Схема армирования фундамента: Как правильно армировать ленточный фундамент

Содержание

🔨 подробное, пошаговое описание процесса

В процессе эксплуатации бетонный фундамент подвергается не только давлению веса строения, но и разнонаправленным нагрузкам, вызванным множеством причин. Например:

  • неравномерное изменение объема грунта, вызываемое замерзающей водой;
  • перемещение слоев грунта относительно друг друга;
  • неравномерная нагрузка из-за особенностей строения и пр.

Решение простое — это значительно усилить фундамент внедрением металлического каркаса.

Что даёт внедрение металлического каркаса

  • Устойчивость обычного бетона на сжатие в 50 раз больше, чем на растяжение или изгиб. Внедрение в фундамент силового каркаса усиливает сопротивление растяжению и изгибу;
  • Использование каркаса делает из бетона железобетон — материал, который с одинаковым успехом держит нагрузки на сжатие, растяжение и изгиб.

Тонкости при армировании фундаментного основания

Силовой металлический каркас собирается из гладкой и ребристой арматуры Ø7÷32 мм. Как и в любой работе, при армировании фундамента есть ряд секретов и тонкостей, которые не только усилят его прочность, но и помогут сэкономить:

  • Обычно для создания горизонтального каркаса используют арматуру А3 Ø10÷16 мм. Данная маркировка говорит о ребристой поверхности прутка, которая обеспечит лучшее сцепление с бетоном.
  • При высоте бетонной ленты более 150 мм горизонтальные элементы рекомендуется укрепить вертикальными. Чтобы снизить расходы, эти соединения можно выполнить обычной арматурой А1 Ø6÷8 мм с гладкой поверхностью.
  • Расположение горизонтальных слоев силового армирования в верхнем и нижнем слое фундамента эффективно компенсирует нагрузки на всех направлениях. В отдельных случаях требуется добавление дополнительного горизонтального армирующего слоя внутри бетонной отливки.
  • Укрепление горизонтальных слоев может проводиться горизонтальными перемычками, частоту и диаметр которых рассчитывают исходя из расчетных нагрузок вдоль поперечной оси. Это предотвращает появление в отливке дополнительных трещин и фиксирует продольную арматуру горизонтальных силовых секций.
  • Эффективность крепления горизонтальными и вертикальными соединяющими перемычками можно значительно увеличить, сгибая их в рамку вокруг направляющих прутов.

О расстоянии между элементами каркаса

Вычисление необходимого расстояния между элементами каркаса проводится согласно СНиП 52-01-2003:

1. Минимальный шаг между прутами арматуры зависит от ее сечения и диаметра наполнителя в бетоне (например, щебня или бутового камня), расположения и направления силовых элементов, способа уплотнения бетона. Он должен быть не менее сечения прутка, но и не более 25 мм.

2. Перед определением расстояние между арматурой в продольном направлении, определяем, назначение и геометрические размеры будущей бетонной отливки, но оно не должно быть меньше двойного сечения самой арматуры, но и не более 400 мм.

Армирующий каркас

3. Для поперечных элементов, фиксирующих горизонтальные слои, расстояние друг от друга должно быть больше половины высоты элемента, но и не более 300 мм.

4. Схемы армирования ленточного или монолитного плиточного фундамента должны предусматривать, чтобы арматура не касалась опалубки и не доходила до верхней и нижней поверхности отливки не менее 50 мм.

Крепление армирующего пояса

Фиксацию прутов армирующего пояса выполняют:

  • вязальной проволокой — отрезками около 300 мм, сложенными вдвое, обвязывают место соединения и стягивают при помощи крюка или специального механического устройства;
  • точечной электросваркой — способ подходит только для арматуры с наличием в маркировке буквы «С»;
  • пластиковыми строительными хомутами.

Схема армирования различных узлов

На представленных ниже рисунках показаны схемы вязки углов и примыканий, где:
• d — диаметр армирующего прута;
• L — длина прута.

Важно! В углах и примыканиях пруты должны не просто пересекаться, а их надо загибать, заводя друг на друга с нахлестом. Тогда каркас станет единой пространственной конструкцией, обеспечивающей необходимую жесткость фундамента, защищая его от разрушения при разнонаправленных нагрузках.

Заказать забивку свай под строительство фундаментов

Мы занимаемся забивкой свай для строительства фундамента и готовы провести работы по погружению Ж/Б свай

Страница не найдена — ГидФундамент

Содержание статьи1 Определение и назначение2  3 Нормативы4 Параметры4.1 Ширина4.2 Глубина4.3 Угол наклона5 Типы и структура6 Самые распространённые виды отмосток6.1 Бетонная6.2 […]

Содержание статьи1 Функции армопояса из кирпича2 Виды поясов3 Пояс из кирпича под перекрытие4 Кирпичный пояс под мауэрлат5 Гидроизоляция и утепление6 […]

Содержание статьи1 Для кровли1.1 Основные функции1.2 Способы возведения1.3 Геометрические параметры1.4 Правила  армирования2 Для перекрытий3 Общие принципы устройства армопояса3.1 Утепление3.2 Бетонирование3.3 […]

Содержание статьи1 Как избежать работ по выравниванию поверхности2 Инструменты для контроля горизонта3 Основной способ4 Практические советы и рекомендации5 Другие способы […]

Содержание статьи1 Виды  армопояса2 Материалы опалубки для армопояса3 Виды опалубки для армопояса4 Крепление опалубки В технологический процесс устройства монолитного армированного […]

Содержание статьи1 Кирпичные фронтоны2 Требования к материалу3 Завершение кладки3.1 Ровный обрез3.2 Кладка кирпича уступом4 Гидроизоляция под мауэрлат5 Способы крепления мауэрлата5.1 […]

Содержание статьи1 Последствия неправильного выбора арматуры2 Понимание процесса работы арматуры в ленточном фундаменте3 Критерии надёжности4 Виды5 Классификация5.1 Классы5.2 Дополняющие литеры5.3 […]

Содержание статьи1 Виды монолитных лестниц2 Типы и назначение арматуры3 Практические рекомендации4 Особенности расчёта армирования лестницы4.1 Задачи армирования4.2 Угол подъёма4.3 Место […]

Содержание статьи1 Задачи армирования2 Основная функция защитного слоя3 Факторы формирования толщины4 Нормативы и допуски защитного слоя бетона5 Ошибки6 Восстановление защитного […]

Содержание статьи1 Особенности устройства кирпичной фундаментной ленты2 Свойства грунтов3 Выбор конструкции4 Достоинства5 Выбор кирпича для фундамента5.1 Размеры5.2 Маркировка6 Ленточный фундамент7 […]

Страница не найдена — ГидФундамент

Содержание статьи1 Определение и назначение2  3 Нормативы4 Параметры4.1 Ширина4.2 Глубина4.3 Угол наклона5 Типы и структура6 Самые распространённые виды отмосток6.1 Бетонная6.2 […]

Содержание статьи1 Функции армопояса из кирпича2 Виды поясов3 Пояс из кирпича под перекрытие4 Кирпичный пояс под мауэрлат5 Гидроизоляция и утепление6 […]

Содержание статьи1 Для кровли1.1 Основные функции1.2 Способы возведения1.3 Геометрические параметры1.4 Правила  армирования2 Для перекрытий3 Общие принципы устройства армопояса3.1 Утепление3.2 Бетонирование3.3 […]

Содержание статьи1 Как избежать работ по выравниванию поверхности2 Инструменты для контроля горизонта3 Основной способ4 Практические советы и рекомендации5 Другие способы […]

Содержание статьи1 Виды  армопояса2 Материалы опалубки для армопояса3 Виды опалубки для армопояса4 Крепление опалубки В технологический процесс устройства монолитного армированного […]

Содержание статьи1 Кирпичные фронтоны2 Требования к материалу3 Завершение кладки3.1 Ровный обрез3.2 Кладка кирпича уступом4 Гидроизоляция под мауэрлат5 Способы крепления мауэрлата5.1 […]

Содержание статьи1 Последствия неправильного выбора арматуры2 Понимание процесса работы арматуры в ленточном фундаменте3 Критерии надёжности4 Виды5 Классификация5.1 Классы5.2 Дополняющие литеры5.3 […]

Содержание статьи1 Виды монолитных лестниц2 Типы и назначение арматуры3 Практические рекомендации4 Особенности расчёта армирования лестницы4.1 Задачи армирования4.2 Угол подъёма4.3 Место […]

Содержание статьи1 Задачи армирования2 Основная функция защитного слоя3 Факторы формирования толщины4 Нормативы и допуски защитного слоя бетона5 Ошибки6 Восстановление защитного […]

Содержание статьи1 Особенности устройства кирпичной фундаментной ленты2 Свойства грунтов3 Выбор конструкции4 Достоинства5 Выбор кирпича для фундамента5.1 Размеры5.2 Маркировка6 Ленточный фундамент7 […]

схемы, расчет диаметра арматуры, расположение по углам и в подошве

Ленточный фундамент имеет нестандартную геометрию: его длинна в десятки раз больше глубины и ширины. Из-за такой конструкции почти все нагрузки распределяются вдоль ленты. Самостоятельно бетонный камень не может компенсировать эти нагрузки: его прочности на изгиб недостаточно. Для придания конструкции повышенной прочности используют не просто бетон, а железобетон — это бетонный камень с расположенными внутри стальными элементами — стальной арматурой. Процесс закладки металла называется армированием ленточного фундамента. Своими руками его сделать несложно, расчет элементарный, схемы известны. 

Количество, расположение, диаметры и сорт арматуры — все это должно быть прописано в проекте. Эти параметры зависят от многих факторов: как от геологической обстановки на участке, так и от массы возводимого здания. Если вы хотите иметь гарантированно прочный фундамент — требуется проект. С другой стороны, если вы строите небольшое здание, можно попробовать на основании общих рекомендаций все сделать своими руками, в том числе и спроектировать схему армирования.

Содержание статьи

Схема армирования

Расположение арматуры в ленточном фундаменте в поперечном сечении представляет собой прямоугольник. И этому есть простое объяснение: такая схема работает лучше всего.

Армирование ленточного фундамента при высоте ленты не более 60-70 см

На ленточный фундамент действуют две основные силы: снизу при морозе давят силы пучения, сверху — нагрузка от дома. Середина ленты при этом почти не нагружается. Чтобы компенсировать действие этих двух сил обычно делают два пояса рабочей арматуры: сверху и снизу. Для мелко- и средне- заглубленных фундаментов (глубиной до 100 см) этого достаточно. Для лент глубокого заложения требуется уже 3 пояса: слишком большая высота требует усиления.

О глубине заложения фундамента прочесть можно тут.

Для большинства ленточных фундаментов армирование выглядит именно так

Чтобы рабочая арматура находилась в нужном месте, ее определенным образом закрепляют. И делают это при помощи более тонких стальных прутьев. Они в работе не участвуют, только удерживают рабочую арматуру в определенном положении — создают конструкцию, потому и называется этот тип арматуры конструкционным.

Для ускорения работы при вязке арматурного пояса используют хомуты

Как видно на схеме армирования ленточного фундамента, продольные прутки арматуры (рабочие) перевязываются горизонтальными и вертикальными подпорками. Часто их делают в виде замкнутого контура — хомута. С ними работать проще и быстрее, а конструкция получается более надежной.

Какая арматура нужна

Для ленточного фундамента используют два типа прутка. Для продольных, которые несут основную нагрузку, требуется класс АII или AIII. Причем профиль — обязательно ребристый: он лучше сцепляется с бетоном и нормально передает нагрузку. Для конструкционных перемычек берут более дешевую арматуру: гладкую первого класса АI, толщиной 6-8 мм.

В последнее время появилась на рынке стеклопластиковая арматура. По заверениям производителей она имеет лучшие прочностные характеристики и более долговечна. Но использовать ее в фундаментах жилых зданий многие проектировщики не рекомендуют. По нормативам это должен быть железобетон. Характеристики этого материала давно известны и просчитаны, разработаны специальные профили арматуры, которые способствуют тому, что металл и бетон соединяются в единую монолитную конструкцию.

Классы арматуры и ее диаметры

Как поведет себя бетон в паре со стеклопластиком, насколько прочно такая арматура будет сцепляться с бетоном, насколько успешно эта пара будет сопротивляться нагрузкам — все это неизвестно и не изучено. Если хотите экспериментировать — пожалуйста, используйте стекловолокно. Нет — берите железную арматуру.

Расчет армирования ленточного фундамента своими руками

Любые строительные работы нормируются ГОСТами или СНиПами. Армирование — не исключение. Оно регламентируется СНиП 52-01-2003 «Бетонные и железобетонные конструкции». В этом документе указывается минимальное количество требуемой арматуры: оно должно быть не менее 0,1% от площади поперечного сечения фундамента.

Определение толщины арматуры

Так как ленточный фундамент в разрезе имеет форму прямоугольника, то площадь сечения находится перемножением длин его сторон. Если лента имеет глубину 80 см и ширину 30 см, то площадь будет 80 см*30 см = 2400 см2.

Теперь нужно найти общую площадь арматуры. По СНиПу она должна быть не менее 0,1%. Для данного примера это 2,8 см2. Теперь методом подбора определим, диаметр прутков и их количество.

Цитаты из СНиПа, которые относятся к армированию (чтобы увеличить картинку щелкните по ней правой клавишей мышки)

Например, планируем использовать арматуру диаметром 12 мм. Площадь ее поперечного сечения 1.13 см2 (вычисляется по формуле площади окружности). Получается, чтобы обеспечить рекомендации (2,8 см2)  нам понадобится три прутка (или говорят еще «нитки»), так как двух явно мало: 1,13 * 3 = 3,39 см2, а это больше чем 2,8 см2, которые рекомендует СНиП. Но три нитки на два пояса разделить не получится, а нагрузка будет и с той и с другой стороны значительной. Потому укладывают четыре, закладывая солидный запас прочности.

Чтобы не закапывать лишние деньги в землю, можно попробовать уменьшить диаметр арматуры: рассчитать под 10 мм. Площадь этого прутка 0,79 см2. Если умножить на 4 (минимальное количество прутков рабочей арматуры для ленточного каркаса), получим 3,16 см2, чего тоже хватает с запасом. Так что для данного варианта ленточного фундамента можно использовать ребристую арматуру II класса диаметром 10 мм.

Армирование ленточного фундамента под коттедж проводят с использованием прутков с разным типом профиля

Как рассчитать толщину продольной арматуры для ленточного фундамента разобрались, нужно определить, с каким шагом устанавливать вертикальные и горизонтальные перемычки.

Шаг установки

Для всех этих параметров тоже есть методики и формулы. Но для небольших строений поступают проще. По рекомендациям стандарта расстояние между горизонтальными ветками не должно быть больше 40 см. На этот параметр и ориентируются.

Как определить на каком расстоянии укладывать арматуру? Чтобы сталь не подвергалась коррозии, она должна находится в толще бетона. Минимальное расстояние от края — 5 см. Исходя из этого, и рассчитывают расстояние между прутками: и по вертикали и по горизонтали оно на 10 см меньше габаритов ленты. Если ширина фундамента 45 см, получается, что между двумя нитками будет расстояние 35 см (45 см — 10 см = 35 см), что соответствует нормативу (меньше 40 см).

Шаг армирования ленточного фундамента — это расстояние между двумя продольными прутками

Если лента у нас 80*30 см, то продольная арматура находится одна от другой на расстоянии 20 см (30 см — 10 см). Так как для фундаментов среднего заложения (высотой до 80 см) требуется два пояса армирования, то один пояс от другого располагается на высоте 70 см (80 см — 10 см).

Теперь о том, как часто ставить перемычки. Этот норматив тоже есть в СНиПе: шаг установки вертикальных и горизонтальных перевязок должен быть не более 300 мм.

Все. Армирование ленточного фундамента своими руками рассчитали. Но учтите, что ни масса дома, ни геологические условия не учитывались.  Мы основывались на том, что на этих параметрах основывались при определении размеров ленты.

Армирование углов

В конструкции ленточного фундамента самое слабое место — углы и примыкание простенков. В этих местах соединяются нагрузки от разных стен. Чтобы они успешно перераспределялись, необходимо арматуру грамотно перевязать. Просто соединить ее неправильно: такой способ не обеспечит передачу нагрузки. В результате через какое-то время в ленточном фундаменте появятся трещины.

Правильная схема армирования углов: используются или сгоны — Г-образные хомуты, или продольные нитки делают длиннее на 60-70 см и загибают за угол

Чтобы избежать такой ситуации, при армировании углов используют специальные схемы: пруток с одной стороны загибают на другую. Этот «захлест» должен быть не менее 60-70 см. Если длины продольного прутка на загиб не хватает, используют Г-образные хомуты со сторонами тоже не менее 60-70 см. Схемы их расположения и крепления арматуры приведены на фото ниже.

По такому же принципу армируются примыкания простенков. Также желательно арматуру брать с запасом и загибать. Также возможно использование Г-образных хомутов.

Схема армирования примыкания стен в ленточном фундаменте (чтобы увеличить картинку щелкните по ней правой клавишей мышки)

Обратите внимание: в обоих случаях, в углах шаг установки поперечных перемычек уменьшен в два раза. В этих местах они уже становятся рабочими — участвуют в перераспределении нагрузки.

Армирование подошвы ленточного фундамента

На грунтах с не очень высокой несущей способностью, на пучнистых почвах или под тяжелые дома, часто ленточные фундаменты делают с подошвой. Она передает нагрузку на большую площадь, что придает большую стабильность фундаменту и уменьшает величину просадок.

Чтобы подошва от давления не развалилась, ее также необходимо армировать. На рисунке представлены два варианта: один и два пояса продольной арматуры. Если грунты сложные, с сильной склонностью к зимнему печению, то можно укладывать два пояса. При нормальных и среднепучнистых грунтах — достаточно одного.

Уложенные в длину пруты арматуры являются рабочими. Их, как и для ленты, берут второго или третьего класса. Располагаются друг от друга они на расстоянии 200-300 мм. Соединяются  при помощи коротких отрезков прутка.

Два способа армирования подошвы ленточного фундамента: слева для оснований с нормальной несущей способностью, справа — для не очень надежных грунтов

Если подошва неширокая (жесткая схема), то поперечные отрезки — конструктивные, в распределении нагрузки не участвуют. Тогда их делают диаметром 6-8 мм, загибают на концах так, чтобы они охватывали крайние прутки. Привязывают ко всем при помощи вязальной проволоки.

Ели подошва широкая (гибкая схема), поперечная арматура в подошве тоже является рабочей. Она сопротивляется попыткам грунта «схлопнуть» ее. Потому в этом варианте подошвы используют ребристую арматуру того же диаметра и класса, что и продольную.

Сколько нужно прутка

Разработав схему армирования ленточного фундамента, вы знаете, сколько продольных элементов вам необходимо. Они укладываются по всему периметру и под стенами. Длинна ленты будет длиной одного прутка для армирования. Умножив ее на количество ниток, получите необходимую длину рабочей арматуры. Затем к полученной цифре добавляете 20%  — запас на стыки и «перехлесты». Вот столько в метрах вам и нужно будет рабочей арматуры.

Считаете по схеме сколько продольных ниток, потом высчитываете сколько необходимо конструктивного прутка

Теперь нужно посчитать количество конструктивной арматуры. Считаете, сколько поперечных перемычек должно быть: длину ленты делите на шаг установки (300 мм или 0,3 м, если следовать рекомендациям СНиПа). Затем подсчитываете, сколько уходит на изготовление одной перемычки (ширину арматурного каркаса складываете с высотой и удваиваете). Полученную цифру умножаете на количество перемычек. К результату добавляете тоже 20% (на соединения). Это будет количество конструктивной арматуры для армирования ленточного фундамента.

По похожему принципу считаете количество, которое необходимо для армирования подошвы. Сложив все вместе, вы узнаете, сколько арматуры нужно на фундамент.

О выборе марки бетона для фундамента прочесть можно тут. 

Технологии сборки арматуры для ленточного фундамента

Армирование ленточного фундамента своими руками начинается после установки опалубки. Есть два варианта:

Оба вариант неидеальны и каждый решает, как ему будет легче. При работе непосредственно в траншее, нужно знать порядок действий:

  • Первыми укладывают продольные прутки нижнего армопояса. Их нужно приподнять на 5 см от края бетона. Лучше использовать для этого специальные ножки, но у застройщиков популярны куски кирпичей. От стенок опалубки арматура также отстоит на 5 см.
  • Используя поперечные куски конструкционной арматуры или сформованные контура, их фиксируют на необходимом расстоянии при помощи вязальной проволоки и крючка или вязального пистолета.
  • Далее есть два варианта:
    • Если использовались сформованные в виде прямоугольников контура, сразу к ним вверху привязывают верхний пояс.
    • Если при монтаже используют нарезанные куски для поперечных перемычек и вертикальных стоек, то следующий шаг — подвязывание вертикальных стоек. После того как все они привязаны, привязывают второй пояс продольной арматуры.

Есть еще одна технология армирования ленточного фундамента. Каркас получается жесткий, но идет большой расход прутка на вертикальные стойки: их забивают в грунт.

Вторая технология армирования ленточного фундамента — сначала вбивают вертикальные стойки, к ним привязывают продольные нитки, а потом все соединяют поперечными
  • Сначала вбивают вертикальные стойки в углах ленты и местах соединения горизонтальных прутков. Стойки должны иметь большой диаметр 16-20 мм. Их выставляют на расстоянии не менее 5 см от края опалубки, выверяя горизонтальность и вертикальность, забивают в грунт на 2 метра.
  • Затем забивают вертикальные прутки расчетного диаметра. Шаг установки мы определили: 300 мм, в углах и в местах примыкания простенков в два раза меньше — 150 мм.
  • К стойкам привязывают продольные нитки нижнего пояса армирования.
  • В местах пересечения стоек и продольных арматурин привязываются горизонтальные перемычки.
  • Подвязывается верхний пояс армирования, который располагается на 5-7 см ниже верхней поверхности бетона.
  • Привязываются горизонтальные перемычки.

Удобнее и быстрее  всего делать армирующий пояс с использованием сформованных заранее контуров. Прут сгибают, формируя прямоугольник с заданными параметрами. Вся проблема в том, что их необходимо делать одинаковыми, с минимальными отклонениями. И требуется их большое количество. Но потом работа в траншее движется быстрее.

Армирующий пояс можно вязать отдельно, а потом установить в опалубку и связать в единое целое уже на месте

Как видите, армирование ленточного фундамента — длительный и не самый простой процесс. Но справиться можно даже одному, без помощников. Потребуется, правда, много времени. Вдвоем или втроем работать сподручнее: и прутки переносить, и выставлять их.

Армирование ленточного фундамента: схемы армирования, ошибки

Ленточный фундамент можно назвать одним из самых распространенных типов оснований под возведение малоэтажных зданий и сооружений: частных и дачных домов, бань, беседок, заборов, складских помещений, гаражей, сараев, мастерских и времянок.

СодержаниеСвернуть

Учитывая высокие механические нагрузки на бетонную конструкцию фундамента зданий и сооружений, зачастую очень важно выполнять правильное армирование ленточного фундамента, которое эффективно защищает основание сооружения от воздействия разрушающих продольных и изгибающих механических напряжений.

Армирование под ленточный фундамент

Ленточный фундамент представляет собой замкнутую бетонную конструкцию, заливаемую в предварительно подготовленную траншею. В общем случае, на строительном участке, при помощи колышков и бечевки, в соответствии с имеющимся проектом, размечаются наружные и внутренние «обводы» будущего сооружения.

При этом имеющийся рабочий проект здания регламентирует ширину, глубину заделки и схему армирования ленточного фундамента конкретного здания или сооружения. Если здание возводится без проекта, правильное армирование ленточного фундамента будет рассмотрено дальше по тексту публикации.

Итак, габариты будущего фундамента и глубина его заделки известны по проекту либо по сведениям, полученным от заказчика. Далее следует операция рытья траншеи под конструкцию фундамента, и если по условиям строительства, фундамент возвышается над «нулевым уровнем» необходима установка опалубки. В том случае, если планируемая высота фундамента не выходит за габариты «нулевой» точки (уровня почвы), функцию опалубки выполняют стенки траншеи.

Стоит отметить, что практика возведения одноэтажных жилых домов позволяет использовать прямую заливку ленточного фундамента тяжелым бетоном марки М200-М250, без дополнительных затрат на армирование. В этом варианте дополнительное армирование ленточного фундамента арматурой можно назвать полезной, но не жизненно необходимой и более того – весьма затратной операцией.

схема армирования ленточного фундамента

Несмотря на многочисленные публикации в интернете рекомендующие производить арматурное усиление основание основы здания, одноэтажные частные дома, возведенные из кирпича, самана, пеноблока, массива древесины, тяжелого бетона и СИП панелей строятся на ленточных фундаментах без необходимости обустройства арматурного пояса в толще фундамента.

Правильное армирование углов ленточного фундамента

Частные здания выше одного этажа характеризуются значительной массой, давящей на основание сооружения. Многоэтажные частные дома и сооружения нуждаются в усиленном фундаменте. Под понятием «усиленный фундамент» имеется ввиду фундамент усиленный поясом стального армирования.

Пояс армирования фундамента частного дома проектируется и монтируется в соответствии с конкретными условиями эксплуатации и этажностью конструкции. При этом существуют эмпирические зависимости проверенные годами эксплуатации частных зданий.

В общем случае, в углах строящегося фундамента двух-трех этажного здания, количество вертикальных армирующих стержней увеличивается в два или три раза. К примеру, если «трассовое» армирование ленточного фундамента шириной 500 миллиметров предусматривает количество вертикальных стержней 2 единицы на 70-80 см протяженности фундамента в продольном направлении, то в углах конструкции должно быть не менее 6-ти равномерно расположенных вертикальных стержней, к которым привязываются четыре продольных стержня.

Дело в том, что углы здания воспринимают значительные разнонаправленные механические нагрузки. Поэтому их усиливают не только армированием фундамента, но и в том числе специальной усиленной кладкой основных строительных материалов.

Если не сделать усиленное армирование углов ленточного фундамента, можно получить просадку углов дома, которую невозможно исправить. Указанная выше схема армирования углов ленточного фундамента перекрывает 90% конструкций возводимых малоэтажных зданий высотой два-три этажа.

Армирование ленточного фундамента своими руками

Вне всякого сомнения, частные застройщики, привыкшие все, что только возможно делать своими руками, задают вопрос: «Как сделать армирование ленточного фундамента без привлечения наемных работников?».

Чтобы не ошибиться, в расчете, необходимо взять листок бумаги и сделать нехитрый чертеж схемы армирования ленточного фундамента используя конкретные габариты конструкции.

На листке бумаги следует обозначить наружные и внутренние обводы будущего сооружения.

Далее, реперными точками обозначают вертикальные стержни армирования в углах и «трассе» стен в соответствии со стандартными расстояниями: два перпендикулярно расположенных стержня на трассе 80 см между стержнями, и не менее 6-ти равномерно расположенных арматуры в каждом углу возводимого здания.

Как показывает практика возведения малоэтажных зданий, оптимальный вариант арматуры, для усиления фундамента, являются стальные горячекатаные стержни диаметром 8 мм по ГОСТ 5781-82.

При наличии у застройщика стальных стержней общепромышленного направления указанного диаметра, допускается использование любого металла способного придать бетонному фундаменту прочность соответствующую нагрузке о т стен, кровли и других конструкций.

В общем, случае традиционная схема армирования заглубленного ленточного фундамента выполненная собственными силами, предусматривает забивку вертикальных стрежней в грунт. Отступив от наружной стенки траншеи фундамента на расстояние 70-80 мм, с помощью кувалды забивается первый вертикальный стержень армпояса.

Второй стержень забивается напротив первого стержня, отступив 70-80 мм от внутренней стенки траншеи фундамента. Забивка стержней ведется на глубину до 400 мм.

Последующие вертикальные стержни забиваются с шагом 80-100 мм периметру будущего фундамента. Как уже было сказано, в углах будущей конструкции количество вертикально-забитых стержней увеличивают до 6 на каждый угол. Только так можно гарантировать прочный поперечный и продольный результат.

Итак, вертикальные армирующие стержни забиты в грунт на определенную надежную глубину. Следующая операция, это перевязка вертикальных стержней продольной арматурой диаметром 6-8 мм. Суть технологии заключается в следующем.

Отступив от дна траншеи фундамента на 150-200 вверх, к стержням забитым в землю, по всему периметру траншеи фундамента, с помощью отожженной проволоки привязываются продольные арматурные стержни диметром 8-12 мм.

Второй пояс продольной арматуры привязывается, отступив от нулевой точки фундамента на расстояние 400-450 мм. Монтаж продольной арматуры второго пояса также ведется с помощью отожженной стальной вязальной проволоки.

Заключение

Армирование фундамента малоэтажного здания можно назвать «желательной» но не жизненно необходимой операцией. Тяжелый бетон, используемый в качестве основного строительного материала для возведения фундаментов способен выдерживать значительные статические и динамические нагрузки без дополнительного армирования.

Поэтому в каждом конкретном случае возведения здания и сооружения следует руководствоваться инженерными расчетами армирования и других фактор возведения сооружения.

Схема армирования ленточного фундамента своими руками

Что такое фундамент дома? Это его обязательная основа, корень, на который ложится вся нагрузка. Из этого следует, что он должен быть очень крепким, прочным. Из всех современных видов фундамента ленточный – самый популярный. В данной статье мы рассмотрим, как должна быть проведена грамотно схема армирования ленточного фундамента своими руками.

Немного про основу

Ленточная разновидность фундамента – это железобетонная конструкция замкнутого типа. Она может быть монолитной или же сборной. Укладывается такая основа под всеми главными стенами помещения, а масса здания распределяется по всему квадрату или прямоугольнику (смотря, какая геометрическая форма используется при возведении фундамента).

Такое основание проще всего возводить своими силами. Сложные виды заборов, подразумевающих установку на пучинистых грунтах и другие конструкции различного типа легче всего ставить как раз на ленточный фундамент. Долговечность и надежность, способность выдерживать серьезные, колоссальные нагрузки – это все о нем.

Выше было сказано, что фундамент подвергается большим нагрузкам. Это не только вес здания, но и движение грунта, морозное пучение и другие физические явления.

Внимание! Основание испытывает нагрузки колоссального свойства. Следует различать их по типу. Бывают нагрузки, способствующие растяжению или сжатию конструкции. Как правило, нижняя часть армированного каркаса более подвержена первому типу давления, верхняя часть – второму.

Возводя такой фундамент, надо помнить, что арматура, уложенная неграмотно, способна привести к дальнейшему разрушению каркаса, что, несомненно, приведет к порче всего здания.

Основа и арматура

Итак, перейдем непосредственно к схеме укладывания ленточного фундамента своими руками:

  • первый этап работ подразумевает подготовку: территория расчищается под строительство, роется траншея по всей границе будущего здания;
  • далее устанавливается опалубка для того, чтобы стены были пропорциональными;
  • с опалубкой проводится и армирование;
  • затем заполняется бетоном, организовывается гидроизоляция и прочие работы.

Как видно из схемы, опалубка и армирование устанавливается одновременно. Сначала возводится опалубка: внутренняя область рва обрабатывается пергаментом, что позволяет в будущем упростить демонтаж.

Каркас создается по следующей схеме:

  • арматурные стержни вбиваются в дно траншеи. Как и было сказано выше, должны соблюдаться правильные расстояния;
  • на дно траншеи устанавливаются подставки размером 80-100 мм, на которые укладывается нижний продольный ряд арматуры;

Совет! В качестве подставок подойдут обычные кирпичи, уложенные на торец.

  • продольные ряды прутьев фиксируют перемычками к забитым в грунт.

Зачем нужно армирование? Этот процесс важен для усиления всей конструкции, благодаря ему увеличивается в значительной степени срок эксплуатации здания.

Выбор арматурных изделий

Приобретая арматуру для такой основы, надо обратить внимание на индекс изделия:

  • «С» – будет означать устойчивость изделий к сварке;
  • «К» — стойкость к растрескиванию от коррозии (последнее возможно при больших нагрузках).

Внимание! Если на изделиях нет одного из приведенных выше индексов, такую арматуру брать не рекомендуется.

Кроме индекса, арматуру принято делить и по категориям:

  • А3 идеально подходит для продольного укладывания. На эти стержни приходится основная нагрузка;
  • А1 используется уже для остальных способов укладывания. Диаметр прутьев желательно подбирать в пределах 6-8 мм.

Полезный совет. Укладывать прутья рекомендуется методом единого хомута. Это поможет связать все стержни в целостный, прочный каркас.

Важные моменты: правильное армирование

К сведению: армировать среднюю часть бетонного основания нет необходимости, так как она в действительности не испытывает никаких нагрузок.

Что касается стандартных канонов армирования:

  • продольные стержни надо располагать внутри каркаса;
  • соединенные друг с другом стержни арматуры – это гарантия целостности бетона, нераспространения трещин и фиксация прутьев в верном положении;
  • удаленность продольного прута от поперечного регулируется строительными нормами;
  • определяя расстояние между прутьями, надо принимать во внимание диаметр самой арматуры, расположение прутьев, способ укладки и многое другое;

Внимание! Расстояние между прутьями продольной конструкции должно быть таким, чтобы оно не превышало 2-кратной высоты сечения элемента.

  • нельзя использовать сварку при соединении арматурных стержней. От этого искажаются свойства металла, снижается качество, но как говорилось выше, если арматура подобрана по индексу «С», сварка допускается;

Внимание! Если арматура не соответствует индексу «С», то связывать между собой прутья можно только при помощи прочной вязальной проволоки.

  • ни в коем случае нельзя допускать, чтобы арматура соприкасалась с грунтом или опалубкой. В противном случае металлическим прутьям грозит коррозия;
  • соблюдается также расстояние до наружных поверхностей будущего основания здания;
  • важно оставлять вентиляционные отверстия, которые способствуют повышению амортизационных характеристик фундамента, предотвращают процесс коррозии и т. д.

Особое внимание при армировании надо уделить углам примыкания ленты основания. Помним, что именно угол железобетонной конструкции испытывает наибольшую степень нагрузки.

Надо знать, что, если арматура в углу ленточного фундамента будет установлена неправильно и передача усилий от стержня к стержню не будет осуществлена на должном уровне, монолитное основание потеряет прочность. Это уже не жесткая, монолитная рама, а набор отдельных балок, который никак не может рассматриваться, как надежный фундамент.

Пример грамотного армирования фундамента под забор

Инструкция:

  • для начала подбирается арматура с сечением 8-10 мм;
  • возводится каркас, подразумевающий соединение всех стержней в единое целое (соединение: сварка или связывание).

К сведению: армирование ленточного фундамента под забор подразумевает создание такого каркаса, который был бы в два раза меньше по ширине, чем по высоте.

Приведенные выше советы по армированию плиты фундамента, схемы и полезная информация помогут осуществить возведение ленточного фундамента своими руками. Главное – основа будущего здания будет надежной и прочной, что допускает постройку различных монолитных конструкций.

Видео:

Армирование фундамента

Вопрос от клиента: «Здравствуйте, уважаемые инженеры. Планирую заняться строительством двухэтажного коттеджа из пеноблока площадью 8*8 м. Я столкнулся с вопросом выбора способа армирования фундамента. Дом будет возводиться на мелкозаглубленном ленточном фундаменте, все работы планирую выполнять собственноручно. Подскажите пожалуйста, по какой схеме лучше выполнить армирование и на что стоит особо обратить внимание. Заранее спасибо! Олег Лужин, Москва«

На данной странице представлены способы армирования железобетонных фундаментов, рассмотрены схемы укрепления оснований и приведена информация о укреплении армокаркасом ленточных, плитных и свайных фундаментов.

Способы армирования

Любой фундамент в процессе эксплуатации подвергается нагрузкам двух видов — на изгиб и на сжатие. Нагрузки на сжатие, исходящие от массы здания, передаются на верхний контур фундамента, нагрузки на изгиб действуют преимущественно ни нижнюю часть основания, исходят они от сил пучения грунта (расширившаяся почва давит на фундамент, выталкивая его наружу). Также выделяют боковые нагрузки на изгиб, которые испытывают фундаменты, расположенные в склонной к горизонтальным сдвигам почве.

Бетон — материал, который без дополнительного укрепления имеет высокую устойчивость лишь к нагрузкам на сжатия, тогда как сгибающие воздействия могут стать причиной трещин, приводящих к последующему разрушению фундамента.


Рис. 1.1: Последствия отсутствия армирования в ленточном фундаменте
С целью защиты бетонных фундаментов от нагрузок на изгиб производится их армирование, которое осуществляется посредством размещения арматурного каркаса внутри тела фундамента. Согласно требованиям СНиП, для создания армокаркасов должны использоваться горячекатаные арматурные стержни класса А1, А2 и А3, диаметром от 12 до 20 мм.

Важно: с целью экономии в частном строительстве металлическая арматура часто заменяется стеклопластиковыми аналогами, однако в сфере промышленного строительства композитные материалы не используются.

Классический арматурный каркас для укрепления ленточных и плитных фундаментов состоит из двух контуров арматуры — верхнего и нижнего, которые соединяются между собой поперечными перемычками. Необходимость в армировании средней части фундамента отсутствует, поскольку она практически не подвергается внешним нагрузкам.

Шаг элементов арматурного каркаса указан в нормативном документе СНиП №52-01-2003, согласно которому:

  • Между продольной арматурой шаг принимается не менее диаметра используемых стержней и не более 25 см;
  • Высота поперечных перемычек между продольными контурами — не более 50 см, если высота фундамента превышает 60 см, дополнительно обустраивается внутренний продольный ярус каркаса. Шаг между поперечными стержнями — 1/2 от высоты фундамента (не более 30 см).

Важно: выделяют два способа соединения арматурного каркаса — посредством сварки либо с помощью вязальной проволоки. Недостаток сварного соединения — увеличенная подверженность арматуры коррозии в местах сварки.

Способ сборки арматурного каркаса не влияет не итоговую механическую прочность фундамента, она обеспечивается за счет монолитности железобетонной конструкции после отвердевания смеси.


Рис. 1.2: Последовательность соединения армокаркаса проволокой


Армирование любого вида бетонных фундаментов выполняется с учетом следующих требований:
  • Между крайними участками арматурного каркаса и наружным контуром бетона оставляется расстояние в 40-50 мм;
  • Для поднятия каркаса над землей используются пластиковые «грибки», использование в качестве спейсеров кирпича не допускается;
  • Вертикальные арматурные прутья нельзя выткать в грунт, это чревато ускоренной коррозией металла;
  • Заливка опалубки с помещенным в нее армокаркасом выполняется за один заход, перерывы, при которых происходит частичное отвердевание бетона, негативным образом сказываются на итоговой прочности фундамента, поскольку внутри бетона образуются микротрещины.

Рис. 1.3: Пластиковые грибки под арматуру

Чертежи армирования фундаментов

Армирование подлежат следующие виды фундаментов:
Рассмотрим детальнее чертежи и технологию армирования каждого из них.

Ленточный фундамент

Наиболее подверженными деформационным нагрузкам местами в армокаркасе ленточного фундамента являются угловые и примыкающие соединения арматуры.

Важно: для стыковки углов армокаркаса применяются гнутые арматурные стержни, согласно строительным нормам не допускается соединение отдельных прутьев перекрестным способом.

Пространственная схема соединения прямых участков арматурного каркаса приведена на изображении 1.5.

Рис. 1.4: Схема армокаркаса ленточного фундамента
Армирование изгибов фундамента со сложной конфигурацией выполняется двумя цельными продольными стержнями (внешним и внутренним), повторяющими форму сгиба.


Рис. 1.5: Схема соединения арматуры в ленточном фундаменте на углах свыше 160 градусов

При укреплении углов фундамента с отклонением менее 160 градусов, на внешнем контуре каркаса используется цельный стержень, внутренний пояс изготавливается из двух выгнутых по очертаниям угла прутьев.


Рис. 1.6: Армирование углов ленты до 160 градусов

При армировании угловых соединений применяется два способа — нахлеста и Г-образной стыковки.


Рис. 1.7: Соединение угловых частей армокаркаса

Примыкания фундаментной ленты в местах стыковки внутренних и внешний стен зданий армируются П-образным либо Г-образным соединением прутьев.

Рис. 1.8: Соединение армокаркаса на стыках стен

Вышеуказанные способы армирования углов обеспечивают требуемую пространственную жесткость армокаркаса ленточного фундамента в наиболее подверженных деформации местах.

На размещенном ниже изображении приведены недопустимые способы армирования.


Рис. 1.9: Неправильное армирование углов ленточного фундамента

Гибку арматуры для угловых соединений армокракаса можно производить вручную, посредством самостоятельно изготовленного станка. При работе с прутьями большого диаметра металл в местах перегиба, для придания ему пластичности, имеет смысл прогревать паяльной лампой.


Рис. 2.0: Станок для гибки арматуры

Плитный фундамент

Армирование плитных фундаментов сопровождается большим расходом материалом и трудоемкостью процесса, однако фундаментная плита не имеет угловых и примыкающих соединений, что облегчает технологию выполнения работ.


Рис. 2.1: Схема армирования плитного фундамента

Боковые контуры армокаркаса плиты выполняются из цельных арматурных стержней, которые на углах соединяются посредством перекрестного стыка.

Важно: при собственноручном армировании, без выполнения предварительных расчетов,  во избежание недостаточного укрепления плиты, шаг между прутьями арматуры рекомендуется делать не более 20 мм.

При армировании плитных фундаментов важно не допускать следующих ошибок:


Рис. 2.2: «1» — стенки опалубки обязательно нужно покрывать клеенкой, которая предотвращает утечку цементного молочка из бетона; «2» — подсыпка из бетона должна уплотняться ручной трамбовкой; «3» — щели в опалубке недопустимы.


Рис. 2.3: Крайние контуры армокаркаса необходимо утапливать вглубь опалубки на 4-5 см., таким образом формируется  защитный слой бетона, предотвращающий коррозию арматуры.

Столбчатые и буронабивные фундаменты

При армировании опорных столбов обустраивается продольно-поперечный армокаркас, состоящий из 4-ех продольных прутьев диаметром 12-15 мм. и соединяющих их поперечных перемычек, расположенных на расстоянии 30 см. друг от друга. В качестве соединяющих перемычек используется гладка арматура диаметром 6-8 мм.

Рис. 2.4: Схема армирования буронабивных свай

Для укрепления столбчатых фундаментов собираются армокаркасы квадратной формы, для бурнабивных свай — круглой.

Рис. 2.5: Схема армирования столбчатого фундамента

Важно: при обвязке опорных столбов и буронабивных свай деревянным брусом либо металлопрокатом (балкой или швеллером), между верхним краем продольной арматуры и внешним контуром бетона выдерживается расстояние в 5 см. При обвязке опор железобетонным ростверком, арматурный каркас формируется на 20-30 см. выше бетонного тела опоры, впоследствии к выступам арматуры приваривается армокаркас ростверка.


Полезные материалы

Арматурный каркас для фундамента

Арматурный каркас — это остов фундамента, собираемый из стальных прутьев, воспринимающих растягивающие нагрузки и препятствующий деформациям.

 

Армирование ленточного фундамента

Армирование необходимо для того, чтобы бетон стал железобетоном. Для этого в фундаментную опалубку устанавливается пространственный каркас из арматуры.

 

Армирование свай

На данной странице представлена информация о армировании свай. Вы узнаете, какие сваи подлежат армированию и какие виды укрепления железобетонных изделий существуют.

 

 

 

ФУНДАМЕНТ

Выбор типа фундамента

Выбор подходящего тип фундамента определяется некоторыми важными факторами, такими как

  1. Характер конструкции
  2. Нагрузки от структура
  3. Характеристика недр
  4. Выделенная стоимость фундамент

Поэтому принять решение о тип фундамента, необходимо проведение геологоразведочных работ.Тогда почва характеристики в зоне поражения под зданием должны быть тщательно оценен. Допустимая несущая способность пораженного грунта затем следует оценить слои.

После этого исследования можно было затем решите, следует ли использовать фундамент неглубокий или глубокий.

Фундаменты мелкого заложения, такие как опоры и плоты дешевле и проще в исполнении. Их можно было бы использовать, если бы выполняются следующие два условия;

  1. Наложенное напряжение (Dp) вызванная зданием, находится в пределах допустимой несущей способности различных слоев почвы, как показано на рис.1.

Это условие выполнено когда на рисунке 1 меньше и меньше, чем меньше и меньше, и так далее.

  1. Здание выдержало расчетная расчетная осадка для данного типа фундамента

Если один или оба из этих двух условия не могут быть выполнены использование глубоких фундаментов должно быть считается.

Глубокие фундаменты используются, когда верхние слои почвы мягкие и имеется хороший несущий слой на разумная глубина.Толщина грунта, лежащего под несущим слоем, должна быть достаточная прочность, чтобы противостоять наложенным напряжениям (Dp) из-за нагрузок, передаваемых на опорный слой, как показано на рисунке 2.

Глубокие фундаменты обычно сваи или опоры, которые передают нагрузку здания на хорошую опору страта. Обычно они стоят дороже и требуют хорошо обученных инженеров для выполнять.

Если исследуемые слои почвы мягкий на значительной глубине, и на разумных глубины, можно использовать плавучие фундаменты.

построить плавающий фундамент, масса грунта, примерно равная весу Предлагаемое здание будет демонтировано и заменено зданием. В в этом случае несущее напряжение под зданием будет равно весу удаленной земли (γD) что меньше

(q a = γD + 2C)

и Дп будет равно нулю.Это означает, что несущая способность под здание меньше (q a ), а ожидаемая осадка теоретически равна нуль.

Наконец, инженер должен подготовить смету стоимости наиболее перспективного типа фундамента что представляет собой наиболее приемлемый компромисс между производительностью и Стоимость.

Фундамент мелкого заложения

Фундаменты неглубокие — это те выполняется у поверхности земли или на небольшой глубине.Как упоминалось ранее в предыдущей главе фундаменты мелкого заложения использовались при грунтовых геологоразведочные работы доказывают, что все слои почвы, затронутые зданием, могут противостоять наложенным напряжениям (Dp) не вызывая чрезмерных заселений.

Фундаменты мелкого заложения либо опоры или плоты.

Опоры

Фундамент является одним из старейший и самый популярный вид фундаментов мелкого заложения.Опора — это увеличение основания колонны или стены с целью распределения нагрузка на поддерживающий грунт при давлении, соответствующем его свойствам.

Типы опор

Существуют разные виды опоры, соответствующие характеру конструкции. Подножки можно классифицировать на три основных класса

Настенный или ленточный фундамент

Он проходит под стеной мимо его полная длина, как показано на рис.3. обычно используется в несущей стене типовые конструкции.

Изолированный фундамент колонны

Он действует как основание для колонны. Обычно применяется для железобетонных зданий типа Скелтон. Это может принимать любую форму, например квадратную, прямоугольную или круглую, как показано на рисунке 4.

Инжир.4 Типовые раздвижные опоры

Комбинированная опора колонны

Это комбинированное основание для внешней и внутренней колонн здания, рис.5. Он также используется когда две соседние колонны здания расположены близко друг к другу другой, их опоры перекрывают друг друга

Распределение напряжений под опорами

Распределение напряжений под опорами считается линейным, хотя на самом деле это не так. Ошибка участие в этом предположении невелико, и на него можно не обращать внимания.

Загрузить сборники

Нагрузки, влияющие на обычные типы строений:

  1. Постоянная нагрузка (D.L)
  2. Живая нагрузка (L.L)
  3. Ветровая нагрузка (W.L)
  4. Землетрясение (E.L)

Статическая нагрузка

Полная статическая нагрузка, действующая на элементы конструкции следует учитывать при проектировании.

Живая нагрузка

Маловероятно, что полная интенсивность динамической нагрузки будет действовать одновременно на всех этажах многоэтажный дом.Следовательно, кодексы практики позволяют снижение интенсивности динамической нагрузки. Согласно египетскому кодексу на практике допускается следующее снижение временной нагрузки:

или . перекрытий Снижение временной нагрузки%

Земля нулевой этаж%

1 ул нулевой этаж%

2 nd этаж 10.0%

3 рд этаж 20,0%

4 этаж 30,0%

5 -й этаж и более 40,0%

Временная нагрузка не должна снижаться в течение склады и общественные здания, такие как школы, кинотеатры и больницы.

Ветровые и землетрясения нагрузки

Когда здания высокие и узкие, Необходимо учитывать ветровое давление и землетрясение.

Допущение, использованное при проектировании спреда Опоры

Теория анализа эластичности указывает на что распределение напряжений под симметрично нагруженными фундаментами не является униформа. Фактическое распределение напряжений зависит от типа материала. под опорой и жесткостью опоры. Для опор на рыхлых не связный материал, зерна почвы имеют тенденцию смещаться вбок на края из-под груза, тогда как в центре почва относительно ограничен.Это приводит к диаграмме давления, примерно такой, как показано на рисунке 6. Для общего случая жестких оснований на связных и несвязных материалов, Рис.6 показывает вероятное теоретическое распределение давления. Высокое краевое давление можно объяснить тем, что краевой сдвиг должен иметь место до урегулирования.

Потому что давление интенсивность под опорой зависит от жесткости опоры, тип почвы и состояние почвы, проблема в основном неопределенный.Обычно используется линейное распределение давления. под опорами, и в этом тексте будет следовать этой процедуре. В в любом случае небольшая разница в результатах проектирования при использовании линейного давления распределение

Допустимые опорные напряжения под опорами

Коэффициент запаса прочности при расчете допустимая несущая способность под фундаментом должна быть не менее 3 если учитываемые при расчете нагрузки равны статической нагрузке + пониженная живая нагрузка.Коэффициент запаса прочности не должен быть меньше 2, когда рассматривается наиболее тяжелое состояние нагрузки, а именно: статическая нагрузка + полный рабочий ток. нагрузка + ветровая нагрузка или землетрясения.

Нагрузки на надстройку обычно рассчитывается на уровне земли. Если указано допустимое допустимое давление на опору, оно должно быть уменьшено на объем бетона. под землей на единицу площади основания, умноженную на разница между удельным весом бетона и грунта.Если принять равной среднюю плотность грунта и бетона рис.7, тогда следует уменьшить на

Конструктивное исполнение раздвижных опор

Для опоры на ноги следующие позиции следует рассматривать как

1 ножницы

Напряжения сдвига съедали обычно контролировать глубину расставленных опор.Критическое сечение для широкой балки сдвиг показан на рис.8-а. Находится на расстоянии d от колонны или стены. лицо. Значения касательных напряжений приведены в таблице 1. разрез для продавливания сдвига (двусторонний диагональный сдвиг) показан на рис. 8-б. Он находится на расстоянии d / 2 от лицевой стороны колонны. Это предположение в соответствии с Кодексом Американского института бетона (A.CI).

Таблица 1): допустимые напряжения в бетоне и арматуре: —

Виды напряжений

условное обозначение

Допустимые напряжения в кг / см 2

Куб прочности

ж у.е.

180

200

250

300

Осевой комп.

f co

45

50

60

70

Простые изгибающие и эксцентрические силы с большим эксцентриситетом

ж в

70

80

95

105

Напряжения сдвига

Плиты и опоры без армирования.

Другие участники

Элементы с армированием

в 1

в 1

в 2

7

5

15

8

6

17

9

7

19

9

7

21

Пробивные ножницы

q cp

7

8

9

10

Армирование

Низкоуглеродистая сталь 240/350

Сталь 280/450

Сталь 360/520

Сталь 400/600

f с

1400

1600

2000

2200

1400

1600

2000

2200

1400

1600

2000

2200

1400

1600

2000

2200

Пробивные ножницы обычно контролировать глубину разложенных опор.Из принципов статики Рис. 8-б , сила на критическом участке сдвига равна силе на опора за пределами секции сдвига, вызванная чистым давлением грунта f n .

где q p = допустимое напряжение сдвига при штамповке

= 8 кг / см 2 (для куба сила = 160)

f n = чистое давление на грунт

b = Сторона колонны

d = глубина продавливания

Можно предположить, что критический участок для продавливания сдвига находится на торце колонны, и в этом случае допустимое напряжение сдвига при штамповке можно принять равным 10.0 кг / см 2 (для прочности куба = 160).

Фундамент обычно проектируется чтобы гарантировать, что глубина будет достаточно большой, чтобы противостоять сдвигу бетона без армирования полотном ..

2- Облигация

Напряжение связи рассчитывается как

.

где поперечная сила Q равна взятые в том же критическом сечении для изгибающего момента или при изменении бетонное сечение или стальная арматура.Для опор постоянное сечение, сечение для склеивания находится на лицевой стороне колонны или стены. В арматурный стержень должен иметь достаточную длину г г , Рис.9, чтобы избежать выдергивания (разрыва соединения) или раскалывание бетона. Значение d d вычисляется следующим образом:

Для первого расчета возьмем f s равно допустимой рабочей стресс.Если рассчитанный d d есть больше доступного d d затем пересчитайте d d взяв f с равно действительному напряжению стали.

Допустимая стоимость облигации напряжение q b следующие

3- Изгибающий момент

Критические разделы для изгибающий момент определяется по рис.10 следующим образом:

Для бетонной стены и колонны, это сечение берется на лицевой стороне стены или колонны рис.10-а.

Для кладки стены этот участок берется посередине между серединой и краем стены Рис.10-б.

Для стальной колонны этот раздел расположен на полпути между краем опорной плиты и лицевой стороной столбец Рис.(10-с).

Глубина, необходимая для сопротивления изгибающий момент

4- Опора на опору

Когда железобетон колонна передает свою нагрузку на опору, сталь колонны, которая несущий часть груза, не может быть остановлен на опоре, так как это может привести к чрезмерной нагрузке на бетон в зоне контакта колонны.Следовательно, это необходимо передать часть нагрузки, которую несет стальная колонна, на напряжение сцепления с основанием за счет удлинения стальной колонны или дюбеля. С Рис.11:

куда f s — фактическое напряжение стали

5- Обычная бетонная опора под R.C. Основание

Распространенной практикой является размещение простой бетонный слой под железобетонным основанием. Этот слой около 20 см. до 40 см. Проекция C плоского бетонного слоя зависит от его толщины t. Ссылаясь на Рис.12, максимальный изгибающий момент на единицу длины в сечении a-a равно

Где f n = чистое давление почвы.

Максимальное растягивающее напряжение внизу раздела а-а это:

ДИЗАЙН R.C. СТЕНА:

Основание стены представляет собой полосу из железобетон шире стены. На Рис.13 показаны различные типы стеновые опоры. Тип, показанный на Рис. 13-а, используется для опор, несущих легкие. нагрузки и размещены на однородном грунте с хорошей несущей способностью.Тип, показанный в Рис. 13-б используется, когда грунт под фундаментом неоднородный и разная несущая способность. Используется тип, показанный на рисунках 13-c и 13-d. для тяжелых нагрузок.

Процедура проектирования:

Рассмотрим 1.0 метров в длину стена.

1. Найдите P на уровне земли.

2. Найти, если дано, то оно сокращается или вычисляется P T .

3. Вычислить площадь опоры

Если напряжение связи небезопасно, либо увеличиваем за счет использования стальных стержней меньшего диаметра, либо увеличивать ∑ О глубина d.Сгибая вверх стальная арматура по краям фундамента помогает противостоять сцеплению стрессы. Диаметр основной стальной арматуры не должен быть меньше более 12 мм. Для предотвращения растрескивания из-за неравномерного оседания под стеной Само по себе дополнительное армирование используется, как показано на рис. 13-c и d. это принимается как 1,0% от поперечного сечения бетона под стеной и распределяется одинаково сверху и снизу.

19.Проверить анкерный залог

Конструкция одностоечной опоры

одноколонный фундамент обычно квадратный в плане, прямоугольный фундамент — используется, если есть ограничение в одном направлении или если поддерживаемые столбцы слишком удлиненный.прямоугольное сечение. В простейшем виде они состоят из единой плиты ФИг.15-а. На рис. 15-б изображена колонна на пьедестале. опора, пьедестал обеспечивает глубину для более благоприятной передачи нагрузки и во многих случаях

требуется чтобы обеспечить необходимую длину для дюбелей. Наклонные опоры, такие как те, что на Рис. 15-c

Методика проектирования опор квадратной колонны

Американец Кодексы практики равно момент около критического сечения y-y чистого напряжения, действующего на вылупился.area abcd Рис. 16-a. Согласно континентальным кодексам практики M max . равно любому; момент действия чистых напряжений на заштрихованной области abgh, показанной на рис. 16-b, около критического сечения y-y или 0,85 момент результирующих напряжений, действующих на площадь abcd на рис. 16-а. о г-у.

8.Определите необходимую глубину сопротивления пробивке d p .

9. Рассчитайте d м , глубину сопротивления

b = B, сторона опоры в соответствии с Американскими нормами практики

.

b = (b c + 20) см где b c — сторона колонны по континентальному Кодексы практики.

Следует отметить, что d м вычисленное континентальным методом, больше, чем вычисленное американским кодом. Большая глубина уменьшит количество стальной арматуры и обычно соответствует глубине, необходимой для штамповки. Американский код дает меньший d м с более высоким значением стальной арматуры, но с использованием высокопрочной стали, площадь стальной арматуры может быть уменьшена. В этом тексте изгибающий момент рассчитывается в соответствии с Американскими нормами, а b равно принимается либо равным b c + 20, когда используется обычная сталь, либо равно B при использовании стали с высоким пределом прочности.

Глубина основания d может быть принимает любое значение между двумя значениями, вычисленными двумя вышеуказанными методами. Это Следует отметить, что при одном и том же изгибающем моменте большая глубина будет требуется меньшая площадь арматурной стали, которая может не удовлетворять требованиям минимальный процент стали. Также небольшая глубина потребует большой площади стали. особенно при использовании обычной низкоуглеродистой стали.

10. Выберите большее из d м или d p

.

11.Проверить d d , глубину установки дюбеля колонны.

Методика проектирования прямоугольных опор

Процедура такая же, как и квадратный фундамент. Глубина обычно контролируется пробивными ножницами, кроме случаев, когда отношение длины к ширине велико, сдвиг широкой балки может контролировать глубина. Критические участки сдвига находятся на расстоянии d по обе стороны от столбец Рис.17-а. Изгибающий момент рассчитывается для обоих направлений, вокруг оси 1-1 и вокруг оси b-b, как показано на рис. 17.b и c.

Армирование в длинном направление (сторона L) рассчитывается по изгибающему моменту и равномерно распределяется по ширине B. армирование в коротком направлении (сторона B) рассчитывается по изгибу момент М 11 .При размещении стержней в коротком направлении один необходимо учитывать, что опора, обеспечиваемая опорой колонны, является сосредоточены около середины, следовательно, зона опоры, прилегающая к колонна более эффективна в сопротивлении изгибу. По этой причине произведена регулировка стали в коротком направлении. Эта регулировка помещает процент стали в зоне с центром в колонне шириной, равной к длине короткого направления опоры.Остальная часть Арматура должна быть равномерно распределена в двух концевых зонах, рис.18. По данным Американского института бетона, процент стали в центральная зона выдается по:

где S = отношение длинной стороны к короткой сторона, L / B.

САМЕЛЛЫ

Одиночные опоры должны быть связаны вместе пучками, известными как semelles, как показано на рис.19.a. Их функция нести стены первого этажа и переносить их нагрузки на опоры. Семелла могут предотвратить относительное оседание, если они имеют очень жесткое сечение. и сильно усиленный.

Семелле спроектирован как неразрезная железобетонная прямоугольная балка. несущий вес стены. Ширина семели равна ширина стены плюс 5 см и не должна быть меньше 25 см. Должно сопротивляться усилиям сдвига и изгибающим моментам, которым он подвергается, semelles должен

быть усиленным сверху и снизу для противодействия дифференциальным расчетам.равнопрочным усилением A s .

Верх уровень семеллы должен быть на 20 см ниже уровня платформы. окружающие здание. Если уровень первого этажа выше уровень платформы, уровень внутренней полумельки можно принять 20 см. ниже уровня первого этажа

Опоры, подверженные воздействию момента

Введение

Многие основы сопротивляются в дополнение к концентрической вертикальной нагрузке, момент вокруг одной или обеих осей основания.Момент может возникнуть из-за нагрузки, приложенной не к центру основание. Примеры основ, которые должны противостоять моменту, — это основания для подпорные стены, опоры, опоры мостов и колонны фундаменты высотных зданий, где давление ветра вызывает заметный прогиб моменты у основания колонн.

Результирующее давление на почву под внецентренно нагруженным основанием считается совпадающим с осевым нагрузка P, но не с центром тяжести фундамента, что приводит к линейному неравномерное распределение давления.Максимальное давление не должно превышать максимально допустимое давление на почву. Наклон опоры из-за возможна более высокая интенсивность давления почвы на пятку. Это может быть уменьшенным за счет использования большого запаса прочности при расчете допустимого грунта давление. Глава 1, раздел «Опоры с эксцентрическими или наклонными нагрузками» обеспечивают снижение допустимого давления на грунт для внецентренно нагруженных опоры.

Опоры с моментами или эксцентриситетом относительно Одна ось

где P = вертикальная нагрузка или равнодействующая сила

е = Эксцентриситет вертикальной нагрузки или равнодействующей силы

q = интенсивность давления грунта (+ = сжатие)

и не должно быть больше допустимого

давление почвы q a

c-Нагрузка P за пределами средней

Когда нагрузка P находится за пределами средней трети, то есть е > L / 6, Уравнение7 указывает на то, что под опорой возникнет напряжение. Однако нет между почвой и основанием может возникнуть напряжение, поэтому напряжение напряжения не принимаются во внимание, а площадь основания, которая находится в натяжение не считается эффективным при несении нагрузки. Следовательно диаграмма давления на почву должна всегда находиться в сжатом состоянии, как показано на Рис.21-.c. Для в эксцентриситет е > L / 6 с относительно только одной оси, можно управлять уравнениями для максимальной почвы давление q 1 , найдя диаграмму давления сжатия, результирующая должна быть одинаковой и на одной линии действия нагрузки P.Этот диаграмма примет форму треугольника со стороной = q 1 и основанием =

Опоры с моментами или эксцентриситетом относительно обе оси

Для опор с моментами или эксцентриситет относительно обеих осей Рис. 22, давление может быть вычислено с помощью следующее уравнение

a- Нейтральная ось за пределами базы:

Если нейтральная ось находится снаружи основание, то все давление q находится в сжатом состоянии, и уравнение (9) имеет вид действительный.Расположение максимального и минимального давления на почву может быть определяется быстро, наблюдая направления моментов. Максимум давление q 1 находится в точке (1)

Рис.22-а и минимальный давление q 2 находится в точке (3). Давление q 1 и q 2 определяются из уравнения (9).

б- Нейтральная ось режет основание

Если нейтральная ось режет основание, то некоторый участок основания подвергается растяжению Рис.22. Как почва вряд ли захватит опору, чтобы удерживать ее на месте, поэтому диаграмму, показанную на рис. 22-б, и уравнение (9) использовать нельзя. Расчет Максимальное давление на почву должно зависеть от площади, фактически находящейся на сжатии. Диаграмма сжатия должна быть найдена таким образом, чтобы ее результирующая должны быть равны и на одной линии действия силы P. Простейший способ получить эту диаграмму — методом проб и ошибок следующим образом:

1- Найти давление почвы во всех углах, применяя уравнение.(9).

2- Определите положение нейтральной оси N-A (линия нулевого давления). Это не прямая линия, но предполагается, что это так. Поэтому необходимо найти только две точки, по одной на каждой соседней стороне. основания.

3- Выбрать другой нейтральная ось (N’-A ‘) параллельна (N-A), но несколько ближе к месту результирующей нагрузки P, действующей на опору.

4- Вычислить момент инерции сжатой области по отношению к N’-A ‘. В Самая простая процедура — нарисовать опору в масштабе и разделить площадь на прямоугольники и треугольники

4.4 КОНСТРУКЦИЯ ПРЕДНАЗНАЧЕННЫХ ФУНТОВ К МОМЕНТУ

Основная проблема в конструкция эксцентрично нагруженных опор — это определение распределение давления под опорами. Как только они будут определены, процедура проектирования будет аналогична концентрически нагруженным опорам, выбраны критические сечения и произведены расчеты напряжений из-за момент и сдвиг сделаны.

Где изгибающие моменты на колонне поступают с любого направления, например от ветровые нагрузки, квадратный фундамент; предпочтительнее, если не хватает места диктуют выбор прямоугольной опоры. Если изгибающие моменты действуют всегда в том же направлении, что и в колоннах, поддерживающих жесткие каркасные конструкции, опору можно удлинить в направлении эксцентриситета

Размеры фундамента B и L пропорциональны таким образом, чтобы максимальное давление на носке не превышает допустимого давления почвы.

Если колонна несет постоянный изгибающий момент, например, кронштейн, несущий длительной нагрузке, может оказаться преимуществом смещение колонны от центра на опоры так, чтобы эксцентриситет результирующей нагрузки был равен нулю. В этом случае распределение давления на основание будет равномерным. Долго носок опоры должен быть спроектирован как консоль вокруг сечение лицевой стороны колонны, Расчет глубины сопротивления пробивные ножницы и ножницы для широкой балки такие же, как и для опор фундаментов концентрические нагрузки

Поскольку изгибающий момент на основание колонны, вероятно, будет большим для этого типа фундамента, арматура колонны должна быть правильно привязана к фундаменту., Детали армирования для этого типа фундаментов показаны на Рис.24.

Для квадратного фундамента это как правило, удобнее всего поддерживать одинаковый диаметр стержня и расстояние между ними в обоих направления во избежание путаницы при креплении стали.

Комбинированные опоры

Введение

В предыдущем разделе были представлены элементы оформления развязки и стены. опоры.В этом разделе рассматриваются некоторые из наиболее сложных проблемы с мелким фундаментом. Среди них есть опоры, поддерживающие более один столбец в ряд (комбинированные опоры), который может быть прямоугольным или трапециевидной формы, или две накладки, соединенные балкой, как ремешок опора. Эксцентрично нагруженные опоры и опоры несимметричной формы тоже будет рассмотрено.

Прямоугольные комбинированные опоры

Когда линии собственности, расположение оборудования, расстояние между колоннами и другие соображения. ограничить расстояние от фундамента в местах расположения колонн, возможное решение: использование фундамента прямоугольной формы.Этот тип фундамента может поддерживать два столбца, как показано на рисунках 25 и 26, или более двух столбцов с только небольшое изменение процедуры расчета. Эти опоры обычно проектируется, предполагая линейное распределение напряжения на дне основания, и если равнодействующая давления почвы совпадает с равнодействующая нагрузок (и центр тяжести опоры), грунт предполагается, что давление равномерно распределено, линейное давление Распределение подразумевает твердую опору на однородной почве.Настоящий опора, как правило, не жесткая, и давление под ней неравномерно, но Было обнаружено, что решения, использующие эту концепцию, являются адекватными. Этот Концепция также приводит к довольно консервативному дизайну.

Конструкция жесткой прямоугольной опоры заключается в определении расположение центра тяжести (cg) нагрузок на колонну и использование длины и такие размеры ширины, чтобы центр тяжести основания и центр силы тяжести колонны нагрузки совпадают.С размерами опоры установили, ножницы

можно подготовить диаграмму моментов, выбрать глубину сдвига (опять же является обычным, чтобы сделать глубину достаточной для сдвига без использования сдвига армирование, чтобы косвенно удовлетворить требованиям жесткости), и армирование сталь, выбранная для требований к гибке. Критические секции на сдвиг, оба диагональное натяжение и широкая балка должны приниматься, как указано в предыдущем раздел.Максимальные положительные и отрицательные моменты используются при проектировании армирующей стали, и в результате получится сталь как в нижней, так и в верхней части луч.

В коротком направлении очевидно, что вся длина не будет эффективен в сопротивлении изгибу. Эта зона, ближайшая к колонне, будет наиболее эффективен для изгиба, и рекомендуется использовать этот подход. Это в основном то, что Кодекс ACI определяет в Ст.15.4.4 для прямоугольного опоры

Если принять, что зона, в которую входят столбцы, больше всего эффективная, какой должна быть ширина этой зоны? Конечно, это должно быть что-то больше ширины столбца. Наверное, не должно быть больше ширина столбца плюс d до 1,5d, в зависимости от расположения столбца на основе аналитическая работа автора, отсутствие руководства по Кодексу и признание того, что дополнительная сталь «укрепит» зону и увеличит моменты в этой зоне и уменьшить момент выхода из зоны.Эффективная ширина при использовании этого метода проиллюстрирован на рис.27. Для оставшейся части фундамента в коротком направлении Кодекс ACI Должно использоваться требование для минимального процентного содержания стали (ст. 10.5 или 7.13).

При выборе размеров для комбинированного фундамента размер длины равен несколько критично, если желательно иметь диаграммы сдвига и момента математически близко как проверка ошибок.Это означает, что если длина точно вычисленное значение из местоположения cg столбцов, Эксцентриситет будет внесен в основание, что приведет к нелинейному диаграмма давления грунта. Однако фактическая длина в заводском состоянии должна быть округляется до практической длины, скажем, с точностью до 0,25 или 0,5 фута (от 7,5 до 15 см).

Нагрузки на колонну могут быть приняты как сосредоточенные нагрузки для расчета сдвига и диаграммы моментов.Для расчета значения сдвига и момента на краю (торце) столбца следует использовать. Результирующая ошибка при использовании этого подхода: незначительно Рис. (28)

Если основание нагружено более чем двумя колоннами, проблема все еще сохраняется. статически детерминированный; реакции (нагрузки на колонку) известны также как распределенная нагрузка, то есть давление грунта.

Методика расчета прямоугольной комбинированной опоры: —

Ссылаясь на Рис.29, этапы проектирования можно резюмировать следующим образом:

1- Найдите направление применения полученного R. Это исправление L / 2, поскольку y равно известные и ограниченные. Следует указать, что если длина L не равна точно рассчитанное значение, эксцентриситет будет введен в опоры, в результате чего получается нелинейная диаграмма давления грунта.Фактический как построенный длину, однако, следует округлить до практической длины, например, до ближайшие 5 см или 10 см.

максимальный + ve момент в точке K, где сила сдвига = ноль

6- Определите глубину сдвига. Принято делать глубину адекватной на сдвиг без использования сдвига армирование. Критическое сечение сдвига находится на расстоянии d от грани. столбца, имеющего максимум сдвиг, рис.30

7-Определить глубина продавливания сдвига для обеих колонн. По данным ACI, критическое сечение это на d / 2 от грани колонны. Рис.30.

9-д выбран наибольший из

т = д + От 5 до 8 см.

11- Проверьте напряжения сцепления и длину анкеровки d.

12- Короткое направление:

Нагрузки на колонны распределяются поперечно поперечными балками (скрытыми), одна под каждым столбцом.Длина балок равна ширине балки. опоры B. Эффективную ширину поперечной балки можно принять как минимум из следующего:

а- Ширина колонны a + 2 d или ширина колонны a + d + проекция фундамента за столбцом y, рис.31.

б- Ширина подошвы

Следует отметить, что код ACI считает, что эффективная ширина поперечная балка равна ширине колонны a + d или ширине колонны a + d / 2 + y. Поперечный изгибающий момент M T1 в колонне (1) равен

.

Поперечная арматура должна быть распределена по полезной ширине. поперечной балки.Для остальной части фундамента минимум следует использовать процентную сталь. Напряжения связи и длина анкеровки d d , следует проверить.

Стойка комбинированная трапециевидная: —

Комбинированная трапециевидная опора для двух колонн, используемая, когда колонна несет самая большая нагрузка находится рядом с линией собственности, где проекция ограничена или когда есть ограничение на общую длину опоры.Ссылаясь на Рис.32 ,

Положение результирующей нагрузки на столбцы R определяет положение центриод трапеции. Длина L определяется, а площадь A равна вычислено из:

Процедура проектирования такая же, как и для прямоугольного комбинированного фундамента, за исключением того, что диаграмма сдвига будет кривой второй степени, а изгибающий момент — кривая третьей степени.

Конструкция ременных или консольных опор

Можно использовать ленточную опору. где расстояние между колоннами настолько велико, что комбинированная или трапециевидная опора становится довольно узкой, что приводит к высоким изгибающим моментам, или где, как в предыдущем разделе.

Ремешок основание состоит из двух опор колонн, соединенных элементом, называемым ремень, балка или консоль, передающая момент извне опора.На рис.33 показано ленточное основание. Поскольку ремешок предназначен для

момент, либо это должно быть образуются вне контакта с почвой или почву следует разрыхлить на на несколько дюймов ниже ремешка, чтобы ремешок не оказывал давления на грунт действуя по нему. Для простоты разбора, если ремешок есть. не очень долго, весом ремешка можно пренебречь.

При проектировании ленточной опоры сначала необходимо выровнять опоры.Это делается при условии, что равномерное давление грунта под основаниями; то есть 1 рандов и 2 рандов. (Рис.33) действуют в центре опоры.

Ремешок должен быть массивным член, чтобы это решение было действительным. Развитие уравнения 1 подразумевает жесткую вращение тела; таким образом, если ремешок не может передавать эксцентрик момент из столбца 1 без вращения, решение не действует.Избежать рекомендуется вращение внешней опоры.

I планка / I опора > 2

Желательно пропорции обе опоры так, чтобы B и q были как можно более равны для управления дифференциальные расчеты.

Методика проектирования опор ремня

реакция под интерьер опора будет уменьшена на такое же значение, как показано на Рис.33

1- Дизайн начинается с пробной стоимости

евро.

6- Убедитесь, что центр тяжести площадей двух опор совпадают с равнодействующей нагрузок на колонну.

7- Рассчитайте моменты и сдвиг в различных частях ремня. опора.

8- Дизайн ремешка

Ремешок представляет собой однопролетная балка, нагруженная вверх нагрузками, передаваемыми ей двумя опор и поддерживаются нисходящими реакциями по центральным линиям двух столбцы.Таким образом, нагрузка вверх по длине L равна R 1 / L. т / м ‘. Местоположение максимального момента получается приравниванием сдвига сила до нуля. Момент уменьшается к внутренней колонне и равен нулю. по центральной линии этого столбца. Следовательно, половина армирования ремня составляет снята с производства там, где больше нет необходимости, а вторая половина продолжается до внутренняя колонна. Проверьте напряжения сдвига и используйте хомуты и изогнутые стержни, если нужно.

9- Конструкция наружной опоры

Внешняя опора действует точно так же, как настенный фундамент длиной, равной L. Хотя колонна расположен на краю, балансирующее действие ремня таково, что передают реакцию R 1 равномерно по длине L 1 Таким образом достигается желаемое равномерное давление почвы. Дизайн выполнен точно так же, как для настенного фундамента.

10- Дизайн межкомнатной опоры

Внутренняя опора может быть спроектирован как простой одноколонный фундамент. Основное отличие состоит в том, что Пробивные ножницы следует проверять по периметру fghj, рис.33.

ФУНДАМЕНТЫ

Введение

Фундамент плота непрерывное основание, которое покрывает всю площадь под конструкцией и поддерживает все стены и колонны.Термин мат также используется для обозначения фундамента. этого типа. Обычно используется на грунтах с низкой несущей способностью и там, где площадь, покрытая расстеленными опорами, составляет более половины площади, покрытой структура. Плотный фундамент применяется также там, где в грунтовой массе содержится сжимаемые линзы или почва достаточно неустойчива, так что дифференциал урегулирование будет трудно контролировать. Плот имеет тенденцию преодолевать мост неустойчивые отложения и уменьшает дифференциальную осадку.

Несущая способность плотов по песку

Биологическая способность основания на песке увеличивается по мере увеличения ширины. Благодаря большой ширине плота по сравнению с шириной обычной опоры, допустимая вместимость под плотом будет намного больше, чем под опорой.

Было замечено на практике что при допустимой несущей способности под плотом, равной удвоенной допустимая несущая способность определяется для обычной опоры.отдых на том же песке даст разумная и приемлемая сумма урегулирования.

Если уровень грунтовых вод находится на глубина равна или больше B, ширина плота, допустимая Несущая способность, определенная для сухих условий, не должна уменьшаться. Если есть вероятность, что уровень грунтовых вод поднимается, пока не затопит площадка, допустимая несущая способность следует уменьшить на 50%.Если уровень грунтовых вод находится на промежуточной глубине между B и основанием плот, следует сделать соответствующее уменьшение от нуля до 50%.

Несущая способность плотов по глине.

В глинах несущая способность не зависит от ширины фундамента. вместимость под плотом будет такая же, как и под обычным основанием.

Если предполагаемый дифференциал осадка под плотом более чем терпима или если вес здание, разделенное на его площадь, дает несущее напряжение больше, чем допустимая несущая способность, плавающий или частично плавающий фундамент должен рассматриваться.

Выполнить плавающий фундамент, земляные работы должны проводиться до глубины D, на которой вес выкопанного Грунт равен весу конструкции, рисунок 2.В этом случае избыточное наложенное напряжение Δp на уровне фундамента равна нулю и, следовательно, здание не пострадает.

Если полный вес building = Q

и вес удаленной почвы = Ш с

и превышение нагрузки при уровень фундамента = Q e

\ Q e = QW s

В случае плавающего фундамента ;

Q = Вт с и, следовательно, Q e = Ноль

В случае частично плавающего фундамент, Q e имеет определенный значение, которое при делении на площадь основания дает допустимый подшипник емкость почвы;

Проектирование плотных фундаментов;

Плоты могут быть жесткими. конструкции (так называемый традиционный анализ), при которых давление грунта действует против плиты плота предполагается равномерно распределенным и равным общий вес постройки, деленный на площадь плота.Это правильно, если столбцы более или менее загружены и расположены на одинаковом расстоянии, но на практике выполнить это требование сложно, поэтому допускается чтобы нагрузки на колонны и расстояния варьировались в пределах 20%. Однако если нисходящие нагрузки на одних участках намного больше, чем на других, это желательно разделить плот на разные части и оформить каждую зону на соответствующее среднее давление. Непрерывность плиты между такими области обычно предоставляются, хотя для областей с большими различиями в давления рекомендуется выполнить вертикальный строительный шов через плита и надстройка, чтобы учесть дифференциальную осадку.

В гибком плотном фундаменте дизайн не может быть основан только на требованиях к прочности, но это необходимо подвергнуться из-за прогнозируемого заселения. Толщина и количество армирования плота следует подбирать таким образом, чтобы предотвратить развитие трещин в плите. Поскольку дифференциальный расчет не учтено в конструктивном дизайне, принято усиливать плот с вдвое большей теоретической арматурой.Количество сталь можно принять как 1% площади поперечного сечения, разделенной сверху и Нижний. Толщина плиты не должна быть больше 0,01 от радиус кривизны. Толщина может быть увеличена около колонн до для предотвращения разрушения при сдвиге.

Есть два типа плотных фундаментов:

1- Плоская плита перекрытия, которая представляет собой перевернутую плоскую плиту Рис.34-а. Если толщина плиты недостаточна, чтобы противостоять продавливанию под колонны, пьедесталы могут использоваться над плитой Рис. 34-.b или, ниже плиты, с помощью утолщение плоской плиты под колоннами, как показано на Рис. 34-c.

2- Плита и балка на плоту, есть. перевернутый R.C. пол, состоит из плит и балок, идущих вдоль колонны, рядами в обоих направлениях, Рис.34-d, он также называется ребристым матом. Если желателен сплошной пол в цоколь, ребра (балки) могут быть размещены под плитой, рис.34-е.

Конструкция плота плоской перекрытия

Плот, который равномерной толщины, делится на полосы колонн и средние полосы как показано на рис. 35-а. Ширина полосы столбцов равна b + 2d, где b = сторона колонки. Глубину плота d можно принять примерно равной 1/10 свободный промежуток между столбцами.Также ширину полосы столбца можно принять равно 3 б.

Планки колонн выполнены в виде неразрезные балки, нагруженные треугольными нагрузками, как показано на рис. 35-b. Сеть интенсивность равномерного восходящего давления f n на любой площади, для Например, площадь DEFG можно принять равной одной четвертой общей нагрузки. на столбцах D, E, F и G, разделенных на площадь DEFG.

Суммарные нагрузки, действующие на планка колонны BDEQ, рис.35-a приняты в виде треугольных диаграмм нагружения, показанных на рис. 35-б. Предполагается, что общая нагрузка на деталь DE, P DE , равна чистое давление, действующее на площадь DHEJ.

Конструкция жесткого плота (традиционный метод)

Размер плота устанавливается равнодействующая всех нагрузок и определяется давление грунта. вычисляется в различных местах под основанием по формуле.

Плот подразделяется на ряд непрерывных полос (балок) с центром в рядах колонн, как показано на Рис.37.

Диаграммы сдвига и момента могут быть установлены с использованием либо комбинированного анализа фундамента, либо балочного момента коэффициент Коэффициенты момента балки. Коэффициент момента балки PI 2 /10 для длинных направлений и Для коротких направлений может быть принят PI 2 /8.Отрицательный и положительные моменты будем считать равными. Глубина выбрана так, чтобы удовлетворить требования к сдвигу без использования хомутов и растягивающей арматуры выбрано. Глубина обычно будет постоянной, но требования к стали могут варьироваться от полосы к полосе. Аналогично анализируется и перпендикулярное направление.

Конструкция плиты перекрытия и фермы (ребристый мат)

Если столбец загружается и интервалы равны или изменяются в пределах 20%, чистое восходящее давление f n действие против плота предполагается равномерным и равным Q / A.

где

Q = вес здания при на уровне земли, и

A = площадь плота (по за пределами внешних колонн).

Если это давление больше чем чистое допустимое давление на грунт, площадь плота должна быть увеличена до площади, достаточно большой, чтобы снизить равномерное давление на сетку допустимое значение. Этого можно добиться, выполнив выступ плиты за пределы внешняя грань внешних колонн.

Ссылаясь на Рис. 38, различные элементы плота могут иметь следующую конструкцию:

Конструкция плиты:

1-Расчет поперечных балок B 1 и B 2

Равномерно распределенная нагрузка / м ‘ на

Пусть R 1 и R 2 — центральная реакция лучей B 1 и B 2 на центральный дальний свет В 3 соответственно.Концевые балки B 1 несет только часть нагрузки, которую несет балка B 2 и, следовательно, центральная реакция R 1 принята равной

KR 2 где K — коэффициент, основанный на сравнительной области, то

Также предполагается, что сумма центральных реакций от поперечных балок B 1 и B 2 равно суммарным нагрузкам от центральных колонн, таким образом,

2R 1 + 8R 2 = 2-пол. 1 + 2-пол. 2 (2)

Решение уравнений.(1) и (2), рандов 1 и R 2 могут быть определены.

Изгибающий момент и сдвиг силовые диаграммы можно нарисовать, как показано на рис.39. Реакции R 1 и R 2 можно определить, приравняв сумму вертикальных сил до нуля. Центральное сечение балок при положительном изгибающем моменте может быть выполнен в виде Т-образной балки, так как плита находится на стороне сжатия. Разделы балки под центральной балкой B 3 должны быть прямоугольными. раздел.

2- Расчет центральной главной балки B 3

Нагрузка, усилие сдвига, диаграммы и диаграммы изгибающего момента показаны на рис. 40-а. Раздел может быть выполнен в виде Т-образной балки.

3- Расчет центральной балки дальнего света B 4

Нагрузка, усилие сдвига, диаграммы изгибающих моментов представлены на рис.40-б Разрез может быть спроектирован как тавровая балка

Типы фундаментов дома

Как возводятся основные фундаменты, включая плиты, периметральные фундаменты, бетонные блоки и опоры

Дом должен выдерживать его значительный вес, обеспечивать плоское и ровное основание для строительства и разделять древесину материалы на основе от контакта с землей, что может вызвать их гниение и вызвать заражение термитами.

В зависимости от того, когда и где был построен дом, фундамент может быть из камня, кирпича, пиломатериалов, обработанных консервантами, бетонных блоков или заливного бетона. Безусловно, наиболее распространенным материалом для фундамента является бетон.

Большинство домов имеют приподнятый фундамент по периметру, который поддерживает полы и несущие стены. Некоторые построены на плоской бетонной плите, которая служит как основанием для конструкции, так и нижним этажом дома. Третьи, особенно дома для отдыха, а также небольшие старые дома, часто опираются на ряд бетонных опор.

В некоторых домах все эти методы используются для разных частей дома. Например, дома с фундаментом по периметру часто имеют опоры столбов под балкой, которая проходит под несущей стеной в середине дома.

Какое основание у дома?

Нижняя часть фундамента называется опорой (или нижним колонтитулом). Основание обычно шире, чем фундаментная стена, и находится примерно на 12 дюймов ниже линии промерзания (средняя глубина, на которой почва промерзает год за годом).Фундамент распределяет вес дома, предотвращая оседание или движение.

Типы фундаментов

Существуют три типа обычных бетонных фундаментов: заливной бетон , бетонный блок и опорно-опорный . Размер и допустимые типы регулируются строительными нормами.

Фундамент с приподнятым периметром

Как показано ниже, бетонный фундамент может представлять собой либо приподнятый фундамент по периметру, либо плоскую плиту, либо их комбинацию.

Традиционный фундамент по периметру с плитой

Дома в теплом климате могут иметь монолитную плиту, где опора, фундамент и плита представляют собой единое целое. Обычный фундамент по периметру имеет бетонную стену, поддерживаемую заливным бетонным основанием. Оба усилены стальными арматурными стержнями (арматурой). Этот тип фундамента используется как с фальшполом, так и с плитами. Бетонная опора и опора

Ступенчатая опора, как показано слева, может поддерживать стену из бетонных блоков.Блоки имеют номинальные размеры 8 на 8 на 16 дюймов (на самом деле они на 3/8 дюйма меньше, чтобы учесть швы из раствора). В сложенном состоянии они полые; добавляется стальной арматурный стержень, а пустоты часто заполняются бетоном. Они подходят для строительства там, где формование бетона нецелесообразно.

Бетонные блоки также используются для строительства стандартных фундаментных стен. Они поддерживаются бетонным основанием; оба армированы стальными стержнями, а бетонные блоки заполнены раствором.

Фундамент опор и опор

Бетонный опор, опирающийся на опору, как показано справа, можно использовать для поддержки балок в середине пролета. Хотя некоторые старые дома полностью опираются на опоры, от этого метода постепенно отказались в пользу методов фундамента с большей целостностью. Сансет Букс, старший редактор домашнего журнала, автор более 30 книг по обустройству дома и автор бесчисленных журнальных статей.Он появлялся в течение 3 сезонов на телеканале HGTV «Исправление» и несколько лет был домашним экспертом MSN. Дон основал HomeTips в 1996 году. Подробнее о Дон Вандерворт

Типы фундаментов и их использование в строительстве

🕑 Время чтения: 1 минута

Фундаменты делятся на мелкие и глубокие. Обсуждаются типы фундаментов под мелкие и глубокие фундаменты для строительства зданий и их использование.

Желательно знать пригодность каждого типа фундамента перед их выбором в каком-либо строительном проекте.

Виды фундаментов и их использование

В строительстве используются различные типы фундаментов:

  1. Фундамент мелкого заложения
    • Отдельная опора или изолированная опора
    • Комбинированная опора
    • Ленточный фундамент
    • Плот или мат фундамент
  2. Глубокий фундамент
    • Свайный фундамент
    • Валки или кессоны просверленные

Типы фундаментов мелкого заложения

1.Индивидуальные или изолированные стопы

Отдельное или изолированное основание — это наиболее распространенный тип фундамента, применяемый при строительстве зданий. Этот фундамент строится для одной колонны и также называется подушечным фундаментом.

Форма индивидуального фундамента — квадрат или прямоугольник, и используется, когда нагрузки от конструкции воспринимаются колоннами. Размер рассчитывается исходя из нагрузки на колонну и допустимой несущей способности грунта.

Прямоугольная изолированная опора выбирается, когда фундамент испытывает моменты из-за эксцентриситета нагрузок или из-за горизонтальных сил.

Например, рассмотрим колонну с вертикальной нагрузкой 200 кН и безопасной несущей способностью 100 кН / м 2 , тогда требуемая площадь опоры будет 200/100 = 2 м 2 . Так, для квадратного фундамента длина и ширина фундамента будут 1,414 м х 1,414 м.

2. Комбинированные опоры

Комбинированная опора создается, когда две или более колонны расположены достаточно близко и их изолированные опоры перекрывают друг друга. Это комбинация изолированных опор, но их конструкция отличается.

Форма основания представляет собой прямоугольник и используется, когда нагрузки от конструкции воспринимаются колоннами.

3. Раздвижные или ленточные и стеновые опоры

К основанию относятся те, у которых основание шире, чем у типичного фундамента несущей стены. Более широкое основание этого типа фундамента распределяет вес строительной конструкции на большую площадь и обеспечивает лучшую устойчивость.

Подножки

Раздвижные опоры и опоры стен используются для отдельных колонн, стен и опор мостов, где несущий слой грунта находится в пределах 3 м (10 футов) от поверхности земли.Несущая способность грунта должна быть достаточной, чтобы выдержать вес конструкции над базовой площадью конструкции.

Их не следует использовать на почвах, где есть вероятность попадания грунтовых вод над несущим слоем почвы, что может привести к размыву или разжижению.

4. Фундаменты на плотах или циновках

Плотные или матовые фундаменты — это типы фундаментов, которые распространяются по всей площади здания, чтобы выдерживать большие структурные нагрузки от колонн и стен.

Плот или мат фундамент

Матовый фундамент используется для фундаментов колонн и стен, где нагрузки от конструкции на колонны и стены очень высоки. Это используется для предотвращения неравномерного оседания отдельных опор, поэтому они спроектированы как единый коврик (или комбинированная опора) всех несущих элементов конструкции.

Подходит для обширных грунтов, несущая способность которых меньше подходит для раздвижных опор и стеновых опор. Плотный фундамент экономичен, когда половина площади конструкции покрывается индивидуальными опорами и предусмотрены стенные опоры.

Эти фундаменты не следует использовать там, где уровень грунтовых вод находится выше несущей поверхности почвы. Использование фундамента в таких условиях может привести к размыву и разжижению.

Типы глубокого фундамента

5. Фундамент свайный

Свайный фундамент — это тип глубокого фундамента, который используется для передачи тяжелых нагрузок от конструкции на пласты твердой породы, находящиеся намного глубже уровня земли.

Свайный фундамент

Свайные фундаменты используются для передачи тяжелых нагрузок от конструкций через колонны на твердые слои почвы, которые находятся намного ниже уровня земли, где нельзя использовать мелкие фундаменты, такие как раздвижные опоры и матовые опоры.Это также используется для предотвращения подъема конструкции из-за боковых нагрузок, таких как землетрясение и сила ветра.

Подробнее о Deep Foundations

Свайные фундаменты обычно используются для почв, где почвенные условия у поверхности земли не подходят для тяжелых нагрузок. Глубина пластов твердых пород может составлять от 5 до 50 м (от 15 до 150 футов) от поверхности земли.

Свайный фундамент выдерживает нагрузки от конструкции за счет поверхностного трения и торцевых опор.Использование свайных фундаментов также предотвращает неравномерную осадку фундаментов.

Подробнее о свайном фундаменте

6. Просверленные валы или кессонный фундамент

Просверленные стволы, также называемые кессонами, представляют собой тип глубокого фундамента и действуют аналогично свайным фундаментам, рассмотренным выше, но представляют собой монолитные фундаменты с высокой пропускной способностью. Он противостоит нагрузкам от конструкции за счет сопротивления вала, сопротивления пальцев ног и / или комбинации обоих этих факторов.Строительство просверленных валов или кессонов выполняется с помощью шнека.

Рис. Просверленные валы или фундамент кессона (Источник: Hayward Baker)

Просверленные валы могут передавать нагрузки на колонны, превышающие свайные основания. Он используется там, где глубина твердых пород ниже уровня земли находится в пределах от 10 до 100 м (от 25 до 300 футов).

Просверленные валы или кессонный фундамент не подходят при наличии глубоких залежей мягких глин и рыхлых водовмещающих сыпучих грунтов. Он также не подходит для почв, где обрушительные образования трудно стабилизировать, грунты, состоящие из валунов, существуют артезианские водоносные горизонты.

Общая информация:

Каковы общие классификации фундаментов?

Фундаменты зданий в целом подразделяются на мелкие и глубокие фундаменты.

Какие бывают типы мелкого фундамента?

Типы фундаментов мелкого заложения: индивидуальные или изолированные, комбинированные, ленточные, плотные или матовые.

Какие бывают типы глубокого фундамента?

Типы фундаментов глубокого заложения — свайный фундамент и бурильные стволы или кессоны.

В чем разница между свайным фундаментом и просверленными валами?

Просверленные валы действуют аналогично свайным фундаментам, но представляют собой монолитные фундаменты высокой прочности. Он может передавать нагрузки на колонны, превышающие свайный фундамент. Он используется там, где глубина твердых пород ниже уровня земли находится в пределах от 10 до 100 м (от 25 до 300 футов).

В чем разница между изолированным и комбинированным фундаментом?

Комбинированная опора создается, когда две или более колонны расположены достаточно близко и их изолированные опоры перекрывают друг друга.Это комбинация изолированных опор, но их конструкция отличается.

Когда используется плотный или матовый фундамент?

Плотный или матовый фундамент используется для фундаментов колонн и стен, где нагрузки от конструкции на колонны и стены очень высоки. Плоты используются для предотвращения неравномерной осадки отдельных опор, поэтому они спроектированы как комбинированные опоры всех несущих элементов конструкции.

Подробнее: Исследование грунта и типы оснований на основе свойств грунта

Raft Foundation — обзор

6.1.11 Фундаменты на скале

Фундаменты мостов или фундаменты типа матов на скалах спроектированы, как описано в Wyllie (1999), Smoltczyk (2003) и Rock Foundations (1994). Пример лучше всего проиллюстрирует тип опоры или матового основания для крупных и инновационных мостов. Методология для примера, описанного здесь, может быть использована для таких инновационных фондов, как мост Салгинатобель возле Ширса, Швейцария (завершен в 1930 году) и мост Швандбах возле Берна, Швейцария (завершен в 1933 году), оба из которых были спроектированы Робертом Майяртом.Эти мосты считаются произведениями искусства и имеют опоры парапета или опоры на скале (Billington, 2003). Обводной арочный мост плотины Гувера, мемориальный мост Майка О’Каллагана-Пэта Тиллмана, состоит из девяти сборных сегментных колонн, основанных на скальных породах, с привлечением специалистов по строительным, геотехническим / горным механикам и геологам для исследования и проектирования. Мост получил столетнюю награду Международной федерации инженеров-консультантов (FIDIC) в 2013 году.

Висячие мосты требуют, чтобы подъемные и горизонтальные силы на концах моста удерживались на месте с помощью привязных валов, закрепленных на скале матов или очень больших гравитационных анкеров. или анкерные блоки.Самые большие подвесные мосты требуют очень большого крепления. Мост Золотые Ворота и самый длинный висячий мост в мире, мост Акаси Кайкё, имеют очень большие бетонные опорные блоки. Система анкерных блоков подвергается как подъемным, так и поперечным силам со стороны концов подвесного троса. Главные башни многих крупных и новаторских мостов часто поддерживаются на скале с помощью большого кессона. Точно так же обычные арочные мосты также требуют прочных условий фундамента, чтобы противостоять огромной горизонтальной нагрузке, создаваемой арочным действием.Некоторым вантовым мостам может потребоваться анкерное крепление на конце грунта, но часто используются конструктивные средства для самоуравновешивания его горизонтальных сил.

Крепление на мосту Акаси Кайкё является примером конструкции скального фундамента для крепления и главных башен: «Крепления имеют размеры 63 на 84 метра в плане и простираются до слоев Кобе и гранита на площадке. Для этого требовалась особая технология строительства фундамента. Якорная стоянка на Хонсю должна была быть заложена на 61 метр ниже уровня моря, а раскопки якорной стоянки должны были проводиться на открытом воздухе.Поэтому была построена круглая стена из цементного раствора диаметром 85 метров и толщиной 2,2 метра, которая впоследствии использовалась в качестве подпорной стены. Выемка грунта в стене из цементного раствора сопровождалась укладкой бетона, утрамбованного роликами, для завершения строительства анкерного фундамента. Фундамент для анкеровки Авадзи был построен с использованием стальных труб и земляных анкеров для поддержки окружающей почвы. Выкопанный фундамент залили сыпучим бетоном специальной конструкции. Оба крепления были завершены строительством огромной стальной опорной рамы, используемой для закрепления основных прядей подвесного троса »(Купер, 1998).Каждый якорь весил в среднем 390 000 метрических тонн. «Фундамент (главные башни) был построен с использованием недавно разработанного метода кессонной укладки. Стальные кессоны диаметром 80 метров и высотой 70 метров были отбуксированы к участкам башни, погружены в воду и установлены на предварительно выкопанном морском дне (предварительно выкопанном в скале) »(Купер, 1998). Было установлено, что порода морского дна выдерживает 181 000 метрических тонн вертикальной силы, а также силы от ветра, землетрясения, воздействия волн и столкновения судов. Перед установкой кессона и бетонированием морское дно было подготовлено с использованием «робота-уборщика для очистки поверхности подводной скальной породы» (Кашима, 1991).

Свойства горной массы и точное определение площади поверхности породы необходимы для проектирования и строительства фундамента на скале. Вышеупомянутый пример строительства фундамента моста Акаси Кайкё — это пример работы инженера-геолога, геолога и специалиста по геологоразведке горных пород вместе со структурной группой.

Процесс проектирования опор | SkyCiv Engineering

Конструкция опор: зачем нам фундамент?

В этом уроке мы кратко рассмотрим процесс проектирования фундаментного фундамента.

Независимо от того, состоят ли современные конструкции из железобетона, стали, дерева или любого другого материала, все они нуждаются в фундаменте для их поддержки. Поскольку на конструкцию действуют различные типы нагрузок, такие как статическая нагрузка, временная нагрузка, ветровая нагрузка, землетрясение и снеговая нагрузка, эти нагрузки в конечном итоге передаются вниз на фундамент, который помогает передавать их на землю под ним. Важно сделать фундамент прочным, чтобы выдерживать эти нагрузки на протяжении всего срока службы конструкции.

Что такое фундаментные фундаменты?

В зависимости от глубины мы знаем, что фундамент может быть неглубоким или глубоким. Фундамент — это мелкий фундамент, который может состоять из таких материалов, как кирпичная кладка или бетон, в основном они возводятся прямо под стеной или колонной конструкции.

Как работает механизм передачи нагрузки в конструкциях?

В гражданском строительстве важно знать, как система нагружения и путь нагрузки работают в конструкции.В любой конструкции нагрузка прилагается к плите, которая передается через балки, а балки, в свою очередь, переносят эти нагрузки на колонну, которые в конечном итоге передаются на фундамент. Отсюда нагрузки «выходят» из вашей структурной системы и передаются на землю или почву под ней. Фундамент должен опираться на твердые слои, поэтому в большинстве структурных проектов земляные работы выполняются для того, чтобы найти твердый слой, который поможет фундаменту легко опираться на него без каких-либо проблем с осадкой.

Опоры поддерживают статические (и другие нагрузки) для обеспечения статичности конструкции

Как устроены фундаментные фундаменты?

Раньше проектирование таких конструктивных элементов, как балки, колонны, плиты, выполнялось вручную с использованием различных методов для определения поперечной силы, изгибающего момента и других различных свойств, действующих на эти элементы. Но в современной практике проектирование конструктивных элементов с ручным расчетом потребует больше усилий и времени, и все же будет подвержено человеческим ошибкам в расчетах.

Проектирование фундаментного фундамента основано на сочетании нескольких процессов, в том числе:

Перед проектированием фундамента для какой-либо конструкции нам нужен отчет по исследованию грунта, с помощью которого мы знаем о некоторых важных характеристиках грунта под ним, таких характеристиках, как несущая способность грунта (SBC), различные слои типа грунта, обнаруженные под ним, вся эта информация помогает инженеру определите тип фундамента, подходящий для конструкции.

Существует различное программное обеспечение для проведения структурного анализа конструкции.Обязательно провести структурный анализ, чтобы найти различные реакции, поперечные силы и силы изгибающего момента, действующие на элементы конструкции, в частности на опоры. Предположим, что структура G + 2 должна быть построена, необходимо следовать процессу структурного проектирования, чтобы спроектировать каждый элемент конструкции. Любое программное обеспечение FEA может использоваться для моделирования и структурного анализа конструкции. После завершения структурного анализа нам понадобятся два типа данных: (1) реакции от колонн, которые будут связаны с фундаментом фундамента, и (2) положения колонн или их координаты.

После проведения анализа и получения реакции конечной колонки с помощью программного обеспечения FEA, нам необходимо выполнить проектирование в соответствии с требованиями наших местных стандартов. Это искусство процесса можно рассчитать вручную или с помощью программного обеспечения для проектирования фундаментов (примечание: для упрощенного калькулятора попробуйте наш бесплатный калькулятор бетонных оснований)

В программном обеспечении для проектирования фундаментов в качестве входных данных вводятся различные значения, такие как тип фундамента, который вы хотите спроектировать, например, изолированный фундамент, марка бетона, марка используемой стали и выбор конструктивного кода для проектирования в соответствии с руководящими принципами страны, в этом случае вы можно выбрать ACI 318.Импорт данных о положении колонны и реакции, экспортированных из программного обеспечения для расчета конструкций.

Программное обеспечение Foundation

Некоторые общие проверки конструкции, выполняемые при проектировании бетонного фундамента:

Проверка опрокидывания завершается после определения коэффициента безопасности опрокидывания, который определяется делением суммы моментов сопротивления на сумму моментов опрокидывания. Обычно этот коэффициент должен быть больше или равен 1,5.

Проверка скольжения завершается после определения коэффициента запаса прочности при скольжении, который определяется как коэффициент трения между бетоном и почвой, умноженный на вес опоры, разделенный поперечными силами, действующими на опору.Обычно этот коэффициент должен быть больше или равен 1,5.

Структурные проверки , такие как проверки на сдвиг в одном / двух направлениях и проверки на изгиб в обоих направлениях, чтобы убедиться, что бетонная конструкция достаточно прочна, чтобы выдерживать прилагаемые к ней силы. Эти расчеты конструкции снова зависят от кода проекта (например, в США используется ACI 318).

После определения обоих коэффициентов безопасности при опрокидывании и скольжения и знания коэффициента трения почвы и бетона, эти значения необходимо ввести в программное обеспечение для проектирования, чтобы получить окончательный расчет опорного фундамента.Отсюда компетентный инженер попытается уменьшить количество используемого материала в виде уменьшения количества бетона и / или стали, сохраняя при этом минимальные требования, изложенные в нормах проектирования.

Инженеры могут экспериментировать с различными размерами фундамента, расположением арматуры и количеством, необходимым для достижения результата, который сделает проект более экономичным без ущерба для прочности или безопасности конструкции. Обычно смотрят на основной результат и определяют, почему конструкция выходит из строя, а затем корректируют некоторые входные данные (армирование, размер фундамента) для улучшения конструкции.

Сводка:

Процесс проектирования фундамента зависит от различных структурных процессов. Они включают исследование грунта, выполнение структурного анализа конструкции модели для определения реакции колонны, проектирование фундамента и, наконец, оптимизацию конструкции. Хотя это очень упрощенное объяснение задействованных шагов, оно должно дать хорошее представление о процессе.

Раздвижные, комбинированные и ленточные опоры

Ленточная опора — это такая опора, которая обычно поддерживает две колонны, и поэтому является особым типом комбинированной опоры.Если линия собственности существует на краю внешней колонны или рядом с ней, изолированное основание будет расположено под этой колонной эксцентрично, и она будет иметь тенденцию к наклоне. Переворачивание наружной опоры предотвращается путем соединения ее с прилегающей внутренней опорой с помощью стяжной балки.

Использование ленточной опоры может быть оправдано в условиях, когда расстояние между колоннами велико и необходимо избегать большой площади выемки грунта. Обычной практикой является то, что нижние поверхности внешней опоры, балки ремня и внутренней опоры находятся на одной высоте, но толщина каждого элемента может быть разной в зависимости от требований к прочности.

Это программное обеспечение для проектирования фундаментов вычисляет нагрузки на грунт, создаваемые ленточным фундаментом под действием вертикальных нагрузок и изгибающих моментов, в соответствии с последними критериями проектирования ACI. Он проектирует стальную арматуру для внутренних и внешних опор и проверяет односторонние и двусторонние напряжения сдвига. Кроме того, программа генерирует диаграммы поперечной силы и изгибающего момента, чтобы спроектировать арматуру для ленточной балки. Конструкция бетонных оснований основана на методе расчета максимальной прочности ACI 318.Сочетания нагрузок согласно ASCE 7. Обе стойки могут быть эксцентричными в продольном направлении.

Ввод

Параметры ввода удобно организованы в виде страниц с вкладками. Требуемые исходные данные включают в себя размеры опор, перемычек и колонн, свойства материала, допустимое несущее давление грунта, а также действующие эксплуатационные и факторные нагрузки. Кроме того, программа принимает ряд вариантов нагрузки, таких как мертвая, текущая, снеговая, ветровая и сейсмическая, для внутреннего объединения. В качестве альтернативы вы можете смоделировать набор предварительно комбинированных нагрузок.

Выходные данные

Этот модуль проверяет общую устойчивость фундамента при эксплуатационных комбинированных нагрузках и выполняет бетонную конструкцию двух опор и ленточной балки, которая включает в себя односторонний сдвиг, пробивной сдвиг и изгибающие моменты при учтенных комбинированных нагрузках. В каждом случае определяется и сообщается управляющая комбинация нагрузок.

Для быстрого обзора результатов проектирования щелкните вкладку «Краткий обзор». Более подробные пошаговые расчеты доступны на вкладке «Подробно», которая обновляется при каждом новом изменении.Кроме того, ASDIP FOUNDATION использует предварительно отформатированный цветной текст со значениями для облегчения определения проблемных областей. Используйте команду Предварительный просмотр для предварительного просмотра на экране предварительно отформатированного отчета, который включает в себя цветную графику, созданную программным обеспечением.

ASDIP FOUNDATION создает графическое представление конструкции основания и возникающих в результате давления и сил. Программа также генерирует диаграммы момента и сдвига для управляющей комбинации нагрузок для детальной проверки, а также вид строительного сечения и отметки с информацией об армировании.

Типы, конструкция и конструкция фундаментов из матов

Фундаменты из матов также известны как фундаменты на плотах. Это толстые бетонные плиты, помещаемые на землю в качестве фундамента конструкции. Фундаменты с матами возводятся в различных случаях, например, при строительстве зданий, мостов, башен и т. Д.

Если мы имеем дело с фундаментом мелкого заложения, последний вариант фундамента неглубокого заложения — это фундамент на плоту.

При увеличении осевых нагрузок на конструкцию или из-за плохого состояния грунта площадь опор (изолированных, комбинированных, ленточных опор и т. Д.) Необходимо увеличивать.

Увеличение размеров опор все больше и больше вызывает наложение напряжений друг на друга, что создает слабую зону. На этом фоне подбираем основания плота.

Что такое Mat Foundation?

Матовый фундамент — это всегда не плоская плита, лежащая на земле, в качестве опоры надстройки. Существуют различные конструкции, основанные на приложении нагрузок.

Меньшие нагрузки, приложенные к основанию мата, мы строим плоскую плиту. Однако с увеличением нагрузок используются различные методы, которые обсуждаются в этой статье, для повышения жесткости плиты.

Кроме того, мы могли бы использовать плотный фундамент для поддержки зданий высотой примерно до 10 этажей.

Кроме того, увеличение осевых нагрузок обеспечивает более высокие затраты на строительные работы. Это могло даже превзойти строительство свайных фундаментов сверх определенного уровня.

Типы основания матов

Классификация оснований матов основана на модификациях, внесенных в плоскую плиту.

Дополнительно к плоту сделана конструкция для повышения жесткости фундамента на изгиб.

Глубина фундамента плота значительно увеличена в местах расположения колонн, чтобы выдерживать высокие изгибающие моменты и поперечные силы.

Следующая категоризация, обсуждаемая в статье Типы фондов , может быть использована для получения более подробной информации о них.

Толстая бетонная плита, отлитая в качестве фундамента на грунт, представляет собой плоский плот.

Нет никаких выступов для придания жесткости фундаменту мата, кроме бетонных стен, работающих на сдвиг.

  • Плоский фундамент с утолщением под колонну

Увеличение осевых нагрузок на колонну приводит к увеличению прочности на изгиб и сдвиг.

Это приводит к удорожанию строительства. Далее, сверх определенного уровня, приходится увеличивать толщину матовой основы.

Если мы увеличим толщину всей основы мата, это не будет экономичным способом обработки.

Таким образом, увеличиваем толщину матового фундамента под колоннами.Поскольку выступ находится под плоской пластиной, строительство может быть затруднено.

Укладка арматуры, гидроизоляции и т. Д. Не могла быть такой простой задачей.

  • Фундамент с плоской пластиной Утолщен над братской у колонны

Выступ над плоской пластиной такой же, как и выступ под пластиной.

Сконструировать выступ плота над его поверхностью очень просто. Однако мы можем сделать это только в том случае, если мы не используем плиту или оставшееся расстояние достаточно для этой цели.

  • Плотно-балочный фундамент

Плоская плита или выступы плоской плиты не могут нести дальнейшее увеличение осевой нагрузки на колонну. Для придания жесткости фундаменту предусмотрены балки.

Введение балок значительно снижает толщину плиты перекрытия.

  • Фундаменты ячеистого плота

Одноступенчатая застройка балочного плота представляет собой фундамент ячеистого плота.В этот тип фундамента кладем и верхнюю плиту.

Еще больше увеличивает жесткость основы мата.

Фундаменты на плитах строятся в многоэтажных зданиях, в ситуациях, когда сваи не могут быть вставлены в скалу, и когда концевое опоры сваи недостаточны и т. Д.

Проектирование и строительство фундамента свайного плота является сложным процесс.

Сначала сваи принимает на себя нагрузку, а затем начинает делиться с фундаментом плота.

Как только сваи полностью мобилизованы, плот начинает полностью принимать на себя нагрузку. Наконец, плот принимает на себя всю нагрузку.

На следующем рисунке показана кривая зависимости нагрузки от осадки.

Для получения дополнительной информации можно обратиться к опубликованной статье о фундаменте свайного плота.

На следующем рисунке показаны различные типы фундаментов на плотах, которые можно использовать при проектировании.

Выбор типа матового основания осуществляется в зависимости от приложенной нагрузки на систему фундамента.

Проектирование фундамента из мата

В основном существует два метода проектирования фундамента плота.

  1. Традиционные методы — Используйте ручные расчеты и диаграммы
  2. Методы анализа конечных элементов — Используйте компьютерный пакет для решения проекта

Проектирование фундаментов из матов с помощью обычного жесткого метода

При проектировании фундаментов из матов можно выполнить следующие шаги от обычного жесткого метода.

  • Рассчитайте общую нагрузку, приложенную к основанию мата.
  • Рассчитайте давление под каждой колонной с учетом эксцентриситета нагрузки.Осевое напряжение и изгибающее напряжение из-за эксцентриситета центра нагрузки учитываются для определения давления под каждой колонной.
  • Убедитесь, что допустимое давление нетто больше, чем прикладываемое давление.
  • Затем мат делится на полосы в зависимости от расположения.
  • Определите изгибающий момент и поперечные силы.
  • Определите эффективную глубину основания. Это может быть сделано на основе диагонального сдвига растяжения возле различных колонн.
  • Сформируйте рассчитанные выше диаграммы изгибающего момента, определите положительный и отрицательный изгибающие моменты на единицу ширины.
  • Расчет площади армирования на единицу ширины секции

В дополнение к этой процедуре существуют другие методы, такие как приблизительный гибкий метод для анализа и проектирования фундаментов плотов.

Методы конечно-элементного анализа

Метод конечных элементов — это рассмотрение гибкого поведения грунта в структурном анализе. В этом методе почва является модельной, и ее поведение учитывается при анализе и проектировании.

Существуют разные методы моделирования почвы.

Мы можем моделировать грунт под фундаментом с учетом свойств материала. Для этой цели можно использовать такое программное обеспечение, как plaxis. В этом типе анализа очень важно выбрать правильную модель материала для почвы. Если мы не рассматриваем правильную идеализацию, мы получим неправильные ответы.

Кроме того, мы могли бы использовать такое программное обеспечение, как расчет и проектирование фундамента SAFE, чтобы получить изгибающие моменты и силы сдвига.

Почву можно моделировать как площадные источники. Пружины площади можно рассчитать, как указано в книге «Анализ и проектирование фундаментов недр».

Площадь родника реакция земляного полотна почвы. Существует множество методов расчета реакции земляного полотна. В этой статье мы обсуждаем простейший метод, описанный в книге «Анализ и проектирование основания кишечника».

Площадь Пружина = SF x 40 x BC — для осадки фундамента плота 25 мм

Где SF — коэффициент запаса прочности, учитываемый при расчете допустимой несущей способности, а BC — допустимая несущая способность.

Вышеприведенное уравнение относится к осадке 25 мм в фундаменте плота. Отклонение от этого значения может дать неправильные ответы.

Следовательно, указанное выше уравнение должно быть изменено на основе указанного в отчете инженерно-геологического исследования осадки для определения допустимой несущей способности или на основе расчетной осадки.

Площадь Весна = SF x (1000 / поселение) x BC

После того, как мы вычислили ответвления площади почвы или реакцию земляного полотна, ее можно применить к компьютерной модели, созданной с помощью подходящего программного обеспечения.

После приложения нагрузок в положениях колонн можно выполнить анализ фундамента. Затем мы можем найти изгибающий момент и поперечные силы.

Расчет арматуры должен производиться по результатам анализа.

Специальное примечание по анализу и проектированию фундаментов матов
  • Рекомендуется использовать вспомогательное компьютерное программное обеспечение для анализа и проектирования фундаментов матов.
  • Моделирование и идеализация фактического поведения фундамента должны выполняться очень тщательно и с особой тщательностью.
  • Грунт может быть модельным с площадными пружинами. Это реакция земляного полотна. Мы определяем реакцию земляного полотна в программе и соотносим ее с компьютерной моделью.
  • Реакцию Сусбграта можно оценить с помощью различных доступных методов. Это может быть основано на значении SPT, результатах испытаний, несущей способности почвы или использовании любого метода.
  • Фундамент можно смоделировать вместе с надстройкой, чтобы объединить поведение надстройки и фундамента. Прогиб фундамента может повлиять на надстройку, и поведение надстройки может быть включено в деформации фундамента.
  • Далее фундамент также может быть моделью без надстройки. Нагрузка на колонну может быть применена к модели напрямую. Стенки сдвига можно рассмотреть для включения в модель.
  • Матовое основание должно быть рассчитано на изгибающие и поперечные силы.
  • Фундамент необходимо проверить на наличие вертикального сдвига и продавливания. Периметр продавливания среза может быть определен согласно соответствующему стандарту, по которому выполняется проектирование. Статья о конструкции пробивных ножниц может быть использована для проектирования и определения периметра сдвига.
  • Особое внимание следует уделить проектированию на сдвиг. Требование к срезным звеньям должно быть проверено, и срезные звенья должны быть предоставлены там, где это необходимо, в качестве расчетов.
  • Расчетное проектирование свайных плотин — это сложный процесс, который должен выполняться с использованием соответствующей опубликованной литературы.

Строительство фундамента из мата

Строительство фундамента из мата также выполняется с большим вниманием и тщательностью в отношении контроля качества и обеспечения качества.

Давайте обсудим процесс строительства по порядку.

  • Земляные работы для фундамента циновки

Земляные работы и земляные работы, поддерживающие систему, должны быть решены до начала строительства. В зависимости от характера конструкции и глубины сооружения необходимо выбрать тип опорной системы для земляных работ.

В статье земляных работ для фундамента можно сослаться на дополнительные сведения о проектировании и строительных аспектах систем земляных работ.

Далее, статьи «Проектирование опорных систем выемки грунта» и подпорная стена из шпунтовых свай могут быть отнесены к примерам работ по земляным подпорным системам.

В целом все основания мата гидроизолированы. Выполнена гидроизоляция всех фундаментов плотов, так как в основном они сооружаются ниже уровня готовой земли.

Использование гидроизоляционной мембраны защищает фундамент от намокания или затухания. Кроме того, движение воды через бетон также не является гидроизоляцией.

Статью о различных типах гидроизоляции деталей, используемых в строительстве, можно назвать знанием устройства гидроизоляционных мембран.

В плотном фундаменте имеются строительные швы, деформационные швы, деформационные швы и т. Д. Они должны быть герметичными, чтобы вода не проходила через стык.

В статьях строительных швов и типов бетонных швов можно найти дополнительную информацию о деталях швов и методах обработки швов.

Гидрошпонки предусмотрены на строительных и деформационных швах. Тип стыка изменяет тип предусматриваемой остановки воды.

В строительных стыках мы обычно устанавливали гидрошпонку в центре плота. (Типичные детали см. В статье Гидроизоляция ). Гидрошпонки из низкоуглеродистой стали или ПВХ обычно используются в этих типах соединений.

Гидравлические стержни поверхностного типа предусмотрены в деформационных швах и компенсаторах. (Типичные детали см. В статье Гидроизоляция )

Кроме того, дополнительную информацию можно найти в статье Waterstop .

В основном есть два типа армирования, которые можно наблюдать в плотном фундаменте.

Это арматура для изгиба и арматуры на сдвиг.

Изгибаемая арматура связана как обычно, а поперечная арматура помещается в колонну в основном в соответствии с требованиями к сдвигу. Срезные звенья должны соответствовать проектным требованиям. Распространение поперечных звеньев в любом направлении колонны должно соответствовать проектным требованиям.

В зависимости от характера конструкции и проектных требований заливка бетона осуществляется в несколько заливок.

Не обязательно иметь несколько заливок, но это может быть бетон в одной поре, если размер основания мата меньше и есть соответствующие ресурсы, такие как человеческие ресурсы и материальные ресурсы.

В фундаменте с большим матом количество заливок определяется в зависимости от возможностей подрядчика по доставке и укладке бетона.

Кроме того, при выборе последовательности заливки бетона учитываются тепловые эффекты. Первоначально последовательность, которая может быть применена к бетону, определяется таким образом, чтобы минимизировать термическое ограничение при повторной заливке.Однако нам не всегда удается избежать этого. Мы должны проектировать для этого.

Кроме того, последовательность отверстий планируется для каждой заливки, чтобы избежать образования холодного стыка с заливкой. В зависимости от времени схватывания бетон необходимо залить до начала схватывания.

Повышение температуры бетона, более высокий температурный градиент и разница температур между сердцевиной и поверхностью являются ключевыми факторами, которые необходимо учитывать при регулировании температуры.

На практике мы поддерживаем максимальное повышение температуры бетона за счет теплоты гидратации до 70 градусов Цельсия, чтобы избежать замедленного образования эттрингита.

Однако добавление летучей золы увеличивает этот запас даже до 80 градусов Цельсия или более. Максимальная температура также сильно зависит от типа цемента.

Поэтому всегда рекомендуется поддерживать температуру около 70 градусов Цельсия или ниже, поскольку мы не можем наблюдать, что происходит внутри бетона.

Испытания на макете проводятся для проверки повышения температуры бетона за счет теплоты гидратации. Кроме того, это дает другие преимущества, такие как выбор толщины и типа материалов, которые будут использоваться в качестве опалубки.

Тот же материал, который использовался при испытании макета, и если повышение температуры допустимо, также следует использовать в конструкции. Не допускается изменение материала и толщины материала.

Добавление зольной пыли к бетону действует как наполнитель и снижает содержание цемента. Кроме того, он снижает повышение температуры в процессе гидратации.

Рекомендуется поддерживать добавление летучей золы в диапазоне примерно 20-35%.

Кроме того, использование летучей золы в бетоне улучшает удобоукладываемость бетона .

Остальные методы ограничения температуры бетона перечислены ниже.

    • Ограничьте температуру размещения. Обычной практикой является ограничение температуры помещения до 30 градусов по Цельсию. Однако для ограничения повышения температуры потребуется дальнейшее снижение.
    • Добавьте лед или охлажденную воду, чтобы снизить повышение температуры.
    • Залить бетон в ночное время.
    • Добавить летучую золу.
    • Свернуть заполнители.
    • Используйте цемент с низким тепловыделением.
    • Сверните бетон с труб, заделанных в бетон.

Подобные методы можно использовать для контроля повышения температуры бетона.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *