб.м до 1300 кг / куб.м)
  • Вы планируете иметь в доме подвал (стены ленточного фундамента будут стенами подвала)

Ожидаемый срок службы ленточного фундамента

Срок службы фундамента зависит от многих факторов:

  • правильный расчет прочностных характеристик и выбор типа фундамента
  • соблюдение технологических требований при строительстве
  • Гидроизоляция краев фундамента и изнанки
  • вид защиты фундамента от агрессивного воздействия окружающей среды
  • защита внутренних стен фундамента антисептическими и гидроизоляционными составами
  • качество используемых материалов

Срок службы ленточных фундаментов в зависимости от применяемого материала может составлять:

  • до 150 лет для монолитных бетонных ленточных фундаментов
  • От 30 до 50 лет для ленточных фундаментов из кирпича
  • От 50 до 70 лет для фундаментов из сборных бетонных лент

Базовая конструкция ленточного фундамента


ПРИМЕЧАНИЕ: DPC - гидроизоляционный слой; ДПМ - гидроизоляционная мембрана; GL - уровень земли.

Преимущества ленточного фундамента

Ленточный фундамент имеет ряд преимуществ, делающих его наиболее популярным среди всех других типов фундаментов:

  • Его конструкция технически проста, недорога и обычно не требует использования тяжелой техники.
  • Стены ленточного фундамента могут одновременно служить стенами подвала дома.
  • Подходит для строительства как небольших частных домов, так и больших многоквартирных домов.
  • Можно построить дом на склоне.
  • Строительство можно вести в любых погодных условиях.
  • Осадка конструкции минимальная.
  • Он надежен и долговечен.
  • Может выдерживать большие нагрузки.
  • Ленточный фундамент позволяет обеспечить лучшую теплоизоляцию полов дома.

Недостатки ленточного фундамента

Ленточный фундамент также имеет ряд недостатков:

  • Возведение ленточного фундамента требует использования большого количества материалов.
  • Требуется гидроизоляция.
  • При монолитном бетонном фундаменте, самом надежном типе, нужно за один раз засыпать весь участок; и это очень тяжелая работа, требующая большого количества людей и использования техники.
  • Если наземное сооружение, которое будет построено, является массивным или вы намереваетесь построить подвал, потребуется гораздо больше земляных работ.
  • Не рекомендуется использовать этот тип фундамента на горизонтально неустойчивых грунтах и ​​на пучинистых грунтах (глинах).Также категорически нельзя использовать на торфе.

Монолитные и сборные фундаменты

По способу строительства насчитывается:

  • Фундамент монолитный ленточный
  • сборные (блочные, панельные, панельно-блочные) ленточные фундаменты

Проектирование монолитного ленточного фундамента включает изготовление арматурного каркаса и его связывание бетоном на месте, что обеспечивает целостность основания фундамента.

Сборный ленточный фундамент подразумевает связывание железобетонных блоков между собой.Делается это с помощью цемента и арматуры. Как уже было сказано выше, монолитные ленточные фундаменты имеют самый длительный срок службы и являются самыми надежными.

Глубина закладки фундамента

По глубине закладки насчитывается:

  • фундаменты мелкого заложения
  • глубокий фундамент

Неглубокий фундамент более популярен. Его доминирование обусловлено достаточно высокой несущей способностью и доступной стоимостью.

Применяется на всех типах грунтов, кроме проваливающихся / пучинистых грунтов и торфяников, и является оптимальным вариантом для легких домов высотой до двух этажей.Как правило, при строительстве деревянных и каркасных домов используется неглубокий фундамент. Глубина кладки обычно составляет не более 60 см, а ее основание аналогично плавучей несущей конструкции, способной противостоять разрывному действию грунта.

Если у вас пучинная почва или дом будет построен из тяжелых материалов, таких как шлакоблок, газосиликат или кирпич, или вы собираетесь построить подвал, вам необходимо использовать глубокий ленточный фундамент. Глубина кладки рассчитывается с учетом уровня промерзания грунта, особенно в районах с холодным климатом, и самая низкая точка фундамента должна быть ниже этого уровня минимум на 20-30 см.Например, глубина промерзания почвы составляет от 1 м до 1,5 м в центральной европейской части России, до 2 м на северо-западе России и до 3 м в Западной Сибири. В этом случае рекомендуется предварительно армировать монолитную полосу.

Оптимальная ширина стены

Во избежание воздействия на фундамент чрезмерного веса надземной конструкции стены фундамента должны быть шире стен возводимого дома. Как правило, для устойчивости дома ширина фундаментных стен должна быть не менее чем на 10 см шире стен дома.Также, чтобы вся конструкция была более устойчивой, рекомендуется делать ленточный фундамент расширяющимся к основанию. То есть его поперечное сечение похоже на расширяющуюся к основанию трапецию. Однако ленточный фундамент с прямоугольным сечением тоже достаточно устойчив.

Выбор минимальной ширины неглубокого фундамента основан на следующем основном принципе: удельная нагрузка на единицу площади грунта, расположенного под бетонным основанием, должна быть меньше его несущей способности.А именно эта разница должна быть не менее 30% в пользу несущей способности.

Оптимальная ширина стены (в см) для зданий различного размера и типа почвы

Типы почв

каменистая почва, сухая твердая глина, суглинок

плотная глина и суглинок

сухой плотный песок и супеси

мягкий песок, супесчаный суглинок, ил

очень мягкий песок, супесчаный суглинок, ил

торф *

Малый навес

Нагрузка: 20 кН / кв.м

25 см

30 см

40 см

45 см

65 см

Н / Д

Маленький двухэтажный дом

Нагрузка: 50 кН / кв.м

30 см

35 см

60 см

65 см

85 см

НЕТ

Большой 2- или 3-этажный дом

Нагрузка: 70 кН / кв.м

65 см

85 см

индивидуальный дизайн

индивидуальный дизайн

индивидуальный дизайн

N / A


ПРИМЕЧАНИЕ : * В любом случае, если ваша строительная площадка находится на торфяниках, вам придется использовать фундамент другого типа.

Строительные материалы

Перед тем, как начать заливку бетонного раствора, необходимо выбрать наиболее оптимальную марку бетона для вашего фундамента. Используемая марка бетона зависит от ряда факторов:

  • вес всей конструкции
  • дополнительные нагрузки на фундамент
  • тип используемой арматуры
  • тип почвы
  • климатические условия района

Для изготовления бетонной подушки под основной фундамент марки М7.5 или М10 будет вполне достаточно. Для легких конструкций (панельные дома, бани, сараи) подойдет марка М15. При строительстве дома из дерева или легких блоков необходимо использовать марку М20. Для массивных конструкций и построек следует готовить качественный бетон марки от М25 до М30. Бетон более высоких марок используется для возведения геометрически сложных конструкций и на строительных площадках в районах с суровым климатом. В условиях холодного климата нельзя забывать еще об одном важном параметре бетона - морозостойкости.

Кроме бетона вам понадобится:

  • Доска строганная для опалубки толщиной 20 мм
  • Стальные прутки и проволока толщиной от 8 до 12 мм для арматуры
  • песок речной для песчаной подушки

Особое внимание следует уделить арматурным стержням. Вся конструкция ленточного фундамента в основном подвергается продольным нагрузкам. Они связаны с неравномерной нагрузкой здания на фундамент и силами пучения грунта.Поэтому продольную арматуру фундамента следует выполнять из оребренных стержней (переменного сечения), обеспечивающих лучшее сцепление стали с бетоном и позволяющих выдерживать большие нагрузки. Углы - слабые места ленточного фундамента. Они наиболее подвержены выкрашиванию, растрескиванию и другим видам деформации. Поэтому усиление углов фундамента нужно производить с особой тщательностью.

Возможные проблемы в строительстве

Основными проблемами при строительстве ленточного фундамента являются:

  • поселок
  • пучение
  • замораживание
  • водонасыщенность

Неправильный расчет нагрузки надземной конструкции или площади основания фундамента, без учета наличия проваливающихся грунтов с низкой несущей способностью под фундаментом или оставление грунта в неразвитой, несжатой форме - все это вызовет дополнительные сложности при строительстве.

Пучка из-за промерзания основания фундамента. Грунт под неглубоким фундаментом (особенно водонасыщенным) расширяется, приподнимает фундамент, образует в нем трещины и, как следствие, фундамент деформируется, а затем передает нагрузку на стены дома, что приводит к их растрескиванию. .

При промерзании ленточного фундамента влажный воздух вызывает конденсацию, которая насыщает фундамент водой. Поэтому не допускайте промерзания фундамента зимой.

Вода, как отрицательный фактор для прочности фундамента, имеет несколько источников. Прежде всего, это количество атмосферных осадков в регионе и местный уровень грунтовых вод. Известно, что мокрый бетон легко разрушается при низких температурах, когда вода замерзает.

Фундамент подвала

Фундаменты подвала очень популярны и выгодны по ряду причин. Эти фундаменты обычно закладываются на глубину не менее 2,5 метров в почву.Стены ленточного фундамента - это стены подвала.

Преимущества фундаментов подвала

  • Самое большое преимущество фундамента подвала - это дополнительные квадратные метры пространства, которые вы получаете по гораздо более низкой цене, чем другие части вашего дома.
  • Для небольших домов добавление законченного подвала создает энергоэффективные жилые помещения, в которых тепло зимой и прохладно летом.
  • Техникам проще и дешевле ремонтировать ваши домашние коммуникации стоя, чем ползать в подвале или копаться в плите.
  • Подвалы могут быть отличным укрытием от штормов и ураганов, в то же время обеспечивая прочный якорь для вашего наземного дома.

Недостатки фундаментов подвала

  • Фундамент подвала стоит довольно дорого - тем более, если вы планируете отделывать это пространство. Но даже тогда это готовое подвальное помещение, скорее всего, будет самыми дешевыми квадратными метрами всего вашего дома.
  • Возможное наводнение. Чтобы предотвратить возможное наводнение, заранее проверьте уровень грунтовых вод в вашем районе.
  • Недостаток естественного света. Если вы планируете превратить подвал в жилое пространство, вам, возможно, придется найти творческие способы внести туда немного света.

Заключение

На ленточном фундаменте можно возводить различные конструкции, от небольших деревянных сараев до многоэтажных монолитных домов. При этом вы используете гораздо меньше строительных материалов и выполняете меньший объем земляных работ по сравнению с плиточным фундаментом (и в конечном итоге платите гораздо меньше денег за весь фундамент), что делает ленточные фундаменты наиболее популярным типом для строительства загородных домов. .

Список литературы


Автор: Афонин Алексей


НАЙТИ БЛОГГЕР СТРОИТЕЛЬНОЙ ПРОМЫШЛЕННОСТИ: [email protected]

НАЙТИ МЕНЯ СЕЙЧАС

Строительство

Как это сделать правильно: использование арматуры в фундаменте

Один из наших геодезистов недавно испытал небольшой шок, когда посетил участок для пристройки дома.

Их вызвали для проверки арматуры перед бетонированием фундамента, но они не были на месте ранее для проведения земляных работ или осмотра начала работ.«Строитель» гордо отступил и сообщил офицеру, что он выкопал 450 мм, но все еще находится в засыпанной земле, поэтому вместо этого решил построить укрепленный фундамент плота.

Более того, он помогал окружающей среде, перерабатывая тележки для покупок в качестве арматуры.

«Каждая мелочь помогает», - ответил ошеломленный офицер, прежде чем объяснить, что случилось. Впоследствии от проекта отказались из-за дополнительных затрат на его правильное выполнение, и он вернулся в патио.

Если вы участвуете в строительстве фундамента на плоту, необходимо учитывать несколько ключевых факторов, чтобы обеспечить правильную установку армирующей ткани. Это альтернатива, если вы не можете использовать традиционный ленточный или траншейный фундамент, но важно отметить, что фундаменты на плотах подходят не во всех случаях и обычно требуют проектирования инженером-строителем.

В отличие от ленточных фундаментов подвесных полов, где сетка просто помещается в нижнюю часть бетона, чтобы действовать на растяжение, плоты обычно имеют сетку вверху, чтобы противостоять сжатию от тяжелых точечных нагрузок, таких как внутренние стены, и внизу для растяжения, чтобы распределять нагрузку по более широкая поверхность.

Ключевые точки армирования

  • Армирование бывает разных размеров и классов , но чаще всего используются тканевое армирование A и B. В таблице ниже показаны размеры и центры стержней для наиболее часто используемых стержней:

  • Армирующая ткань должна быть без рыхлой ржавчины, масла, жира, грязи и любых других загрязнений , которые могут повлиять на долговечность бетона.
  • Необходимо обеспечить достаточное покрытие вокруг стали , чтобы защитить ее внутри бетона.40 мм - это минимальное покрытие, необходимое для всех поверхностей бетонной плиты. Внизу это может быть достигнуто с помощью запатентованных табуретов / сеток / пенополистирола / подъемников (не лишних кирпичей) по 20 на лист с гистулом или проволочными прокладками между любыми слоями по 5 на лист, чтобы гарантировать, что верхний слой останется там, где он должен, а не нет. просто просачивайтесь сквозь бетон (особенно когда он заливается или утрамбовывается и по нему ходят) и удерживает минимальное покрытие на поверхности.
  • Ткань класса B можно определить по размеру продольных и поперечных стержней, при этом продольные стержни расположены с шагом 100 мм по центру и всегда расположены в направлении пролета.Поперечные стержни расположены на расстоянии 200 мм по центру, как указано в таблице 1 в руководстве по техническим стандартам LABC Warranty.
  • Там, где армирующая ткань перекрывает, практическое правило - это минимальное перекрытие из двух стержней плюс 50 мм, то есть 200 + 200 + 50 = 450 мм, но это иногда может быть уменьшено с помощью инженерной конструкции в соответствии с Еврокодом 2 Таблица 2 в руководстве по техническим стандартам гарантии LABC предоставляет минимальные размеры нахлеста для ткани B.

Перемычки должны быть связаны проволочной обвязкой.

Обратите внимание: LABC не поддерживает использование корзин для покупок / тележек в фундаменте!

Дополнительная информация

Основание плотного фундамента

Руководство по техническим стандартам

V9 или специальный раздел по фондам.

Обратите внимание: были приняты все меры, чтобы информация была верной на момент публикации. Предоставленные письменные инструкции не заменяют профессионального суждения пользователя. Ответственный за выполнение работ или лицо, выполняющее работы, обязаны обеспечить соблюдение соответствующих строительных норм и технических стандартов.

Эффективность ленточного фундамента с армированием георешеткой для различных типов грунтов в Мосуле, Ирак

Abstract

Основная причина проблемного разрушения грунта при определенной нагрузке - низкая несущая способность и чрезмерная осадка. В связи с растущим интересом к использованию неглубокого фундамента для поддержки тяжелых конструкций важно изучить методы улучшения почвы. Техника использования геосинтетического армирования широко применяется в последние несколько десятилетий.Целью данной статьи является определение влияния использования георешетки Tensar BX1500 на несущую способность и осадку ленточного фундамента для различных типов почв, а именно Аль-Хамедат, Башика и Аль-Рашидия в Мосуле, Ирак. Расчет армированных и неармированных грунтовых оснований проводился численно и аналитически. Был протестирован ряд условий путем варьирования количества ( N ) и ширины ( b ) слоев георешетки. Результаты показали, что георешетка может улучшить несущую способность основания и уменьшить осадку.Почва на участке Аль-Рашидиа была песчаной и показала лучшее улучшение, чем почвы на двух других участках (глинистые почвы). Оптимальная ширина георешетки ( b ) в пять раз превышала ширину основания ( B ), в то время как оптимальное число георешетки ( N ) получено не было. Наконец, численные результаты предельной несущей способности были сопоставлены с аналитическими результатами, и сравнение показало хорошее соответствие между результатами анализа и оптимальным диапазоном, опубликованным в литературе.Значительные результаты показывают, что усиление георешетки может способствовать улучшению грунтового основания, однако напрямую не зависит от ширины и количества только георешетки. Различные свойства почвы и размер основания также влияют на значения BCR и SRR, подтвержденные расчетами коэффициента улучшения. Таким образом, полученные результаты дополнили выгоду от эффективного применения укрепленных грунтовых оснований.

Образец цитирования: Хасан Н.И., Мохд Тайб А., Мухаммад Н.С., Мат Язид М.Р., Муталиб А.А., Абанг Хасболлах Д.З. (2020) Эффективность ленточного фундамента с армированием георешеткой для различных типов почв в Мосуле, Ирак.PLoS ONE 15 (12): e0243293. https://doi.org/10.1371/journal.pone.0243293

Редактор: Цзяньго Ван, Китайский горно-технологический университет, КИТАЙ

Поступило: 17 июня 2020 г .; Одобрена: 19 ноября 2020 г .; Опубликовано: 17 декабря 2020 г.

Авторские права: © 2020 Hasan et al. Это статья в открытом доступе, распространяемая в соответствии с условиями лицензии Creative Commons Attribution License, которая разрешает неограниченное использование, распространение и воспроизведение на любом носителе при условии указания автора и источника.

Доступность данных: Все соответствующие данные находятся в документе.

Финансирование: Инициалы автора: AMT Номер гранта: GGPM-2018-039 Спонсор: Universiti Kebangsaan Malaysia URL: https://www.ukm.my/portal/ Роль спонсора: Оплата сборов за публикацию и предоставление оборудования для проекта.

Конкурирующие интересы: Авторы заявили, что конкурирующих интересов не существует.

Введение

Методы улучшения грунта с помощью геосинтетических материалов были широко разработаны за последние несколько десятилетий, особенно в области строительства дорожных покрытий и фундаментов.Хотя было проведено множество экспериментальных исследований для определения эффекта геосинтетического армирования, анализ отличается в отношении свойств геотекстиля, таких как форма и размеры, расстояние и толщина [1–13]. Кроме того, в исследованиях также анализируется влияние различных типов грунтов и конструкций основания. Что касается поведения грунта с классификацией песчаных грунтов, многочисленные аналитические исследования внесли свой вклад в изучение взаимодействия грунта и конструкции, проведенного несколькими исследователями в отношении несущей способности оснований из грунта, армированного георешеткой [13–17].Кроме того, бесчисленные численные модели, позволяющие сэкономить время и средства, были выполнены для исследования несущей способности и осадки армированного грунта [9, 18–29]. Концепция армированного грунта как строительного материала, основанная на существовании взаимодействий между грунтом и арматурой за счет прочности на разрыв, фрикционных и адгезионных свойств арматуры, была впервые представлена ​​французским архитектором и инженером Анри Видалем в 1960-х годах [29]. С тех пор этот метод широко используется в инженерно-геологической практике.Геосинтетика, которая используется в армированных грунтах, бывает многих типов, включая геосетки, геотекстиль, геомембраны, геосинтетические глиняные облицовки, геосетки и геоячейки [30]. Георешетка - один из строгальных геосинтетических материалов, обычно изготавливаемых из полимеров; В настоящее время различные разновидности геосеток изготавливаются из полипропилена или полипропилена высокой плотности (HDPP), что способствует эффективному использованию различных геотекстильных материалов.

Фундамент с системой армирования грунтом называется фундаментом с грунтовым покрытием (РПГ).На рис. 1 показан типичный геосинтетический армированный грунт фундамент и описание различных геометрических параметров. Параметры армирования георешеткой включают расстояние между верхними слоями ( и ), расстояние по вертикали ( s или h ), количество слоев армирования ( N ), общую глубину армирования ( d ) и ширину арматуры ( б ). Как указано в литературе, оптимальное значение для параметров ( u / B ) и ( h / B ) равно 0.33 (где B - ширина опоры). Во многих исследованиях были выбраны разные размеры основания и георешетки, но все результаты указывают на различное поведение в зависимости от классификации почвы. Можно понять, что разные географические районы имеют разные типы почвы и условия, следовательно, правильная конструкция используемой георешетки важна для улучшения грунтовых оснований. Более того, фундаменты из армированного грунта могут быть экономичной альтернативой обычным фундаментам мелкого заложения с большими размерами фундамента, которые, в свою очередь, увеличивают осадку фундамента из-за увеличения глубины зоны влияния под фундаментом или замены слабых слоев грунта подходящими материалами [31] .

За последние тридцать лет было проведено множество экспериментальных, численных и аналитических исследований для изучения поведения RSF для различных типов почв. Все исследования показали, что использование арматуры может значительно увеличить несущую способность и уменьшить осадку грунтовых оснований [33]. Чен и Абу-Фарсах и др. . В работе [34] для оценки преимуществ фундамента с усиленным грунтом использовались две концепции, например коэффициент несущей способности (BCR) и коэффициент уменьшения осадки (SRR).BCR определяется как отношение несущей способности фундамента из армированного грунта к несущей способности фундамента из неармированного грунта, тогда как SRR определяется как отношение уменьшения осадки основания на основе армирования к осадке основания из неармированного грунта при постоянном поверхностном давлении [ 35]. BCR представлен как: (1)

Где:

( q ult ) r - предельная несущая способность фундамента из армированного грунта.

( q ult ) u - предельная несущая способность неармированного грунтового основания.

И SRR определяется как: (2)

Где:

s R - осадка армированного грунтового основания.

s 0 - осадка неармированного грунтового основания.

Многие из этих исследовательских усилий были направлены на изучение параметров и переменных, которые будут влиять на значения BCR и SRR.Другие исследования также были сосредоточены на улучшении осадки фундамента, других геотехнических конструкций и методов расчета, таких как Abbas и др. . [36], Rosyidi и др. . [37], Хаджезаде и др. . [38], Joh и др. . [39], Чик и др. . [40], Ли и др. . [41], Азриф и др. . [42] и Zhanfang и др. . [43] работают. Гвидо и др. . [1] провели экспериментальное исследование земляных плит, армированных геотекстилем.Их модельные испытания проводились с использованием квадратного фундамента на песке. Они показали, что BCR снижается с увеличением на ед / B ; улучшение несущей способности было незначительным, когда количество армирующих слоев было увеличено до трех, что соответствовало глубине воздействия 1 . 0B для u / B , h / B и b / B соотношения 0,5, 0,25 и 3. Незначительное улучшение BCR наблюдалось при увеличении отношения длин ( b / B ) армирования сверх трех с двумя армирующими слоями и отношениями u / B и h / B , равными 0.25 и 0,25 соответственно. Кроме того, Ли и др. . [44] провели испытание лабораторной модели с использованием жесткой ленточной опоры, опирающейся на плотный песок, покрывающий мягкую глину, со слоем геотекстиля на границе раздела. Они обнаружили, что армирующий слой на границе раздела песок-глина привел к дополнительному увеличению несущей способности и уменьшению осадки основания; Эффективная ширина арматуры, которая привела к оптимальным характеристикам основания, оказалась примерно в пять-шесть раз больше ширины основания.

Кроме того, исследование методом конечных элементов, проведенное Курианом и др. . [45] на ленточном основании, поддерживаемом армированным песком, с использованием модели грунта Дункана-Чанга показали явное уменьшение осадки в армированном песке при более высоких нагрузках, чем в случае неармированного песка. Численные результаты также показали, что небольшое увеличение осадки произошло в армированном песке на начальной стадии процесса нагружения. Возможное объяснение этого явления дано Курианом и др. .[45] было то, что нормальная нагрузка была слишком мала, чтобы мобилизовать достаточное трение между почвой и арматурой. Относительное движение между грунтом и арматурой увеличивалось с увеличением нагрузки и уменьшалось с увеличением глубины армирования. Максимальное напряжение сдвига на границе раздела грунт-арматура произошло на относительном расстоянии ( x / B ) примерно 0,5 от центра основания, а напряжение, развиваемое в арматуре, было максимальным в центре и постепенно уменьшалось к концу. арматуры.С другой стороны, Махарадж [19] выполнил численный анализ на ленточном основании, поддерживаемом армированной глиной, с использованием модели грунта Друкера – Прагера. Он пришел к выводу, что в случае однослойной арматуры оптимальное соотношение расстояния между верхним слоем ( u / B ) оказалось около 0,125 в армированной глине. Он также обнаружил, что эффективное соотношение длины ( b / B ) арматуры было около 2,0, глубина влияния зависела от жесткости арматуры, а увеличение геосинтетической жесткости уменьшило оседание основания.

Хотя многие исследования показали много интересных особенностей механизма взаимодействия почва-геосинтетика, методы, используемые для проектирования геосинтетических грунтовых систем, все еще различаются и в большинстве случаев озадачивают инженеров. В основном использовался расчет системы армированного грунта с использованием методов предельного равновесия, который считался очень консервативным [46–48]. В последнее время внедрение метода конечных элементов для моделирования и анализа системы армированного грунта обеспечило соответствующие проектные характеристики, низкую стоимость и скорость, с использованием различных систем армирования грунта и граничных условий [49].Однако необходимость численного и аналитического исследования, учитывающего основные факторы механизма взаимодействия армированного грунтового основания, остается актуальной. В этой статье анализ несущей способности и осадки армированного георешеткой и неармированного грунтового основания трех участков (т.е. Аль-Хамедат, Аль-Рашидия и Башика) в Мосуле, Ирак, проводится численно с помощью программы конечных элементов Plaxis. и сравнивается с аналитической несущей способностью, рассчитанной теоретически с использованием метода, разработанного Ченом и Абу-Фарсахом [17].Производные и аналитические методы основаны на анализе предельного равновесия и рассчитывают только предельную несущую способность для данного осадки. Поскольку осадки не могут быть получены с помощью этих методов, поэтому осадки, полученные в результате численного анализа, были использованы в теоретическом методе.

Механизм армирования георешеткой

Во многих случаях при строительстве неглубокие фундаменты возводятся поверх существующего слабого грунта, что приводит к низкой несущей способности и чрезмерным проблемам осадки.Недостатки могут вызвать структурное повреждение, снижение срока службы и ухудшение уровня производительности [50]. В этих условиях методы улучшения почвы использовались в течение долгого времени для решения проблемы, связанной с этими типами почв. Несколько исследователей разработали различные методы улучшения почвы для повышения прочности почвы с помощью различных методов стабилизации. Для решения вышеупомянутых проблем с почвой было разработано несколько типов методов улучшения почвы, включая цементацию, вертикальные дренажи, замену почвы, укладку свай и геосинтетическое армирование [51–54].Полимерная природа геосинтетического материала делает геосинтетические изделия долговечными в различных условиях грунта и окружающей среды. Общие применения геосинтетики в области инженерно-геологической инженерии включают повышение прочности и жесткости подповерхностного грунта, подчеркнутого на неглубоких основаниях и тротуарах, обеспечение устойчивости грунтовых подпорных конструкций и откосов, обеспечивая безопасность плотин, как описано в Han et al . [55] и Ван и др. . [56] работают. Георешетка используется для улучшения механических характеристик подземного грунта при внешних нагрузках.Таким образом, он широко применяется в качестве армирующих слоев в стенах из механически стабилизированного грунта (MSE) и геосинтетического армированного грунта (GRS), в качестве меры стабилизации откосов и в качестве армирования подземного грунта под тротуарами и фундаментами. Высокая растягивающая способность геосеток позволяет слоям армирования принимать на себя значительную часть растягивающих напряжений, возникающих в массиве грунта из-за действия внешней нагрузки. Таким образом, георешетки действуют как армирующие элементы и усиливают нагрузочно-деформационные характеристики армированного грунтового массива.

В ходе некоторых экспериментальных исследований Бинке и Ли [14] оценили несущую способность грунта, армированного металлическими полосами; Результаты испытаний показали, что несущая способность может быть улучшена в 2–4 раза за счет усиления грунта. Результаты их испытаний также показали, что арматура, размещенная ниже глубины воздействия, которая составляла приблизительно 2B , оказала незначительное влияние на увеличение несущей способности и размещение первого слоя на ( u / B = 0.3) ниже подошвы фундамента привело к максимальному улучшению. Акинмусуру и Акинболаде [57] исследовали влияние использования канатных волокон в качестве армирующих элементов на песчаный грунт; их результаты показали, что предельная несущая способность может быть увеличена до трех раз по сравнению с неармированным грунтом; Оптимальное расстояние между верхними слоями ( и ) было определено равным 0 . 5B , и они показали, что улучшение несущей способности было незначительным, когда количество армирующих слоев было увеличено до трех, что соответствовало глубине воздействия 1 . 75Б . Сакти и Дас [2] провели экспериментальное исследование фундамента из глинистого грунта, армированного геотекстилем. Результаты их испытаний показали, что большинство преимуществ геотекстильной арматуры было получено при соотношении расстояния между верхним слоем ( u / B ) от 0,35 до 0,4. Для u / B 0,33 и h / B 0,33, BCR увеличился с 1,1 до 1,5, когда количество слоев увеличилось с 1 до 3, и после этого оставался практически постоянным. Затем была определена глубина воздействия при укладке геотекстиля, равная 1.0 В . Наиболее эффективная длина геотекстиля равнялась четырехкратной ширине ленточного фундамента

.

Чжоу и Вэнь [58] провели экспериментальное исследование, чтобы изучить эффект использования однослойной песчаной подушки, армированной геоячейками, на мягкой почве. Результаты показали, что произошло существенное уменьшение осадки нижележащего мягкого грунта, а коэффициент реакции земляного полотна K30 улучшился на 3000%; деформация уменьшилась на 44%.Более того, Рафтари и др. . [24] провели численный анализ на ленточном основании, поддерживаемом усиленным откосом, с использованием модели грунта Мора – Кулона. Результаты испытаний показали, что осадка фундамента на неармированном откосе более сильная, чем на усиленном. Так как осадка в армированной ситуации с тремя слоями арматуры уменьшилась примерно на 50%. Они сообщили, что для достижения наименьшей осадки оптимальное вертикальное расстояние между георешетками ( х ) должно быть эквивалентно ширине фундамента ( B ).Хинг и др. . [5] провели серию модельных испытаний на ленточных фундаментах, поддерживаемых песком, армированным георешеткой. Результаты испытаний показали, что размещение георешетки на глубине ( d / B ) более 2,25 не привело к улучшению несущей способности ленточного основания. Для достижения максимальной выгоды минимальное соотношение длины ( b / B ) георешетки должно быть равно 6. BCR, рассчитанный при ограниченном коэффициенте осадки ( s / B ), равном 0,25, 0,5 и 0.75 составляло примерно 67–70% от окончательной BCR.

Адамс и Коллин [11] выполнили несколько серий крупномасштабных полевых испытаний. Испытания проводились в бетонном боксе с четырьмя квадратными опорами различных размеров. Для испытаний был выбран мелкодисперсный песок для бетонного раствора с плохой сортировкой. Результаты испытаний показали, что три слоя армирования георешеткой могут значительно увеличить несущую способность и что коэффициент предельной несущей способности (BCR) может быть увеличен до более чем 2.6 для трех слоев армирования. Однако величина осадки, необходимая для этого улучшения, составляла примерно 20 мм ( s / B = 5%) и могла быть неприемлемой для некоторых фундаментов. Результаты также показали, что положительные эффекты армирования при низком коэффициенте осадки ( s / B ) могут быть максимально достигнуты, когда расстояние между верхними слоями составляет менее 0,25 B . В качестве альтернативы, Араб и др. . [27] провели численный анализ на ленточном основании, поддерживаемом песчаным грунтом, с использованием модели затвердевающего грунта.Они сообщили, что для геометрических параметров u / B = h / B = 0,5 и b / B = 4, эффект увеличения количества слоев георешетки ( N ) на несущую способность армированных георешеткой грунтов увеличили несущую способность и немного увеличили общую жесткость армированного песка. Увеличение жесткости георешетки также привело к увеличению BCR. Несмотря на то, что исследования грунтового основания, армированного георешеткой, проводились широко, поведение грунта не отражено полностью, особенно с учетом оптимизированного применения георешетки.Численное моделирование в этом исследовании способствует более глубокому пониманию грунтового основания за счет определения арматуры в моделях грунта.

Численное моделирование

Численное моделирование поведения армированного и неармированного грунтового основания проводилось с использованием программного обеспечения Plaxis. Plaxis - это программа конечных элементов, специально разработанная для анализа деформации и устойчивости в инженерно-геологических задачах [59]. В этом исследовании процесс тестирования включает в себя полное моделирование грунта, усиления георешетки, установки фундамента и приложения нагрузки, как показано на рисунке 1.Реальные сценарии можно смоделировать с помощью модели плоской деформации, которая используется в текущей задаче. Модель плоской деформации подходит для реализации с относительно однородным поперечным сечением, схемой нагружения и большой протяженностью модели в направлении, перпендикулярном плоскости модели, где нормальные напряжения полностью учитываются, но смещения и деформации принимаются равными нулю. .

Анализ модели

В Plaxis доступны различные модели почв. С помощью моделирования методом конечных элементов в данной работе была рассмотрена упруго-идеально пластичная модель грунта Мора – Кулона.Конститутивная модель Мора-Кулона широко используется в большинстве инженерно-геологических задач, поскольку исследователи показали, что комбинации напряжений, приводящие к разрушению в образцах грунта при трехосных испытаниях, соответствуют контуру разрушения по критерию Мора-Кулона (шестиугольная форма) Гольдшейдера [60]. При использовании конститутивной модели Мора-Кулона в качестве входных данных требуются пять параметров [61]. Эти пять параметров могут быть получены путем анализа основных испытаний грунта, и они состоят из двух параметров жесткости: эффективного модуля Юнга ( E ′) и эффективного коэффициента Пуассона ( v ′) и трех параметров прочности: эффективного сцепления ( c ). ′), Эффективный угол трения ( φ ′) и угол расширения ( ψ ).В 2D-пространстве огибающая разрушения символизирует прямую или слегка изогнутую линию, касающуюся круга Мора или точек напряжения. В диапазонах напряжений в пределах области текучести почвенный материал эластичен. По мере развития критического сочетания напряжения сдвига и эффективного нормального напряжения точка напряжения будет совпадать с зоной разрушения, и предполагается идеально пластичное поведение материала с непрерывным сдвигом при постоянном напряжении. После достижения идеально пластичного состояния материал никогда не сможет вернуться к полностью эластичному поведению без каких-либо необратимых деформаций.Ленточный фундамент моделируется как жесткая плита и в анализах считается очень жестким и грубым.

Детали армированных георешеткой грунтов, рассмотренных в модельных испытаниях, показаны в Таблице 1. В Plaxis армирование георешетки представлено с помощью специальных элементов растяжения (пятиузловых элементов георешетки). Георешетки имеют только нормальную жесткость и не имеют жесткости на изгиб, которая может выдерживать только растягивающие усилия. Единственное свойство материала георешетки - упругая осевая жесткость EA .Для моделирования взаимодействия элементов георешетки с окружающей почвой часто бывает удобно комбинировать эти элементы георешетки с интерфейсами. Назначенные интерфейсы почва-георешетка показаны на рис. 2. Каждому интерфейсу присвоена виртуальная толщина, которая является воображаемым размером, используемым для определения свойств материала границы раздела. Модель упруго-идеально пластическая используется для описания поведения границ раздела при моделировании взаимодействия грунт-георешетка. Кулоновский критерий используется для различения упругого поведения, при котором небольшие смещения могут происходить в пределах границы раздела, и пластического поведения границы раздела, когда происходит постоянное скольжение.Параметры границы раздела рассчитываются на основе параметров окружающего грунта с использованием коэффициента взаимодействия R inter , определяемого как отношение прочности на сдвиг границы раздела к прочности почвы на сдвиг [59]. В этом исследовании используются 15-узловые элементы грунта, а прочность границы раздела установлена ​​вручную. Для реального взаимодействия грунт-конструкция граница раздела слабее и гибче, чем связанный грунт, а это означает, что значение R между должно быть меньше 1.Следовательно, R inter предполагается равным 0,9 в настоящем исследовании.

После того, как геометрическая модель полностью определена и свойства материала назначены слоям грунта и структурным объектам, сетка применяется для расчетов методом конечных элементов (КЭ). Plaxis включает в себя процедуру полностью автоматического создания сетки, в которой геометрия дискретизируется на элементы базового типа элемента и совместимые структурные элементы, как показано на рис. 3. Основным типом элемента в сетке, использованной в настоящем исследовании, является треугольный элемент со средним размером 0.5–2 м, что обеспечивает точный расчет напряжений и разрушающих нагрузок. Plaxis предлагает пять различных плотностей ячеек, от очень крупной до очень мелкой. Предварительные расчеты проводились с использованием пяти доступных уровней глобальной грубости сетки, чтобы получить наиболее подходящую плотность сетки и минимизировать влияние зависимости сетки на моделирование методом конечных элементов. В ходе анализа количество треугольных элементов и точек напряжения в модели для каждого участка было изменено в зависимости от плотности сетки и расположения арматуры.В таблице 2 показано изменение количества элементов и точек напряжений в зависимости от плотности сетки моделей трех участков для случая пяти слоев георешетки. Как видно на рис. 4, размер сетки оказывает минимальное влияние на результаты после примерно 240 элементов для участка Башика и 400 элементов для участков как Аль-Хамедат, так и Аль-Рашидиа. Для Ba’shiqa это соответствует крупной сетке с уточнением вокруг элементов георешетки и фундамента модели, где ожидаются большие концентрации напряжений, и средней сетке с уточнением как для Аль-Хамедат, так и для Аль-Рашидиа.

Смоделированные граничные условия предполагались такими, что вертикальные границы были свободными по вертикали и ограничены по горизонтали, в то время как нижняя горизонтальная граница была полностью фиксированной, как показано на рис. 5. Рассматриваемые вертикальные границы сетки находились на расстоянии 10 м от центра сетки. фундамент с каждой стороны, в то время как нижняя горизонтальная граница была на 20 м ниже основания фундамента, так что эти границы не влияют на напряжения и деформации, возникающие в массиве грунта.В исследовании использовалась точечная нагрузка. Конструкция была смоделирована с возрастающей величиной нагрузки до тех пор, пока грунт не достиг неспособности исследовать оседание под действием приложенной нагрузки. После создания геометрической модели и создания сетки конечных элементов необходимо указать начальное напряженное состояние. Начальные условия состоят из двух различных режимов: один режим для создания начального давления воды, а другой режим для задания начальной геометрической конфигурации и создания начального эффективного поля напряжений.Поскольку слои почвы для Аль-Хамедат и Башика сухие, а уровень грунтовых вод на участке Аль-Рашидиа достаточно глубок, чтобы не влиять на поведение фундамента, состояние грунтовых вод было принято как незначительное. Начальные напряжения в грунте генерируются с использованием формулы Джаки, выраженной уравнением 3 (в программном обеспечении Plaxis процедура создания начальных напряжений в грунте часто известна как процедура K 0 ). (3) где K 0 - коэффициент бокового давления грунта, а φ - угол внутреннего трения грунта.

Plaxis позволяет выполнять различные типы расчетов методом конечных элементов, такие как расчет пластичности, анализ консолидации, анализ снижения Phi-c и динамический расчет. Для текущего исследования был выбран пластический расчет. Для проведения анализа упругопластической деформации следует выбрать пластический расчет. Этот тип расчета подходит для большинства практических геотехнических приложений. В инженерной практике проект делится на фазы проекта. Точно так же процесс расчета в Plaxis также разделен на этапы расчета.В данном исследовании рассматриваются два этапа расчета. Первый - это начальная фаза, которая представляет исходную ситуацию проблемы. Второй этап включает в себя усиление георешетки и приложение нагрузки на внешние линии.

При расчете методом конечных элементов анализ становится нелинейным, если задействован расчет пластичности, что означает, что каждый этап расчета должен решаться в этапах расчета (этапах нагрузки). Размер шага и алгоритм решения важны для нелинейного решения.Если шаг вычисления подходящего размера, то количество итераций, необходимых для достижения равновесия, будет небольшим, примерно 5–10, а если шаг большой, то количество требуемых итераций будет чрезмерным, и решение может отличаться. Итерационные параметры в программном обеспечении: желаемый минимум и максимум в первую очередь предназначены для определения того, когда расчет должен включать большие или меньшие шаги. Если расчет может решить шаг нагрузки (следовательно, сходиться) за меньшее количество итераций, чем желаемый минимум, который по умолчанию равен 4, он начинает использовать шаг нагрузки, который в два раза больше.Если, однако, для вычисления требуется больше итераций, чем желаемый максимум, который по умолчанию равен 10 для схождения, вычисление решит выбрать шаг вычисления только половинного размера. Для пластического анализа изменение желаемого минимума или желаемого максимума не влияет на результаты. Пока расчет сходится на каждом шаге, неважно, использует ли расчет много маленьких шагов с несколькими итерациями или ограниченное количество больших шагов с большим количеством итераций на шаг.

Существует несколько процедур для решения задач нелинейной пластичности. Все процедуры основаны на автоматическом выборе размера шага в зависимости от применяемого алгоритма. Предельный уровень продвижения нагрузки - одна из таких процедур, которая используется в текущем анализе. Процедура автоматического определения размера шага используется в основном для этапов расчета, на которых необходимо достичь определенного предельного уровня нагрузки. Процедура завершает расчет при достижении заданного уровня нагрузки или при обнаружении разрушения грунта.Количество дополнительных шагов установлено на 1000, чтобы процесс расчета продолжался до конца до того, как будет достигнуто количество дополнительных шагов. В этой процедуре итерационные параметры установлены на стандартные и показали хорошую производительность при сходимости вычислений. В стандартных настройках допустимая ошибка, которая представляет собой отклонение от точного решения, была установлена ​​на 0,03, коэффициент чрезмерной релаксации, который отвечает за уменьшение количества итераций, необходимых для сходимости, был установлен на 1,2, максимальное количество итераций было установлено на 50, желаемая минимальная и максимальная итерация была установлена ​​на 4 и 10 соответственно, и, наконец, было активировано управление длиной дуги, что важно для сходимости вычислений и точного определения нагрузки при отказе, иначе расчет будет повторяться и нагрузка при отказе будет переоценен.Поэтапная конструкция была выбрана в качестве варианта ввода нагрузки, где можно определить значение и конфигурацию нагрузки, а также состояние отказа, которое необходимо достичь. Поскольку поэтапное строительство выполняется с использованием процедуры предельного уровня увеличения нагрузки, оно контролируется общим множителем (∑Mstage). Этот множитель обычно начинается с нуля и достигает конечного уровня 1,0 в конце фазы расчета. Временной интервал фазы расчета считается нулевым, поскольку анализ модели является пластическим и не включает консолидацию или использование модели ползучести мягкого грунта.

Свойства материала

Почвы были собраны с трех разных участков в Мосуле, Ирак: Аль-Хамедат, Башика и Аль-Рашидия. Мосул расположен в северной части Ирака. Район характеризуется обширными равнинами и антиклиналями. Возле реки Тигр расположены три уровня накопленных террас аллювиальных почв. Большая часть почвы в этом районе умеренно экспансивного типа. Плоские участки между антиклиналями покрыты слоистыми наносами стока, которые включают глину, песок, ил, а иногда и покрыты россыпью гравия.В таблице 3 показаны механические и физические свойства почвы, а в таблице S1 показаны пределы Аттерберга и размер зерна для каждого вовлеченного участка. В данном исследовании использовался бетонный ленточный фундамент шириной B = 600 мм. Свойства основания показаны в Таблице 4. Двухосные георешетки (Tensar BX1500), показанные на Рис. 5, использовались для укрепления почвы на всех трех участках. Различные свойства армирования георешеткой, использованные при моделировании методом конечных элементов данного исследования, показаны в Таблице 5.

Результаты и обсуждения

Результаты, полученные от Plaxis для определения предельной несущей способности и осадки основания, представляли собой кривые осадки под нагрузкой армированного и неармированного грунта трех упомянутых участков, а результаты аналитического анализа Уравнение Мейерхофа [63] и метод, полученный Ченом и Абу-Фарсахом [17], были значениями BCR для этих грунтов с усилением георешеткой.

Грунты неармированные

Три моделирования методом конечных элементов были проведены с использованием программного обеспечения Plaxis для оценки предельной несущей способности неармированного грунта для каждого участка. На рис. 6 показана деформированная сетка (увеличенная до 15 раз) грунта под действием разрушающей нагрузки. На рис. 6 можно увидеть небольшой подъем грунта по краям основания и осадку 57,43 мм, что указывает на разрушение грунта при сдвиге. На рисунках 7 и 8 показаны развитые вертикальные напряжения и вертикальные перемещения неармированного грунта, соответственно, при приложении разрушающей нагрузки.На рис. 7 и 8 показан пузырь вертикального напряжения и приращения вертикального смещения, соответственно, в пределах профиля почвы из-за приложения нагрузки полосы [64]. Однако вертикальное напряжение и вертикальное смещение уменьшались с увеличением глубины, как показано на этих рисунках значениями штриховки контуров. Соответствующие напряжения и перемещения в горизонтальном направлении представлены на рисунках 9 и 10 соответственно. Максимальные горизонтальные напряжения на Рис. 9 были сосредоточены непосредственно под основанием на глубине B и по горизонтали шириной B ; кроме того, по штриховке горизонтальных напряжений было ясно, что грунт разрушился под действием местного сдвига.

Максимальная часть горизонтального смещения, представленная на Рис. 10, приходилась на поверхность почвы, и это было причиной вспучивания почвы по краям основания. Однако эти горизонтальные напряжения и смещения значительно повлияли на поведение георешетки, как будет обсуждаться позже в разделе с усиленным грунтом. Напряжения сдвига и деформации, связанные с разрушением, показаны на рисунках 11 и 12 соответственно. Обратите внимание, что максимальные касательные напряжения и деформации или зона сильного сдвига располагались под краями фундамента и почти распространялись на глубине 2 B по горизонтали на расстоянии B от краев фундамента и значительно уменьшались на нижние глубины.Тем не менее, местное разрушение при сдвиге было почти очевидно из затенения касательных напряжений, показанных на рис. 11. На рис. 13 представлены точки пластичности или точки пластичности разрушения, образовавшиеся в массиве грунта под действием разрушающей нагрузки. Пластическая точка - это точка, соответствующая необратимому напряжению и деформации, которая расположена на огибающей Мора-Кулона (огибающая является функцией угла внутреннего трения сцепления грунта).

На рис. 13 также показаны точки растяжения (точки с черным цветом) на поверхности почвы, которые соответствуют трещинам от растяжения (участки напряжений от растяжения).Однако эти точки натяжения указывали на то, что грунт разрушился под действием растяжения, а не сдвига. Теоретическая предельная несущая способность неармированного грунта была получена с помощью формул (4) - (9). Параметры прочности на сдвиг (c и φ ) и удельный вес ( γ ), используемые в следующих уравнениях, показаны в таблице 3.

Сайт Аль-Хамедат:

Сайт Башики:

Сайт в Аль-Рашидиа:

Результаты неармированного грунтового основания, полученные численным анализом, и теоретическая предельная несущая способность, полученная Мейерхофом [63], показаны в Таблице 6.Здесь можно увидеть, что числовые значения несущей способности были больше, чем теоретические значения. Высокое значение несущей способности может быть связано с тем, что уравнения несущей способности обычно недооценивают (более консервативно) предельную несущую способность грунта [64]. Кривые зависимости давления от осадки из численного анализа неармированных грунтовых оснований трех площадок показаны на рис. 14–16. Кроме того, эти цифры показывают метод, используемый для определения предельной несущей способности по кривым нагрузки – осадки; он представляет собой консервативное и наиболее реальное состояние отказа.Этот метод представляет собой метод касательных пересечений, разработанный Траутманном и Кулхави [65].

Из рисунков 14–16 можно заметить, что грунт Аль-Хамедат показывает более высокую несущую способность ( q u = 640 кПа ), чем два других участка, где грунт Ba'shiqah показывает промежуточную несущую способность. значение ( q u = 365 кПа ), а почва Аль-Рашидия представляет собой самое низкое ( q u = 67 кПа ) среди почв.Это различие может быть связано с характеристиками и свойствами почвы, указанными в Таблице 3 и Таблице S1. Считается, что почва на участке Аль-Хамедат представляет собой твердую глину с высокой степенью сцепления ( c = 40 кПа ), Аль-Рашидиа представляет собой песчаный грунт с высоким углом трения ( φ = 28 °) с нулевым сцеплением ( c = 0 кПа), в то время как почва на участке Башика классифицируется как глинистая от низкой до средней с относительно низким сцеплением ( c = 15 кПа ) по сравнению с почвой Аль-Хамедат.

Армированные грунты

Девяносто расчетов методом конечных элементов было проведено на армированном грунтовом основании, чтобы изучить влияние усиления георешетки на предельную несущую способность и осадку ленточного основания, расположенного на трех упомянутых участках. Деформированная сетка (увеличенная до 10 раз) армированного георешеткой грунта показана на рис. 17. Кроме того, осадка была уменьшена до 44,68 мм за счет включения арматуры георешетки, где уменьшение осадки было отнесено за счет подъемных сил. создается арматурой георешетки во время деформации и мобилизации осевых растягивающих сил слоев арматуры.Кроме того, просачивание грунта на краях основания уже исчезло, что означало, что грунт не разрушился при сдвиге, как упоминалось ранее в случае неупрочненного грунта. На рис. 18 показаны горизонтальные напряжения, возникающие в массиве укрепленного грунта. Видно, что горизонтальные напряжения были немного увеличены до значения 228,96 кН / м 2 из-за передачи части вертикальной нагрузки на горизонтальную нагрузку, которую несет арматура и, в свою очередь, на окружающий грунт. Кроме того, горизонтальные напряжения были распределены по слоям арматуры шириной 5 B , что указывало на сцепление и взаимодействие слоев почвы и георешетки; в результате силы растяжения внутри арматуры были мобилизованы, как показано на рис.19.

На рис. 20 показано распределение горизонтальных смещений в армированном грунте. Понятно, что смещение уменьшено до 8,68 мм из-за ограничения слоев арматуры, стрелки почти одинаково распределены по слоям арматуры и небольшие значения смещения, вызванные на поверхности почвы по сравнению с неармированным состоянием, когда большая часть горизонтального смещения произошла на верхняя часть почвы, вызывающая вспучивание почвы. Следовательно, разрушение грунта при сдвиге предотвращается путем передачи приложенной вертикальной нагрузки к силам растяжения в арматуре георешетки за счет поверхностного трения и опоры между грунтом и арматурой.На рисунках 21 и 22 показаны напряжения сдвига и деформации армированного грунта и их распределение вдоль арматуры георешетки, соответственно. Замечено, что области концентрации касательных напряжений и деформаций под фундаментом уменьшаются за счет распределения напряжений и деформаций вдоль и через слои арматуры, что приводит к изменению плоскости разрушения и предотвращает разрушение в армированной зоне. Пластмассовые точки внутри усиленной зоны изображены на рис. 23.Показано, что точки пластичности сильно концентрируются вдоль армированной зоны, что указывает на экстремальные напряжения, возникающие на границе раздела между почвой и георешеткой. Следовательно, это оправдывает взаимодействие между грунтом и георешеткой и изменение механизма разрушения.

Влияние ширины георешетки

(b) и количества слоев георешетки (N) на предельную несущую способность

На рис. 24–26 показано изменение BCR с шестью различными значениями ширины георешетки (b) для от 1 до 5 слоев георешетки ( N ) для трех участков Аль-Хамедат, Аль-Рашидиа и Башика, соответственно.Из рисунков 24–26 видно, что увеличенная ширина георешетки (b) и номер георешетки (N) приводит к увеличению BCR для всех трех участков. Кроме того, грунт на Аль-Рашидиа способствует более высокому повышению предельной несущей способности, чем на двух других участках. Улучшение может быть связано с различием свойств почвы и размера зерна, как показано в Таблице 3 и Таблице S1. Почва Аль-Рашидиа песчаная и имеет угол трения ( φ = 28 °) больше, чем на двух других участках, в которых силы пассивного трения и трения между почвой и георешеткой будут выше, чем на двух глинистых участках [8].Что касается участков Аль-Хамедат и Башика с глинистыми почвами, то почва участка Башика с глинистостью от низкой до средней лучше улучшается, чем грунт участка Аль-Хамедат, который представляет собой твердую глину с точки зрения предельной несущей способности. Следовательно, используя армирование георешеткой со слабой глиной, почва может улучшиться до более жесткой глины. Однако максимальное улучшение предельной несущей способности может быть получено при b / B = 5 для любого номера георешетки на этих трех участках, поэтому оптимальная ширина георешетки (b) для трех участков составляет 5 B хотя не было оптимального номера георешетки (N) , полученного как N = 5, все три почвы показывают хорошее улучшение несущей способности основания.

Влияние ширины георешетки

(б) и количества слоев георешетки (N) на осадку основания

Коэффициент уменьшения оседания (SRR%) в зависимости от ширины георешетки ( b ) с числом слоев георешетки от 1 до 5 ( N ) показан на рисунках 27–29 для почв Аль-Хамедат, Аль-Рашидия, и Ba'shiqa соответственно. Из этих рисунков видно, что увеличение ширины слоя георешетки (b) и номера георешетки ( N ) приводит к уменьшению осадки основания для трех участков.На рисунках 27–29 наблюдалось уменьшение осадки фундамента (SRR%), полученное на этих трех площадках в результате увеличения ширины арматуры георешетки (b) и количества слоев георешетки ( N ). Показано, что большее уменьшение осадки фундамента при увеличении ширины георешетки (b) достигается за счет грунта участка Башика для первых трех слоев георешетки ( N = от 1 до 3), за которым следует грунт Сайты Аль-Рашидиа и Аль-Хамедат соответственно.В то время как при N = 4 и 5 почва Аль-Рашидиа начала демонстрировать более высокие улучшения, чем почва участка Башика, в отличие от почвы участка Аль-Хамедат, где улучшение было наименьшим.

Разница в SRR% может быть вызвана двумя причинами: хорошим углом трения грунта Башика ( φ = 25 °) и возникновением эффекта глубокой опоры [50] в грунте участка Башика, который делает общее разрушение грунта сдвигом развито ниже армированной зоны.В этом случае натяжение всех слоев георешетки в усиленной зоне будет мобилизовано, поскольку основание выйдет из строя с точки зрения предельной несущей способности после пробивки слоев георешетки. Почва участка Аль-Рашидиа показывает второе более высокое улучшение и при N = 4 и 5, что указывает на более высокое улучшение грунтового поселения. Как указывалось ранее, грунт на участке Аль-Рашидиа песчаный и имеет самый высокий угол трения ( φ ) между двумя другими участками, в которых значение мобилизованного натяжения слоев георешетки в усиленной зоне будет выше, чем это два участка из-за попадания частиц песка в отверстия георешетки.Более того, может возникнуть более высокое сопротивление трению в зоне контакта между почвой и слоями георешетки. С другой стороны, грунт Аль-Хамедат имеет угол трения ( φ = 20 °) ниже, чем у двух других участков, что приводит к меньшему трению в зоне контакта грунта с георешеткой и меньшим пассивным силам на краях грунта. ребра георешетки. Таким образом, небольшое улучшение отражается на оседании фундамента, даже несмотря на то, что в этой почве может происходить эффект глубокого залегания.

Из рисунков 27-29 также можно увидеть, что почва Аль-Хамедат демонстрирует лучшее улучшение опорной поверхности, поскольку число георешетки ( N ) увеличивалось, чем приращение ширины георешетки ( b ), в то время как почва Башики была противоположной. .Увеличение может быть связано с более высокой прочностью почвы на участке Аль-Хамедат ( c = 40 кПа ), чем почва Башика ( c = 15 кПа ), где она может подвергаться воздействию количество слоев георешетки ( N ) больше ширины георешетки ( b ). Оптимальная ширина георешетки ( b ) для трех участков при любом номере георешетки также составляет 5 B , в то время как не было получено оптимальное число георешетки ( N ), N = 5, все три почвы показали хорошее улучшение опоры основания.

Коэффициент улучшения (IF)

Коэффициент улучшения (IF) определяется как отношение несущей способности армированного грунта ( q усиленного ) к неармированному грунту ( q неармированного ) при определенных с / B соотношения. Где s / B - отношение осадки фундамента к ширине фундамента. IF при различных соотношениях s / B был рассчитан для сравнения предельной несущей способности грунтов с разным номером георешетки ( N ) на разных уровнях осадки.Вариации IF с отношениями s / B трех сайтов показаны на рис. 30–32. Из этих цифр очевидно, что при увеличении осадки фундамента коэффициент улучшения (предельная несущая способность армированного грунта) увеличивается для любого номера георешетки, и это ожидается, поскольку слоям георешетки требуется осадка основания для мобилизации их сил растяжения, следовательно, повышение устойчивости к приложенным вертикальным нагрузкам. Также можно отметить влияние номера георешетки ( N ), увеличение количества слоев георешетки приводит к увеличению IF, таким образом, уменьшая начальную осадку, необходимую для мобилизации натяжения слоя георешетки и обеспечения устойчивости армированного грунта. сопротивление приложенным нагрузкам даже при очень высокой осадке без обрушения.

Более того, использование георешетки в почве на участке Аль-Хамедат демонстрирует меньший коэффициент улучшения и достигает очень большого поселения для улучшения несущей способности основания по сравнению с двумя другими участками. Это большое поселение связано с тем, что почва Аль-Хамедат представляет собой очень прочную глину ( c = 40 кПа) с низким углом трения ( φ = 20 °), чем на двух других участках, и, следовательно, требует высокой осадки для мобилизации напряжения в георешетке. слоев, почва Ba'shiqa также глинистая ( c = 15 кПа) с углом трения ( φ = 25 °) лучше, чем грунт Al-Hamedat, поэтому он показал лучшее улучшение предельной несущей способности и меньшее оседание для мобилизации напряжение в слоях георешетки, чем в почве Аль-Хамедат.В то время как почва Аль-Рашидиа показала самое высокое улучшение предельной несущей способности и самую низкую осадку в мобилизации напряжения в слоях георешетки, что связано с почвой Аль-Рашидии, это песок с более высоким углом трения ( φ = 28 °), кроме того, Георешетка лучше работает с песчаным грунтом из-за угла трения и сцепления частиц с отверстиями георешетки.

Сравнение численного и аналитического анализа

BCR численного анализа с использованием Plaxis и аналитического анализа с использованием метода, разработанного Ченом и Абу-Фарсахом [17] для армированных грунтов трех участков, сравниваются на рис. 33–35.Эти рисунки показывают изменение BCR численного и аналитического анализа с номером георешетки ( N ) для почв Аль-Хамедат, Аль-Рашидиа и Башика, соответственно.

Из рисунков 33-35 заметно, что аналитический анализ является почти линейным и показал небольшую разницу с численным анализом, что может быть связано с ограничениями в определении точной глубины продавливания в глинистых грунтах (Al-Hamedat & Ba'shiqa), что впоследствии приводит к низкому или высокому сопротивлению грунта приложенным нагрузкам.Кроме того, значения угла наклона арматуры георешетки (ξ и α) для глинистых участков (Аль-Хамедат и Башика) и песчаных участков (Аль-Рашидиа) под нагрузкой на фундамент могут быть выбраны не совсем так, как они есть в действительности. Однако общий аналитический анализ показал почти хорошие результаты, близкие к численному анализу.

Заключение

Что касается комплексного анализа методом конечных элементов и аналитического анализа, включение арматуры может улучшить несущую способность основания и уменьшить осадку.Несущая способность и уменьшение осадки армированного грунтового основания для трех участков увеличились с увеличением ширины слоев георешетки ( b ). Степень улучшения несущей способности и осадки фундамента для каждого участка была разной. Почва участка Аль-Хамедат показала меньшее улучшение, чем два других участка, в то время как почва участка Аль-Рашидиа показала более высокое улучшение. Оптимальная ширина георешетки для всех трех участков составила (5 B ).Увеличение количества слоев георешетки ( N ) привело к повышению несущей способности и уменьшению осадки армированного грунтового основания на всех трех площадках. По мере увеличения количества георешеток степень улучшения несущей способности и осадки фундамента для каждого участка была различной. Почва участка Аль-Хамедат показала меньшее улучшение, чем два других участка, в то время как почва участка Аль-Рашидиа показала более высокое улучшение. Оптимального числа геосеток не было, так как три участка показали хорошее улучшение даже при N = 5.Использование армирования георешеткой с песчаными почвами или слоями слабых глин привело к лучшему улучшению несущей способности и уменьшению осадки, чем более сильные слои, которые требуют более высокого оседания, чтобы показать свои улучшения; это было ненадежно, потому что фундамент мелкого заложения был почти рассчитан на определенный уровень поселения. BCR из аналитического анализа увеличивались по мере увеличения количества ( N ) и ширины ( b ) георешетки. Их приращение было почти линейным и показало приемлемые значения, которые близко соответствовали BCR из численного анализа.Это исследование убедительно доказывает, что усиление георешетки потенциально способствует улучшению грунтового основания, однако напрямую не зависит от ширины и количества только георешетки. Различные свойства почвы и размер основания также влияют на значения BCR и SRR. Общие выводы дополняют преимущество эффективного применения укрепленных грунтовых оснований.

Список литературы

  1. 1. Гвидо В. А., Чанг Д. К. и Суини М. А. Сравнение земляных плит, армированных георешеткой и геотекстилем.Канадский геотехнический журнал, 1986, 23 (4): 435–440.
  2. 2. Сакти Дж. П. и Дас Б. М. Модельные испытания ленточного фундамента на глине, армированной слоями геотекстиля. Совет по исследованиям в области транспорта, 1987 г. Получено с https://trid.trb.org/view/289088
  3. 3. Хуанг К. и Тацуока Ф. Несущая способность укрепленного горизонтального песчаного грунта. Геотекстиль и геомембраны, 1990, 9 (1): 51–82.
  4. 4. Мандал Дж. Н. и Сах Х. С. Испытания несущей способности глины, армированной георешеткой.Геотекстиль и геомембраны, 1992, 11 (3): 327–333.
  5. 5. Хинг К. Х., Дас Б. М., Пури В. К., Кук Э. Э., Йен С. С. Несущая способность ленточного фундамента на песке, армированном георешеткой. Геотекстиль и геомембраны, 1993, 12 (4): 351–361.
  6. 6. Омар М. Т., Дас Б. М., Пури В. К. и Йен С. С. Максимальная несущая способность фундаментов мелкого заложения на песке с армированием георешеткой. Канадский геотехнический журнал, 1993, 30 (3): 545–549.
  7. 7.Шин Э., Пинкус Х., Дас Б., Пури В., Йен С. и Кук Э. Несущая способность ленточного фундамента на глине, армированной георешеткой. Журнал геотехнических испытаний, 1993, 16 (4): 534.
  8. 8. Дас Б. М. и Омар М. Т. Влияние ширины фундамента на модельные испытания на несущую способность песка с армированием георешеткой. Геотехническая и геологическая инженерия, 1994, 12 (2): 133–141.
  9. 9. Етимоглу Т., Ву Дж. Т. Х., Сагламер А. Несущая способность прямоугольных фундаментов на песке, армированном георешеткой.Журнал геотехнической инженерии, 1994, 120 (12): 2083–2099.
  10. 10. Дас Б. М., Шин Э. К. и Сингх Г. Ленточный фундамент на глине, усиленной георешеткой: предварительная процедура проектирования. Международное общество морских и полярных инженеров. Шестая Международная конференция по морской и полярной инженерии, 1996 г., 26–31 мая, Лос-Анджелес, Калифорния, США.
  11. 11. Адамс М. Т. и Коллин Дж. Г. Испытания под нагрузкой на большую модель разбросанного фундамента на геосинтетических основаниях из армированного грунта.Журнал геотехнической и геоэкологической инженерии, 1997, 123 (1).
  12. 12. Зайни М. И., Каса А. и Наян К. А. Прочность на сдвиг границы раздела геосинтетической глиняной облицовки (GCL) и остаточного грунта. Международный журнал передовых наук, инженерии и информационных технологий, 2012. 2 (2): 156–158.
  13. 13. Xie L., Zhu Y., Li Y. и Su T. C. Экспериментальное исследование давления кровати вокруг геотекстильного матраса с наклонной пластиной. PLoS ONE, 2019, 14 (1): e0211312.pmid: 30682145
  14. 14. Бинке Дж. И Ли К. Л. Испытания несущей способности армированных земляных плит. Журнал геотехнической и геоэкологической инженерии, 1975, 101 (Протокол ASCE # 11792).
  15. 15. Уэйн М. Х., Хан Дж. И Акинс К. Проектирование геосинтетических армированных фундаментов. геосинтетика в системах усиления фундамента и контроля эрозии, 1998 г., Источник: https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0113604
  16. 16. Михаловски Р.L. Предельные нагрузки на грунты с усиленным фундаментом. Журнал геотехнической и геоэкологической инженерии, 2004, 130 (4): 381–390.
  17. 17. Чен К. и Абу-Фарсах М. Анализ предельной несущей способности ленточных опор на фундаменте из армированного грунта. Почвы и фундаменты, 2015, 55 (1): 74–85.
  18. 18. Лав Дж. П., Берд Х. Дж., Миллиган Г. В. Э. и Хоулсби Г. Т. Аналитические и модельные исследования армирования слоя зернистой насыпи на мягком глиняном грунте.Канадский геотехнический журнал, 1987, 24 (4): 611–622.
  19. 19. Махарадж Д. К. Нелинейный конечно-элементный анализ опор полосы на армированной глине. Электронный журнал геотехники, 2003, 8.
  20. 20. Эль Савваф М. А. Поведение ленточного фундамента на песке, армированном георешеткой, над мягким глиняным откосом. Геотекстиль и геомембраны, 2007, 25 (1): 50–60.
  21. 21. Ахмед А., Эль-Тохами А. М. и Марей Н. А. Двумерный конечно-элементный анализ лабораторной модели насыпи.В геотехнической инженерии для смягчения последствий стихийных бедствий и реабилитации, 2008 г., https://doi.org/10.1007/978-3-540-79846-0_133
  22. 22. Аламшахи С., Хатаф Н. Несущая способность ленточных фундаментов на песчаных склонах, усиленных георешеткой и анкерной сеткой. Геотекстиль и геомембраны, 2009, 27 (3).
  23. 23. Чен К., и Абу-Фарсах М. Численный анализ для изучения масштабного эффекта неглубокого фундамента на укрепленных грунтах. Рестон, Вирджиния: Материалы конференции ASCE Geo-Frontiers 2011, 13–16 марта 2011 г., Даллас, Техас | г 20110000.
  24. 24. Рафтари М., Кассим К. А., Рашид А. С. А., Моайеди Х. Осадка мелкого фундамента возле укрепленных склонов. Электронный журнал геотехнической инженерии, 2013, 18.
  25. 25. Аззам У. Р. и Наср А. М. Несущая способность основания из оболочек на армированном песке. Журнал перспективных исследований, 2015, 6 (5). pmid: 26425361
  26. 26. Хусейн М.Г. и Мегид М.А. Трехмерный метод конечных элементов для моделирования двухосной георешетки с применением к почвам, усиленным георешеткой.Геотекстиль и геомембраны, 2016, 44 (3): 295–307.
  27. 27. Араб М. Г., Омар М. и Тахмаз А. Численный анализ фундаментов мелкого заложения на грунте, армированном георешеткой. Сеть конференций MATEC, 2017, 120.
  28. 28. Каса А., Чик З. и Таха М. Р. Глобальная устойчивость и оседание сегментных подпорных стен, армированных георешеткой. ТОЖСАТ, 2012, 2 (4): 41–46.
  29. 29. Видаль, М. Х. Развитие и будущее армированной земли. Труды симпозиума по укреплению грунта на ежегодном съезде ASCE, Питтсбург, Пенсильвания, 1978, стр. 1–61.
  30. 30. Кернер Р. М., Карсон Д. А., Дэниел Д. Э. и Бонапарт Р. Текущее состояние тестовых участков Цинциннати GCL. Геотекстиль и геомембраны, 1997, 15 (4–6), 313–340.
  31. 31. Бушехриан А. Х., Хатаф Н. и Гахрамани А. Моделирование циклического поведения неглубоких фундаментов, опирающихся на геомеш и песок, армированный якорями. Геотекстиль и геомембраны, 2011, 29 (3): 242–248.
  32. 32. Рен Й. Мгновенная реакция на нагрузку и оседание ленточных фундаментов, опирающихся на глину, армированную георешеткой, 2015 г., Получено с https: // etda.библиотеки.psu.edu/catalog/25223
  33. 33. Габр М. А., Додсон Р. и Коллин Дж. Г. Исследование распределения напряжений в песках, армированных георешеткой. Геосинтетика в системах укрепления фундамента и контроля эрозии, 1998 г., взято с https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0113608
  34. 34. Чен К., Абу-Фарсах М. Ю., Шарма Р., Чжан Х. Лабораторное исследование поведения фундаментов на геосинтетически армированных глинистых грунтах. Отчет об исследованиях в области транспорта: Журнал Совета по исследованиям в области транспорта, 2004 г., 2007 г., (1): 28–38.
  35. 35. Алаваджи Х. А. Испытания модели пластиной нагрузкой на складной грунт. Журнал Университета Короля Сауда - Технические науки, 1998, 10 (2).
  36. 36. Аббас Дж. М., Чик З. Х. и Таха М. Р. Моделирование и анализ одной сваи, подвергшейся воздействию поперечной нагрузки. Электронный журнал геотехнической инженерии, 2008, 13 (E): 1–15.
  37. 37. Росьиди С. А., Таха М. Р. и Наян К. А. М. Эмпирическая модельная оценка несущей способности осадочного остаточного грунта методом поверхностных волн.Jurnal Kejuruteraan, 2010, 22 (2010): 75–88.
  38. 38. Хаджезаде М., Таха М. Р., Эль-Шафи А. и Эслами М. Модифицированная оптимизация роя частиц для оптимального проектирования опор и подпорной стены. Журнал Чжэцзянского университета: Science A, 2011, 12 (6): 415–427.
  39. 39. Джох С. Х., Хванг С. К., Хассанул Р. и Рахман Н. А. Построение поперечного сечения модуля упругости железнодорожного полотна под балластом для определения потенциальной осадки. Журнал Корейского общества железных дорог, 2011, 14 (3): 256–261.
  40. 40. Чик З., Альджанаби К. А., Каса А. и Таха М. Р. Моделирование искусственной нейронной сетью с перекрестной проверкой методом десятикратной проверки поведения оседания каменной колонны под насыпью шоссе. Арабский журнал наук о Земле, 2013, 7 (11): 4877–4887.
  41. 41. Ли Ю. П., Янг Ю., Йи Дж. Т., Хо Дж. Х., Ши Дж. Й. и Го С. Х. Причины проникновения самоподъемных оснований из глины после установки. PLoS ONE, 2018, 13 (11): e0206626. pmid: 30395581
  42. 42.Азриф М., Закиран М. Н. Ф., Сякира М. Р. Н., Азван С. М., Нур Р. К., Ли Э. К. и др. Применение геофизических исследований к возникновению поселений - тематическое исследование. На 2-м Азиатско-Тихоокеанском совещании EAGE-GSM по приповерхностной геонауке и инженерии (2-е Азиатско-Тихоокеанское совещание EAGE-GSM по приповерхностной геонауке и инженерии). Европейская ассоциация геологов и инженеров, EAGE, 2019.
  43. 43. Чжаньфан Х., Сяохун Б., Чао Ю. и Яньпин В. Вертикальная несущая способность фундамента из свайного разжижаемого песчаного грунта при горизонтальной сейсмической силе.PLoS ONE, 2020, 15 (3): e0229532. pmid: 321

  44. 44. Ли К., Манджунатх В. и Дэвайкар Д. Численные и модельные исследования ленточного фундамента, поддерживаемого системой армированного гранулированного грунта и мягкого грунта. Канадский геотехнический журнал, 2011 г., 36: 793–806.
  45. 45. Куриан Н. П., Бина К. С. и Кумар Р. К. Осадка армированного песка в фундаменте. Журнал геотехнической и геоэкологической инженерии, 1997, 123 (9): 818–827.
  46. 46. Зорнберг Дж.Г., Лещинский Д. Сравнение международных критериев проектирования геосинтетических армированных грунтовых конструкций. В: Ochiai et al. (ред.) Ориентиры в укреплении земли, 2003, 2: 1095–1106.
  47. 47. Лещинский Д. О глобальном равновесии при проектировании геосинтетической армированной стены. J. Geotech. Geoenviron. Англ. ASCE, 2009, 135 (3): 309–315.
  48. 48. Ян К.Х. Утомо П. и Лю Т.Л. Оценка подходов к расчету на основе равновесия сил и деформации для прогнозирования нагрузок на арматуру в геосинтетических конструкциях из армированного грунта.j.GeoEng, 2013, 8 (2): 41–54.
  49. 49. Sieira A.C.F. Вытягивание геотекстиля: численный прогноз. Int. J. Eng. Res., 2016, Appl. 6 (11–4): 15–18.
  50. 50. Шарма Р., Чен К., Абу-Фарсах М. и Юн С. Аналитическое моделирование грунтового основания, армированного георешеткой. Геотекстиль и геомембраны, 2009, 27 (1): 63–72.
  51. 51. Лю С. Ю., Хан Дж., Чжан Д. В. и Хун З. С. Комбинированный метод DJM-PVD для улучшения мягких грунтов. Geosynthetics International, 2008, 15 (1): 43–54.
  52. 52. Rowe R.K. и Taechakumthorn C. Комбинированное воздействие PVD и армирования на насыпи на чувствительных к скорости грунтов. Геотекстиль и, 2008, 26 (3): 239–249.
  53. 53. Ван К., Ли Х., Сюн З., Ван К., Су К. и Чжан Ю. Экспериментальное исследование влияния цементирующей арматуры на прочность на сдвиг трещиноватого массива горных пород. PLoS ONE, 2019, 14 (8): e0220643. pmid: 31404074
  54. 54. Ван Ю., Гэ Л., Ченди С., Ван Х., Хан Дж.И Го З. Анализ гидравлических характеристик улучшенных песчаных грунтов с мягкими породами. PLoS ONE, 2020, 15 (1): e0227957. pmid: 31978135
  55. 55. Хан Дж., Покхарел С. К., Ян Х., Манандхар К., Лещинский Д., Халахми И. и др. Характеристики оснований из RAP, армированных геоячейками, на слабом грунтовом полотне при полномасштабных нагрузках от движущихся колес. Журнал материалов в гражданском строительстве, 2011, 23 (11): 1525–1534.
  56. 56. Ван Дж. К., Чжан Л. Л., Сюэ Дж. Ф. и Йи Т. Реакция на осадку неглубоких квадратных фундаментов на песке, армированном георешеткой, при циклической нагрузке.Геотекстиль и геомембраны, 2018, 46 (3): 586–596.
  57. 57. Акинмусуру Дж. О. и Акинболаде Дж. А. Устойчивость нагруженных опор на армированном грунте. Журнал геотехнической и геоэкологической инженерии, 1981, 107 (ASCE 16320 Proceeding).
  58. 58. Чжоу Х. и Вэнь X. Модельные исследования песчаной подушки, армированной георешеткой или геоячейками, на мягком грунте. Геотекстиль и геомембраны, 2008, 26 (3): 231–238.
  59. 59. Бринкгрев Р. Б. Дж. И Вермеер П.A. Конечноэлементный код для анализа грунтов и горных пород. A. A. Balkema, Роттердам, Нидерланды, 1998.
  60. 60. Гольдшейдер М. Истинные трехосные испытания на плотном песке. Практикум по определяющим отношениям для почв, 1982, 11–54. Получено с https://ci.nii.ac.jp/naid/10007804852/
  61. 61. Бринкгрев, Р. Б. Дж., Кумарсвами, С., Свольфс, В. М., Уотерман, Д., Чесару, А., Бонньер, П. Г. и др., 2014 г., Plaxis 2014. PLAXIS bv, Нидерланды.
  62. 62. NAUE GmbH & Co.KG, 2012. https://www.naue.com/naue-geosynthetics/geogrid-secugrid/ (веб-сайт) [10 июня 2020 г.]
  63. 63. Мейерхоф, Г.Г. Предельная несущая способность фундаментов. geotecniadecolombia.com 1963, Получено с http://geotecniadecolombia.com/xtras/ Максимальная несущая способность фундаментов.pdf
  64. 64. Буссинеск, Дж. Применение потенциалов равновесия и движения твердых эластичных материалов, Готье-Виллар, Париж, (1883).
  65. 65.Траутманн К. Х. и Кулхави Ф. Х. Поведение при подъеме и перемещении насыпных фундаментов. Журнал геотехнической инженерии, 1988, 114 (2): 168–184.

5. Фундаменты - Строительные исследования

Функции

· Обеспечить ровную кровать, на которой строить.

· Для поддержки и передачи нагрузка здания на недра.

· Ограничить поселение.

· Чтобы закрепить здание.

Нагрузки, приложенные к фундаменту, могут быть:

· Собственные нагрузки = Вес дом

· Живые нагрузки = Вес мебель, снег и др.

· Ветровая нагрузка = вызванные напряжения по ветру -

Фундамент должен быть взят на такую ​​глубину, чтобы позволяет избежать повреждений из-за движения грунта из-за морозного пучения, движения грунта и т. д. Нагрузка через фундамент всегда вызывает оседание, поскольку сжимает парус. под. Целью при выборе фундамента должно быть сохранение осадки минимум и постараться избежать неравного урегулирования.

При проектировании зданий и, с большей здания, в частности, инженер-строитель или инженер-строитель обычно проектирует основы. Инженер посетит объект, проведет расследование и проводить тесты, такие как тесты на просачивание, тесты уровня грунтовых вод, выкопать пробные ямы через определенные промежутки времени вокруг участка, чтобы определить характер почвы. Когда исследуя гораздо более крупные здания, инженер может глубоко проникнуть в измельчите с помощью специального шнекового сверла и извлеките образец почвы, который будет отправлено в лабораторию для анализа, который выявит его природу, несущую емкость и т. д.

Затем инженер определит тип наиболее подходящего фундамента, размера фундамента, а также типа и размера арматуры и т. д. Инженер учтет большой запас прочности в их технические характеристики. Когда здание несколько сотен или тысяч тонн груза размещается на площадке, всегда должна быть определенная сумма урегулирования, этого следовало ожидать. Неравномерный, неравномерный или чрезмерный осадок, однако это неприемлемо и проявляется в наличии трещин в стены, щели между пешеходными дорожками и домом и т. д.Наиболее известный Пример разрушения фундамента - падающая башня Пизы в Италии. Исправительные работы, такие как «поддержка» для решения обрушение фундамента возможно в экстремальных обстоятельствах, но такая работа обычно выполняется специалистами, стоит очень дорого и обычно не экономически возможно в жилых домах.

Проблемы с почвой

Поселение в зданиях видео 1

Поселение в зданиях видео 2

Поселок

Поселение - это тенденция здания к погрузиться в землю.Это естественно во всех новостройках и будет происходить. медленно в течение многих лет. Пока здание устанавливается равномерно (все с такой же скоростью), вообще нет проблем. Дифференциальный расчет происходит, когда одна часть фундамента оседает с разной скоростью по сравнению с другой. Это может привести к растрескиванию здания и даже к разрушению фундамента. Трещины всегда будут расти в направлении области большей осадки.

· Разница в несущей способности

Если здание построено на фундаменте, содержит разные типы грунта с разной несущей способностью, одна сторона здание может утонуть больше другого.

· Морозный пучок

Если Уровень грунтовых вод в местности особенно высок, в холодную погоду он может замерзнуть. Это заставляет почву расширяться вверх и создает подъемную силу на здание, известное как морозное пучение.

· Усадка почвы

Во время летом деревья впитывают влагу из почвы, вызывая ее сжатие или сокращаться. Это движение в почве может оставить фундамент без опоры, что приведет к растрескиванию и возможному разрушению фундамента.

· Расширение почвы

Если дерево возле здания (в пределах 30 м) вырублено, влажность почва увеличивается, вызывая расширение / вспучивание почвы.

· Фундамент перегрузка

Если на одной стороне здания размещается больший вес на фундаменты, чем другой, дифференциальная осадка может происходить. Это может быть вызвано:

-Изменения в здание, например снятие несущей стены перенесет дополнительную нагрузку на ближайшую стену.Фундамент ближайшей стены, возможно, не был рассчитан на дополнительную нагрузку.

-Дополнительная загрузка из-за непредвиденной живой или статической нагрузки, например вес книг в библиотеке.

Деревья

Во избежание усадки и набухания почву, деревья следует высаживать подальше от здания. Расстояние между дом и дерево должны быть равны полностью созревшей высоте дерева. В случаях, когда это невозможно, это может быть необходимо создать постоянную преграду между деревом и домом для черного бесплатные крыши.

Анкоридж
Обычно здание настолько тяжелое, что его вес удерживает его на месте, опираясь на земля. Для более высоких зданий, особенно небоскребов, их фундамент удерживает они были прикреплены к земле, не позволяя ветру опрокинуть их.

Проблемы проектирования

Ширина / пропорции
Фундамент работает за счет распределения веса стены на большей площади, чтобы уменьшить их общее воздействие на подпочву.Этот распределяет нагрузку на большую площадь. Давление = сила на единицу площади. Этот означает, что увеличение площади приводит к уменьшению силы, прилагаемой к почва. Традиционный ленточный фундамент всегда в три раза шире, чем общая ширина стены и глубина фундамента одинаковы толщина как стена.

Жесткость
Когда груз помещается на бетонную балку или фундамент, верхняя часть находится в сжатом состоянии. Нижняя половина находится в напряжении. Средняя часть нейтральна.Это называется нейтральной осью. Бетон слабый при растяжении и имеет тенденцию к растрескиванию в тех местах, где находится при растяжении. Для по этой причине бетонные балки и фундамент армируют сталью, сильный в напряжении. Чтобы получить лучший результат от армирования, следует помещается в зону растяжения. Арматурные стержни располагаются на 75 мм выше основание фундамента. Это гарантирует, что арматурные стержни имеют соответствующее покрытие. для предотвращения коррозии.

Материалы
Фундаменты изготавливаются из бетона, обычно 1 используется бетонная смесь:

· однокомпонентный цемент.

· трехпортовый мелкозернистый агрегат (песок).

· шесть частей грубого заполнителя (гравий).

Удобоукладываемость смеси очень важный. По этой причине, а также по соображениям скорости и трудозатрат бетон не смешивается на объекте, а доставляется на объект грузовиком. Бетон насыпают в траншеи и выкладывают вручную. Затем его уплотняют и выравнивается механическим или ручным способом, т. е. стяжкой или линейкой. Это должно произойти до того, как бетон начнет схватываться.

Хардкор
Хардкор - это щебень, который используется в качестве несжимаемый «наполнитель» для компенсации удаления верхнего слоя почвы. В строительные нормы и правила гласят, что хардкор следует уплотнять слоями минимальная глубина 150 мм и максимальная глубина 225 мм. Чтобы предотвратить хардкор прокалывая радоновую мембрану, верхний слой засыпают слоем песка называется ослеплением.

Вибрация
При использовании бетона воздушные пустоты в смеси будут резко снизить прочность бетона.Бетон вибрирует использование удара или механической вибрации для удаления этих воздушных пустот.

Факторы влияющие на прочность бетона в фундаменте

· Неправильное размещение и / или калибровка арматуры.

· Фонд размещен на неправильная глубина, которая может привести к дальнейшему оседанию.

· Заливка фундамента неподходящие погодные условия, например, мороз (вода в бетон замерзнет перед схватыванием) или чрезмерно жаркой погоде (вода в перед схватыванием бетон испарится).

· Размещение блока на свежем плита, прежде чем она успеет застыть.

· Использование неподходящего водного цемента соотношение.

· Слишком много воздуха в смеси, вызвано недостаточной вибрацией / уплотнением бетона.

Фонды Типы
Есть много типов конструкции фундаментов, используемых в современные постройки. Каждый фундамент должен быть рассчитан на конкретное здание, с учетом:

- загрузка здания.
- несущая способность почвы.
- стоимость.
- почвенно-температурный режим.

Основные типы фундаментов, используемых сегодня, могут относиться к категории:

в ленточный фундамент.

Ленточный фундамент - самый распространенный тип фундамента, используемый для бытовых жилища. Ленточный фундамент - это фундамент, проходящий по всей длине. каждой несущей стены. Ленточный фундамент лучше всего подходит для ситуаций, когда:

· вес здания передается через несущие стены (в отличие от колонн).

· вес здания относительно низко.

· структурный дизайн постройка относительно проста.

Bentley - Документация по продукту

MicroStation

Справка MicroStation

Ознакомительные сведения о MicroStation

Справка MicroStation PowerDraft

Ознакомительные сведения о MicroStation PowerDraft

Краткое руководство по началу работы с MicroStation

Справка по синхронизатору iTwin

ProjectWise

Справка службы автоматизации Bentley

Ознакомительные сведения об услуге Bentley Automation

Сервер композиции Bentley i-model для PDF

Подключаемый модуль службы разметки

PDF для ProjectWise Explorer

Справка администратора ProjectWise

Справка службы загрузки данных ProjectWise Analytics

Коннектор ProjectWise для ArcGIS - Справка по расширению администратора

Коннектор ProjectWise для ArcGIS - Справка по расширению Explorer

Коннектор ProjectWise для ArcGIS Справка

Коннектор ProjectWise для Oracle - Справка по расширению администратора

Коннектор ProjectWise для Oracle - Справка по расширению Explorer

Коннектор ProjectWise для справки Oracle

Коннектор управления результатами ProjectWise для ProjectWise

Справка портала управления результатами ProjectWise

Ознакомительные сведения по управлению поставками ProjectWise

Справка ProjectWise Explorer

Справка по управлению полевыми данными ProjectWise

Справка администратора геопространственного управления ProjectWise

Справка ProjectWise Geospatial Management Explorer

Ознакомительные сведения по управлению геопространственными данными ProjectWise

Модуль интеграции ProjectWise для Revit Readme

Руководство по настройке управляемой конфигурации ProjectWise

Справка по ProjectWise Project Insights

ProjectWise Plug-in для Bentley Web Services Gateway Readme

ProjectWise ReadMe

Матрица поддержки версий ProjectWise

Веб-справка ProjectWise

Справка по ProjectWise Web View

Справка портала цепочки поставок

Услуги цифрового двойника активов

PlantSight AVEVA Diagrams Bridge Help

Справка по мосту PlantSight AVEVA PID

Справка по экстрактору мостов PlantSight E3D

Справка по PlantSight Enterprise

Справка по PlantSight Essentials

PlantSight Открыть 3D-модель Справка по мосту

Справка по PlantSight Smart 3D Bridge Extractor

Справка по PlantSight SPPID Bridge

Управление эффективностью активов

Справка по AssetWise 4D Analytics

Веб-справка AssetWise ALIM

Руководство по внедрению AssetWise ALIM в Интернете

AssetWise ALIM Web Краткое руководство, сравнительное руководство

Справка по AssetWise CONNECT Edition

AssetWise CONNECT Edition Руководство по внедрению

Справка по AssetWise Director

Руководство по внедрению AssetWise

Справка консоли управления системой AssetWise

Анализ моста

Справка по OpenBridge Designer

Справка по OpenBridge Modeler

Строительное проектирование

Справка проектировщика зданий AECOsim

Ознакомительные сведения AECOsim Building Designer

AECOsim Building Designer SDK Readme

Генеративные компоненты для справки проектировщика зданий

Ознакомительные сведения о компонентах генерации

Справка по OpenBuildings Designer

Ознакомительные сведения о конструкторе OpenBuildings

Руководство по настройке OpenBuildings Designer

OpenBuildings Designer SDK Readme

Справка по генеративным компонентам OpenBuildings

Ознакомительные сведения по генеративным компонентам OpenBuildings

Справка OpenBuildings Speedikon

Ознакомительные сведения OpenBuildings Speedikon

OpenBuildings StationDesigner Help

OpenBuildings StationDesigner Readme

Гражданское проектирование

Дренаж и коммунальные услуги

Справка OpenRail ConceptStation

Ознакомительные сведения по OpenRail ConceptStation

Справка по OpenRail Designer

Ознакомительные сведения по OpenRail Designer

Справка по конструктору надземных линий OpenRail

Справка OpenRoads ConceptStation

Ознакомительные сведения по OpenRoads ConceptStation

Справка по OpenRoads Designer

Ознакомительные сведения по OpenRoads Designer

Справка по OpenSite Designer

Файл ReadMe OpenSite Designer

Инфраструктура связи

Справка по Bentley Coax

Справка по PowerView по Bentley Communications

Ознакомительные сведения о Bentley Communications PowerView

Справка по Bentley Copper

Справка по Bentley Fiber

Bentley Inside Plant Help

Справка конструктора OpenComms

Ознакомительные сведения о конструкторе OpenComms

Справка OpenComms PowerView

Ознакомительные сведения OpenComms PowerView

Справка инженера OpenComms Workprint

OpenComms Workprint Engineer Readme

Строительство

Справка для руководителей ConstructSim

ConstructSim Исполнительное ReadMe

ConstructSim Справка издателя i-model

Справка по планировщику ConstructSim

ConstructSim Planner ReadMe

Справка стандартного шаблона ConstructSim

ConstructSim Work Package Server Client Руководство по установке

Справка по серверу рабочих пакетов ConstructSim

Руководство по настройке сервера рабочих пакетов ConstructSim

Справка управления SYNCHRO

SYNCHRO Pro Readme

Энергетическая инфраструктура

Справка конструктора Bentley OpenUtilities

Ознакомительные сведения о Bentley OpenUtilities Designer

Справка по подстанции Bentley

Ознакомительные сведения о подстанции Bentley

Справка подстанции OpenUtilities

Ознакомительные сведения о подстанции OpenUtilities

Promis.e Справка

Promis.e Readme

Руководство по установке Promis.e - управляемая конфигурация ProjectWise

Руководство по настройке подстанции

- управляемая конфигурация ProjectWise

Руководство пользователя sisNET

Геотехнический анализ

PLAXIS LE Readme

Ознакомительные сведения о PLAXIS 2D

Ознакомительные сведения о программе просмотра вывода 2D PLAXIS

Ознакомительные сведения о PLAXIS 3D

Ознакомительные сведения о программе просмотра 3D-вывода PLAXIS

PLAXIS Monopile Designer Readme

Управление геотехнической информацией

Справка администратора gINT

Справка gINT Civil Tools Pro

Справка gINT Civil Tools Pro Plus

Справка коллекционера gINT

Справка по OpenGround Cloud

Гидравлика и гидрология

Справка Bentley CivilStorm

Справка Bentley HAMMER

Справка Bentley SewerCAD

Справка Bentley SewerGEMS

Справка Bentley StormCAD

Справка Bentley WaterCAD

Справка Bentley WaterGEMS

Управление активами линейной инфраструктуры

Справка по услугам AssetWise ALIM Linear Referencing Services

Руководство администратора мобильной связи TMA

Справка TMA Mobile

Картография и геодезия

Справка карты OpenCities

Ознакомительные сведения о карте OpenCities

OpenCities Map Ultimate для Финляндии Справка

Карта OpenCities Map Ultimate для Финляндии: ознакомительные сведения

Справка по карте Bentley

Справка по мобильной публикации Bentley Map

Ознакомительные сведения о карте Bentley

Конструкция шахты

Справка по транспортировке материалов MineCycle

Ознакомительные сведения по транспортировке материалов MineCycle

Моделирование мобильности и аналитика

Справка по подготовке САПР LEGION

Справка по построителю моделей LEGION

Справка API симулятора LEGION

Ознакомительные сведения об API симулятора LEGION

Справка по симулятору LEGION

Моделирование и визуализация

Bentley Посмотреть справку

Ознакомительные сведения о Bentley View

Анализ морских конструкций

SACS Close the Collaboration Gap (электронная книга)

Ознакомительные сведения о SACS

Анализ напряжений в трубах и сосудов

AutoPIPE Accelerated Pipe Design (электронная книга)

Советы новым пользователям AutoPIPE

Краткое руководство по AutoPIPE

AutoPIPE & STAAD.Pro

Завод Дизайн

Ознакомительные сведения об экспортере завода Bentley

Bentley Raceway and Cable Management Help

Bentley Raceway and Cable Management Readme

Bentley Raceway and Cable Management - Руководство по настройке управляемой конфигурации ProjectWise

Справка по OpenPlant Isometrics Manager

Ознакомительные сведения о диспетчере изометрических данных OpenPlant

Справка OpenPlant Modeler

Ознакомительные сведения для OpenPlant Modeler

Справка по OpenPlant Orthographics Manager

Ознакомительные сведения для менеджера орфографии OpenPlant

Справка OpenPlant PID

Ознакомительные сведения о PID OpenPlant

Справка администратора проекта OpenPlant

Ознакомительные сведения для администратора проекта OpenPlant

Техническая поддержка OpenPlant Support

Ознакомительные сведения о технической поддержке OpenPlant

Справка PlantWise

Ознакомительные сведения о PlantWise

Реализация проекта

Справка рабочего стола Bentley Navigator

Моделирование реальности

Справка консоли облачной обработки ContextCapture

Справка редактора ContextCapture

Файл ознакомительных сведений для редактора ContextCapture

Мобильная справка ContextCapture

Руководство пользователя ContextCapture

Справка Декарта

Декарт Readme

Структурный анализ

Справка OpenTower iQ

Справка по концепции RAM

Справка по структурной системе RAM

STAAD Close the Collaboration Gap (электронная книга)

STAAD.Pro Help

Ознакомительные сведения о STAAD.Pro

Программа физического моделирования STAAD.Pro

Расширенная справка по STAAD Foundation

Дополнительные сведения о STAAD Foundation

Детализация конструкций

Справка ProStructures

Ознакомительные сведения о ProStructures

ProStructures CONNECT Edition Руководство по внедрению конфигурации

Руководство по установке ProStructures CONNECT Edition - управляемая конфигурация ProjectWise

Разница между ленточным фундаментом и подушечным фундаментом »Engineering Basic

Ленточный фундамент и подкладной фундамент - это, как правило, наиболее распространенные типы фундамента / фундамента на строительной площадке.

В большинстве случаев ленточный фундамент используется для поддержки линии нагрузки, особенно несущей стены. В то время как фундамент Pad используется для выдерживания сосредоточенных нагрузок от точечной нагрузки, такой как несущие колонны.

ЛЕНТОЧНЫЙ ФУНДАМЕНТ

Ленточный фундамент - это тип неглубокого фундамента, который используется для обеспечения непрерывной, ровной (или иногда ступенчатой) полосы поддержки линейной конструкции, такой как стена или близко расположенные ряды колонн, построенных по центру над ними.

Ленточный фундамент можно использовать для большинства грунтов, но наиболее подходят для грунта с относительно хорошей несущей способностью. Они особенно подходят для легких структурных нагрузок, таких как те, которые встречаются во многих жилых домах низкой и средней этажности - где можно использовать массивный бетонный фундамент из ленточных фундаментов . В других ситуациях может потребоваться железобетон.

ПОДКЛАДКА ФУНДАМЕНТ

Фундамент с подушкой обычно представляет собой неглубокий фундамент, но может быть глубоким в зависимости от условий грунта.Они представляют собой форму основания, образованного прямоугольными, квадратными или иногда круглыми бетонными «подушками», которые выдерживают локализованные одноточечные нагрузки, такие как несущие колонны, группы колонн или каркасные конструкции. Эта нагрузка затем распределяется подушкой на несущий слой почвы или скал ниже. Подушечки фундамента также можно использовать для опоры грунтовых балок.

Обычно они имеют одинаковую толщину, но иногда верхняя поверхность может быть наклонной или ступенчатой. Их форма в плане будет зависеть от характера приложенной нагрузки и допустимой несущей способности нижележащих слоев.Их толщина должна быть достаточной для распределения нагрузки по форме в плане. Как правило, они армируются на всех конструкциях, кроме самых маленьких, причем армирование позволяет создавать более высокие нагрузки и строить более мелкие опоры, которые требуют меньше земляных работ и используют меньше бетона.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *