Технология закалки стали: Способы и режимы закалки и отпуска стали

Содержание

Способы и режимы закалки и отпуска стали

Термическая обработка сталей – одна из самых важных операций в машиностроении, от правильного проведения которой зависит качество выпускаемой продукции. Закалка и отпуск сталей являются одними из разнообразных видов термообработки металлов.

Тепловое воздействие на металл меняет его свойства и структуру. Это позволяет повысить механические свойства материала, долговечность и надежность изделий, а также уменьшить размеры и массу механизмов и машин. Кроме того, благодаря термообработке, для изготовления различных деталей можно применять более дешевые сплавы.

Также вам не помешает знать, как правильно варить полуавтоматом.


Как закалялась сталь

Термообработка стали заключается в тепловом воздействии на металл по определенным режимам ля изменения его структуры и свойств.

К операциям термообработки относятся:

  • отжиг;
  • нормализация;
  • старение;
  • закалка стали и отпуск стали (и пр.).

Термообработка стали: закалка отпуск – зависит от следующих факторов:

  • температуры нагрева;
  • времени (скорости) нагрева;
  • продолжительности выдержки при заданной температуре;
  • скорости охлаждения.

Закалка

Закалка стали – это процесс термообработки, суть которого заключается в нагреве стали до температуры выше критической с последующим быстрым охлаждением. В результате этой операции повышаются твердость и прочность стали, а пластичность снижается.

При нагреве и охлаждении сталей происходит перестройка атомной решетки. Критические значения температур у разных марок сталей неодинаковы: они зависят от содержания углерода и легирующих примесей, а также от скорости нагрева и охлаждения.

После закалки сталь становится хрупкой и твердой. Поверхностный слой изделий при нагреве в термических печах покрывается окалиной и обезуглероживается тем более, чем выше температура нагрева и время выдержки в печи. Если детали имеют малый припуск для дальнейшей обработки, то брак этот является неисправимым. Режимы закалки закалки стали зависят от ее состава и технических требований к изделию.

Охлаждать детали при закалке следует быстро, чтобы аустенит не успел превратиться в структуры промежуточные (сорбит или троостит). Необходимая скорость охлаждения обеспечивается посредством выбора охлаждающей среды. При этом чрезмерно быстрое охлаждение приводит к появлению трещин или короблению изделия. Чтобы этого избежать, в интервале температур от 300 до 200 градусов скорость охлаждения надо замедлять, применяя для этого комбинированные методы закалки. Большое значение для уменьшения коробления изделия имеет способ погружения детали в охлаждающую среду.

Нагрев металла

Все способы закалки стали состоят из:

  • нагрева стали;
  • последующей выдержки для достижения сквозного прогрева изделия и завершения структурных превращений;
  • охлаждения с определенной скоростью.

Изделия из углеродистой стали нагревают в камерных печах. Предварительный подогрев в этом случае не требуется, так как эти марки сталей не подвергаются растрескиванию или короблению.

Сложные изделия (например, инструмент, имеющий выступающие тонкие грани или резкие переходы) предварительно подогревают:

  • в соляных ваннах путем двух-или трехкратного погружения на 2 – 4 секунды;
  • в отдельных печах до температуры 400 – 500 градусов по Цельсию.

Нагрев всех частей изделия должен протекать равномерно. Если это невозможно обеспечить за один прием (крупные поковки), то делаются две выдержки для сквозного прогрева.

Если в печь помещается только одна деталь, то время нагрева сокращается. Так, например, одна дисковая фреза толщиной 24 мм нагревается в течение 13 минут, а десять таких изделий – в течение 18 минут.

Защита изделия от окалины и обезуглероживания

Для изделий, поверхности которых после термообработки не шлифуются, выгорание углерода и образование окалины недопустимо. Защищают поверхности от подобного брака применением защитных газов, подаваемых в полость электропечи. Разумеется, такой прием возможен только в специальных герметизированных печах. Источником подаваемого в зону нагрева газа служат генераторы защитного газа. Они могут работать на метане, аммиаке и других углеводородных газах.

Если защитная атмосфера отсутствует, то изделия перед нагревом упаковывают в тару и засыпают отработанным карбюризатором, чугунной стружкой (термисту следует знать, что древесный уголь не защищает инструментальные стали от обезуглероживания). Чтобы в тару не попадал воздух, ее обмазывают глиной.

Соляные ванны при нагреве не дают металлу окисляться, но от обезуглероживания не защищают. Поэтому на производстве их раскисляют не менее двух раз в смену бурой, кровяной солью или борной кислотой. Соляные ванны, работающие на температурах 760 – 1000 градусов Цельсия, весьма эффективно раскисляются древесным углем. Для этого стакан, имеющий множество отверстий по всей поверхности, наполняют просушенным углем древесным, закрывают крышкой (чтобы уголь не всплыл) и после подогрева опускают на дно соляной ванны. Сначала появляется значительное количество языков пламени, затем оно уменьшается. Если в течение смены таким способом трижды раскислять ванну, то нагреваемые изделия будут полностью защищены от обезуглероживания.

Степень раскисления соляных ванн проверяется очень просто: обычное лезвие, нагретое в ванне в течение 5 – 7 минут в качественно раскисленной ванне и закаленное в воде, будет ломаться, а не гнуться.

Охлаждающие жидкости

Основной охлаждающей жидкостью для стали является вода. Если в воду добавить небольшое количество солей или мыла, то скорость охлаждения изменится. Поэтому ни в коем случае нельзя использовать закалочный бак для посторонних целей (например, для мытья рук). Для достижения одинаковой твердости на закаленной поверхности необходимо поддерживать температуру охлаждающей жидкости 20 – 30 градусов. Не следует часто менять воду в баке. Совершенно недопустимо охлаждать изделие в проточной воде.

Недостатком водяной закалки является образование трещин и коробления. Поэтому таким методом закаливают изделия только несложной формы или цементированные.

  • При закалке изделий сложной конфигурации из конструкционной стали применяется пятидесятипроцентный раствор соды каустической (холодный или подогретый до 50 – 60 градусов). Детали, нагретые в соляной ванне и закаленные в этом растворе, получаются светлыми. Нельзя допускать, чтобы температура раствора превышала 60 градусов.
Режимы

Пары, образующиеся при закалке в растворе каустика, вредны для человека, поэтому закалочную ванну обязательно оборудуют вытяжной вентиляцией.


  • Закалку легированной стали производят в минеральных маслах. Кстати, тонкие изделия из углеродистой стали также проводят в масле. Главное преимущество масляных ванн заключается в том, что скорость охлаждения не зависит от температуры масла: при температуре 20 градусов и 150 градусов изделие будет охлаждаться с одинаковой скоростью.

Следует остерегаться попадания воды в масляную ванну, так как это может привести к растрескиванию изделия. Что интересно: в масле, разогретом до температуры выше 100 градусов, попадание воды не приводит к появлению трещин в металле.

Недостатком масляной ванны является:

  1. выделение вредных газов при закалке;
  2. образование налета на изделии;
  3. склонность масла к воспламеняемости;
  4. постепенное ухудшение закаливающей способности.
  • Стали с устойчивым аустенитом (например, Х12М) можно охлаждать воздухом, который подают компрессором или вентилятором. При этом важно не допускать попадания в воздухопровод воды: это может привести к образованию трещин на изделии.
  • Ступенчатая закалка выполняется в горячем масле, расплавленных щелочах, солях легкоплавких.
  • Прерывистая закалка сталей в двух охлаждающих средах применяется для обработки сложных деталей, изготовленных из углеродистых сталей. Сначала их охлаждают в воде до температуры 250 – 200 градусов, а затем в масле. Изделие выдерживается в воде не более 1 – 2 секунд на каждые 5 – 6 мм толщины. Если время выдержки в воде увеличить, то на изделии неизбежно появятся трещины. Перенос детали из воды в масло следует выполнять очень быстро.

Процесс отпуска

Отпуску подвергаются все закаленные детали. Это делается для снятия внутренних напряжений. В результате отпуска несколько снижается твердость и повышается пластичность стали.

В зависимости от требуемой температуры отпуск производится :

  • в масляных ваннах;
  • в селитровых ваннах;
  • в печах с принудительной воздушной циркуляцией;
  • в ваннах с расплавленной щелочью.

Температура отпуска зависит от марки стали и требуемой твердости изделия, например, инструмент, для которого необходима твердость HRC 59 – 60, следует отпускать при температуре 150 – 200 градусов. В этом случае внутренние напряжения уменьшаются, а твердость снижается незначительно.

Быстрорежущая сталь отпускается при температуре 540 – 580 градусов. Такой отпуск называют вторичным отвердением, так как в результате твердость изделия повышается.

Изделия можно отпускать на цвет побежалости, нагревая их на электроплитах, в печах, даже в горячем песке. Окисная пленка, которая появляется в результате нагрева, приобретает различные цвета побежалости, зависящие от температуры. Прежде чем приступать к отпуску на один из цветов побежалости, надо очистить поверхность изделия от окалины, нагара масла и т. д.

Обычно после отпуска металл охлаждают на воздухе. Но хромоникелевые стали следует охлаждать в воде или масле, так как медленное охлаждение этих марок приводит к отпускной хрупкости.


описание процесса термообработки, температуры и виды закалки, способы охлаждения и дефекты

Без термообработки в работе с металлами не обойтись. Оттого насколько правильно была проведена термическая обработка зависят качественные характеристики металлического изделия. Его прочность и долговечность в службе. В этой статье вы сможете узнать как правильно проводить термообработку (закалку) стальных изделий

Закалка стали

Закаливание является операцией по термической обработке металла. Она состоит из нагревания металла до критической температуры, при которой изменяется кристаллическая решетка материала, либо до температуры, при которой происходит растворение фазы в матрице, существующей при низкой температуре.

Важно понимать:

  • После достижения критической температуры металл подвергается резкому охлаждению.
  • После закаливания сталь приобретает структуру мартенсита (по имени Адольфа Мартенса) и поэтому обретает твердость.
  • Благодаря закаливанию прочность стали повышается. Металл становится еще тверже и более износостойким.
  • Следует различать обычную закалку материала и закалку для получения избытка вакансий.

Режимы закалки различаются по скорости протекания процесса и температуре нагревания. А также имеются различия по длительности выдержки при данном температурном режиме и скорости охлаждения.

Выбор температуры для закалки

Решение, при какой температуре производить закалку металла обусловлено химическим составом стали.

Закалка бывает двух видов:

  • полная;
  • неполная.

Руководствуясь диаграммой критических точек можно видеть, что доэвтектоидную сталь при процессе полного закаливания следует нагревать выше точки Ас3 на 30–50 градусов. В результате у стали будет структура однородного аустенита. Впоследствии под действием процесса охлаждения он превратится мартенсит.

Рисунок №1. Критические точки.

Неполное закаливание чаще применяется для инструментальной стали. Цель неполного закаливания — достигнуть температуры, при которой проходит процесс образования избыточных фаз. Нагревание стали происходит в температурном промежутке от Ас1 — Ас2. При этом в структуре мартенсита сохранится какое-то количество феррита, оставшегося после закаливания стали.

Для закаливания заэвтектоидной стали лучше придерживаться температуры на 20–30 градусов больше Ас1 — неполная закалка. Из-за этого при нагревании и охлаждении будет сохраняться цементит, что повышает твердость мартенсита. При закалке не следует нагревать заэвтектоидную сталь свыше положенной температуры. Это может сказаться на твердости.

Скорость охлаждения

Структура мартенсита получается при быстром охлаждении аустенита в тот момент, когда температура стали способствует наименьшей устойчивости аустенита (около 650-550 градусов).

При переходе в зону температур, в которой происходит мартенситное превращение (ниже 240 градусов) применяется замедленное охлаждение. В результате успевают выравнится образующиеся структурные напряжения в то время, как твердость образовавшегося мартенсита не снижается.

Для проведения успешной термической обработки очень важно правильно выбрать среду закаливания. Часто в качестве закалочной среды могут применяться:

  • вода;
  • раствор едкого натрия (5–10 %) или поваренной соли;
  • минеральное масло.

Для закаливания углеродистой стали лучше использовать воду, температура которой 18 градусов. Для закалки легированной стали подойдет масло.

Характеристики стали: закаливаемость и прокаливаемость

Не следует смешивать важные характеристики стали — закаливаемость и прокаливавемость.

Закаливаемость

Эта характеристика говорит о способности стали к обретению твердости после закаливания. Существуют виды стали, которые плохо поддаются закалке и после процесса термообработки сталь становится недостаточно твердой. Про такой материал говорят — «не принял закалку».

Способность к твердости у мартенсита связана со степенью искаженности его кристаллической решетки. Меньшее содержание углерода в мартенсите способствует меньшим искажениям в кристаллической решетки, а, значит, твердость стали будет ниже. Если в стали содержится углерода менее 0.3%, то у такого сплава закаливаемость низкая, и обычно такие сплавы не подвергаются закалке.

Прокаливаемость

Эта характеристика может сказать о том, насколько глубоко сталь закалилась. При закаливании поверхность стальной детали остывает быстрее нежели сердцевина. Это происходит потому что поверхность находится в непосредственном контакте с жидкостью для охлаждения, которая отнимает тепло. А центральная часть стальной детали отдает свое тепло через толщу металла и поверхность, где ее и поглощает охлаждающая жидкость.

На прокаливаемость влияет критическая скорость закаливания — чем она (скорость) ниже, тем глубже прокаливается сталь. К примеру, крупнозернистая сталь, у которой небольшая критическая скорость закалки, прокаливается глубже, чем мелкозернистая сталь, у которой высокая критическая скорость закалки.

Глубина прокаливаемости зависит от исходной структуры закаливаемого сплава, температуры нагрева и закалочной среды. Прокаливаемость стали определяется по излому, микроструктуре и твердости.

Виды закалки стали

Способов закаливания металла существует множество. Их выбор обусловлен составом стали, характером изделия, необходимой твердостью и условиями охлаждения. Часто используется ступенчатая, изотермическая и светлая закалка.

Закаливание в одной среде

Обратившись к графику кривых охлаждения для различных способов закалки, можно видеть, что закалке в одной среде соответствует кривая 1. Выполнять такое закаливание просто. Однако, подойдет она не для каждой стальной детали. Из-за быстрого понижения температуры у стали переменного сечения в температурном интервале возникает температурная неравномерность и большое внутреннее напряжение. От этого стальная деталь может покоробиться и растрескаться.

Рисунок №2. Кривые охлаждения.

Большое содержание углерода в стальных деталях может вызвать объемные изменения структурных напряжений, а это, в свою очередь, грозит появлением трещин.

Заэвтектоидные стали, имеющие простую форму, лучше закаливать в одной среде. Для закалки более сложных форм применяется закалка в двух средах или ступенчатая закалка.

Закаливание в двух средах (на рисунке №2 это кривая 2) применяется для инструментов, изготовленных из высокоуглеродистой стали. Сам метод состоит в том, что сталь вначале охлаждается в воде до 300-400 градусов, после чего ее переносят в масляную среду, где она прибывает пока полностью не охладится.

Ступенчатая закалка

При ступенчатом закаливании (кривая 3) стальная деталь помещается вначале в соляную ванну. Температура самой ванны должна быть выше температуры, при которой происходит мартенситное превращение (240–250 градусов). После соляной ванны сталь перемешают в масло, либо на воздух. Используя ступенчатою закалку можно не бояться, что деталь покоробится или в ней образуются трещины.

Недостаток такой закалки заключает в том, что ее можно применять лишь для заготовок из углеродистой стали с небольшим сечением (8–10 мм). Ступенчатая закалка может применяться для деталей из легированной стали с большим сечением (до 30 мм).

Изотермическая закалка

Изотермическому закаливанию на графике соответствует кривая 4. Закаливание проводится аналогично ступенчатой закалке. Однако, в горячей ванне сталь выдерживается дольше. Это делается так, чтобы вызвать полный распад аустенита. На схеме выдержка показывается на S-образной линии точками a и b. Сталь, прошедшая изотермическую закалку, может охлаждаться с любой скоростью. Средой охлаждения могут служить расплавленные соли.

Преимущества изотермического закаливания:

  • сталь почти не поддается короблению;
  • не появляются трещины;
  • вязкость.

Светлая закалка

Для проведения такого закаливания требуется специально оборудованная печь, снабженная защитной средой. На производстве, чтобы получить чистую и светлую поверхность у закаленной стали следует использовать ступенчатую закалку. После нее сплав охлаждается в расплавленной едкой щелочи. Перед процессом закалки стальная деталь нагревается в соляной ванне из хлористого натрия с температурой на 30–50 градусов выше точки Ас1 (см «Схему критических точек»). Охлаждение детали проходит в ванне при 180–200 градусов. Охлаждающей средой служит смесь состоящая из 75% смесь едкого калия, 25% едкого натрия, в которую добавляется 6–8% воды (от веса соли).

Закалка с самоотпуском

Применяется при производстве инструментальной стали. Основная идея закалки заключается в изъятии стальной детали из охлаждающей среды до момента ее полного охлаждения. Изъятие происходит в определенный момент. В сердцевине стальной детали сохраняется определенное количество тепла. За его счет и производится последующий отпуск. После того как за счет внутреннего тепла стальное изделие достигнет нужной температуры для отпуска, сталь помещают в закалочную жидкость, для окончательного охлаждения.

Р исунок №3 — Т аблица побежалости.

Отпуск контролируется по цветам побежалости (см рисунок №3), которая формируется на гладкой поверхности металла при 220–330 градусах.

При помощи закалки самоотпуском изготавливаются кувалды, зубила, слесарные молотки и другие инструменты, от которых требуется высокая твердость на поверхности с сохранением внутренней вязкости.

Способы охлаждения при закаливании

При быстром охлаждении стальных изделий при закалке существует угроза возникновений больших внутренних напряжений, что приводит к короблению материала, а иногда и трещинам. Для того чтобы этого избежать там, где возможно, стальные детали лучше охлаждать в масле. Углеродистую сталь, для которой такое охлаждение невозможно, лучше охлаждать в воде.

Кроме среды охлаждения на внутренне напряжение изделий из стали влияет, каким образом они погружаются в охлаждающую среду. А именно:

  • изделия, имеющие толстую и тонкую часть, лучше погружать в закалочную жидкость сначала объемистой частью;
  • если изделие имеет вытянутую форму (сверла, метчики), нужно погружать строго вертикально, в противном случае они могут покоробиться.

Иногда требуется закалить не всю деталь, а только ее часть. Тогда применяется местная закалка. Изделие нагревается не полностью, зато в закалочную жидкость погружают всю деталь.

Дефекты при закаливании стали

  1. Недостаточная твердость. Возникает если была низкая температура нагрева, малая выдержка при рабочей температуре или имело место недостаточная скорость охлаждения. Можно исправить: применить более энергичную среду; сделать отжиг, а затем закалить.
  2. Перегрев. Происходит если стальная деталь нагревается до температуры, превышающей допустимую. При перегреве образуется крупнозернистая структура, что приводит к хрупкости детали. Можно исправить: с помощью отжига и закалки при нужной температуре.
  3. Пережог. При нагреве стальной детали до высокой температуры, близкой к температуре плавления (1200–1300 градусов) в окислительной атмосфере. Внутрь стальных изделий проникает кислород, по границам зерен формируются окислы. Такая сталь не исправляется.
  4. Окисление и обезуглероживание. В этом случае на поверхности стальных деталей образуются окалины (окислы), а в поверхностных слоях стали выгорает углерод. Этот брак исправить невозможно. Для предупреждения брака следует пользоваться печами с защитной атмосферой.
  5. Коробление и трещины. Возникают из-за внутренних напряжений. Трещины — это неисправимый брак. Коробление можно удалить при помощи рихтовки или правки.

Заключение

Самое важно при закалке металла это четкое соблюдение технологии. Любой отклонение в сторону приводит к нежелательным последствиям. Если делать все правильно, то даже в домашних условиях можно провести процесс закаливания стали.

Оцените статью: Поделитесь с друзьями!

Закалка стали :: Технология металлов

Закалкой  называется операция термической обработки, состоя­щая из нагрева до температур выше верхней критической точки A

C3  для доэвтектоидной стали и выше нижней критической точки АС1

 для заэвтектоидной стали и выдержки при данной температуре с последующим быстрым охлаждением (в воде, масле, водных раство­рах солей и пр.).

В результате закалки сталь получает структуру мартенсита и благодаря этому становится твердой.

Закалка повышает прочность конструкционных сталей, придает твердость и износостойкость инструментальным сталям.

Режимы закалки определяются скоростью и температурой на­грева, длительностью выдержки при этой температуре и особенно скоростью охлаждения.

 

Выбор температуры закалки.

Температура нагрева стали для закалки зависит в основном от химического состава стали. При за­калке доэвтектоидных сталей нагрев следует вести до температуры на 30 — 50° выше точки АС3 . В этом случае сталь имеет структуру однородного аустенита, который при последующем охлаж­дении со скоростью, превышающей критическую скорость закалки, превращается в мартенсит. Такая закалка называется   

полной. При нагреве доэвтектоидной стали до температур AC1 — АC3 в структуре мартенсита сохраняется некоторое количество оставше­гося после закалки феррита, снижающего твердость закаленной ста­ли. Такая закалка называется неполной.

 

Для заэвтектоидной ста­ли наилучшая температура закалки — на 20—30° выше АС1 , т. е. неполная закалка. В этом случае сохранение цементита при нагреве и охлаждении будет способствовать повышению твердости, так как твердость цементита больше твердости мартенсита. Нагревать заэвтектоидную сталь до температуры выше Аст не следует, так как твердость получается меньшей, чем при закалке с температуры выше АС1,за счет растворения цементита и увеличения количества остаточного аустенита. Кроме того, при охлаждении с более высоких температур могут возникнуть большие внутренние напря­жения.

 

Скорость охлаждения.

Для получения структуры мартенсита требуется переохладить аустенит путем быстрого охлаждения ста­ли,находящейся при температуре наименьшей устойчивости аусте­нита, т. е.при 650—550° С.

В зоне температур мартенситного превращения, т. е,ниже 240°С, наоборот, выгоднее применять замедленное охлаждение, так как образующиеся структурные напряжения успевают выравняться, а твердость образовавшегося мартенсита практически не снижается.

Правильный выбор закалочной среды имеет большое значение для успешного проведения термической обработки.

Наиболее распространенные закалочные среды —вода, 5—10%-ный водный раствор едкого натра или поваренной соли и минераль­ное масло. Для закалки углеродистых сталей можно рекомендовать воду с температурой 18° С; а для закалки большинства легирован­ных сталей — масло.

 

Закаливаемость и прокаливаемость стали.

При закалке стали важно знать еезакаливаемость и прокаливаемость. Эти характерис­тикине следует смешивать.

 

Закаливаемость показывает способность стали к повы­шению твердости при закалке. Некоторые стали обладают плохой закаливаемостью, т. е.имеют недостаточную твердость после за­калки. О таких сталях говорят, что они «не принимают» закалку.

Закаливаемость стали зависит восновном от содержания в ней углерода. Это объясняется тем, что твердость мартенсита зависит отстепени искажения его кристаллической решетки. Чем меньше вмартенсите углерода, тем меньше будет искажена его кристалли­ческая решетка и, следовательно, тем ниже будет твердость стали.

Стали, содержащие менее 0,3% углерода, имеют низкую зака­ливаемость и поэтому, как правило, закалке не подвергаются.

 

Прокаливаемость стали характеризуется ееспособ­ностью закаливаться на определенную глубину. При закалке по­верхность детали охлаждается быстрее, так как она непосредствен

­носоприкасается с охлаждающей жидкостью, отнимающей тепло. Сердцевина детали охлаждается гораздо медленнее, тепло из цент­ральной части детали передается через массу металла к поверх­ности итолько на поверхности поглощается охлаждающей жидкостью.

Прокаливаемость стали зависит от критической скорости за­калки: чем ниже критическая скорость, тем на большую глубину прокаливаются стальные детали. Например, сталь с крупным при­родным зерном аустенита (крупнозернистая), которая имеет низ­кую критическую скорость закалки, прокаливается на большую глу­бину, чем сталь с мелким природным зерном аустенита (мелкозернистая), имеющая высокую критическую скорость закалки. Поэто­му крупнозернистую сталь применяют для изготовления деталей, которые должны иметь глубокую или сквозную прокаливаемость, амелкозернистую — для деталей с твердой поверхностной закален­ной   коркой и вязкой незакаленной сердцевиной.

На глубину прокаливаемости влияют также исходная структура закаливаемой стали, температура нагрева под закалку и закалочная среда.

Прокаливаемость     стали можно определить по излому, по микроструктуре и по твер­дости.

 

Виды закалки стали.

Су­ществует несколько способов закалки, применяемых в за­висимости от состава стали, характера обрабатываемой де­тали, твердости, которую не­обходимо получить, и усло­вий охлаждения.

Закалка в  одной  среде схематично показана на рис. 1 в виде кривой 1. Такую закалку проще выполнять, но ее можно применять не для каждой стали и не для любых деталей, так как быстрое охлаждение деталей переменного сечения в боль­шом интервале температур способствует возникновению температур­ной неравномерности и больших внутренних напряжений, что может вызвать коробление детали, а иногда и растрескивание (если вели­чина внутренних напряжений превзойдет предел прочности).

Чем больше углерода в стали, тем больше объемные изменения и структурные напряжения, тем больше опасность возникновения трещин.

 

 

Рис. 1.   Кривые охлаждения   для различных способов закалки

 

Заэвтектоидные стали закаливают в одной среде, если детали имеют простую форму (шарики, ролики и т. д.). Если детали слож­ной формы, применяют либо закалку в двух средах, либо ступенча­тую закалку.

Закалку в двух средах (кривая 2)применяют для инструмента из высокоуглеродистой стали (метчики, плашки, фре­зы). Сущность способа состоит в том, что деталь вначале замачива­ют в воде, быстро охлаждая ее до 300—400° С, а затем переносят в масло, где оставляют до полного охлаждения.

 

Ступенчатую закалку (кривая 3) выполняют путем быстрого охлаждения деталей в соляной ванне, температура кото­рой намного выше температуры начала мартенситного превращения (240—250° С). Выдержка при этой температуре должна обеспечить выравнивание температур по всему сечению детали. Затем детали охлаждают до комнатной температуры в масле или на спокойном воздухе, устраняя тем самым термические внутренние напряжения.

Ступенчатая закалка уменьшает внутренние напряжения, ко­робление и возможность образования трещин.

Недостаток этого вида закалки в том, что горячие следы не мо­гут обеспечить большую скорость охлаждения при температуре 400—600° С. В связи с этим ступенчатую закалку можно применять для деталей из углеродистой стали небольшого сечения (до 8—10 мм). Для легированных сталей, имеющих небольшую критическую ско­рость закалки, ступенчатая закалка применима к деталям большого сечения (до 30 мм).

 

Изотермическую  закалку (кривая 4)проводят так же, как ступенчатую, но с более длительной выдержкой при темпера­туре горячей ванны (250—300° С), чтобы обеспечить полный распад аустенита. Выдержка, необходимая для полного распада аустенита, определяется по точкам а и b и по S-образной кривой (см. рис. 1). В результате такой закалки сталь приобретает структуру игольча­того троостита с твердостью HRC45 55 и с сохранением необхо­димой пластичности. После изотермической закалки охлаждать сталь можно с любой скоростью. В качестве охлаждающей среды ис­пользуют расплавленные соли: 55% KNO

3 + 45% NaNO2 (темпе­ратура плавления 137° С) и 55% KNO3 + 45% NaNO3 (температура плавления 218° С), допускающие перегрев до необходимой темпера­туры.

Изотермическая закалка имеет следующие преимущества перед обычной:

минимальное коробление стали и отсутствие трещин; большая вязкость стали.

В настоящее время широко используют ступенчатую и изотерми­ческую светлую закалки.

 

Светлую  закалку

стальных деталей проводят в специ­ально оборудованных печах с защитной средой. На некоторых инст­рументальных заводах для получения чистой и светлой поверхности закаленного инструмента применяют ступенчатую закалку с ох­лаждением в расплавленной едкой щелочи. Перед закалкой инстру­мент нагревают в соляной ванне из хлористого натрия при темпера­туре на 30—50° С выше точки АС1 и охлаждают при 180—200° С в ванне, состоящей из смеси 75% едкого калия и 25% едкого натра сдобавлением 6—8% воды (от веса всей соли). Смесь имеет тем­пературу плавления около 145° С и, благодаря тому что в ней находится вода, обладает очень высокой закаливающей способ­ностью.

 

При  ступенчатой  закалке стали с переохлажде­нием аустенита в расплавленной едкой щелочи с последующим окон­чательным охлаждением на воздухе детали приобретают чистую светлую поверхность серебристо-белого цвета; в этом случае отпа­дает необходимость в пескоструйной очистке деталей и достаточна промывка их в горячей воде.

 

Закалка  с  самоотпуском широко применяется в инструментальном производстве. Сущность ее состоит в том, что детали не выдерживают в охлаждающей среде до полного охлажде­ния, а в определенный момент извлекают из нее, чтобы сохранить в сердцевине изделия некоторое количество тепла, за счет которого производится последующий отпуск. После достижения требуемой температуры отпуска за счет внутреннего тепла деталь окончатель­но охлаждают в закалочной жидкости.

Проконтролировать отпуск можно по цветам побежалости (см. рис. 2), появляющимся на зачищенной поверхности стали при 220—330° С.

 

 

Рис. 2. Цвета побежалости при отпуске

 

Закалку ссамоотпуском применяют для зубил, кувалд, слесарных молотков, кернеров и другого инструмента, требующего высокой твердости на поверхности и сохранения вязкой сердцевины.

 

Способы охлаждения при закалке.

Быстрое охлаждение стальных деталей при закалке является причиной возникновения в них боль­ших внутренних напряжений. Эти напряжения иногда приводят к короблению деталей, а в наиболее тяжелых случаях — к трещинам. Особенно большие и опасные внутренние напряжения возни­кают при охлаждении в воде. Поэтому там, где можно, следует ох­лаждать детали в масле. Однако в большинстве случаев для деталей из углеродистой стали это невозможно, так как скорость охлаждения в масле значительно меньше критической скорости, необходи­мой для превращения аустенита в мартенсит. Следовательно, мно­гие детали из углеродистых сталей рекомендуется закаливать с ох­лаждением в воде, но при этом уменьшать неизбежно возникающие внутренние напряжения. Для этого пользуются некоторыми из описанных способов закалки, в частности, закалкой в двух средах, закалкой с самоотпуском и т. д.

Внутренние напряжения зависят также от способа погружения деталей в закалочную среду. Необходимо придерживаться следую­щих основных правил:

детали, имеющие толстую и тонкую части, погружать в закалоч­ную среду сначала толстой частью;

детали, имеющие длинную вытянутую форму (метчики, сверла развертки), погружать в строго вертикальном положении, иначе они покоробятся (рис. 3).

 

 

Рис. 3. Правильное погружение деталей и инструментов в за­каливающую среду

 

Иногда по условиям работы должна быть закалена не вся деталь, а лишь часть ее. В этом случае применяют местную закалку: деталь нагревают не полностью, а в закалочную среду погружают целиком. В этом случае закаливается только нагретая часть детали.

Местный нагрев мелких деталей производят в соляной ванне, погружая в нее только ту часть детали, которую требуется закалить; так закаливают, например, центры токарных станков. Можно по­ступать и так: нагреть деталь полностью, а охладить в закалочной среде только ту часть, которая должна быть закалена.

 

Дефекты, возникающие при закалке стали.

Недостаточ­ная твердость закаленной детали — следствие низкой тем­пературы нагрева, малой выдержки при рабочей температуре или недостаточной скорости охлаждения.

 Исправление де­фекта: нормализация или отжиг с последующей закалкой; при­менение более энергичной закалочной среды.

 

Перегрев связан с нагревом изделия до температуры, значительно превышающей необходимую температуру нагрева под закалку. Перегрев сопровождается образованием крупнозернистой структуры, в результате чего повышается хрупкость стали.

И справление  дефекта: отжиг (нормализация) и последущая закалка с необходимой температуры.

 

Пережог возникает при нагреве стали до весьма высоких температур, близких к температуре плавления (1200—1300° С) в окислительной атмосфере. Кислород проникает внутрь стали, и по границам зерен образуются окислы. Такая сталь хрупка и исправить ее невозможно.

Окисление и  обезуглероживание стали ха­рактеризуются образованием окалины (окислов) на поверхности дета­лей и выгоранием углерода в поверхностных слоях. Этот вид брака термической обработкой неисправим. Если позволяет припуск на механическую обработку, окисленный и обезуглероженный слой нужно удалить шлифованием. Чтобы предупредить этот вид брака, детали рекомендуется нагревать в печах с защитной атмосфе­рой.

Коробление и трещины — следствия внутренних напряжений. Во время нагрева и охлаждения стали наблюдаются объемные изменения, зависящие от температуры и структурных пре­вращений (переход аустенита в мартенсит сопровождается увеличе­нием объема до 3%). Разновременность превращения по объему за­каливаемой детали вследствие различных ее размеров и скоростей охлаждения по сечению ведет к развитию сильных внутренних нап­ряжений, которые служат причиной трещин и коробления деталей в процессе закалки.

Образование трещин обычно наблюдается при температурах ниже 75—100° С, когда мартенситное превращение охватывает значительную часть объема стали. Чтобы предупредить образова­ние трещин, при конструировании деталей необходимо избегать резких выступов, заостренных углов, резких переходов от тонких сечений к толстым; следует также медленно охлаждать сталь в зоне образования мартенсита (закалка в масле, в двух средах, ступенча­тая закалка). Трещины являются неисправимым браком, коробле­ние же можно устранить последующей рихтовкой или правкой.

 

 

 

 

Источник:
Остапенко Н.Н.,Крапивницкий Н.Н. Технология металлов. М. Высшая школа,1970г.

температура, режимы, технология, твердость стали после закалки

Для придания стали определенных эксплуатационных качеств на протяжении многих десятилетий проводится термообработка. Сегодня, как и несколько столетий назад, закалка стали предусматривает нагрев металла и его последующее охлаждение в определенной среде. Температура нагрева стали под закалку должна быть выбрана в соответствии с составом металла и механическими свойствами, которые нужно получить. Допущенные ошибки при выборе режимов закалки приведут к повышению хрупкости структуры или мягкости поверхностного слоя. Именно поэтому рассмотрим способы закалки стали, особенности применяемых технологий, а также многие другие моменты.

Закалка стали

Какой бывает закалка метала?

Для чего нужна закалка стали знали еще древние кузнецы. Правильно выбранная температура закалки стали позволяет изменять основные эксплуатационные характеристики материала, так как происходит преобразование структуры.

Закалка – термообработка стали, которая сегодня проводится для улучшения механических качеств металла. Процесс основан на перестроении атомной решетки за счет воздействия высокой температуры с последующим охлаждением.

Технология закалки стали позволяет придать недорогим сортам металла более высокие эксплуатационные качества. За счет этого снижается стоимость изготавливаемых изделий, повышается прибыльность налаженного производства.

Основные цели, которые преследуются при проведении закалки:

  1. Повышение твердости поверхностного слоя.
  2. Увеличение показателя прочности.
  3. Уменьшение пластичности до требуемого значения, что существенно повышает сопротивление на изгиб.
  4. Уменьшение веса изделий при сохранении прочности и твердости

Существуют самые различные методы закалки стали с последующим отпуском, которые существенно отличаются друг от друга. Наиболее важными режимами нагрева можно назвать:

  1. Температуру нагрева.
  2. Время, требующееся для нагрева.
  3. Время выдержки металла при заданной температуре.
  4. Скорость охлаждения.

Изменение свойств стали при закалке может проходить в зависимости от всех вышеприведенных показателей, но наиболее значимым называют температуру нагрева. От нее зависит то, как будет происходить перестроение атомной решетки. К примеру, время выдержки при закалке стали выбирается в соответствии с тем, какой прочностью и твердостью должно обладать зубчатое колесо для обеспечения длительной эксплуатации в условиях повышенного износа.

Цвета закалки стали

При рассмотрении того, какие стали подвергаются закалке стоит учитывать, что температура нагрева зависит от уровня содержания углерода и различных примесей. Единицы закалки стали представлены максимальной температурой, а также временем выдержки.

При рассмотрении данного процесса изменения основных эксплуатационных свойств следует учитывать нижеприведенные моменты:

  1. Закалка направлена на повышение твердости. Однако с увеличением твердости металл становится и более хрупким.
  2. На поверхности может образовываться слой окалины, так как потеря углерода и других примесей у поверхностных слоев больше, чем в середине. Толщина данного слоя учитывается при расчета припуска, максимальных размеров будущих деталей.

Выполняется закалка углеродистой стали с учетом того, с какой скоростью будет проходить охлаждение. При несоблюдении разработанных технологий может возникнуть ситуация, когда перестроенная атомная решетка перейдет в промежуточное состояние. Это существенно ухудшит основные качества материала. К примеру, охлаждение со слишком большой скоростью становится причиной образования трещин и различных дефектов, которые не позволяют использовать заготовку в дальнейшем.

Процесс закалки сталей предусматривает применение камерных печей, которые могут нагревать среду до температуры 800 градусов Цельсия и поддерживать ее на протяжении длительного периода. Это позволяет продлить время закалки стали и повысить качество получаемых заготовок. Некоторые стали под закалку пригодны только при условии нагрева среды до температуры 1300 градусов Цельсия, для чего проводится установка иных печей.

Отдельная технология разрабатывается для случая, когда заготовка имеет тонкие стены и грани. Представлена она поэтапным нагревом.

Полную закалку используют обычно для сталей и деталей, которые не подвержены растрескиванию или короблению.

Зачастую технология поэтапного нагрева предусматривает достижение температуры 500 градусов Цельсия на первом этапе, после чего выдерживается определенный промежуток времени для обеспечения равномерности нагрева и проводится повышение температуры до критического значения. Холодная закалка стали не приводит к перестроению всей атомной сетки, что определяет только несущественное увеличение эксплуатационных характеристик.

Как ранее было отмечено, есть различные виды закалки стали, но всегда нужно обеспечить равномерность нагрева. В ином случае перестроение атомной решетки будет проходить так, что могут появиться серьезные дефекты.

Методы предотвращения образования окалины и критического снижения концентрации углерода

Назначение закалки стали проводится с учетом того, какими качествами должна обладать деталь. Процесс перестроения атомной сетки связан с большими рисками появления различных дефектов, что учитывается на этапе разработки технологического процесса.

Даже наиболее распространенные методы, к примеру, закалка стали в воде, характерно появления окалины или существенного повышения хрупкости структуры при снижении концентрации углерода. В некоторых случаях закалка стали проводится уже после финишной обработки, что не позволяет устранить даже мелкие дефекты. Именно поэтому были разработаны технологии, которые снижают вероятность появления окалины или трещин. Примером можно назвать технологию, когда закалка стали проходит в среде защитного газа. Однако сложные способы закалки стали существенно повышают стоимость проведения процедуры, так как газовая среда достигается при установке печей с высокой степенью герметичности.

Более простая технология, при которой проводится закалка углеродистой стали, предусматривает применение чугунной стружки или отработанного карбюризатора. В данном случае сталь под закалку помещают в емкость, заполненную рассматриваемыми материалами, после чего только проводится нагрев. Температура закалки несущественно корректируется с учетом созданной оболочки из стружки. Технология предусматривает обмазывание емкости снаружи глиной для того, чтобы избежать попадание кислорода, из-за чего начинается процесс окислений.

Температура нагрева стали при термообработке

Как ранее было отмечено, термообработка предусматривает и охлаждение сталей, для чего может использоваться не только водяная, но, к примеру, и соляная ванная. При использовании кислот в качестве охлаждающей жидкости одним из требований является периодическое раскисление сталей. Данный процесс позволяет исключить вероятность снижения показателя концентрации углерода в поверхностном слое. Чтобы провести процесс раскисления используется борная кислота или древесный уголь. Также не стоит забывать о том, что процесс раскисления сталей приводит к появлению пламя на заготовки во время ее опускания в ванную. Поэтому при закалке, закалкой сталей с применением соляных ванн следует соблюдать разработанную технику безопасности.

Рассматривая данные методы термической обработки с последующим охлаждением следует отметить, что они существенно повышают себестоимость заготовки. Однако сегодня охлаждение в воде или закалка при заполнении камеры кислородом не позволяют повысить показатели свойств стали без появления дефектов.

Закалка стали — технологический процесс

Процедура охлаждения

Рассматривая все виды закалки стали стоит учитывать, что не только температура нагрева оказывает сильное воздействие на структуру, но и время выдержки, а также процедура охлаждения. На протяжении многих лет для охлаждения сталей использовали обычную воду, в составе которой нет большого количества примесей. Стоит учитывать, что примеси в воде не позволяют провести полную закалку с соблюдением скорости охлаждения. Оптимальной температурой воды, используемой для охлаждения закалённой детали, считают показатель 30 градусов Цельсия. Однако стоит учитывать, что жидкость подвергается нагреву при опускании раскаленных заготовок. Холодная проточная вода не может использоваться при охлаждении.

Обычно используют воду при охлаждении для получения не ответственных деталей. Это связано с тем, что изменение атомной сетки в данном случае обычно приводят к короблению и появлению трещин. Закаливание с последующим охлаждением в воде проводят в нижеприведенных случаях:

  1. При цементировании металла.
  2. При поверхностной закалке.
  3. При простой форме заготовки.

Детали после финишной обработки подобным образом не охлаждаются.

Для придания нужной твердости заготовкам сложной формы используют охлаждающую жидкость, состоящую из каустической соды, нагреваемой до температуры 60 градусов Цельсия. Стоит учитывать, что закаленное железо при использовании данной охлаждающей жидкости приобретает более светлый оттенок. Специалисты уделяют внимание важности соблюдения техники безопасности, так как могут выделяться токсичные вещества при нагреве рассматриваемых веществ.

Процесс закалки стали

Тонкостенные детали также подвергаются термической обработке. Закалочное воздействие с последующим неправильным охлаждением приведет к тому, что концентрация углерода снизиться до критических значений. Выходом из сложившейся ситуации становится использование минеральных масел в качестве охлаждающей среды. Используют их по причине того, что масло способствует равномерному охлаждению. Однако попадание воды в состав масла становится причиной появления трещин. Поэтому заготовки должны подвергаться охлаждению при использовании масла с соблюдением мер безопасности.

Рассматривая назначение минеральных масел в качестве охлаждающей жидкости следует учитывать и некоторые недостатки этого метода:

  1. Соблюдая режимы нагрева можно создать ситуацию, когда раскаленная заготовка контактирует с маслом, что приводит к выделению вредных веществ.
  2. В определенном интервале воздействия высокой температуры масло может загореться.
  3. Подобный метод охлаждения позволяет выдержать требуемую твердость, измеряемую в определенных единицах, а также избежать появления трещин в структуре, но на поверхности остается налет, удаление которого также создает весьма большое количество проблем.
  4. Само масло со временем теряет свои свойства, а его стоимость довольно велика.

Какие именно жидкости используют для охлаждения стали?

Вышеприведенная информация определяет то, что жидкость и режим охлаждения выбираются в зависимости от формы, размеров заготовки, а также того, насколько качественной должна быть поверхность после закалки.  Комбинированным методом охлаждения называется процесс применения нескольких охлаждающих жидкостей. Примером можно назвать закалку детали сложной формы, когда сначала охлаждение проходит в воде, а потом масляной ванне. В этом случае учитывается то, до какой температуры на каком этапе охлаждается металл.

Термообработка металла – особенности закалки стали. Виды термообработки стали

Как будет осуществляться отжиг, закалка стали или ее отпуск, напрямую зависит от марки металла и формы обрабатываемых образцов. Также учитываются характеристики, необходимые продукции, которых можно добиться, применяя определенный комплекс действий и методик.

Промышленные и лабораторные печи для термообработки металла позволяют выполнять широкий спектр функций. Техника отличается простотой применения и точностью выполнения задач.

Термическая обработка стали – это тепловое воздействие на металл, с применением определенных режимов. Температурные процессы позволяют изменить структуру и свойства материала, усовершенствовав его качественные характеристики

Термообработка разных марок стали – основные операции

Каждый из видов термической обработки стали представляет собой сложный производственный комплекс. Среди различных процессов базовыми являются:

Отжиг

Закалка

Отпуск

Первого рода – рекристаллизационный, гомогенизацонный, изотермический

В одном охладителе

Прерывистая

Ступенчатая

Изотермическая

С самоотпуском

Индукционная

Низкий

Средний

Высокий

Второго рода – диффузионный, полный, неполный, светлый, сфероидизирующий

Муфельные печи позволяют осуществлять термообработку металла предельно четко. Благодаря современному оборудованию легко выставлять и поддерживать температуру необходимое количество времени

Особенности процесса закалки стали

Независимо от того, какая технология закалки стали будет выбрана, она будет состоять из следующих этапов:

  • Нагрева. Сколько изделия будут находиться в камере печи, зависит от марки металла и необходимого эффекта.
  • Выдержки. Температура и период зависят от объемов продукции и ее характеристик. Этап сквозного прогрева позволяет завершить преобразование структуры стали.
  • Охлаждения. Важна не только охлаждающая среда, но и скорость, с которой будет выполняться процесс.

Для обработки углеродистой стали лучше всего подойдут камерные печи. Стоит учесть, что в этом случае не потребуется предварительный подогрев образца. Данные марки не подвержены короблению или растрескиванию основы.

Закалка стали – это технология термообработки, благодаря которой даже недорогим сортам металла легко повысить эксплуатационные характеристики. В результате можно снизить стоимость продукции, увеличив рентабельность производства

Изменение свойств металла зависит от соблюдения каждого критерия закалки. Самым значимым является температура нагрева. Именно она влияет на изменение атомной решетки. Какую термоотметку выбрать и определить период выдержки? Необходимые режимы термообработки стали зависят от требуемого уровня прочности и твердости для максимально долгого эксплуатационного срока изделия, при повышенном износе.

Камерные печи для термообработки разных марок стали выполняются с разными размерами рабочих камер и способами загрузки образцов. Выбрать подходящий вариант можно, исходя из производственных объемов

Технология закалки разных марок стали – как и для чего выполняется

Согласно ГОСТ на термообработку стали, закаливание разных марок может быть:

  • С одним охладителем. Образец, доведенный до определенной температуры, погружают в жидкость. Там металл находится, пока не остынет до требуемой отметки. Применяется метод для углеродистых и легированных, а также изделий с несложной конструкцией.
  • Прерывистой. Используются две среды. Металл сначала проходит быстрое охлаждение. Для этого подойдет вода. Затем продукцию погружают в масло. Это необходимо для медленного достижения определенной температурной отметки. Применяют способ для высокоуглеродистой стали.

При разных способах закалки отличаться могут не только получаемые качественные характеристики стали, но и цвета каления

  • Ступенчатой. Изделия охлаждаются в среде, чья термоотметка превышает мартенситный уровень обрабатываемой марки. Во время остывания и выдержки, деталь по всему периметру становится температуры закалочной емкости. После этого осуществляется медленное охлаждение с закалкой. Так аустенит преобразуется в мартенсит.
  • Струйной. Поверхность интенсивно обрызгивают водным напором. Паровой кокон при этом не образуется, благодаря чему можно добиться глубокой прокалки. Применяют если необходимо обработать только часть поверхности.
  • Изотермической. Метод схож со ступенчатым закаливанием, но отличается временем выдержки. Сталь пребывает в среде ровно столько времени, сколько необходимо для завершения изотермического преобразования аустенита.

Основные температурные и временные режимы термообработки сталей – таблица показателей разных марок

Преимущества технологии закалки стали

Закаливание стали необходимо для изменения свойств изделий. Правильное выполнение всех процессов позволяет:

  • Увеличить твердость поверхностного слоя.
  • Повысить прочностные показатели.
  • Снизить пластичность до нужного значения, повысив сопротивление на изгиб.
  • Уменьшить вес продукции, сохраняя ее прочность и твердость.

Термообработка стали – основные технологические этапы

  

Основные дефекты при неправильной закалке стали

Независимо от того, какие виды термообработки стали осуществляются, при несоблюдении технологии можно ухудшить характеристики металла. Если закалка была выполнена неправильно, результатом станет:

1. Недостаточная твердость. Обусловлена слишком низкой температурой нагрева и малой выдержкой. Также к этому приведет и сниженная скорость остывания.

2. Перегрев. Возможен, если деталь доведена до большей температуры, превышающей отметку закаливания. Определить изъян можно по образованию крупнозернистой структуры. Это повлечет хрупкость металла.

Чтобы исправить дефекты, нужно провести термопроцесс заново, с корректировкой всех несоответствующих показателей

3. Пережог. Получают при нагревании металла до температуры близкой к плавлению. При этом в основу стали попадает кислород. В результате на зернистости образуются окислы. Исправить такой дефект невозможно, поскольку сталь становится чрезмерно хрупкой.

4. Обезуглероживание / окисление. На деталях образуются окалины, при этом на поверхностном уровне выгорает углерод. Такой дефект не исправить при помощи новой термообработки. Если есть припуск, позволяющий выполнить механическое воздействие, испорченный слой шлифуют.

Избежать окисления и обезуглероживания можно при помощи нагрева стали в электропечах с защитной атмосферой

5. Коробление и трещины. Появляются при сильном внутреннем напряжении. Проблема связана со спецификой обработки. В процессе нагревания и охлаждения металла происходит изменение объема. Зависят колебания, как от температуры, так и структурных преобразований, их скорости.

Только верно выполненная закалка металла обеспечит требуемые характеристики изделий различного назначения. Выполнять термообработку стали необходимо в строгом соответствии с производственной технологией

Подробнее о том, какие камерные или шахтные печи наилучшим образом подойдут для конкретных задач или будут универсальными, расскажут специалисты компании «Лабор». Для детальной консультации звоните прямо сейчас!

Закалка стали – способы, температура, правила

Одним из наиболее распространенных способов термообработки металлов является закалка стали. Именно при помощи закаливания формируются требуемые характеристики готового изделия, а ее неправильное выполнение может привести к излишней мягкости металла (непрокаливание) или к его чрезмерной хрупкости (перекаливание). В нашей статье речь пойдет о том, что такое правильная закалка и что нужно сделать, чтобы ее выполнить.

Закалка стали

Какой бывает закалка металла

О том, что воздействие высокой температуры на металл может изменить его структуру и свойства, знали еще древние кузнецы и активно использовали это на практике. В дальнейшем уже научно было установлено, что закалка изделий, изготовленных из стали, предполагающая нагрев и последующее охлаждение металла, позволяет значительно улучшать механические характеристики готовых изделий, значительно увеличивать срок их службы и даже в итоге уменьшать их вес за счет увеличения прочности детали. Что примечательно, закалка деталей из недорогих сортов стали позволяет придать им требуемые характеристики и успешно использовать вместо более дорогостоящих сплавов.

Смысл процесса, который называется закалка изделий из стальных сплавов, заключается в нагреве металла до критической температуры и его последующем охлаждении. Основная цель, которая преследуется такой технологией термообработки, заключается в повышении твердости и прочности металла с одновременным уменьшением его пластичности.

Существуют различные виды закалки и последующего отпуска, отличающиеся режимами проведения, которые и определяют конечный результат. К режимам закалки относятся температура нагрева, время и скорость его выполнения, время выдержки детали в нагретом до заданной температуры состоянии, скорость, с которой осуществляется охлаждение.

Наиболее важным параметром при закалке металлов является температура нагрева, при достижении которой происходит перестройка атомной решетки. Естественно, что для сталей разных сортов значение критической температуры отличается, что зависит, в первую очередь, от уровня содержания в их составе углерода и различных примесей.

После выполнения закалки повышается как твердость, так и хрупкость стали, а на ее поверхности, потерявшей значительное количество углерода, появляется слой окалины. Толщину этого слоя обязательно следует учитывать для расчета припуска на дальнейшую обработку детали.

Диаграмма состояний железо-углерод

При выполнении закалки изделий из стальных сплавов, очень важно обеспечить заданную скорость охлаждения детали, в противном случае, уже перестроенная атомная структура металла может перейти в промежуточное состояние. Между тем, слишком быстрое охлаждение тоже нежелательно, так как оно может привести к появлению на детали трещин или к ее деформации. Для того, чтобы избежать образования таких дефектов, скорость охлаждения после падения температуры нагретого металла до 200 градусов Цельсия, несколько замедляют.

Для нагрева деталей, изготовленных из углеродистых сталей, используют камерные печи, которые могут прогреваться до 800 градусов Цельсия. Для закалки отдельных марок стали критическая температура может составлять 1250–1300 градусов Цельсия, поэтому детали из них нагреваются в печах другого типа. Удобство закалки сталей таких марок заключается в том, что изделия из них не подвержены растрескиванию при охлаждении, что исключает необходимость в их предварительном прогреве.

Очень ответственно следует подходить к закалке деталей сложной конфигурации, имеющих тонкие грани и резкие переходы. Чтобы исключить растрескивание и коробление таких деталей в процессе нагрева, его следует проводить в два этапа. На первом этапе такую деталь предварительно прогревают до 500 градусов Цельсия и лишь затем доводят температуру до критического значения.

Нагрев стали при закалке токами высокой частоты

Для качественной закалки сталей важно обеспечить не только уровень нагрева, но и его равномерность. Если деталь отличается массивностью или сложной конфигурацией, обеспечить равномерность ее нагрева можно только в несколько подходов. В таких случаях нагревание производится с двумя выдержками, которые необходимы для того, чтобы достигнутая температура равномерно распределилась по всему объему детали. Увеличивается суммарное время нагревания и в том случае, если в печь одновременно помещаются сразу несколько деталей.

Как избежать образования окалины и обезуглероживания при закалке

Многие детали из стали проходят закалку уже после того, как была выполнена их финишная обработка. В таких случаях недопустимо, чтобы поверхность деталей была обезуглерожена или на ней образовалась окалина. Существуют способы закалки изделий из стали, которые позволяют избежать таких проблем. Закалка, выполняемая в среде защитного газа, который нагнетается в полость нагревательной печи, может быть отнесена к наиболее передовому из таких способов. Следует иметь в виду, что используют такой метод лишь в том случае, если печь для нагрева полностью герметична.

На фото виден момент гидросбива на стане горячей прокатки — удаление окалины

Более простым способом, позволяющим избежать обезуглероживания поверхности металла при закалке, является применение чугунной стружки и отработанного карбюризатора. Для того чтобы защитить поверхность детали при нагревании, ее помещают в специальную емкость, в которую предварительно засыпаны эти компоненты. Для предотвращения попадания в такую емкость окружающего воздуха, который может вызвать процессы окисления, снаружи ее тщательно обмазывают глиной.

Если после закалки металла его охлаждают не в масле, а в соляной ванне, ее следует регулярно раскислять (не менее двух раз за смену), чтобы избежать обезуглероживания поверхности детали и появления на ней окисла. Для раскисления соляных ванн могут быть использованы борная кислота, бурая соль или древесный уголь. Последний обычно помещают в специальный стакан с крышкой, в стенках которого имеется множество отверстий. Опускать такой стакан в соляную ванну следует очень осторожно, так как в этот момент на ее поверхности вспыхивает пламя, которое затухает через некоторое время.

Существует простой способ, позволяющий проверить качество раскисления соляной ванны. Для этого в такой ванне нескольких минут (3–5) нагревают обычное лезвие из нержавеющей стали. После соляной ванны лезвие помещают в воду для охлаждения. Если после такой процедуры лезвие не гнется, а ломается, то раскисление ванны прошло успешно.

Объемная закалка толстостенных заготовок

Охлаждение стали при закалке

Основу большинства охлаждающих жидкостей, используемых при закалке изделий из сталей, составляет вода. При этом важно, чтобы такая вода не содержала в своем составе примесей солей и моющих средств, которые могут значительно повлиять на скорость охлаждения. Емкость, в которой содержится вода для закалки изделий из металла, не рекомендуется использовать в других целях. Важно также учитывать и то, что для охлаждения металла в процессе закалки, нельзя использовать проточную воду. Оптимальной для охлаждающей жидкости считается температура в 30 градусов Цельсия.

Закалка изделий из стали с использованием для их охлаждения обычной воды, имеет ряд существенных недостатков. Самый главный из них — это растрескивание и коробление деталей после их охлаждения. Как правило, таким способом охлаждения пользуются, когда выполняется цементирование металла, поверхностная закалка стали или термическая обработка деталей простой конфигурации, которые в дальнейшем будут подвергаться финишной обработке.

Для изделий сложной формы, изготовленных из конструкционных сталей, применяют другой тип охлаждающей жидкости – 50%-й раствор каустической соды, нагретый до температуры 60 градусов Цельсия. После охлаждения в таком растворе закаленная сталь приобретает светлый оттенок.

Очень важно при работе с каустической содой соблюдать технику безопасности, обязательно использовать вытяжку, размещаемую над ванной. При опускании раскаленной детали в раствор образуются пары, очень вредные для здоровья человека.

Закалка стали в муфельной печи

Лучшей охлаждающей жидкостью для тонкостенных деталей из углеродистых сталей и изделий, выполненных из легированных сплавов, являются минеральные масла, которые обеспечивают постоянную (изотермическую) температуру охлаждения, вне зависимости от условий окружающей среды. Главное, чего следует избегать при использовании такой технической жидкости, — это попадания в нее воды, что может привести к растрескиванию деталей в процессе их охлаждения. Однако, если в такую охлаждающую жидкость все же попала вода, ее можно легко удалить из нее, нагрев масло до температуры, превышающей температуру кипения воды.

У закалки стали с использованием масла в качестве охлаждающей жидкости есть ряд существенных недостатков, о которых обязательно стоит знать. При контакте масла с раскаленной деталью выделяются пары, вредные для человеческого здоровья, кроме того, масло в этот момент может загореться. У масляной ванны есть и такое свойство: после ее использования на детали остается налет, а сама охлаждающая жидкость со временем теряет свою эффективность.

Все эти факторы следует учитывать при выполнении закалки металлов в масляной среде и принимать следующие меры безопасности:

  • погружать детали в масляную ванну при помощи щипцов с длинными ручками;
  • все работы выполнять в специальной маске из закаленного стекла и в перчатках, изготовленных из толстой ткани с огнеупорными свойствами или из грубой кожи;
  • надежно защищать плечи, шею, грудь рабочей одеждой, изготовленной из толстой огнеупорной ткани.

Охлаждение в масляной ванне

Для закалки сталей отдельных марок охлаждение осуществляют при помощи потока воздуха, создаваемого специальным компрессором. Очень важно, чтобы охлаждающий воздух был совершенно сухим, так как содержащаяся в нем влага может вызвать растрескивание поверхности металла.

Существуют способы закалки стали, при которых используют комбинированное охлаждение. К ним обращаются для охлаждения деталей из углеродистых сталей, имеющих сложный химический состав. Суть таких способов закалки заключается в том, что сначала нагретую деталь помещают в воду, где за короткое время (несколько секунд) ее температура снижается до 200 градусов, дальнейшее охлаждение детали проводят уже в масляной ванне, куда ее следует переместить очень оперативно.

Выполнение закалки и отпуска стальных деталей в домашних условиях

Термическая обработка металлических изделий, в том числе поверхностная закалка стали, не только увеличивает твердость и прочность сплава, но и значительно повышает внутренние напряжения в его структуре. Чтобы снять эти напряжения, способные в процессе эксплуатации детали привести к ее поломке, необходимо отпустить изделие из стали.

Следует иметь в виду, что такая технологическая операция приводит к некоторому снижению твердости стали, но увеличивает ее пластичность. Для выполнения отпуска, суть которого состоит в постепенном уменьшении температуры нагретой детали и ее выдерживании при определенном температурном режиме, используются печи, соляные и масляные ванны.

Закалка и отпуск стали в домашних условиях

Температуры, при которых выполняется отпуск, отличаются для различных сортов стали. Так, отпуск быстрорежущих сплавов проводится при температуре 540 градусов Цельсия, а для сталей с твердостью на уровне HRC 59-60 достаточно и 150 градусов. Что характерно, при отпуске быстрорежущих сплавов их твердость даже возрастает, а во втором случае ее уровень понижается, но значительно повышается показатель пластичности.

Закалка и отпуск изделий из стали, в том числе и нержавеющих сортов, вполне допустима (и, более того, часто практикуется) и в домашних условиях, если в этом возникла необходимость. В таких случаях для нагрева изделий из стали можно использовать электроплиты, духовки и даже раскаленный песок. Температуры, до которых следует нагревать стальные изделия в таких случаях, можно подобрать по специальным таблицам. Перед закалкой или отпуском стальных изделий, их необходимо тщательно очистить, на их поверхности не должно содержаться грязи, следов масла и ржавчины.

После очистки изделие из стали следует нагреть так, чтобы оно равномерно раскалилось докрасна. Для того чтобы раскалить его до такого состояния, необходимо выполнять нагрев в несколько подходов. После того, как требуемое состояние достигнуто, нагреваемое изделие следует охладить в масле, а затем сразу поместить в духовку, предварительно разогретую до 200 градусов Цельсия. Затем необходимо постепенно снизить температуру в духовке, доведя ее до отметки в 80 градусов Цельсия.

Данный процесс занимает обычно час. Дальнейшее охлаждение следует проводить на открытом воздухе, исключение составляют лишь изделия из хромоникелевых сталей, для снижения температуры которых используются масляные ванны. Обусловлено это тем, что стали таких марок при медленном охлаждении могут приобрести так называемую отпускную хрупкость.

Технологии термообработки стали — ТехноХакер

ЭкономияSavedRemoved 0

Термообработка стальных сплавов – нагрев сплава до установленного температурного значения с последующей выдержкой и охлаждением. Данный вид обработки позволяет получить сталь с заданными характеристиками (однородная микроструктура, твердость, вязкость и пр.)

Классическая термообработка стали.

Часто термическим способом обрабатывают полуфабрикаты и готовые изделия.

Существует следующие этапы обработки стальных сплавов:

  1. Вначале проводят отжиг детали.
  2. Далее нормализуют сталь.
  3. Важным этапом является закалка.
  4. Завершает операцию отпуск стали.

 

[unitegallery otgig]

Назначение и виды отжига.

Отливка, ковка, прокатка, сварка стали сопровождаются ее неравномерным охлаждением. Это приводит к образованию структурных и химических неоднородностей, внутренних напряжений. Детали приобретают неоднородные свойства.

Отжиг необходим для их коррекции. Цель операции – добиться равновесной, устойчивой структуры в стали.

В результате отжига снижается внутреннее напряжение, металл становится менее прочным, но более пластичным и вязким. Это упрощает процессы его обработки резкой и давлением, корректирует структуру сварных швов, подготавливает заготовку к дальнейшей термообработке. Охлаждают металл при отжиге медленно: от 300 до 1000 С в час.

Отжиг включает следующие режимы.

I. Отжиг I-го рода. Применяют, когда нет необходимости менять фазовый состав.

  1. Диффузионный
  2. Рекристаллизационный
  3. Снимающий напряжения

II. Отжиг II-го рода. Используют, когда нужно поменять фазовый состав металла.

  1. Неполный
  2. Полный
  3. Изотермический
  4. Сфероидизирующий (другие названия: циклический, маятниковый, на зернистый перлит)

Нужный режим выбирают исходя из состава сталей и требований к их технологическим и механическим характеристикам.

Назначение нормализации

Нормализация стали представляет собой нагрев до температур, превышающих критические на 30-500 С с дальнейшим понижением температуры до 20 — 250 С на воздухе.
В доэвтектоиднгых конструкционных сталях ( с содержанием углерода 0,025-0,8%) при нормализации происходит уменьшение размера феррита и перлита. Это увеличивает прочность стали после отжига.

В заэвтектоидных инструментальных сталях (с содержанием углерода более 0,8%) разрушается цементитная сетка, окружающая перлитные зерна. Это снижает хрупкость стали, подготавливает ее к закалке.

Назначение и виды закалки

Закаливают сталь для улучшения ее характеристик. В частности, металл становится более прочным и твердым, стойким к механическому износу. Закалке подвергают стали, в которых содержание углерода выше 0,25%.

Виды закалки стали.

  1. В 1-ой закалочной среде (масло либо вода).
  2. В 2-х закалочных средах (в воде и масле).
  3. Ступенчатая.
  4. Изотермическая.

I-й способ

широко распространен в сталелитейном производстве, но применим не ко всем сталям. Некоторые металлы при резком охлаждении в воде трескаются. У некоторых сортов при охлаждении в масле закалка не происходит. Одноступенчатая закалка в одной среде допустима для изделий простой формы, к которым не предъявляют повышенных требований по прочности.

II-й способ

практически исключает возникновение трещин и позволяет получить качественную мартенситную сталь. Сперва деталь погружают в воду, далее — в масло.

Ступенчатая закалка

Для мелких изделий применяют закалку ступенчатым методом. Изделия нагревают, помещают в щелочной расплав (от 3500 до 4000 С). (Мартенсит образуется при температуре порядка 3000 С). Выжидают некоторое время, достаточное для выравнивания температуры внутри изделия. Легированные стали охлаждают в минеральном масле, нелегированные могут погружать в воду. Данный способ обеспечивает необходимую твердость, а вероятность появления трещин и напряжений стремиться к нулю.

Изотермическая закалка

Изотермическую закалку проводят аналогично ступенчатой, но выдерживая металл в щелочи до тех пор, пока аустенит полностью не распадется на бейнит. Преимущество метода в полном отсутствии внутренних напряжений. Данная закалка не требует отпуска. Метод пригоден для обработки сложных деталей, подверженных деформациям и трещинам.

Характеристика твердости стали, подвергнутой закалке при соблюдении технологии, выражается в единицах твердости и называется закаливаемостью. С увеличением процентного содержания углерода увеличивается твердость стального сплава. Влияние лигирующих компонентов на показатель твердости стали ничтожно мало. Лигирование определяет иные характеристики (устойчивость к коррозии и пр.).

Другая важная величина, определяющая характеристики металла – прокаливаемость, мм. Она показывает глубину, на которую данный сорт стали можно закалить — расстояние между внешним диаметром и полумартенситной зоной.

Закалка стального сплава в заводских условиях

https://youtu.be/CUV4o6sd6VY

Назначение и типы отпуска

Отпуск применяют, чтобы снять внутренние напряжения, ухудшающих свойства изделий. Стальной сплав нагревают, выдерживают и охлаждают. Чтобы максимально снять все виды напряжения, необходимо произвести нагрев до высокой температуры, выдержать длительное время и медленно охладить. К внутренним напряжениям относят: осевые, радиальные, тангенциальные. В результате изделие приобретает оптимальное соотношение прочности и вязкости.
Виды отпуска:
1. Низкотемпературный (до 2500 С). Применяют для повышения прочности и вязкости при сохранении твердости сплава (HRC остается в пределах от 58 до 63). Стали отпущенные при такой температуре обладают высокой стойкостью к статическим и низкой стойкостью к динамическим нагрузкам.

2. Среднетемпературный режим (350-5000 С). Используется, когда необходимо значительно повысить предел упругости, релаксационную стойкость и динамическую выносливость. Твердость сплава при этом заметно уменьшается до HRC в пределах от 40 до 50. Такой отпуск нужен для пружин, рессор и пр.

3. Высокий (высокотемпературный). Проводят при температурах свыше 5000 С. Данный вид обработки улучшает показатели прочности, текучести и ударной вязкости. Твердость стали и износостойкость останутся прежними.

Термическая обработка стали методом ТВЧ (током высокой частоты)

Тепловая обработка ТВЧ происходит за счет индукционного нагрева стального изделия, которое помещают вблизи индуктора. При этом в детали возникает ЭДС. Под ее воздействием по детали начинает движение переменный ток, частота которого равна частоте индуктора. Сама деталь при этом разогревается.

При индукционной термообработке деталей необходимо учитывать скин эффект – индуцирование высокочастотного тока преимущественно на поверхности и в подлежащих слоях изделия. Уменьшая частоту тока можно увеличивать глубину прогрева.

Высокая частота позволяет создать значительную мощность, в зоне прохождения тока. Как следствие, в этой области происходит скоростной нагрев. За секунду температура повышается до 5000 С.

Меняя силу тока, мощность, напряжение генератора и время обработки детали можно установить оптимальный режим закалки. При необходимости, пирометрами дополнительно снимают температуру нагрева сплава. Диагностируют качество закалки лабораторным путем. Аналогично классическим методам, в недогретом образце доэвтектоидных стальных изделий обнаруживают феррит, в перегретом – мартенситные крупноигольчатые вкрапления.

Высокочастотная закалка вызывает нагрев металла до температур, которые несколько выше температурных показателей классической термообработки. Но за счет того, что продолжительность воздействия мала, в сплаве не успевают образоваться зерна. Сам сплав отличается высоким показателем твердости (HRC превышает стандартное значение единицы на 3) твердостью поверхности, износостойкостью.

[unitegallery TVCH]

Область применения, способы и преимущества индукционной закалки

ТВЧ обработку преимущественно применяют для сталей с содержанием углерода не более 0,5%. Высокоуглеродистые стали при резком охлаждении имеют тенденцию к образованию трещин.

Индукционную закалку выполняют следующими методами.

  1. Непрерывно-последовательный. Используют для деталей с фиксированным сечением (оси, валы и пр.). Деталь движется в индукторе. Один участок подвергается закалке, затем перемещается в зону охлаждения спрейерным способом (водный душ или поток воздуха).
  2. Одновременная закалка. Используется для одновременной закалки всей поверхности.

Посредством регулировки температуры охладителя и времени его воздействия запускается процесс самоотпуска сплава. Т.е. данный способ закалки позволяет экономить на отпуске стали.

К преимуществам метода относят:

  • высокую скорость процесса;
  • возможность легко регулировать прокаливаемость;
  • наличие коробления и окалины стремиться к нулю;
  • возможность 100% автоматизации операции закалки;
  • компактность, позволяющая разместить закалочное оборудование в линии установок для механического оборудования.

Видео ТВЧ процесса

[unitegallery zakalka_TVCH]

Поверхностное упрочнение | металлургия | Britannica

Поверхностная закалка , обработка стали нагреванием или механическими средствами для увеличения твердости внешней поверхности, в то время как сердцевина остается относительно мягкой. Сочетание твердой поверхности и мягкого внутреннего пространства очень ценится в современной инженерии, поскольку оно может выдерживать очень высокие нагрузки и усталость — свойство, необходимое для таких элементов, как шестерни и подшипники качения. Сталь с поверхностной закалкой также ценится за ее низкую стоимость и исключительную гибкость в производстве.

Старейшим методом поверхностного упрочнения является науглероживание, при котором сталь на несколько часов выдерживают при высокой температуре в углеродистой среде. Углерод проникает в поверхность стали, делая ее более твердой. Для повышения эффективности и снижения затрат были разработаны различные методы науглероживания. Метод упаковки включает упаковку в стальную коробку деталей, подлежащих упрочнению, вместе с смесью древесного угля или кокса, в которую были добавлены карбонаты. Затем упаковка нагревается до очень высокой температуры, обычно от 1700 до 1750 ° F (925–955 ° C).Глубина проникновения углерода зависит от времени воздействия и температуры. При науглероживании газом детали нагреваются в контакте с такими углеродсодержащими газами, как монооксид углерода, диоксид углерода, метан или пропан. Этот процесс обычно выполняется в большой печи, в которую детали загружаются с одного конца и из которой они выходят с другого конца в закаленном состоянии. Тот же процесс используется при нитроцементации, за исключением того, что аммиак добавляется в атмосферу печи, и это происходит при более низких температурах, которые вызывают меньшую деформацию стали.Шестерни, шариковые и роликовые подшипники, а также поршневые пальцы — это продукты, изготовленные методом науглероживания.

Другой метод поверхностного упрочнения, называемый азотированием, использует азот и тепло. Кулачковые валы, топливные насосы для впрыска и штоки клапанов обычно упрочняются этим процессом. Закалка в пламени и индукционная закалка, при которой на короткое время прикладывается высокая температура (газовым пламенем или высокочастотным электрическим током, соответственно), а затем сталь немедленно закаливается, обычно используются для более крупных орудий.

Механические средства упрочнения поверхности стальных деталей включают упрочнение, которое представляет собой удар нагретой поверхности молотком по нагретой поверхности, например, дробью железных окатышей по поверхности или воздушной струей, и холодную обработку, которая состоит из прокатки, обработки молотком или волочения. при температурах, не влияющих на состав стали.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Закалка и отпуск

ФАЙЛ PDF — НАЖМИТЕ ЗДЕСЬ ДЛЯ ПЕЧАТИ РАБОЧЕГО ЛИСТА

Сталь можно обработать интенсивным нагревом, чтобы разные свойства твердости и мягкости.Это зависит от количество углерода в стали (можно закалку только из высокоуглеродистой стали и закаленный).

СОДЕРЖАНИЕ УГЛЕРОДА В СТАЛИ: Мягкая сталь: 0,4% углеродистая, среднеуглеродистая сталь примерно 0,8% углерода, высокоуглеродистая сталь примерно 1,2% углерода (эта сталь также известна как инструментальная сталь и включает в себя серебряную сталь и калибровочную пластину).

Низкоуглеродистая сталь и средняя углеродистая сталь не имеет достаточно углерода, чтобы изменить свою кристаллическую структуру и, следовательно, не могут быть закалены и улучшены.Середина углеродистая сталь может стать немного тверже, хотя ее нельзя закалить до место, где его нельзя подпилить или разрезать ножовкой (классический проверка того, была ли сталь закалена).

Если сталь нагревается пока он не загорится красным и сразу не погаснет в чистой воде, он становится очень твердым, но при этом хрупким. Это означает, что он может сломаться или щелкнуть, если подвергнуть сильному давлению. С другой стороны, если докрасна стали дать медленно остыть, полученную сталь будет легче вырезать, придать форму и подпилить, так как он будет относительно мягким.Тем не менее промышленная термообработка стали — очень сложная и точная наука.

В школьной мастерской большая термическая обработка металлов происходит на паяльном поде. Вращающийся стол и огнеупорные кирпичи существенный. Огненные кирпичи отражают сильный жар обратно на металл. нагревается. Это достигается расположением кирпичей полукругом. за нагреваемым металлом.Без кирпичей тепло уходило бы и это ограничило бы достижимую температуру.

ЗАКАЛКА И ОТПУСК

Термообработка стали в школьной мастерской обычно двухэтапный процесс.Например, если высокоуглеродистая сталь или серебро изготовлено стальное лезвие отвертки, в какой-то момент оно будет должны быть закалены, чтобы предотвратить его износ при использовании. На С другой стороны, его придется закалить. Этот второй процесс нагрева немного снижает твердость, но делает сталь более жесткой. Это также значительно снижает хрупкость стали, так что она не легко ломается. Весь процесс называется закалкой и отпуском.

ПЕРВЫЙ ЭТАП:

Винт приводное лезвие нагревается, сначала медленно, нагревая все лезвие. Затем тепло концентрируется на кончике лезвия. Этот постепенно становится докрасна.

ВТОРОЙ ЭТАП:

Винт Отводное лезвие быстро извлекается из пайки с помощью кузнецов щипцы и погрузили в чистую холодную воду.Пар выкипает из воды так как сталь быстро остывает. На этом этапе лезвие очень твердое, но хрупкие и легко ломаются.

ТРЕТЬЯ ЭТАП:

Винт Отводное лезвие очищается наждачной бумагой и снова нагревается на пайке. очаг.Тепло сосредоточено на конце стального лезвия. Сталь за ним нужно очень внимательно следить, так как он довольно быстро меняет цвет. А синяя полоса тепла появится около конца лезвия, и оно движется по направлению к кончику по мере повышения температуры вдоль лезвия. Когда линия синего цвета достигает кончика паяльная горелка выключается. Синий указывает правильную температуру отпуска.

ЧЕТВЕРТАЯ ЭТАП:

Винт Лезвие привода размещается на стальной поверхности, например на поверхности наковальни.Этот отводит тепло и обеспечивает медленное охлаждение отвертки лезвие. В холодном состоянии лезвие должно быть прочным, износостойким и вряд ли сломается или сломается. Это связано с процессом закалки.

ПОЛЕЗНЫЕ ЦВЕТОВЫЕ ПОКАЗАТЕЛИ ТЕМПЕРАТУРА

При нагреве стали на поде пайки цвет происходят изменения.Их можно использовать для обозначения температуры металл. Таблица напротив является приблизительным ориентиром.

В таблице напротив указаны температуры и соответствующие цвета, необходимые при закалке стали для определенных целей. Например, при изготовлении токарных инструментов по дереву их необходимо нагреть до коричневый цвет, при закалке.

ВОПРОСЫ:

1. Нарисуйте последовательность диаграмм, изображающих закалку и отпуск высокая углеродистая сталь.

НАЖМИТЕ ЗДЕСЬ ДЛЯ ОБОРУДОВАНИЯ И ИНДЕКС ПРОЦЕССОВ

Закалка мягкой стали

Закалка мягкой стали

НАЖМИТЕ ЗДЕСЬ ДЛЯ УКАЗАТЕЛЬНОЙ СТРАНИЦЫ

КОРПУС ИЗ МЯГКОЙ СТАЛИ

В.Райан 2005 — 2009

ФАЙЛ PDF — НАЖМИТЕ ЗДЕСЬ ДЛЯ ПЕЧАТИ РАБОЧЕГО ЛИСТА

Цементационная закалка — простой метод закалки стали. Это менее сложно, чем закалка и отпуск. Эта техника используется для сталей с низким содержанием углерода. Углерод добавлен во внешний поверхность стали на глубину примерно 0.03мм. Одно преимущество этого метода закалки стали заключается в том, что внутренний стержень оставляют нетронутым и поэтому по-прежнему обрабатывает такие свойства, как гибкость, и все еще относительно мягкий.

ПЕРВЫЙ ЭТАП:

Сталь нагревается до красного каления. Может потребоваться отвердить только одну часть сталь и поэтому тепло может быть сосредоточено в этой области.

ВТОРОЙ ЭТАП:

Сталь снимается с пода пайки кузнечными клещами и погрузили в цементирующий компаунд и дали немного остыть. В цементирующий компаунд с высоким содержанием углерода.

ТРЕТЬЯ ЭТАП:

Сталь снова нагревают до красного цвета, снимают с пода пайки и погрузился в холодную чистую воду.

Стальной стержень теперь должен иметь закаленную внешнюю поверхность и гибкий, мягкий интерьер. Процесс можно повторить до увеличить глубину закаленной поверхности.

ВОПРОСЫ:

1. Нарисуйте последовательность диаграмм, представляющих упрочнение мягкого стали.

НАЖМИТЕ ЗДЕСЬ ДЛЯ ОБОРУДОВАНИЯ И ИНДЕКС ПРОЦЕССОВ

Процесс цементации стали и металлов: что такое цементирование?

Что такое цементирование

Цементное упрочнение — это метод, при котором металлическая поверхность укрепляется путем добавления тонкого слоя поверх другого металлического сплава, который, как правило, более прочен.Для увеличения срока службы объекта обычно используется цементируемая сталь. Это особенно важно при производстве деталей машин, поковок из углеродистой стали и шестерен из углеродистой стали. Поверхностное упрочнение также используется для других целей. Цементное упрочнение также называют поверхностным упрочнением. Цементная закалка использовалась в течение многих столетий и часто использовалась для изготовления подков и различных видов кухонной утвари, которые подвергались значительному износу. Цементное упрочнение — это, по сути, группа процессов, которые используются для увеличения твердости поверхности до более высокой степени, чем твердость массивного материала.Цементационная закалка обычно выполняется локально на верхней поверхности и на ограниченную глубину. Более высокая твердость обычно связана с лучшим сопротивлением износу и усталости.

Процесс упрочнения корпуса

Добавление углерода к железным поверхностям является обычным явлением. Цементная закалка включает использование металла с низким содержанием углерода и его сочетание с металлом с большим содержанием углерода. Группировка металлов, вероятно, даст гораздо более твердый продукт. Добавление низкоуглеродистого металла создает материал, которому можно легко придать желаемые формы.Улучшение поверхности не только увеличивает прочность продукта, но и помогает избежать ослабления железа. Следовательно, такие предметы, как каминное оборудование, чугунная сковорода для мытья посуды и посуда для жарки, будут продолжать использоваться в течение долгих периодов времени. Упрочнение часто используется в строительной отрасли для усиления балок, металлических дверей и металлических панелей. Цементное упрочнение обычно проводят после придания детали окончательной формы.

Области применения

Компоненты, которые подвергаются сильным ударам и высокому давлению, обычно закалены.Поверхности, требующие особой твердости, можно выборочно закалить, не закалывая оставшийся предмет. Огнестрельное оружие — это обычное закаленное оружие, так как оно требует точности обработки и большей твердости для выполнения желаемых функций. Другое общее применение упрочнения гильзы — это распредвалы и винты специального назначения, в основном самосверлящие винты. Упрочнение крепежных изделий и винтов является менее сложным, поскольку оно выполняется просто путем нагрева и закалки.Цементация более мелких изделий выполняется путем многократного нагрева.

Закалка стальной оболочки

Углерод проникает в металлическую оболочку, образуя низкоуглеродистую сталь, внешнее покрытие которой содержит больше углерода, чем ядра. Низкоуглеродистая сталь подвергается нагреву при определенной температуре до ярко-красного цвета. Хотя низкоуглеродистая сталь мягкая, она погружена в углеродный состав, покрывающий внешнюю поверхность. Одного погружения может быть недостаточно, и может потребоваться несколько повторных нагреваний и погружений.Эта процедура создаст кожу, богатую углеродом. Затем металл повторно нагревают и опускают в воду для закалки. Упрочнение полезно для предметов, которые должны быть закалены снаружи, чтобы выдерживать износ, но мягкие внутри, чтобы выдерживать удары.

Закалка и отпуск ножевой стали — Sandvik Materials Technology

Закалка — это способ сделать сталь ножа более твердой. Если сначала нагреть ножевую сталь до 1050–1090 ° C (1922–1994 ° F), а затем быстро охладить (закалить)), ножевая сталь станет намного тверже, но при этом станет более хрупкой.

Для уменьшения хрупкости материал закаливают, обычно нагревая его до 175–350 ° C (347–662 ° F) в течение 2 часов, что приводит к твердости 53–63 HRC и хорошему балансу между сохранением резкости, шлифуемость и вязкость.

Закалка должна проводиться в течение разумного периода времени после затвердевания, предпочтительно в течение часа или около того. Жизненно важно, чтобы лезвие остыло до комнатной температуры перед началом отпуска. В противном случае превращение в мартенсит будет прервано, и результаты упрочнения могут ухудшиться.

Более высокая температура отпуска дает несколько более мягкий материал с более высокой вязкостью, тогда как более низкая температура отпуска дает более твердый и несколько более хрупкий материал, как показано на рисунке ниже.

Походный нож или нож для выживания, например, можно закалить при температуре 350 ° C (662 ° F), чтобы он мог выдерживать грубое обращение, не ломаясь. С другой стороны, если ожидается, что нож будет иметь острую кромку, его можно вместо этого закалить при 175 ° C (347 ° F) для максимальной твердости.

Температуры отпуска ниже 175 ° C (347 ° F) следует использовать только в исключительных случаях, когда предъявляются экстремальные требования к высокой твердости, поскольку очень низкие температуры отпуска приводят к очень хрупкому материалу. Точно так же следует избегать отпуска при температурах выше 350 ° C (662 ° F), поскольку это может привести к хрупкости и снижению коррозионной стойкости. Обратите внимание, что если закаленное лезвие подвергается воздействию температур, превышающих температуру отпуска (например, во время шлифования), свойства ножа будут ухудшены.

Правильно выполненная закалка приведет к хорошему балансу между твердостью, ударной вязкостью и коррозионной стойкостью готового лезвия ножа.
Дополнительные сведения о закалке

Термическая обработка стали | Технология изготовления пресс-форм

Продолжая серию учебных статей по теме термической обработки, следующим шагом будет рассмотрение основной процедуры термической обработки, ее принципов и причин, по которым необходимо термически обрабатывать сталь.В предыдущих статьях были рассмотрены темы «Что такое сталь» и «Влияние легирующих элементов на сталь».

Эта и следующие три статьи будут посвящены основным принципам термической обработки, таким как:

  • Определения процессов.
  • Их значения и выбор.
  • Закалка.
  • Обработка поверхности, включая азотирование до тонкопленочного напыления.
  • Контроль качества.
  • Устранение неполадок.

Что такое термическая обработка стали?

Термическая обработка, применяемая к стали, может быть определена как приложение тепла для изменения характеристик или состояния стали. Количество тепла можно измерить по температуре обрабатываемой стали.

Температура может быть холодной или горячей на ощупь, поэтому температура технологической обработки может варьироваться от очень низкой до очень высокой. Или, с точки зрения температуры, диапазон может быть от холодной отрицательной температуры до высокой температуры плюс.

Термическая обработка — это процесс нагрева до температуры, выдержки при этой температуре и последующего охлаждения от этой температуры.

Почему мы подвергаем термической обработке сталь? Сталь

можно разделить на несколько категорий. Основным легирующим элементом является углерод, который влияет на твердость стали и ее механические свойства.

Сталь необходимо нагреть, чтобы изменить ее состояние и механические свойства, чтобы сталь могла функционировать либо во время производства, либо в течение ее жизненного цикла.

Принципы термической обработки

Если мы рассмотрим первичный металл стали, то есть железо, есть ряд особенностей, которые мы можем сразу заметить в металле:

  • Устойчив при комнатной температуре.
  • Магнитный.
  • Может иметь блестящую поверхность. Другими словами, он полируется до яркого блеска.
  • Имеет высокую плотность (он тяжелый).
  • Он пластичный (легко гнется или принимает форму).

Считайте прямую вертикальную линию объединенной линией утюга и температуры. Если мы посмотрим на линию в вертикальной конфигурации при комнатной температуре, то утюг стабилен.

Чтобы понять, что происходит с железом при нагревании, вы должны сначала знать о феррите, состоянии железа, которое имеет ряд присущих ему свойств при комнатной температуре, таких как большой размер зерна, низкая твердость, хорошая пластичность и легко обрабатывается. .

Состояние феррита существует в определенной кристаллической форме и будет существовать при низких температурах.Таким образом, железо состоит из миллионов крошечных кристаллов, похожих на сахар или соль. Эти кристаллы связаны в так называемую решетчатую структуру.

Состояние феррита железа можно сравнить с водой, точнее H 2 O. H 2 O существует в трех формах: лед, жидкость и пар. Каждая из трех фаз или состояний по-прежнему является H 2 O, но каждая из них существует в различной кристаллической форме. Точно так же феррит — одно из условий железа.

Когда тепло воздействует на железо, с нагреваемым блестящим куском стали начинают происходить разные вещи.Кислород в воздухе начнет реагировать с блестящей поверхностью железа с образованием оксида железа. При повышении температуры реакция между железом и кислородом становится более агрессивной, и на поверхности железа начинает образовываться видимый продукт, известный как окалина.

Когда сталь достигает приблизительной температуры 1350xF, происходит изменение структуры, а также фазы. Фаза переходит от феррита к аустениту. Кроме того, кристаллическая структура меняется с объемноцентрированной кубической на гранецентрированную кубическую.

Признаком происходящего изменения является то, что ион теряет свои магнитные свойства, что можно увидеть, испытав поверхность стали с помощью магнита. Защищайте руки и пальцы при проверке потери магнетизма горячей сталью.

Как выглядит кристаллическая структура?

Когда железо нагревается до температуры выше более низкой температуры превращения 1350xF, кристаллическая структура трансформируется в гранецентрированную кубическую структуру. Следовательно, мы можем сказать, что для создания фазы аустенита нам необходимо приложить достаточно тепла для создания фазы.

В дополнение к этому, есть рост, который будет происходить из-за изменения структуры атома. Следовательно, размер формы будет меняться по мере ее нагрева. Это называется ростом, и его не следует путать с искажением.

Таким образом, по определению, нижняя температура превращения (или линия магнитного изменения) — это температура, при которой ферритная фаза (объемно-центрированная кубическая структура) начинает превращаться в аустенит (гранецентрированную кубическую структуру).

Что тогда происходит со сталью? Сталь

— это просто сплав железа и углерода.

Линия с содержанием углерода 0,77% известна как эвтектоидная линия. Слева от линии стали известны как доэвтектоидные стали (состояние феррита), а справа от строки стали известны как стали с гиперэвтектоидом (состояние цементита). Чтобы установить, какой должна быть верхняя температура изменения, чтобы гарантировать полное фазовое превращение из феррита в аустенит, необходимо знать содержание углерода в стали. Другими словами, если мы рассмотрим сталь с содержанием углерода 0,40 процента, мы будем искать 0.40 процентов по горизонтальной линии карбона и удлинить линию по вертикали. В точке, где линия пересекает верхнюю линию изменения, точка пересечения продолжит линию по горизонтали, чтобы пересечь вертикальную линию температуры. Это будет температура, при которой феррит полностью превратится в аустенит. После установления температуры аустенизации к этой температуре добавляют приблизительно 50xF, чтобы гарантировать, что сталь находится в области аустенита для полного превращения. Если сталь оставить при температуре, которая находится в области превращения аустенит + феррит, тогда будет существовать смешанная фаза, которая не будет полностью преобразована.Обе фазы имеют разный объем.

Когда сталь находится в области аустенита, необходимо охладить ее, чтобы создать определенную фазу, которая необходима стали для функционирования, либо для обработки, либо для повышения производительности. Скорость охлаждения стали будет определять фазу или микроструктуру. Расслабление может быть медленным или быстрым, в зависимости от того, что должно быть выполнено.

Контролируя температуру выдержки и скорость охлаждения стали, мы можем определить процесс, который должен быть завершен.Эти процессы включают отжиг, нормализацию, снятие напряжений, закалку и отпуск.

Что такое отжиг?

Отжиг — это процесс нагрева стали до определенной температуры в области аустенита и очень медленного охлаждения стали. Есть много производных от процесса отжига, но обычно это медленный процесс охлаждения.

Другая производная процесса отжига известна как докритический отжиг. Этот процесс включает выдержку при температуре ниже нижней линии превращения, в диапазоне от 1200 x F до 1300 x F, до тех пор, пока сталь не выровняется по температуре поперечного сечения, с последующим медленным охлаждением.Медленное охлаждение может означать скорость охлаждения от 5xF в час до 50xF в час.

Как можно догадаться, период охлаждения может занимать значительное время. Следует отметить, что легированные никелем стали и инструментальные стали серии A следует охлаждать очень медленно, поскольку никель вызывает эффект закалки на воздухе.

Другие виды отжига:
  • Яркий отжиг . Этот метод представляет собой метод отжига, при котором используется защитная атмосфера для предотвращения окисления поверхности стали.
  • Технологический отжиг . Эта процедура выполняется при температуре, близкой к нижней критической линии на диаграмме углерода железа. Иногда его путают с докритическим отжигом, но он используется, когда следует значительная холодная обработка.
  • Рекристаллизационный отжиг . Опять же, этот процесс часто ошибочно принимают за докритический отжиг. Используется после холодной обработки для получения определенной зернистой структуры.
  • Субкритический отжиг . Этот метод используется для холоднодеформированной стали и выполняется ниже нижней критической линии на диаграмме равновесия железа и углерода.Иногда его применяют к инструментальной стали, подвергшейся чрезмерному отпуску и требующей отжига перед закалкой и отпуском.
  • Отжиг сфероидальной формы . Этот процесс представляет собой контролируемую процедуру нагрева и охлаждения для получения сфероидальных или глобулярных частиц цементита. Обычно его наносят на высокоуглеродистые стали для получения хороших характеристик обработки, такие как высоколегированные стали и инструментальные стали.
  • Изотермический отжиг . Температура процесса этой процедуры определяется знанием содержания углерода в стали.Затем сталь доводится до этой температуры и охлаждается до температуры выдержки, которая позволяет стали изотермически трансформироваться.
  • Полный отжиг . Это процесс, который включает повышение температуры стали до области сустенита с последующим медленным охлаждением.

Что такое нормализация?

Нормализация — это процесс, при котором размер зерна становится нормальным. Этот процесс обычно выполняется после операций ковки, экструзии, волочения или тяжелой гибки.

Когда сталь нагревается до повышенных температур для выполнения вышеуказанных операций, зернистость стали увеличивается. Другими словами, сталь испытывает явление, называемое «ростом зерна».

Это оставляет сталь с очень крупнозернистой и неравномерной зернистой структурой. Кроме того, когда сталь механически деформируется посредством вышеупомянутых операций, зерно становится удлиненным.

В результате нормализации происходят изменения механических свойств, поскольку нормализованная сталь мягкая, но не такая мягкая, как полностью отожженная сталь.Его зернистая структура не такая крупная, как у отожженной стали, просто потому, что скорость охлаждения выше, чем у отжига. Обычно сталь охлаждают на неподвижном воздухе без сквозняков. Температура процесса практически такая же, как и при отжиге, но результаты отличаются из-за скорости охлаждения.

Процесс предназначен для:

  • Обеспечивает улучшенные характеристики обработки.
  • Обеспечьте однородную структуру.
  • Снижение остаточных напряжений при прокатке и ковке.
  • Уменьшите риск «полосатости».
  • Помогает придать стали более равномерный отклик при закалке.

Что снимает стресс?

Снятие напряжений — это процедура промежуточной термообработки для снижения остаточных напряжений, возникающих в результате механической обработки, изготовления и сварки. Нагревание стали во время ее обработки или изготовления будет способствовать устранению остаточных напряжений, которые, если во время производства не будут устранены путем снятия напряжений, проявятся во время процедуры окончательной термообработки.

Это относительно низкотемпературная операция, которая выполняется в области феррита, что означает, что в стали не происходит фазового перехода, а только снижаются остаточные напряжения. Диапазон температур обычно составляет от 800xF до 1300xF. Однако чем выше температура, тем выше риск окисления поверхности. Как правило, лучше выдерживать более низкие температуры, особенно если сталь является «предварительно твердой» сталью. Твердость будет снижена, если температура снятия напряжения превышает температуру отпуска стали.

Существует общее правило для определения времени при температуре. Следует указать, что время измеряется, когда деталь нагрета, а не когда печь нагрета. Время при температуре для процессов полного отжига (не отжига со сфероидизацией), нормализации и снятия напряжения составляет 60 минут при температуре детали на один дюйм максимальной площади поперечного сечения.

Укрепление гильзы | Процесс поверхностного упрочнения

Процесс упрочнения гильзы

Существует множество процессов для изменения свойств стальных инструментов, таких как отпуск стали, закалка в масле, дисперсионная закалка и многое другое.Но когда дело доходит до долговечности, цементирование (также иногда называемое поверхностным упрочнением ) является одним из самых эффективных. Процесс поверхностного упрочнения добавляет тонкий слой металлического сплава на внешнюю поверхность металла. Этот процесс может минимизировать износ и увеличить прочность поверхности стальных деталей. Давайте посмотрим на несколько методов термической обработки стали.

Методы закалки

Прежде чем взглянуть на преимущества, уделите немного времени рассмотрению различных способов упрочнения стали.Чтобы преобразовать вашу сталь таким образом, есть несколько вариантов:

  • Науглероживание (введение углерода)
  • Азотирование (с использованием газа, богатого азотом, например, аммиака)

Каждый из этих методов следует выбирать в зависимости от того, для чего вы будете использовать сталь, нужно ли закаливать всю кусок или часть, а также общий размер и форма вашего предмета. Независимо от того, какой метод вы выберете, ваши стальные детали будут иметь более длительный срок службы и большую универсальность после обработки.

Закаленная сталь служит дольше

Дополнительная прочность, обеспечиваемая закалкой стали, обеспечивает прочный внешний слой (называемый корпусом), при этом внутренняя сердцевина (глубина корпуса) остается достаточно мягкой, чтобы поглощать удары. Это может увеличить срок службы вашего объекта, что означает меньшие затраты на замену и обслуживание. Это также полезно, если вы продаете товары из закаленной стали, потому что ваши клиенты будут доверять долговечности вашего продукта.

Преимущества закаливания

Не все металлы созданы равными.Некоторые металлы прочные и прочные, а другие гораздо более пластичны и менее долговечны. Стальные детали часто требуют обработки для получения максимальной прочности и долговечности. Мы можем изменять механические свойства металлов в процессе производства.

В этом процессе металлическая поверхность усиливается за счет добавления тонкого слоя другого металлического сплава, который увеличивает долговечность и твердость. Иногда этот процесс называют поверхностным упрочнением. Он имеет множество применений, таких как производство кухонной утвари, усиление металлических балок и повышение функциональности огнестрельного оружия.Есть много преимуществ процесса закалки металлического каркаса.

Есть много типов процессов цементации. Какой из них будет использоваться, будет определяться металлами, используемыми в производстве, и желаемыми свойствами готового продукта.

Науглероживание

При науглероживании твердость поверхности стали повышается за счет добавления углерода в компонент. Компонент, который требует закалки, нагревается до 9000 ° C и подвергается воздействию углеродной среды. Углерод проникает в поверхность металла и укрепляет ее.Используемый агент может быть твердым, жидким или газообразным. Первоначальные инвестиционные затраты обычно выше, чем в других процессах. При жидкой науглероживании трудно контролировать глубину твердости, и она может быть неоднородной по всему объекту. Этот процесс должен осуществляться в контролируемой среде, чтобы предотвратить присутствие кислорода в процессе, который изменяет результат закалки металла. Процессы частичного вакуума сокращают необходимое время и обеспечивают несколько экономических преимуществ упрочнения цемента.

Азотирование газа

В этом процессе материал нагревается примерно до 5500 ° C, а затем подвергается воздействию атомарного азота, который может проникнуть в сталь или железо. Атомарный азот вступает в реакцию с металлом, повышая его твердость и стойкость. Этот процесс обеспечивает высокую твердость, но не может использоваться со всеми легированными сталями.

После этого процесса могут возникнуть дополнительные производственные затраты в виде дорогостоящего процесса шлифования для удаления тонкого белого слоя, который образуется на поверхности.Однако нет никаких других тепловых процессов, следующих за азотированием, что означает меньшую деформацию объекта.


Преимущества закаливания

Объекты, которые должны иметь твердую внешнюю поверхность, чтобы выдерживать износ и при этом сохранять мягкую внутреннюю часть, чтобы выдерживать удары, выигрывают от этого процесса. Преимущества цементирования:

  • Создание более долговечного продукта
  • Повышает износостойкость металла
  • Увеличивает срок службы объектов
  • Закалка или поверхностная закалка облегчают сварку стали
  • Металл более гибкий
  • Сталь более жесткая и прочная

Хотя этот процесс может быть полезным во многих отраслях, для получения правильного результата необходимо использовать правильный процесс.Цементная закалка несовместима со сваркой.

Важно работать с опытными инженерами, которые понимают этот процесс, чтобы получить желаемый эффект для вашего конечного продукта. Когда вам нужны решения, которые касаются этой проблемы, убедитесь, что это сделано правильно с первого раза и правильно применяется, чтобы сэкономить деньги в будущем.

Последующее упрочнение

Последующая закалка, такая как указанная, увеличивает прочность и износостойкость за счет диффузии углерода по поверхности стальных деталей с помощью ряда различных методов.Это создает оболочку вокруг материала, сохраняя при этом значительно меньшую твердость внутри сердечника.

В SST мы являемся экспертами в области термообработки низкоуглеродистой стали, индукционной закалки, закалки пламенем и металлургии сталей. Эти сложные процессы применяются к деталям из низкоуглеродистой стали после механической обработки, а также к подшипникам, зубчатым колесам и другим важным компонентам из высоколегированной стали. Узнайте больше о том, как термическая обработка с помощью нашего Case Application может принести пользу вашему бизнесу.

Узнайте, что еще может сделать для вас упрочнение корпуса

Если вы хотите закалить небольшие стальные инструменты или хотите повысить долговечность большого и сложного оборудования, Specialty Steel Treating, Inc.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *